1
|
Domínguez-Valencia R, Bermúdez R, Pateiro M, Purriños L, Benedito J, Lorenzo JM. Impact of Supercritical CO 2 Treatment on Lupin Flour and Lupin Protein Isolates. Foods 2025; 14:675. [PMID: 40002118 PMCID: PMC11854785 DOI: 10.3390/foods14040675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Global population growth is putting pressure on the food supply, necessitating the exploration of new, alternative, and sustainable protein sources. Lupin, an underutilized legume in human nutrition, has the potential to play a significant role in addressing this challenge. However, its incorporation into the human diet requires thorough investigation, including exploring and optimizing functionalization processes to maximize its potential. This study aimed to optimize the parameters (pressure, time, and CO2 flow) for extracting anti-technological factors (ATFs) from lupin using supercritical CO2 (SC-CO2) and to evaluate the effects of this extraction on both the flour and the protein isolate derived from it. Optimization revealed that the optimal SC-CO2 conditions were a CO2 flow rate of 4 kg/h at 400 bar for 93 min. Under these conditions, significant changes were observed in the flour composition, including a reduction in oil, polyphenols, and moisture content, along with an increase in ash content. Improved color parameters were also noted. These variations were attributed to the removal of oil and phenolic compounds during processing. Furthermore, this research demonstrated that SC-CO2 treatment improved lupin protein isolate (LPI) purity (93.81 ± 0.31% vs. 87.42 ± 0.48%), significantly reduced oil content (8.31 ± 0.09% vs. 14.31 ± 0.32%), and enhanced color parameters. The SC-CO2 procedure also resulted in a higher protein extraction yield (56.95 ± 0.45% vs. 53.29 ± 2.37%). However, the total extraction yield (g LPI/100 g of flour) was not affected by SC-CO2 treatment, remaining at 24.30 ± 0.97% for the control sample and 24.21 ± 0.26% for the treated sample. The extracted oil (2.71 ± 0.11 g/100 g of flour), a co-product of the SC-CO2 step, exhibited a fatty acid profile characterized by high levels of unsaturated fatty acids (62.8 ± 0.74 g/100 g oil), oleic acid (27.76 ± 0.77 g/100 g oil), linoleic acid (25.98 ± 0.73 g/100 g oil), and α-linolenic acid (5.32 ± 0.16 g/100 g oil), as well as a balanced ratio of essential fatty acids (n-6/n-3 = 4.89). The treatment had minimal to no effect on amino acid content or chemical score, and the protein was characterized by high amounts of essential amino acids (334 ± 3.12 and 328 ± 1.05 mg/g protein in LPI-control and LPI-SF, respectively). These findings demonstrate that both the LPI and the oil extracted using SC-CO2 possess high nutritional quality and are suitable for human food applications.
Collapse
Affiliation(s)
- Rubén Domínguez-Valencia
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia N° 4, Parque Tecnolóxico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (R.B.); (M.P.); (L.P.); (J.M.L.)
| | - Roberto Bermúdez
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia N° 4, Parque Tecnolóxico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (R.B.); (M.P.); (L.P.); (J.M.L.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia N° 4, Parque Tecnolóxico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (R.B.); (M.P.); (L.P.); (J.M.L.)
| | - Laura Purriños
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia N° 4, Parque Tecnolóxico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (R.B.); (M.P.); (L.P.); (J.M.L.)
| | - Jose Benedito
- Grupo ASPA (Anàlisi I Simulació de Processos Agroalimentaris), Instituto de Ingeniería de Alimentos, Food-UPV, Universitat Politècnica de València, Camí de Vera s/n, E46022 Valencia, Spain;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia N° 4, Parque Tecnolóxico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain; (R.B.); (M.P.); (L.P.); (J.M.L.)
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
2
|
El-Said MM, Hamzalıoğlu A, Gökmen V. Characterization of whey protein concentrate-maltodextrin-pomegranate peel phenolic compounds ternary conjugate as a novel food-grade stabilizer for nano-pickering emulsion. Food Res Int 2025; 203:115894. [PMID: 40022401 DOI: 10.1016/j.foodres.2025.115894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
Developing effective food-grade stabilizers for nano-Pickering emulsions (NPEs) presents a considerable challenge, as conventional binary systems often exhibit limited functionality. The potential of ternary conjugates incorporating bioactive phenolic compounds remains underexplored. This study aimed to synthesize a novel stabilizer through covalent bonding of whey protein concentrate (WPC), maltodextrin (MD), and pomegranate peel extract (PPex) under alkaline conditions. Ultrasonication-assisted extraction (UAE), microwave-assisted extraction (MAE), and their combination (UM) were employed to extract phenolic compounds from pomegranate peel. By optimizing MAE power (300-600 W), UAE power (200 W), and extraction times (5, 10, 20 min), the highest levels of phenolic compounds (421 ± 0.13 mg Gallic acid/100 g dry peel) and antioxidant activity (90.54 ± 0.481 %) were achieved using UAE at 200 W for 30 min combined with MAE at 300 W for 5 min. Ternary conjugates were formulated with varying concentrations of PPex (0.04 %, 0.08 %, and 0.12 %). Fourier-transform infrared spectroscopy (FTIR) confirmed the interactions between WPC, MD, and PPex. NPEs prepared with ternary conjugates containing 0.12 % PPex exhibited superior stability, enhanced antioxidant activity, and reduced release of free fatty acids during in vitro digestion. Furthermore, the emulsion demonstrated a progressively organized network microstructure, contributing to improved dispersion stability. This study underscores the potential of a ternary conjugate with 0.12 % PPex to enhance NPE stability, presenting a novel approach to developing stable food-grade NPE for functional foods. Additionally, it adds value to pomegranate peel by forming natural protein-polysaccharide- phenolic compounds complex particles.
Collapse
Affiliation(s)
- Marwa M El-Said
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Egypt
| | - Aytül Hamzalıoğlu
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey.
| |
Collapse
|
3
|
Ullah S, Fayyaz Ur Rehman M. Optimization of Extraction Conditions for Biological Attributes of Newly Developed NARC-G1 Garlic Using Response Surface Methodology and Its GC-MS Characterization. Chem Biodivers 2024; 21:e202401013. [PMID: 39189631 DOI: 10.1002/cbdv.202401013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/08/2024] [Indexed: 08/28/2024]
Abstract
The present paper is a comprehensive study on the optimization of ultrasonic assisted extraction and characterization of valued components from the newly developed garlic cultivar NARC-G1. The response surface methodology was employed to optimize the extraction time, solvent-to-solid ratio and extraction temperature, for optimal total phenolic contents (TPC), DPPH radical scavenging activity, α-amylase inhibition, and α-glucosidase inhibition. Under the optimized conditions (23 min extraction time, 60 °C temperature, and 39 : 1 solvent-to-solute ratio) the optimal TPC (13.76 mg GAE/g), DPPH radical scavenging activity (62.76 %), α-amylase inhibition (71.43 %), and α-glucosidase inhibition (79.43 %) were obtained. Significant correlations were observed between actual values and predicted values for the selected responses. Gas chromatography-mass spectrometry (GC-MS), revealed 26 high-value bioactives, with diallyl disulphide being the most abundant (16.22 %), followed by 2,3-dihydro-3,5-dihydroxy-6-methyl, 4H-pyran-4-one and 5-Hydroxymethylfurfural. Additionally, in silico investigation indicated that stigmasterol, arbutin, squalene, α-tocopherol and linoleic acid were responsible for antihyperglycemic potential. Moreover, antimicrobial activity revealed that S. mutans (19.25±1.98 mm) and L. monocytogenes (19.34±2.04 mm) were the most sensitive, while P. aeruginosa was the least sensitive bacterial strains against the optimized NARC-G1 garlic extract. This research effectively explains the optimal recovery of high-valued components from NARC-G1 and may contribute to nutra-pharmaceutical and functional food developments.
Collapse
Affiliation(s)
- Sami Ullah
- University of Sargodha, Sargodha, 40100, Pakistan
- Govt. Ambala Muslim Graduate College, Sargodha, Pakistan
| | | |
Collapse
|
4
|
Belayneh Asfaw T, Getachew Tadesse M, Beshah Tessema F, Woldemichael Woldemariam H, V. Chinchkar A, Singh A, Upadhyay A, Mehari B. Ultrasonic-assisted extraction and UHPLC determination of ascorbic acid, polyphenols, and half-maximum effective concentration in Citrus medica and Ziziphus spina-christi fruits using multivariate experimental design. Food Chem X 2024; 22:101310. [PMID: 38645936 PMCID: PMC11031790 DOI: 10.1016/j.fochx.2024.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 04/23/2024] Open
Abstract
This study aimed to determine the concentrations of ascorbic acid and polyphenols in fruits and peels of Citrus medica and Ziziphus spina-christi grown in Ethiopia. Conditions of ultrasound-assisted extraction (UAE) and ultra-high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD) were optimized, using a multivariate experimental design. The optimum conditions of UAE were 15 min extraction time at 35 ℃, with 75 % aqueous methanol as solvent, and a fruit powder-to-solvent ratio (m/v) of 1:15. Among the different drying conditions investigated, freeze-drying was found to be appropriate for analyzing ascorbic acid, polyphenols, and antioxidant potential. The overall ranges, across the fruits and peels, of ascorbic acid, total polyphenols, and antioxidant potentials (EC50) obtained were 8.7 ± 1.4-91.2 ± 2.6 mg/100 g, 253.0 ± 6.3-764.1 ± 25.8 mg GAE/100 g and 2.4 ± 0.1-26.1 ± 2.9 mg/mL, respectively. This indicates that the fruits and peels of the studied plants are advantageous as sources of ascorbic acid and polyphenols.
Collapse
Affiliation(s)
- Tilahun Belayneh Asfaw
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, P.O.Box 196, Gondar, Ethiopia
| | - Mesfin Getachew Tadesse
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Science and Technology University, P.O.Box 16417, Addis Ababa, Ethiopia
- Center of Excellence for Biotechnology and Bioprocess, Addis Ababa Science and Technology University, P.O.Box 16417, Addis Ababa, Ethiopia
| | - Fekade Beshah Tessema
- Department of Chemistry, College of Natural and Computational Sciences, Woldia University, Woldia, Ethiopia
| | - Henock Woldemichael Woldemariam
- Department of Chemical Engineering, College of Engineering, Addis Ababa Science and Technology University, P.O.Box 16417, Addis Ababa, Ethiopia
- Center of Excellence for Biotechnology and Bioprocess, Addis Ababa Science and Technology University, P.O.Box 16417, Addis Ababa, Ethiopia
| | - Ajay V. Chinchkar
- National Institute of Food Technology Entrepreneurship and Management, Department of Food Science and Technology, Haryana, India
| | - Anurag Singh
- National Institute of Food Technology Entrepreneurship and Management, Department of Food Science and Technology, Haryana, India
- Department of Food Technology, Harcourt Butler Technical University, Nawabganj, Kanpur, Uttar Pradesh 208002, India
| | - Ashutosh Upadhyay
- National Institute of Food Technology Entrepreneurship and Management, Department of Food Science and Technology, Haryana, India
| | - Bewketu Mehari
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, P.O.Box 196, Gondar, Ethiopia
| |
Collapse
|
5
|
Abu‐Niaaj LF, Al‐Daghistani HI, Katampe I, Abu‐Irmaileh B, Bustanji YK. Pomegranate peel: Bioactivities as antimicrobial and cytotoxic agents. Food Sci Nutr 2024; 12:2818-2832. [PMID: 38628214 PMCID: PMC11016432 DOI: 10.1002/fsn3.3963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 04/19/2024] Open
Abstract
This is a comparative study to evaluate the effectiveness of six pomegranate peel extracts (PPEs) as antibacterial and antiproliferative agents. The Six PPEs were prepared using four solvent systems and each filtrate was concentrated to a gummy material to be used in the evaluation. The well-diffusion method was used to evaluate their antimicrobial activity against bacteria typically associated with food spoilage: Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium, Listeria monocytogenes, Staphylococcus epidermidis, Staphylococcus aureus, and three Bacillus species. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTT) was used to evaluate the cytotoxicity against colorectal carcinoma cells (HCT116), prostate adenocarcinoma (PC3), ovarian cancer cells (SKOV-3), and fibroblasts (MRC-5). The antioxidant evaluation was done using the 2,2-diphenyl-1-picrylhydrazyl-hydrate (DPPH) assay. The pH of the water-containing extracts was acidic and almost the same over 6 weeks. The six PPEs inhibited the bacterial growth in a comparable level to standard antibiotics. The effectiveness of each extract was dependent on the bacterial strain, and the Listeria showed a remarkable inhibition when exposed to the aqueous extract prepared at room temperature (RT). The aqueous (RT) and methanol PPEs had a significant antioxidant scavenging capability and a remarkable cytotoxic activity against the PC3 with half maximal inhibitory concentration (IC50) of 0.1 μg/mL. The boiled aqueous extract exhibited antiproliferative activity against HCT116 with an IC50 of 21.45 μg/mL. The effect on SKOV-3 and fibroblasts was insignificant. With the exception of butanol, the antioxidant screening shows an inverse correlation between the polarity of the extraction solvent and the IC50 exhibited by the PPEs. The variation in the effectiveness of PPEs is suggested to be due to variable soluble bioactive compounds that may interact differently with different cells, though water-containing extracts are promising antibacterial agents. The findings clearly show that pomegranate peel possessed the potential to be an eco-friendly novel source for natural compounds that can be implemented in the food industry as a natural antimicrobial and natural food additive to prevent foodborne illnesses.
Collapse
Affiliation(s)
- Lubna F. Abu‐Niaaj
- Department of Agricultural and Life Sciences, John W. Garland College of Engineering, Science, Technology, and AgricultureCentral State UniversityWilberforceOhioUSA
| | - Hala I. Al‐Daghistani
- Department of Medical Laboratory Sciences, Faculty of Allied Medical SciencesAl‐Ahliyya Amman UniversityAmmanJordan
| | - Ibrahim Katampe
- Department of Agricultural and Life Sciences, John W. Garland College of Engineering, Science, Technology, and AgricultureCentral State UniversityWilberforceOhioUSA
| | | | - Yasser K. Bustanji
- College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
- Department of Pharmaceutical Sciences, Faculty of PharmacyThe University of JordanAmmanJordan
| |
Collapse
|
6
|
Andishmand H, Masoumi B, Torbati M, Homayouni‐Rad A, Azadmard‐Damirchi S, Hamishehkar H. Ultrasonication/dynamic maceration-assisted extraction method as a novel combined approach for recovery of phenolic compounds from pomegranate peel. Food Sci Nutr 2023; 11:7160-7171. [PMID: 37970429 PMCID: PMC10630795 DOI: 10.1002/fsn3.3642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 11/17/2023] Open
Abstract
According to recent studies, pomegranate peel (PP) has the potential to be inverted from environmental pollutant waste to wealth due to possessing valuable phenolic compounds at a higher amount compared to edible parts. So far, different types of biological activities such as antimutagenic, antiproliferative, anti-inflammatory, and chemo-preventive properties were stated for pomegranate peel extract (PPE) according to chemical composition. In the present research, the probable intensifying effects of two extraction methods and optimum conditions for novel combined method of ultrasonication and dynamic maceration-assisted extraction of PPE using response surface methodology (RSM) were determined. A Box-Behnken Design (BBD) was employed to optimize three extraction variables, including sonication time (X1), sonication temperature (X2), and stirring speed (X3) for the achievement of high extraction yield of the phenolic compounds and antioxidant activity. The optimized conditions to obtain maximum extraction efficiency were determined as X1 = 70 min, X2 = 61.8°C, and X3 = 1000 rpm. The experimental values were in line with the values anticipated by RSM models, which indicates the appropriateness of the applied quadratic model and the accomplishment of RSM in optimizing the extraction conditions. The results suggest that the extraction of PPE by mix of ultrasonication as a modern method and dynamic maceration as a conventional method could improve its bioactive extractability and the obtained values were higher than any of the methods used. In other words, these two methods together have intensifying effects in increasing extraction efficiency which could further be utilized in food and agricultural industry.
Collapse
Affiliation(s)
- Hashem Andishmand
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Behzad Masoumi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Aziz Homayouni‐Rad
- Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | | | - Hamed Hamishehkar
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
7
|
Valorization of Punica granatum L. Leaves Extracts as a Source of Bioactive Molecules. Pharmaceuticals (Basel) 2023; 16:ph16030342. [PMID: 36986442 PMCID: PMC10052729 DOI: 10.3390/ph16030342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Due to a lack of innovative valorization strategies, pomegranate processing generates a significant amount of residues with a negative environmental footprint. These by-products are a rich source of bioactive compounds with functional and medicinal benefits. This study reports the valorization of pomegranate leaves as a source of bioactive ingredients using maceration, ultrasound, and microwave-assisted extraction techniques. The phenolic composition of the leaf extracts was analyzed using an HPLC-DAD-ESI/MSn system. The extracts’ antioxidant, antimicrobial, cytotoxic, anti-inflammatory, and skin-beneficial properties were determined using validated in vitro methodologies. The results showed that gallic acid, (-)-epicatechin, and granatin B were the most abundant compounds in the three hydroethanolic extracts (between 0.95 and 1.45, 0.7 and 2.4, and 0.133 and 3.0 mg/g, respectively). The leaf extracts revealed broad-spectrum antimicrobial effects against clinical and food pathogens. They also presented antioxidant potential and cytotoxic effects against all tested cancer cell lines. In addition, tyrosinase activity was also verified. The tested concentrations (50–400 µg/mL) ensured a cellular viability higher than 70% in both keratinocyte and fibroblast skin cell lines. The obtained results indicate that the pomegranate leaves could be used as a low-cost source of value-added functional ingredients for potential nutraceutical and cosmeceutical applications.
Collapse
|
8
|
Green Solvents: Emerging Alternatives for Carotenoid Extraction from Fruit and Vegetable By-Products. Foods 2023; 12:foods12040863. [PMID: 36832938 PMCID: PMC9956085 DOI: 10.3390/foods12040863] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Carotenoids have important implications for human health and the food industry due to their antioxidant and functional properties. Their extraction is a crucial step for being able to concentrate them and potentially include them in food products. Traditionally, the extraction of carotenoids is performed using organic solvents that have toxicological effects. Developing greener solvents and techniques for extracting high-value compounds is one of the principles of green chemistry and a challenge for the food industry. This review will analyze the use of green solvents, namely, vegetable oils, supercritical fluids, deep eutectic solvents, ionic liquids, and limonene, combined with nonconventional techniques (ultrasound-assisted extraction and microwave), for carotenoid extraction from fruit and vegetable by-products as upcoming alternatives to organic solvents. Recent developments in the isolation of carotenoids from green solvents and their inclusion in food products will also be discussed. The use of green solvents offers significant advantages in extracting carotenoids, both by decreasing the downstream process of solvent elimination, and the fact that the carotenoids can be included directly in food products without posing a risk to human health.
Collapse
|
9
|
Sanou A, Konaté K, Kabakdé K, Dakuyo R, Bazié D, Hemayoro S, Dicko MH. Modelling and optimisation of ultrasound-assisted extraction of roselle phenolic compounds using the surface response method. Sci Rep 2023; 13:358. [PMID: 36611043 PMCID: PMC9825363 DOI: 10.1038/s41598-023-27434-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Extracts from Hibiscus sabdariffa L. (roselle) have been used traditionally as a food, in herbal medicine, in hot and cold beverages, as flavouring or coloring agent in the food industry. In vitro and in vivo studies and trials provide evidence, but roselle is poorly characterised phytochemically due to the extraction processes. The optimization of the extraction of phenolic compounds and their antioxidant activities is still a hot topic. In this study, the effect of solute/solvent ratio (33, 40 and 50 mg/mL), extraction temperature (40, 50 and 60 °C) and extraction time (30, 60 and 90 min) was evaluated through the content of phenolic compounds and antioxidant activity. A response surface methodology through a Box-Behnken design was applied and model fit, regression equations, analysis of variance and 3D response curve were developed. The results showed that TPC, TFC, DPPH and FRAP were significantly influenced by temperature, extraction time and solvent/solute ratio. Thus, TPC, TFC, DPPH and FRAP varied from 5.25 to 10.58 g GAE/100 g DW; 0.28 to 0.81 g QE/100 g DW; 0.24 to 0.70 mg/mL; 2.4 to 6.55 g AAE/100 g DW respectively. The optimal experimental condition (41.81 mg/mL; 52.35 °C and 57.77 min) showed a significant positive effect compared to conventional methods. The experimental values at this extraction condition show that this optimization model is technologically, financially and energetically viable as it requires a reasonable concentration, time and temperature.
Collapse
Affiliation(s)
- Abdoudramane Sanou
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso.
| | - Kiessoun Konaté
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso
- Applied Sciences and Technologies Training and Research Unit, University of Dedougou, B.P.176, Dedougou, Burkina Faso
| | - Kaboré Kabakdé
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso
| | - Roger Dakuyo
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso
| | - David Bazié
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso
| | - Sama Hemayoro
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso
- Laboratory of Biochemistry and Chemistry Applied (LABIOCA), University Joseph KI-ZERBO, 09 P.O. Box 848, Ouagadougou, Burkina Faso
| | - Mamoudou Hama Dicko
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso
| |
Collapse
|
10
|
Fajriah F, Faridah DN, Herawati D. Penurunan Indeks Glikemik Nasi Putih dengan Penambahan Ekstrak Serai dan Daun Salam. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2022. [DOI: 10.6066/jtip.2022.33.2.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diabetes mellitus (DM) is one of the non-communicable diseases that could be prevented by consumption of foods capable of maintaining blood glucose at a safe level. Phenolic compounds are components in food that affect blood glucose levels. Lemongrass and bay leaf are Indonesian spices commonly used for cooking and contain phenolic compounds that have potential as antidiabetic compounds. The aim of this study was to evaluate the effect of adding lemongrass and bay leaves water extracts on the GI value of cooked white rice. Lemongrass and bay leaves containing phenolic compounds were extracted with water and added to white rice during the cooking process or sprayed on cooked rice. The glycemic index of the tested food measured using the ISO 26642 method showed that the addition of lemongrass extract and a combination of lemongrass and bay leaf extract with total phenolic content (TPC) of 570 mg GAE/100 g and 565 mg GAE/100 g, respectively, on cooked white rice IR 64 resulted in the GI reduction in the cooked rice by 23 and 27%, respectively. These reduction was higher than those resulted from the addition of lemon grass or the combination of lemon grass and bay leaf extract during the cooking process, i.e. 9 and 13%, respectively.
Collapse
|
11
|
Bioactive Properties of Extracts from Plectranthus barbatus ( Coleus forskohlii) Roots Received Using Various Extraction Methods. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248986. [PMID: 36558119 PMCID: PMC9781142 DOI: 10.3390/molecules27248986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The aim of this study was to verify various extraction methods: shaking water bath extraction (SWA), ultrasound-assisted extraction (UAE) and microwave assisted extraction (MAE), and their parameters to optimize the extraction yield as well as maximize the concentration of polyphenols in Plectranthus barbatus extracts. Extracts were obtained from dried roots of P. barbatus in various degrees of fragmentation and analyzed for content of polyphenols, antioxidant capacity and flavonoids. Additionally, phenolic compounds in extracts were analyzed using the UHPLC-DAD-ESI-MS/MS method. The conducted research showed that roots of P. barbatus are rich in polyphenolic compounds. A total of 15 phenolic compounds, belonging to the group of phenolic acids and their derivatives, were identified. The extraction yield was similar for all extraction methods and averaged 31%. Irrespective of the extraction method, the yield was the lowest in the case of using 80% ethanol as the solvent. The extracts obtained from the finer fraction were characterized by a higher antioxidant capacity as well as a higher concentration of polyphenolic compounds including flavonoids. UAE seems to be the most effective method for extraction of polyphenols from P. barbatus roots. Regardless of the extraction method, ethanol was a better extractant than distilled water. All ethanolic extracts were characterized by a high antioxidant capacity. The 80% ethanol solution was considered the best solvent for the extraction of flavonoids, while the 40% and 60% ethanol solutions were sufficient for the effective extraction of polyphenolic compounds in general.
Collapse
|
12
|
Abdelli N, Mekawi E, Ebrahim Abdel-Alim M, Salim NS, El-Nagar M, Al-Dalain SY, Adlan Abdalla R, Nagarajan G, Fadhal E, Ibrahim RIH, Afkar E, Morsy MK. QTRAP LC/MS/MS of Garlic Nanoparticles and Improving Sunflower Oil Stabilization during Accelerated Shelf Life Storage. Foods 2022; 11:foods11243962. [PMID: 36553704 PMCID: PMC9778114 DOI: 10.3390/foods11243962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The purpose of this research was to assess and utilize the bioactive compounds of garlic nanoparticles (Ga-NPs) as a natural antioxidant in sunflower oil (SFO) stored at 65 ± 1 °C for 24 days. The garlic nanoparticles (Ga-NPs) from the Balady cultivar were prepared, characterized, and added to SFO at three concentrations: 200, 600, and 1000 ppm (w/v), and they were compared with 600 ppm garlic lyophilized powder extract (Ga-LPE), 200 ppm BHT, 200 ppm α-tocopherol, and SFO without Ga-NPs (control). The QTRAP LC/MS/MS profile of Ga-NPs revealed the presence of four organosulfur compounds. Ga-NPs exhibited the highest capacity for phenolic, flavonoid, and antioxidant compounds. In Ga-NP SFO samples, the values of peroxide, p-anisidine, totox, conjugated dienes, and conjugated trienes were significantly lower than the control. The antioxidant indices of SFO samples containing Ga-NPs were higher than the control. The Ga-NPs enhanced the sensory acceptability of SFO treatments up to day 24 of storage. The shelf life of SFO treated with Ga-NPs was substantially increased (presuming a Q10 amount). The results show that Ga-NPs are a powerful antioxidant that improves SFO stability and extends the shelf life (~384 days at 25 °C).
Collapse
Affiliation(s)
- Nouara Abdelli
- Department of Basic Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (N.A.); (M.K.M.)
| | - Enas Mekawi
- Department of Agricultural Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia P.O. Box 13736, Egypt
| | - Mohammed Ebrahim Abdel-Alim
- Department of Agricultural Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia P.O. Box 13736, Egypt
| | - Nesreen Saad Salim
- Department of Agricultural Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia P.O. Box 13736, Egypt
| | - Mahran El-Nagar
- Department of Horticulture, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia P.O. Box 13736, Egypt
| | - Sati Y. Al-Dalain
- Department of Medical Support, Al-Karak University College, Al-Balqa Applied University, Salt P.O. Box 19117, Jordan
| | - Ridab Adlan Abdalla
- Department of Basic Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Ganesan Nagarajan
- Department of Basic Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Emad Fadhal
- Department of Mathematics & Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Rashid I. H. Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Department of Botany, Faculty of Science, Khartoum University, P.O. Box 321, Khartoum 11115, Sudan
| | - Eman Afkar
- Department of Basic Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Department of Botany and Microbiology, College of Science, Bani-Suef University, Bani-Suef P.O. Box 52621, Egypt
| | - Mohamed K. Morsy
- Department of Food Technology, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia P.O. Box 13736, Egypt
- Correspondence: (N.A.); (M.K.M.)
| |
Collapse
|
13
|
Zampar GG, Zampar IC, Beserra da Silva de Souza S, da Silva C, Bolanho Barros BC. Effect of solvent mixtures on the ultrasound-assisted extraction of compounds from pineapple by-product. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Singh S, Shahi NC, Lohani UC, Bhat MI, Sirohi R, Singh S. Process optimization for the extraction of bioactive compounds from defatted flaxseed cake (
Linum usitatissimu
) using ultrasound‐assisted extraction method and its characterization. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Shikhangi Singh
- Department of Post‐Harvest Process & Food Engineering, College of Technology, GBPUA&T Pantnagar India
| | - Navin Chandra Shahi
- Department of Post‐Harvest Process & Food Engineering, College of Technology, GBPUA&T Pantnagar India
| | - Umesh Chandra Lohani
- Department of Post‐Harvest Process & Food Engineering, College of Technology, GBPUA&T Pantnagar India
| | - Mohd Ishfaq Bhat
- Department of Post‐Harvest Process & Food Engineering, College of Technology, GBPUA&T Pantnagar India
| | - Ranjna Sirohi
- Department of Food Technology, School of Health Sciences and Technology University of Petroleum and Energy Studies Dehradun India
| | - Shikha Singh
- Department of Human Nutrition, College of Home Science, GBPUA&T Pantnagar India
| |
Collapse
|
15
|
Extraction of Polyphenols and Valorization of Fibers from Istrian-Grown Pomegranate (Punica granatum L.). Foods 2022; 11:foods11182740. [PMID: 36140867 PMCID: PMC9497529 DOI: 10.3390/foods11182740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/23/2022] Open
Abstract
Pomegranate fruit is an ancient fruit that is used not only because of its deep-red color and tasty arils but also due to the health benefits of its extracts. Pomegranate is a valuable source of bioactive compounds, including colorful anthocyanins and other polyphenols. The main objective of the present study was to gain comprehensive knowledge of the phenolic composition and antioxidative activity of a new pomegranate cultivar, grown in Northwest Istria, a part of the North Adriatic coastal area. Various parts of the pomegranate fruit parts were extracted in 70% ethanol or water. Total phenolic content and antioxidative capacity were respectively determined with Folin–Ciocalteu reagent and ABTS radical. Phenolics were examined and analyzed with TLC, LC-MS, and HPLC. Pomegranate juice was prepared from red arils and after thermal treatment, the stability of anthocyanins was monitored for several months to understand the effect of storage. The highest total phenolics were determined in ethanol pomegranate peel extracts (30.5 ± 0.6 mg GAE/g DM), and water peel extracts exhibited the highest antioxidative activity (128 ± 2 µg TE/g DM). After five months of storage of thermally treated pomegranate juice, 50–60 percentage points increase in anthocyanin degradation was observed. Pomegranate peel was further tested as a sustainable inedible food source for papermaking. Due to the low content of cellulose and the high percentage of extractives, as well as a distinguished texture and appearance, the paper made from pomegranate peel is best suited for the production of specialty papers, making it particularly interesting for bioactives recovery, followed by material restructuring.
Collapse
|
16
|
Cano-Lamadrid M, Martínez-Zamora L, Castillejo N, Artés-Hernández F. From Pomegranate Byproducts Waste to Worth: A Review of Extraction Techniques and Potential Applications for Their Revalorization. Foods 2022; 11:foods11172596. [PMID: 36076782 PMCID: PMC9455765 DOI: 10.3390/foods11172596] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
The food industry is quite interested in the use of (techno)-functional bioactive compounds from byproducts to develop ‘clean label’ foods in a circular economy. The aim of this review is to evaluate the state of the knowledge and scientific evidence on the use of green extraction technologies (ultrasound-, microwave-, and enzymatic-assisted) of bioactive compounds from pomegranate peel byproducts, and their potential application via the supplementation/fortification of vegetal matrixes to improve their quality, functional properties, and safety. Most studies are mainly focused on ultrasound extraction, which has been widely developed compared to microwave or enzymatic extractions, which should be studied in depth, including their combinations. After extraction, pomegranate peel byproducts (in the form of powders, liquid extracts, and/or encapsulated, among others) have been incorporated into several food matrixes, as a good tool to preserve ‘clean label’ foods without altering their composition and improving their functional properties. Future studies must clearly evaluate the energy efficiency/consumption, the cost, and the environmental impact leading to the sustainable extraction of the key bio-compounds. Moreover, predictive models are needed to optimize the phytochemical extraction and to help in decision-making along the supply chain.
Collapse
Affiliation(s)
- Marina Cano-Lamadrid
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Lorena Martínez-Zamora
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
- Department of Food Technology, Nutrition, and Food Science, Faculty of Veterinary Sciences, University of Murcia, Espinardo, 30071 Murcia, Spain
| | - Noelia Castillejo
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
- Correspondence: ; Tel.: +34-968325509
| |
Collapse
|
17
|
Rashid R, Masoodi F, Wani SM, Manzoor S, Gull A. Ultrasound assisted extraction of bioactive compounds from pomegranate peel, their nanoencapsulation and application for improvement in shelf life extension of edible oils. Food Chem 2022; 385:132608. [DOI: 10.1016/j.foodchem.2022.132608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
|
18
|
Rashid R, Wani SM, Manzoor S, Masoodi F, Dar MM. Improving oxidative stability of edible oils with nanoencapsulated orange peel extract powder during accelerated shelf life storage. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Green Extraction of Date Palm Fruits via Ultrasonic-Assisted Approach: Optimizations and Antioxidant Enrichments. Processes (Basel) 2022. [DOI: 10.3390/pr10061049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: Green extraction involves using green solvents, such as water, to reduce energy consumption, avoid health and environmental hazards and induce the quality and quantity of the extract. Date palm fruits are a vital source of food and medicinal activities, as they contain a high diversity of phytochemicals, mainly phenolic and flavonoid compounds. The main aim of this study is to investigate the use of water as a green solvent, when assisted by different ultrasonic frequencies, in the extraction of four different cultivars of date palm fruits, by evaluating the phenolic and flavonoid composition as well as the antioxidant capacity of the extract. Methods: Four date palm fruits’ cultivars (Agwa, Anbarah, Khalas, and Reziz) were extracted using conventional methods (by water and ethanol) and by ultrasonic means, using two frequencies, 28 and 40 kHz, and applying temperatures (30, 45, and 60 °C), also measuring extraction times (20, 40, 60 min.). Response surface methodology was used for the statistical analysis, applying three factors (temperature, time, and ultrasonic frequency), four responses (total phenolic content, total flavonoid content, FRAP, and ABTS), and four cultivars (categories). Results: Conventional water extraction obtained minimal phenolic and flavonoid compounds (up to 52% of ethanol extraction). This percent improved to reach 60% when heat was utilized. The application of ultrasonic frequencies significantly enhanced the extraction of phenolics/flavonoids and the antioxidant ability of the extract to nearly 90% and 80%, respectively. The use of 40 kHz ultrasonic power managed to extract more phenolic and flavonoid components; however, the antioxidant capacities of the extract were less than when the 28 kHz power was utilized. Agwa and Khalas demonstrated themselves to be the best cultivars for ultrasonic-assisted extraction, depending on the results of the optimized responses. Conclusion: This study could be implemented in the industry to produce date palm fruits’ enriched extracts with phenolic and flavonoid components and/or antioxidants.
Collapse
|
20
|
Gigliobianco MR, Cortese M, Nannini S, Di Nicolantonio L, Peregrina DV, Lupidi G, Vitali LA, Bocchietto E, Di Martino P, Censi R. Chemical, Antioxidant, and Antimicrobial Properties of the Peel and Male Flower By-Products of Four Varieties of Punica granatum L. Cultivated in the Marche Region for Their Use in Cosmetic Products. Antioxidants (Basel) 2022; 11:antiox11040768. [PMID: 35453453 PMCID: PMC9030693 DOI: 10.3390/antiox11040768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 12/29/2022] Open
Abstract
We are now seeing an increase in the production of agri-food waste, which is an essential resource for the recovery of bioactive compounds that may be employed as innovative natural ingredients in cosmetics. To date, the approach to cosmetics preservation has seen a significant shift in the search for biological components that give healthier alternatives for customers and help businesses operate in an environmentally friendly manner. To achieve this goal, we studied pomegranate extracts using the peel and, for the first time, extracts from the male flowers of a wide pomegranate variety cultivated in the Marche region, specifically, the Wonderful, Mollar de Elche, Parfianka, and less-studied G1 varieties. We studied the phenol compounds profile, antioxidant capacity, antimicrobial activity, and cell viability of the obtained pomegranate extracts. The identification and quantification of phenol compounds belonging to different classes, such as hydrolysable tannins, hydroxybenzoic acid, hydroxycinnamic acid, dihydroflavonol, gallocatechin, and anthocyanins, were performed using UPLC-ESI-MS/MS. Punicalagin isomers and punicalin resulted in the most abundant polyphenols found in the peel and male flower extracts. Mollar de Elche 2020 peel extract revealed a high concentration of punicalagin A and B (7206.4 mg/kg and 5812.9), while the content of gallic acid revealed high results in the G1 and Parfianka varieties. All extracts were spectrophotometrically analysed to determine their total phenol content (TPC) using the Folin–Ciocalteu method and their antioxidant capacity (AC). In terms of the total phenol obtained by the Folin–Ciocalteu colorimetric method, Mollar de Elche 2020 extracts reported the highest TPC content of 12.341 µmol GAE/g. Results revealed that the Mollar de Elche and Wonderful 2020 peel extracts demonstrated the highest TPC and AC. Furthermore, AC results indicated that the peel extracts displayed higher AC than the male flower extract due to the high punicalagin content detected by UPLC analysis. The antimicrobial activity testing revealed that the Wonderful and G1 2020 peel extracts resulted active against Escherichia coli, while all extracts exhibited promising anticandidal activity. Additionally, the cytocompatibility was evaluated in keratinocytes HaCaT cells by testing concentrations of pomegranate extracts ranging from 0.15 to 5.00 mg/mL. Extracts were non-toxic for the cells in the tested concentration range. The acquired results may help exploit pomegranate agri-food waste products provided by the Marche region’s short supply chain for their use as an antimicrobial and antioxidant booster in the formulation of cosmetic products.
Collapse
Affiliation(s)
| | - Manuela Cortese
- CHiP Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.C.); (L.D.N.); (G.L.); (L.A.V.); (R.C.)
| | - Samanta Nannini
- ABICH Srl, Biological and Chemical Toxicology Research Laboratory, 28924 Verbania, Italy; (S.N.); (E.B.)
| | - Lucrezia Di Nicolantonio
- CHiP Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.C.); (L.D.N.); (G.L.); (L.A.V.); (R.C.)
- Recusol Srl, 62032 Camerino, Italy;
| | | | - Giulio Lupidi
- CHiP Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.C.); (L.D.N.); (G.L.); (L.A.V.); (R.C.)
| | - Luca Agostino Vitali
- CHiP Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.C.); (L.D.N.); (G.L.); (L.A.V.); (R.C.)
| | - Elena Bocchietto
- ABICH Srl, Biological and Chemical Toxicology Research Laboratory, 28924 Verbania, Italy; (S.N.); (E.B.)
| | - Piera Di Martino
- Department of Pharmacy, Università “G. D’Annunzio” Chieti e Pescara, Via dei Vestini, 1, 66100 Chieti, Italy
- Correspondence:
| | - Roberta Censi
- CHiP Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.C.); (L.D.N.); (G.L.); (L.A.V.); (R.C.)
- Recusol Srl, 62032 Camerino, Italy;
| |
Collapse
|
21
|
Campos L, Seixas L, Dias S, Peres AM, Veloso ACA, Henriques M. Effect of Extraction Method on the Bioactive Composition, Antimicrobial Activity and Phytotoxicity of Pomegranate By-Products. Foods 2022; 11:foods11070992. [PMID: 35407079 PMCID: PMC8997943 DOI: 10.3390/foods11070992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
Pomegranate by-products can be an asset to the food industry due to the richness in bioactive and antimicrobial compounds. This work studied the influence of conventional solvent and sonication-assisted extraction methods on the bioactive profile, antimicrobial properties, and phytotoxicity effect of the peels and seeds extracts from Acco, Big Full, and Wonderful pomegranate cultivars. The bioactive composition of the extracts was evaluated for the content of total phenolics, total flavonoids, and antioxidant activity (expressed as the half-maximal inhibitory concentration—IC50) by spectrophotometric methods, while the tannins were determined by titration and the anthocyanins were estimated by the pH-differential method. For the evaluation of the antimicrobial activity, the disk diffusion method of Kirby-Bauer was adapted through inhibition halos against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, and Yarrowia lipolytica. The extracts’ phytotoxicity was evaluated in vitro on garden-cress seeds. Extracts from conventional extraction were richer in total phenolics, expressed as gallic acid equivalents (0.16–0.73 mg GAE/mg extract), while those from sonication-assisted extraction had higher contents of total flavonoids, expressed as catechin equivalents (0.019–0.068 mg CATE/mg extract); anthocyanins, expressed as cyanidin-3-glucoside (0.06–0.60 µg C3G/mg, dry basis); and antioxidant activity (IC50, 0.01–0.20 mg/mL). All extracts were more effective against Gram-positive bacteria and yeasts than Gram-negative bacteria. In general, the sonication-assisted extracts led to higher inhibition halos (8.7 to 11.4 mm). All extracts presented phytotoxicity against garden-cress seeds in the tested concentrations. Only the lowest concentration (0.003 mg/mL) enabled the germination of seeds and root growth, and the sonication-assisted extracts showed the highest Munoo-Liisa vitality index (51.3%). Overall, sonication-assisted extraction obtained extracts with greater bioactive and antimicrobial potential and less phytotoxicity.
Collapse
Affiliation(s)
- Lara Campos
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal; (S.D.); (M.H.)
- CERNAS, Research Centre for Natural Resources, Environment and Society, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
- Correspondence:
| | - Luana Seixas
- Polytechnic Institute of Coimbra, ISEC, DEQB, Rua Pedro Nunes—Quinta da Nora, 3030-199 Coimbra, Portugal; (L.S.); (A.C.A.V.)
| | - Susana Dias
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal; (S.D.); (M.H.)
- CERNAS, Research Centre for Natural Resources, Environment and Society, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| | - António M. Peres
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Ana C. A. Veloso
- Polytechnic Institute of Coimbra, ISEC, DEQB, Rua Pedro Nunes—Quinta da Nora, 3030-199 Coimbra, Portugal; (L.S.); (A.C.A.V.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4715-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Marta Henriques
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal; (S.D.); (M.H.)
- CERNAS, Research Centre for Natural Resources, Environment and Society, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| |
Collapse
|
22
|
Abstract
In this paper, the extraction of polyphenols from amaranth seed using a Box–Benhken design using four factors—ultra-turrax speed, solid-to-liquid ratio (RSL), methanol concentration and extraction time—were studied. There were two responses studied for the model: total phenolic content (TPC) and total flavonoid content (TFC). The factors which influenced the most the extraction of the TPC and TFC were the RSL, methanol concentration and ultra-turrax speed. Twelve phenolic acids (rosmarinic acid, p-coumaric acid, chlorogenic acid, vanillic acid, caffeic acid, p-hydroxybenzoic acid, protocatechuic acid and gallic acid) and flavonoids (kaempferol, quercetin, luteolin and myricetin) were studied, and the most abundant one was kaempferol followed by myricetin. The amaranth seed is a valuable source of fatty acids, and 16.54% of the total fatty acids determined were saturated fatty acids, while 83.45% of the fatty acids were unsaturated ones. Amaranth seed is a valuable source of amino acids, with 9 essential amino acids being reported: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine.
Collapse
|
23
|
Morsy MK, Sami R, Algarni E, Al-Mushhin AAM, Benajiba N, A. A, Almasoudi AG, Mekawi E. Phytochemical Profile and Antioxidant Activity of Sesame Seed (Sesamum indicum) By-Products for Stability and Shelf Life Improvement of Refined Olive Oil. Antioxidants (Basel) 2022; 11:antiox11020338. [PMID: 35204220 PMCID: PMC8868781 DOI: 10.3390/antiox11020338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 01/18/2023] Open
Abstract
The by-product of sesame seed coats from the tahini industry was used for the extraction of bioactive compounds as novel antioxidants. This study was designed to evaluate the effect of a natural antioxidant on the quality of refined olive oil (ROO) stored at 60 ± 1 °C for up to 48 days. The lyophilized sesame seed coats extract (LSSCE) was placed into fresh ROO at three levels, i.e., 200, 400, and 600 mg kg−1, and compared with 200 mg kg−1 BHT (reference) and without antioxidant (control). LSSCE exhibited high phenolic (105.9 mg GAE g−1) and lignin (6.3 mg g−1) contents as well as antioxidant activity based on HPLC/DAD. In ROO samples, Including LSSCE, the values of peroxide, p-anisidine, K232, and K270 were remarkably lower than control during storage. The kinetic rate constant (k) of oxidation indicators was the lowest in ROO samples containing BHT and LSSCE 600 mg kg−1compared with other treatments. LSSCE improved the organoleptic acceptability of ROO samples up to 48 days of storage. Moreover, the shelf life (assuming a Q10 value of 2.0 for lipid oxidation) of ROO treated with LSSCE was increased. The findings revealed that LSSCE is a promising natural antioxidant in delaying oxidation, enhancing oil stability, and prolonging the shelf life (~475 days at ambient temperature).
Collapse
Affiliation(s)
- Mohamed K. Morsy
- Department of Food Technology, Faculty of Agriculture, Benha University, Benha 13736, Qaluobia, Egypt
- Correspondence: (M.K.M.); (R.S.)
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Correspondence: (M.K.M.); (R.S.)
| | - Eman Algarni
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amina A. M. Al-Mushhin
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Nada Benajiba
- Department of Basic Health Sciences, Deanship of Preparatory Year, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Almasoudi A.
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box. 42734, Jeddah 21551, Saudi Arabia;
| | - Abeer G. Almasoudi
- Food Science Department, College of Science, Branch of the College at Turbah, Taif University, Taif 21944, Saudi Arabia;
| | - Enas Mekawi
- Department of Agricultural Biochemistry, Faculty of Agriculture, Benha University, Benha 13736, Qaluobia, Egypt;
| |
Collapse
|
24
|
Developing microencapsulated powders containing polyphenols and pectin extracted from Georgia-grown pomegranate peels. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Optimization of antioxidant activity properties of a thermosonicated beetroot (Beta vulgaris L.) juice and further in vitro bioaccessibility comparison with thermal treatments. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Harscoat-Schiavo C, Khoualdia B, Savoire R, Hobloss S, Buré C, Samia BA, Subra-Paternault P. Extraction of phenolics from pomegranate residues: Selectivity induced by the methods. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Christou A, Stavrou IJ, Kapnissi-Christodoulou CP. Continuous and pulsed ultrasound-assisted extraction of carob's antioxidants: Processing parameters optimization and identification of polyphenolic composition. ULTRASONICS SONOCHEMISTRY 2021; 76:105630. [PMID: 34146974 PMCID: PMC8220390 DOI: 10.1016/j.ultsonch.2021.105630] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 05/19/2023]
Abstract
Polyphenols in carobs have recently attracted great attention due to their wide range of biological and health promoting effects. A comprehensive study was conducted to find an optimum method for the extraction, purification and characterization of these valuable bioactive substances. Under this framework, the ultrasound-assisted extraction (UAE) of polyphenols from carob pulp was optimized by the maximization of the yield in total phenolics using response surface methodology. In particular, the effects of solid-solvent ratio, solvent concentration, extraction time, sonication amplitude, and sonication mode were investigated and optimized using a complete experimental design. In comparison to conventional extraction techniques, UAE offered a higher yield of antioxidants and a shorter processing time. Solid-phase extraction was evaluated as a clean-up strategy prior to the electrophoretic analysis of extracts. The results from the analysis of real samples revealed the predominance of gallic acid and highlighted the great influence of the ripening stage on carobs composition.
Collapse
Affiliation(s)
| | - Ioannis J Stavrou
- Department of Life Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | | |
Collapse
|
28
|
Application of response surface methodology for the co-optimization of extraction and probiotication of phenolic compounds from pomegranate fruit peels (Punica granatum L.). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00943-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Okumuş E, Bakkalbaşı E, Javidipour I, Meral R, Ceylan Z. A novel coating material: Ellagitannins-loaded maltodextrin and lecithin-based nanomaterials. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Effect of Solvent Extraction and Blanching Pre-Treatment on Phytochemical, Antioxidant Properties, Enzyme Inactivation and Antibacterial Activities of ‘Wonderful’ Pomegranate Peel Extracts. Processes (Basel) 2021. [DOI: 10.3390/pr9061012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
‘Wonderful’ pomegranate (Punica granatum L.) peel is rich in phytochemicals which are responsible for its strong antioxidant and antimicrobial activities, but it has low economic value as it is mainly discarded, causing an environmental waste management problem. To examine the best processing regime for pomegranate peel wastes, different solvents (ethanol, methanol and acetone) at various concentrations (50%, 70% and 100%) and blanching at 60, 80 and 100 °C for 1, 3 and 5 min, for each temperature, were tested. Ethanol at 70% (v/v) provided the highest extract yield, total phenolic and total tannin content at 29.46%, 10.61 ± 0.15, and 0.76 ± 0.02 mg GAE/g DM, respectively. Antioxidant activity using the 2,2 diphenyl-1-picryl hydrazyl assay (DPPH), ferric-reducing antioxidant power assay (FRAP) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid assay (ABTS) were reported at 243.97 ± 2.43, 478.04 ± 73.98 and 718.79 ± 2.42 µmol Trolox/g DM, respectively. A blanching temperature of 80 °C for 3 min led to the highest extract that had a total phenolic content of 12.22 ± 0.08 mg GAE/g DM and total tannin content of 1.06 ± 0.06 mg GAE/g DM. This extract also exhibited the best antioxidant activity for the DPPH, FRAP and ABTS assays. Two blanching temperatures, 80 or 100 °C, significantly reduced polyphenol oxidase and peroxidase activities (p < 0.05). Although blanched peel extracts showed a broad-spectrum activity against test bacteria, blanching at 80 °C for 3 or 5 min was most effective. Hot water blanching is thus a suitable environmentally friendly post-harvesting processing method for pomegranate peels that are intended for use as extracts in value-added products with good antioxidant and antibacterial effects.
Collapse
|
31
|
Bordin Viera V, Piovesan N, Mello RDO, Barin JS, Fogaça ADO, Bizzi CA, De Moraes Flores ÉM, Dos Santos Costa AC, Pereira DE, Soares JKB, Hashime Kubota E. Ultrasonic _assisted extraction of phenolic compounds with evaluation of red onion skin (Allium cepa L.) antioxidant capacity. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2021.1910095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Vanessa Bordin Viera
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande Do Sul, Brazil
- Departament of Nutrition, Federal University of Campina Grande (UFCG), Cuité, Paraíba, Brazil
| | - Natiéli Piovesan
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande Do Sul, Brazil
| | - Renius De Oliveira Mello
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande Do Sul, Brazil
| | - Juliano Smanioto Barin
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande Do Sul, Brazil
| | | | - Cezar Augusto Bizzi
- Departament of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande Do Sul, Brazil
| | | | | | - Diego Elias Pereira
- Departament of Nutrition, Federal University of Campina Grande (UFCG), Cuité, Paraíba, Brazil
| | | | - Ernesto Hashime Kubota
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande Do Sul, Brazil
| |
Collapse
|
32
|
More PR, Arya SS. Intensification of bio-actives extraction from pomegranate peel using pulsed ultrasound: Effect of factors, correlation, optimization and antioxidant bioactivities. ULTRASONICS SONOCHEMISTRY 2021; 72:105423. [PMID: 33383542 PMCID: PMC7803825 DOI: 10.1016/j.ultsonch.2020.105423] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 05/04/2023]
Abstract
Pomegranate peel (PP) is one of the interesting agri-food by-products because of its abundant bioactive phytochemicals. However, the bioactivity of valuable compounds is affected due to the extraction method used. A pulsed ultrasound-assisted extraction (PUAE) was carried out to intensify the extraction efficacy with reduced power and time. Influence of several process variables viz. peel solids/ solvent ratio, sonication power, duty cycle, and extraction time was studied using empirical quadratic models followed by multicriterial numerical optimization with respect to face-centered composite design. Power-duty cycle combination was found to be most significant (p < 0.05) for process intensification. The optimal process conditions of 2.17 g/100 mL S/S ratio at 116 W power with 80% duty cycle for 6 min resulted into 0.48 g/g yield, 177.54 mg GAE/g total phenolics content, 35.71 mg QE/g total flavonoids, 160.54 mg GAE/g antioxidant capacity, 21.65 mg cyn-3-glc/100 g anthocyanin content with 54.92 browning index in dry pomegranate peel. Significant Pearson correlation analysis was established in all responses with potent phenols and flavonoid relation with highest coefficient (r) 0.931. All response models were significantly validated with regression coefficient (R2) above 0.965. Remarkable antioxidant bioactivities were recorded for the resultant peel extract. Hence, it is strongly recommended that PUAE could be successfully applied for the intensification of the extraction process of bioactive from any peel and or plant systems with minimal process time and power consumption with a green label.
Collapse
Affiliation(s)
- Pavankumar R More
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, Maharashtra, India
| | - Shalini S Arya
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, Maharashtra, India; Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo CEP 12602-810, Brazil.
| |
Collapse
|
33
|
A multivariate optimization of bioactive compounds extracted from oregano (Origanum vulgare) leaves using pulsed mode sonication. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00902-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Ko K, Dadmohammadi Y, Abbaspourrad A. Nutritional and Bioactive Components of Pomegranate Waste Used in Food and Cosmetic Applications: A Review. Foods 2021; 10:657. [PMID: 33808709 PMCID: PMC8003411 DOI: 10.3390/foods10030657] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
Pomegranate (Punica granatum L.) is a fruit that is rich in bioactive compounds that has a biowaste (rind and seed) with the potential to be converted into value-added products in a wide variety of applications. Recent studies have demonstrated the potent antioxidant and antimicrobial effects of using pomegranate rind and seed as natural food additives, thus making researchers incorporate them into bioplastics and edible coatings for food packaging. Additionally, these components have shown great plasticizing effects on packaging materials while extending the shelf life of food through active packaging. Even within skin health applications, pomegranate seed oil and its bioactive compounds have been particularly effective in combating UV-induced stresses on animal skin and in-vitro models, where cells and microorganisms are separated from the whole organism. They have also aided in healing wounds and have shown major anti-inflammatory, analgesic, and anti-bacterial properties. This review highlights all of the relevant and recent food and skin health applications found in the value-added conversion of pomegranate biowaste. The lack of research in particular areas and future outlook are also discussed.
Collapse
Affiliation(s)
| | | | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA; (K.K.); (Y.D.)
| |
Collapse
|
35
|
Antibacterial and Antioxidant Gelatin Nanofiber Scaffold Containing Ethanol Extract of Pomegranate Peel: Design, Characterization and In Vitro Assay. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02616-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
36
|
El Barnossi A, Moussaid F, Iraqi Housseini A. Tangerine, banana and pomegranate peels valorisation for sustainable environment: A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00574. [PMID: 33376681 PMCID: PMC7758358 DOI: 10.1016/j.btre.2020.e00574] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Over the last decade the world has been generating a high quantity of tangerine peel waste (TPW), pomegranate peel waste (PPW) and banana peel waste (BPW). These peels have several economic benefits but there is mismanagement or inappropriate valorisation that could present risks to environment and public health. In the current review, we discussed the use of TPW, PPW and BPW directly for animal feed, soil fertilization, specific compost production and bio-adsorbent. We also discussed the valorisation of these peels for manufacturing the value-added products including enzymes, essential oil and other products that can be used in human food, in medical and cosmetic industry. Additionally, recent studies concerning the valorisation of these peels by biorefinery for bioethanol, biogas and biohydrogen production have been discussed. In the same context some other recent studies about valorisation of microorganisms isolated from these peels for medical, agronomic and industrial interests have been also discussed.
Collapse
Affiliation(s)
- Azeddin El Barnossi
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Fatimazhrae Moussaid
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Abdelilah Iraqi Housseini
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
37
|
Optimisation of the lipid extraction of fresh black soldier fly larvae (Hermetia illucens) with 2-methyltetrahydrofuran by response surface methodology. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Freitas T, Rodrigues G, Fakhouri F, Silva C, Cardoso C, Velasco J, Filgueiras C, Garcia V. Application of the Box–Behnken experimental design for the extraction of phenolic compounds from araçá‐roxo (
Psidium myrtoides
). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thainá Freitas
- Faculty of Engineering Federal University of Grande Dourados Dourados Brazil
| | - Giovana Rodrigues
- Faculty of Engineering Federal University of Grande Dourados Dourados Brazil
| | - Farayde Fakhouri
- Faculty of Engineering Federal University of Grande Dourados Dourados Brazil
- Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC BarcelonaTech)Poly2 Group Terrassa Spain
| | - Camila Silva
- Department of Technology State University of Maringá Umuarama Brazil
| | - Claudia Cardoso
- Department of Chemistry State University of Mato Grosso do Sul Dourados Brazil
| | - José Velasco
- Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC BarcelonaTech)Poly2 Group Terrassa Spain
| | - Cristina Filgueiras
- Faculty of Engineering Federal University of Grande Dourados Dourados Brazil
| | - Vitor Garcia
- Faculty of Engineering Federal University of Grande Dourados Dourados Brazil
- Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga Brazil
| |
Collapse
|
39
|
Technologies and Extraction Methods of Polyphenolic Compounds Derived from Pomegranate (Punica granatum) Peels. A Mini Review. Processes (Basel) 2021. [DOI: 10.3390/pr9020236] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The interest in using plant by-product extracts as functional ingredients is continuously rising due to environmental and financial prospects. The development of new technologies has led to the achievement of aqueous extracts with high bioactivity that is preferable due to organic solvents nonuse. Recently, widely applied and emerging technologies, such as Simple Stirring, Pressure-Applied Extraction, Enzymatic Extraction, Ultrasound-Assisted Extraction, Pulsed Electric Fields, High Hydrostatic Pressure, Ohmic Heating, Microwave Assistant Extraction and the use of “green” solvents such as the deep eutectic solvents, have been investigated in order to contribute to the minimization of disadvantages on the extraction of bioactive compounds. This review is focused on bioactive compounds derived from pomegranate (Punica granatum) peels and highlighted the most attractive extraction methods. It is believed that these findings could be a useful tool for the pomegranate juices industry to apply an effective and economically viable extraction process, transforming a by-product to a high added value functional product.
Collapse
|
40
|
Gadioli Tarone A, Keven Silva E, Dias de Freitas Queiroz Barros H, Baú Betim Cazarin C, Roberto Marostica Junior M. High-intensity ultrasound-assisted recovery of anthocyanins from jabuticaba by-products using green solvents: Effects of ultrasound intensity and solvent composition on the extraction of phenolic compounds. Food Res Int 2021; 140:110048. [PMID: 33648273 DOI: 10.1016/j.foodres.2020.110048] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
This study proposes an update for the jabuticaba processing chain to obtain valuable coproducts from jabuticaba peels. High-intensity ultrasound (HIUS) technology was evaluated as a more efficient extraction process to obtain two high added-value coproducts: pectin and an anthocyanins-rich extract. The HIUS-assisted extraction of bioactive compounds like anthocyanins from the jabuticaba peels was evaluated. The effects of ultrasound intensity (1.1, 3.7, 7.3, and 13.0 W/cm2) and solvent composition concerning water/ethanol ratio (0, 25, 50, 75, and 100 g water/100 g) were examined. One-step HIUS processing promoted the best recovery of bioactive compounds at an ultrasound intensity of 3.7 W/cm2 and 50 g water/100 g, thus proofing the interaction between ultrasound intensity and the solvent composition has a strong influence on the extraction efficiency of the groups of compounds studied and in the jabuticaba peel antioxidant potential. The confocal laser scanning microscopy confirmed bioactive compounds' exhaustion in the dried jabuticaba peel after the HIUS processing, proving its best recovery. The jabuticaba peel extract exhibited an intense reddish color typical of anthocyanin-rich products at acid pH (4.5). The HIUS technology turned out a promising way to recover these valuable phenolic compounds as a quick, relatively inexpensive, and simple technology that improves the yields and decreases the costs and environmental impacts compared to conventional extraction processes.
Collapse
Affiliation(s)
- Adriana Gadioli Tarone
- LANUM (Laboratory of Nutrition and Metabolism)/FEA (School of Food Engineering)/UNICAMP (University of Campinas); Rua Monteiro Lobato, 80, Campinas-SP CEP:13083-862, Brazil
| | - Eric Keven Silva
- LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas-SP CEP:13083-862, Brazil
| | - Helena Dias de Freitas Queiroz Barros
- LANUM (Laboratory of Nutrition and Metabolism)/FEA (School of Food Engineering)/UNICAMP (University of Campinas); Rua Monteiro Lobato, 80, Campinas-SP CEP:13083-862, Brazil
| | - Cinthia Baú Betim Cazarin
- LAFOP (Laboratory of Protein Source)/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, Campinas-SP CEP:13083-862, Brazil.
| | - Mario Roberto Marostica Junior
- LANUM (Laboratory of Nutrition and Metabolism)/FEA (School of Food Engineering)/UNICAMP (University of Campinas); Rua Monteiro Lobato, 80, Campinas-SP CEP:13083-862, Brazil.
| |
Collapse
|
41
|
Rohilla S, Mahanta CL. Optimization of extraction conditions for ultrasound-assisted extraction of phenolic compounds from tamarillo fruit (Solanum betaceum) using response surface methodology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00751-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Freitas PAV, González-Martínez C, Chiralt A. Application of Ultrasound Pre-Treatment for Enhancing Extraction of Bioactive Compounds from Rice Straw. Foods 2020; 9:E1657. [PMID: 33198371 PMCID: PMC7697156 DOI: 10.3390/foods9111657] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
The extraction of water-soluble bioactive compounds using different green methods is an eco-friendly alternative for valorizing agricultural wastes such as rice straw (RS). In this study, aqueous extracts of RS (particles < 500 µm) were obtained using ultrasound (US), reflux heating (HT), stirring (ST) and a combination of US and ST (USST) or HT (USHT). The extraction kinetics was well fitted to a pseudo-second order model. As regards phenolic compound yield, the US method (342 mg gallic acid (GAE). 100 g-1 RS) was more effective than the ST treatment (256 mg GAE.100 g-1 RS), reaching an asymptotic value after 30 min of process. When combined with HT (USHT), the US pre-treatment led to the highest extraction of phenolic compounds from RS (486 mg GAE.100 g-1 RS) while the extract exhibited the greatest antioxidant activity. Furthermore, the USHT extract reduced the initial counts of Listeria innocua by 1.7 logarithmic cycles. Therefore, the thermal aqueous extraction of RS applying the 30 min US pre-treatment, represents a green and efficient approach to obtain bioactive extracts for food applications.
Collapse
Affiliation(s)
- Pedro A. V. Freitas
- Institute of Food Engineering for Development, Universitat Politècnica de València, 46022 Valencia, Spain; (C.G.-M.); (A.C.)
| | | | | |
Collapse
|
43
|
Kori AH, Mahesar SA, Sherazi STH, Laghari ZH, Panhwar T. A review on techniques employed for encapsulation of the bioactive components of
Punicagranatum
L. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Abdul Hameed Kori
- National Centre of Excellence in Analytical Chemistry University of Sindh Jamshoro Pakistan
| | - Sarfaraz Ahmed Mahesar
- National Centre of Excellence in Analytical Chemistry University of Sindh Jamshoro Pakistan
| | | | - Zahid Hussain Laghari
- National Centre of Excellence in Analytical Chemistry University of Sindh Jamshoro Pakistan
| | - Tarique Panhwar
- National Centre of Excellence in Analytical Chemistry University of Sindh Jamshoro Pakistan
| |
Collapse
|
44
|
Bhagya Raj GVS, Dash KK. Ultrasound-assisted extraction of phytocompounds from dragon fruit peel: Optimization, kinetics and thermodynamic studies. ULTRASONICS SONOCHEMISTRY 2020; 68:105180. [PMID: 32502959 DOI: 10.1016/j.ultsonch.2020.105180] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/05/2020] [Accepted: 05/17/2020] [Indexed: 05/05/2023]
Abstract
Ultrasound-assisted extraction method (UAE) was applied to recover phytocompounds from dragon fruit peel and the process was modelled and optimized using the combination of artificial neural network (ANN) and genetic algorithm (GA). The influence of ultrasonic temperature (30-70 °C), solvent to solid ratio (10:1-30:1 mL/g), solvent concentration (30-60%), and ultrasonic treatment time (5-25 min) on total polyphenolic content (ZT), antioxidant activity (ZD) and betacyanin content (ZB) was investigated. The ANN model successfully fitted to the experimental data and the output of ANN model was applied for genetic algorithm optimization. The optimal UAE conditions were obtained at ultrasonic temperature of 60 °C, solvent to solid ratio 25:1 mL/g, solvent concentration 60%, and ultrasonic treatment time of 20 min. The extraction kinetics and thermodynamic study for phytochemical compounds extracted from dragon fruit peel using UAE process was carried out at different combinations of temperature and time of extraction. The effective diffusion coefficient for total polyphenol content, antioxidant activity and betacyanin content were ranged from 2.99×10-11to4.84×10-11m2/s, 1.89×10-11to4.51×10-11m2/s and 2.55×10-11to5.40×10-11m2/s respectively and the corresponding mass transfer coefficient were varied between 2.00×10-06-2.81×10-06m/s, 1.53×10-06-2.66×10-06m/s and 1.81×10-06-3.05×10-06m/s respectively. The obtained information on effective diffusivity and mass transfer coefficient during extraction would allow the prediction of extraction rate and for estimation of operation conditions for industrial implementation.
Collapse
Affiliation(s)
- G V S Bhagya Raj
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784028, India
| | - Kshirod K Dash
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784028, India; Department of Food Processing Technology, GKCIET, Malda, West Bengal 732141, India.
| |
Collapse
|
45
|
Magangana TP, Makunga NP, Fawole OA, Opara UL. Processing Factors Affecting the Phytochemical and Nutritional Properties of Pomegranate ( Punica granatum L.) Peel Waste: A Review. Molecules 2020; 25:E4690. [PMID: 33066412 PMCID: PMC7587354 DOI: 10.3390/molecules25204690] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 01/09/2023] Open
Abstract
Pomegranate peel has substantial amounts of phenolic compounds, such as hydrolysable tannins (punicalin, punicalagin, ellagic acid, and gallic acid), flavonoids (anthocyanins and catechins), and nutrients, which are responsible for its biological activity. However, during processing, the level of peel compounds can be significantly altered depending on the peel processing technique used, for example, ranging from 38.6 to 50.3 mg/g for punicalagins. This review focuses on the influence of postharvest processing factors on the pharmacological, phytochemical, and nutritional properties of pomegranate (Punica granatum L.) peel. Various peel drying strategies (sun drying, microwave drying, vacuum drying, and oven drying) and different extraction protocols (solvent, super-critical fluid, ultrasound-assisted, microwave-assisted, and pressurized liquid extractions) that are used to recover phytochemical compounds of the pomegranate peel are described. A total phenolic content of 40.8 mg gallic acid equivalent (GAE)/g DM was recorded when sun drying was used, but the recovery of the total phenolic content was higher at 264.3 mg TAE/g when pressurised liquid extraction was performed. However, pressurised liquid extraction is costly due to the high initial investment costs and the limited possibility of carrying out selective extractions of organic compounds from complex peel samples. The effects of these methods on the phytochemical profiles of pomegranate peel extracts are also influenced by the cultivar and conditions used, making it difficult to determine best practice. For example, oven drying at 60 °C resulted in higher levels of punicalin of 888.04 mg CE/kg DM compared to those obtained 40 °C of 768.11 mg CE/kg DM for the Wonderful cultivar. Processes that are easy to set up, cost-effective, and do not compromise the quality and safety aspects of the peel are, thus, more desirable. From the literature survey, we identified a lack of studies testing pretreatment protocols that may result in a lower loss of the valuable biological compounds of pomegranate peels to allow for full exploitation of their health-promoting properties in potentially new value-added products.
Collapse
Affiliation(s)
- Tandokazi Pamela Magangana
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; (T.P.M.); (N.P.M.)
- Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Horticultural Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Nokwanda Pearl Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; (T.P.M.); (N.P.M.)
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa;
| | - Umezuruike Linus Opara
- Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Horticultural Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| |
Collapse
|
46
|
Research on polyphenols extraction from Polygonum multiflorum Thunb. roots. HERBA POLONICA 2020. [DOI: 10.2478/hepo-2020-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Introduction:
Polygonum multiflorum Thunb. is a herbal common plant in Asia, with many beneficial health effects for human because it contains many bioactive compounds which can prevent some diseases, for instance such as cardiovascular diseases, cancers, neurodegenerative diseases, etc.
Objective: The purpose of this research is to point out the effects of extraction factors such as type of solvent, material/solvent ratio (w/v), solvent concentration (%, v/v), temperature (°C) and extraction time on the extraction yield of phenolic compounds from Polygonum multiflorum Thunb. roots, for instance, total polyphenol content (TPC) and antioxidant capacity (AC).
Methods: The raw material consisting of Polygonum multiflorum Thunb root was extracted by the reflux maceration method. TPC and AC of received extract were evaluated by the Folin-Ciocalteu technique and DPPH method with Trolox as a standard agent.
Results: The optimal conditions for the extraction process were acetone-water mixture (60%, v/v) as a solvent, material/solvent ratio of 1/40, extraction temperature of 50°C and extraction time of 90 minutes. The surface structure of material after extraction process changed insignificantly compared with the initial structure.
Conclusion: The results showed that TPC and AC obtained the best values (38.60±0.56 mg GAE/g DW (dry weight) and 298.15±2.99 μmol TE/g DW, respectively) at optimal extraction conditions. In addition, some phenolic compounds were detected in the extract such as gallic acid, catechin and resveratrol.
Collapse
|
47
|
Chaves JO, de Souza MC, da Silva LC, Lachos-Perez D, Torres-Mayanga PC, Machado APDF, Forster-Carneiro T, Vázquez-Espinosa M, González-de-Peredo AV, Barbero GF, Rostagno MA. Extraction of Flavonoids From Natural Sources Using Modern Techniques. Front Chem 2020; 8:507887. [PMID: 33102442 PMCID: PMC7546908 DOI: 10.3389/fchem.2020.507887] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Flavonoids are one of the main groups of polyphenols found in natural products. Traditional flavonoid extraction techniques are being replaced by advanced techniques to reduce energy and solvent consumption, increase efficiency and selectivity, to meet increased market demand and environmental regulations. Advanced technologies, such as microwaves, ultrasound, pressurized liquids, supercritical fluids, and electric fields, are alternatives currently being used. These modern techniques are generally faster, more environmentally friendly, and with higher automation levels compared to conventional extraction techniques. This review will discuss the different methods available for flavonoid extraction from natural sources and the main parameters involved (temperature, solvent, sample quantity, extraction time, among others). Recent trends and their industrial importance are also discussed in detail, providing insight into their potential. Thus, this paper seeks to review the innovations of compound extraction techniques, presenting in each of them their advantages and disadvantages, trying to offer a broader scope in the understanding of flavonoid extraction from different plant matrices.
Collapse
Affiliation(s)
- Jaísa Oliveira Chaves
- Multidisciplinary Laboratory in Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Mariana Corrêa de Souza
- Multidisciplinary Laboratory in Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Laise Capelasso da Silva
- Multidisciplinary Laboratory in Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Daniel Lachos-Perez
- Laboratory of Optimization, Design and Advanced Control - Bioenergy Research Program, School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | - Paulo César Torres-Mayanga
- School of Food Engineering, University of Campinas, Campinas, Brazil
- Facultad de Ingeniería, Universidad Nacional Micaela Bastidas de Apurímac, Abancay, Peru
| | | | | | | | | | | | - Mauricio Ariel Rostagno
- Multidisciplinary Laboratory in Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| |
Collapse
|
48
|
Rakshit M, Srivastav PP, Bhunia K. Kinetic modeling of ultrasonic‐assisted extraction of punicalagin from pomegranate peel. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Madhulekha Rakshit
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur India
| | - Prem P. Srivastav
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur India
| | - Kanishka Bhunia
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur India
| |
Collapse
|
49
|
Abstract
In this study, the effects of different fruit parts and extraction conditions on the antioxidant properties of jujube (Ziziphus jujuba Mill.) fruit were investigated. Five in vitro antioxidant models and statistical analyses were performed. The results revealed that jujube peel with pulp (peel pulp) exhibited better antioxidant capacity than did seeds. Overall, jujube peel pulp extracted using 50% ethanol at 60 °C exhibited the best antioxidant capacity in terms of 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (0.3 ± 0 mg/mL), 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity (0.5 ± 0 mg/mL), total phenolic content (38.3 ± 0.4 mg gallic acid equivalent per gram dry weight), total flavonoid content (43.8 ± 0.2 mg quercetin equivalent per gram dry weight), and reducing power (41.9 ± 2.2 mg ascorbic acid equivalent per gram dry weight). The results indicated that jujube peel pulp is a more potential natural antioxidant than seeds.
Collapse
|
50
|
Kumar A, Srinivasa Rao P. Optimization of pulsed-mode ultrasound assisted extraction of bioactive compounds from pomegranate peel using response surface methodology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00597-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|