1
|
Králik M, Koóš P, Markovič M, Lopatka P. Organic and Metal-Organic Polymer-Based Catalysts-Enfant Terrible Companions or Good Assistants? Molecules 2024; 29:4623. [PMID: 39407552 PMCID: PMC11477782 DOI: 10.3390/molecules29194623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
This overview provides insights into organic and metal-organic polymer (OMOP) catalysts aimed at processes carried out in the liquid phase. Various types of polymers are discussed, including vinyl (various functional poly(styrene-co-divinylbenzene) and perfluorinated functionalized hydrocarbons, e.g., Nafion), condensation (polyesters, -amides, -anilines, -imides), and additional (polyurethanes, and polyureas, polybenzimidazoles, polyporphyrins), prepared from organometal monomers. Covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and their composites represent a significant class of OMOP catalysts. Following this, the preparation, characterization, and application of dispersed metal catalysts are discussed. Key catalytic processes such as alkylation-used in large-scale applications like the production of alkyl-tert-butyl ether and bisphenol A-as well as reduction, oxidation, and other reactions, are highlighted. The versatile properties of COFs and MOFs, including well-defined nanometer-scale pores, large surface areas, and excellent chemisorption capabilities, make them highly promising for chemical, electrochemical, and photocatalytic applications. Particular emphasis is placed on their potential for CO2 treatment. However, a notable drawback of COF- and MOF-based catalysts is their relatively low stability in both alkaline and acidic environments, as well as their high cost. A special part is devoted to deactivation and the disposal of the used/deactivated catalysts, emphasizing the importance of separating heavy metals from catalysts. The conclusion provides guidance on selecting and developing OMOP-based catalysts.
Collapse
Affiliation(s)
- Milan Králik
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | - Peter Koóš
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | | | | |
Collapse
|
2
|
Mohammed S, Aburabie J, Hashaikeh R. A review on the potential of cellulose nanomaterials for the development of thin film composite polyamide membranes for water treatment. CHEMOSPHERE 2024; 363:142927. [PMID: 39048049 DOI: 10.1016/j.chemosphere.2024.142927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/14/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Membrane-based separation technologies have drawn significant interest because of their compactness, low energy consumption, and ability to be easily integrated with existing processes. There has been significant interest in the utilization of natural materials derived from sustainable and renewable resources for membrane fabrication. Cellulose is one of the promising polymers which has been extensively studied in membrane fabrication and modification due to its abundant availability, non-toxicity and biodegradability. While there have been several reviews in recent years separately on TFC membranes and cellulose-based materials for different applications, reviews exclusively focusing on cellulosic nanomaterials-based TFC membranes are still lacking. This review provides an overview of the types of cellulose nanomaterials exploited for the development and modification of TFC membranes, particularly those used for desalination and wastewater treatment. We have presented a brief description of cellulose-based nanomaterials followed by a detailed discussion of different studies addressing each cellulose nanomaterial separately. In addition, we have summarized the performance of different studies in the literature, paying particular attention to the enhancement achieved by the incorporation of cellulose nanomaterial in the membrane.
Collapse
Affiliation(s)
- Shabin Mohammed
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Jamaliah Aburabie
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Raed Hashaikeh
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates.
| |
Collapse
|
3
|
Habib M, Ayaz T, Ali M, Zeeshan M, Sheng X, Fu R, Ullah S, Lyu S. Innovative strategy for the effective utilization of coal waste slag in the Fenton-like process for the degradation of trichloroethylene. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121441. [PMID: 38897076 DOI: 10.1016/j.jenvman.2024.121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
In response to environmental concerns at the global level, there is considerable momentum in the exploration of materials derived from waste that are both sustainable and eco-friendly. In this study, CS-Fe (carbon, silica, and iron) composite was synthesized from coal gasification slag (CGS) and innovatively applied as a catalyst to activate PS (persulfate) for the degradation of trichloroethylene (TCE) in water. Scanning electron microscope (SEM), fourier transmission infrared spectroscopy (FTIR), energy dispersive x-ray spectroscopy (EDS), brunauer, emmet, and teller (BET) technique, and x-ray diffractometer (XRD) spectra were employed to investigate the surface morphology and physicochemical composition of the CS-Fe composite. CS-Fe catalyst showed a dual nature by adsorption and degradation of TCE simultaneously, displaying 86.1% TCE removal in 3 h. The synthesized CS-Fe had better adsorption (62.1%) than base material CGS (36.4%) due to a larger BET surface area (770.8 m2 g-1), while 24.0% TCE degradation was recorded upon the activation of PS by CS-Fe. FTIR spectra confirmed the adsorption and degradation of TCE by investigating the used and fresh samples of CS-Fe catalyst. Scavengers and Electron paramagnetic resonance (EPR) analysis confirmed the availability of surface radicals and free radicals facilitated the degradation process. The acidic nature of the solution favored the degradation while the presence of bicarbonate ion (HCO3-) hindered this process. In conclusion, these results for real groundwater, surfactant-added solution, and degradation of other TCE-like pollutants propose that the CS-Fe composite offers an economically viable and favorable catalyst in the remediation of organic contaminants within aqueous solutions. Further investigation into the catalytic potential of coal gasification slag-based carbon materials and their application in Fenton reactions is warranted to effectively address a range of environmental challenges.
Collapse
Affiliation(s)
- Mudassir Habib
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Tehreem Ayaz
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meesam Ali
- Department of Chemical Engineering, Muhammad Nawaz Sharif University of Engineering and Technology, Multan, 60000, Pakistan
| | - Muhammad Zeeshan
- College of Engineering and Computing, University of South Carolina, Columbia, SC, 29201, USA
| | - Xianxian Sheng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Rongbing Fu
- Center for Environmental Risk Management & Remediation of Soil & Groundwater, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Siraj Ullah
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
4
|
Tang S, Wang Y, He P, Wang Y, Wei G. Recent Advances in Metal-Organic Framework (MOF)-Based Composites for Organic Effluent Remediation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2660. [PMID: 38893925 PMCID: PMC11173850 DOI: 10.3390/ma17112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Environmental pollution caused by organic effluents emitted by industry has become a worldwide issue and poses a serious threat to the public and the ecosystem. Metal-organic frameworks (MOFs), comprising metal-containing clusters and organic bridging ligands, are porous and crystalline materials, possessing fascinating shape and size-dependent properties such as high surface area, abundant active sites, well-defined crystal morphologies, and huge potential for surface functionalization. To date, numerous well designated MOFs have emerged as critical functional materials to solve the growing challenges associated with water environmental issues. Here we present the recent progress of MOF-based materials and their applications in the treatment of organic effluents. Firstly, several traditional and emerging synthesis strategies for MOF composites are introduced. Then, the structural and functional regulations of MOF composites are presented and analyzed. Finally, typical applications of MOF-based materials in treating organic effluents, including chemical, pharmaceutical, textile, and agricultural wastewaters are summarized. Overall, this review is anticipated to tailor design and regulation of MOF-based functional materials for boosting the performance of organic effluent remediation.
Collapse
Affiliation(s)
| | | | | | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (S.T.); (Y.W.); (P.H.)
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (S.T.); (Y.W.); (P.H.)
| |
Collapse
|
5
|
Zubair M, Yasir M, Ponnamma D, Mazhar H, Sedlarik V, Hawari AH, Al-Harthi MA, Al-Ejji M. Recent advances in nanocellulose-based two-dimensional nanostructured membranes for sustainable water purification: A review. Carbohydr Polym 2024; 329:121775. [PMID: 38286528 DOI: 10.1016/j.carbpol.2024.121775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024]
Abstract
Nanocellulose (NC), a one-dimensional nanomaterial, is considered a sustainable material for water and wastewater purification because of its promising hydrophilic surface and mechanical characteristics. In this regard, nanostructured membranes comprising NC and two-dimensional (2D) nanomaterials emerged as advanced membranes for efficient and sustainable water purification. This article critically reviews the recent progress on NC-2D nanostructured membranes for water and wastewater treatment. The review highlights the main techniques employed to fabricate NC-2D nanostructured membranes. The physicochemical properties, including hydrophilicity, percent porosity, surface roughness, structure, and mechanical and thermal stability, are summarized. The key performance indicators such as permeability, rejection, long operation stability, antifouling, and interaction mechanisms are thoroughly discussed to evaluate the role of NC and 2D nanomaterials. Finally, summary points and future development work are highlighted to overcome the challenges for potential practical applications. This review contributes to the design and development of advanced membranes to solve growing water pollution concerns in a sustainable manner.
Collapse
Affiliation(s)
- Mukarram Zubair
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31451, Saudi Arabia.
| | - Muhammad Yasir
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| | - Deepalekshmi Ponnamma
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hassam Mazhar
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Vladimir Sedlarik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| | - Alaa H Hawari
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mamdouh Ahmed Al-Harthi
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
| | - Maryam Al-Ejji
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
6
|
Maleki A, Bozorg A. From environmental issue to purification aid: Novel positively charged functionalized algal biochar as robust modifier of composite nanofiltration membranes. CHEMOSPHERE 2024; 353:141651. [PMID: 38460849 DOI: 10.1016/j.chemosphere.2024.141651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Robust membrane modifiers were achieved for the first time by functionalizing the algal biochar of unique porous structure. The biochar was prepared through the pyrolysis of Cladophora glomerata, the most widespread freshwater macroalga, functionalized by diethylenetriamine and dendrimer poly(amidoamine), and employed to fabricate positively charged composite nanofiltration membranes. The presence of hydrophilic functionalizers of positive charge on the membrane was verified through Fourier transform infrared and energy dispersive X-ray analyses and atomic force microscopy and zeta potential measurements were performed to determine surface roughness and confirm positive charge of the modified membranes. Dispersion of modifiers on the surface and morphology of the were also revealed through field-emission scanning electron microscopy images. It has shown that, compared to the pristine membrane, pure water fluxes were increased by 214% and 185%, and water contact angles were reduced from 66.1° to 39.5° and 43.3° in those modified by biochar functionalized with dendrimer poly(amidoamine) and diethylenetriamine, respectively. More than 90% dye rejections and salt and heavy metals removals were recorded for the membranes possessed 0.6 wt% of modifiers. Finally, a comparative study conducted between the novel modifier introduced in this study and those reported in the literature, indicated that C. glomerata biochar decorated with amine functional groups could be considered as a robust and practical alternative to the common modifiers used to manipulate nanocomposite membranes characteristics.
Collapse
Affiliation(s)
- Amin Maleki
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ali Bozorg
- Biotechnology Department, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Poschmann MPM, Lillerud KP, Stock N. Acidic Properties of Known and New COOH-Functionalized M(IV) Metal-Organic Frameworks. Chemistry 2023; 29:e202301760. [PMID: 37272919 DOI: 10.1002/chem.202301760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/06/2023]
Abstract
Herein, we report two new COOH-functionalized metal-organic frameworks (MOFs) of composition [M6 O4 (OH)6 (PMA)2 (H2 PMA)]×H2 O, M=Zr, Hf), denoted CAU-61, synthesized by using pyromellitic acid (H4 PMA), a tetracarboxylic acid, as the linker and acetic acid as the solvent. The structure was determined from powder X-ray diffraction data and one-dimensional inorganic building units are connected through tetracarboxylate as well as dicarboxylate linker molecules, resulting in highly stable microporous framework structures with limiting and maximum pore diameter of ∼3.6 and ∼5.0 Å, respectively, lined with -COOH groups. Thermal stabilities of up to 400 °C in air, chemical stability in water at pH 1 to 12 and water uptake of 17 mol/mol prompted us to study the proton exchange of the μ2 -OH, μ3 -OH of the IBU and -COOH groups of the linker by titration with LiOH. Comparison of the pKa values with three UiO-66 derivatives confirms distinct pKa value ranges and trends for the different acidic protons. Furthermore, the preparation of Zr-CAU-61 membranes and first results on permeation of dyes and ions in aqueous solutions are presented.
Collapse
Affiliation(s)
| | | | - Norbert Stock
- Department of Inorganic Chemistry, Christian-Albrechts-University, Max-Eyth-Straße 2, 24118, Kiel, Germany
| |
Collapse
|
8
|
Rabiee N, Sharma R, Foorginezhad S, Jouyandeh M, Asadnia M, Rabiee M, Akhavan O, Lima EC, Formela K, Ashrafizadeh M, Fallah Z, Hassanpour M, Mohammadi A, Saeb MR. Green and Sustainable Membranes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116133. [PMID: 37209981 DOI: 10.1016/j.envres.2023.116133] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.
Collapse
Affiliation(s)
- Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia; Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran.
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Sahar Foorginezhad
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Lulea University of Technology, Department of Energy Science and Mathematics, Energy Science, 97187, Lulea, Sweden
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, P. O. Box 47416, 95447, Babolsar, Iran
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| |
Collapse
|
9
|
Sharma U, Pandey R, Basu S, Saravanan P. ZIF-67 blended PVDF membrane for improved Congo red removal and antifouling properties: A correlation establishment between morphological features and ultra-filtration parameters. CHEMOSPHERE 2023; 320:138075. [PMID: 36758809 DOI: 10.1016/j.chemosphere.2023.138075] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/05/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Dye effluents from various sectors have constantly imperilled the environment and ecosystem. Nano-composite membrane technology incorporating metal-organic frameworks (MOFs) has shown tremendous potential for toxic pollutant remediation. This study details the impact of ZIF-67 MOF nanoparticles on the structural properties of polyvinylidene fluoride (PVDF) ultrafiltration membrane during the non-solvent induced phase separation (NIPS) process. In order to outline the properties that determine the performance parameters in a MOF-modified mixed matrix membrane, the corresponding changes in mean pore size (MPS), surface porosity, solvent viscosity, and hydrophilicity have been discussed with appropriate surface characterization analysis. The suitability of ZIF-67 as filler nanoparticles were established based on polymer compatibility, dispersibility, and water stability studies. The ZIF-67 incorporated PVDF mixed matrix membranes (MMM) showed 99.5% CR dye removal with 2.6 times DI water permeability than the neat. The flux recovery ratio (FRR) improved by 1.9 times and the membranes were found suitable for up to 5 filtration cycles. Based on the overall results, a correlation analysis between the MMM surface properties and membrane performance parameters were established to determine the key performance parameters. It was observed that in comparison to MPS, surface porosity was more correlated to Jd/Jw (r = 0.96) and FRR (r = 0.95).
Collapse
Affiliation(s)
- Uttkarshni Sharma
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India
| | - Rohit Pandey
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India
| | - Subhankar Basu
- Department of Applied Science and Humanities, National Institute of Advanced Manufacturing Technology Ranchi, Jharkhand, 834003, India.
| | - Pichiah Saravanan
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India.
| |
Collapse
|
10
|
Poonia K, Patial S, Raizada P, Ahamad T, Parwaz Khan AA, Van Le Q, Nguyen VH, Hussain CM, Singh P. Recent advances in Metal Organic Framework (MOF)-based hierarchical composites for water treatment by adsorptional photocatalysis: A review. ENVIRONMENTAL RESEARCH 2023; 222:115349. [PMID: 36709022 DOI: 10.1016/j.envres.2023.115349] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Architecting a desirable and highly efficient nanocomposite for applications like adsorption, catalysis, etc. has always been a challenge. Metal Organic Framework (MOF)-based hierarchical composite has perceived popularity as an advanced adsorbent and catalyst. Hierarchically structured MOF material can be modulated to allow the surface interaction (external or internal) of MOF with the molecules of interest. They are well endowed with tunable functionality, high porosity, and increased surface area epitomizing mass transfer and mechanical stability of the fabricated nanostructure. Additionally, the anticipated optimization of nanocomposite can only be acquired by a thorough understanding of the synthesis techniques. This review starts with a brief introduction to MOF and the requirement for advanced nanocomposites after the setback faced by conventional MOF structures. Further, we discussed the background of MOF-based hierarchical composites followed by synthetic techniques including chemical and thermal treatment. It is important to rationally validate the successful nanocomposite fabrication by characterization techniques, an overview of challenges, and future perspectives associated with MOF-based hierarchically structured nanocomposite.
Collapse
Affiliation(s)
- Komal Poonia
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Shilpa Patial
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia.
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Quyet Van Le
- Faculty of Department of Materials Science and Engineering, Korea University, 145, Anam13 Ro Seongbuk-gu, Seoul, 02841, South Korea.
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram District, 603103, Tamil Nadu, India.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| |
Collapse
|
11
|
Nanofiltration Mixed Matrix Membranes from Cellulose Modified with Zn-Based Metal–Organic Frameworks for the Enhanced Water Treatment from Heavy Metal Ions. Polymers (Basel) 2023; 15:polym15061341. [PMID: 36987122 PMCID: PMC10052156 DOI: 10.3390/polym15061341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Nowadays, nanofiltration is actively used for water softening and disinfection, pre-treatment, nitrate, and color removal, in particular, for heavy metal ions removal from wastewater. In this regard, new, effective materials are required. In the present work, novel sustainable porous membranes from cellulose acetate (CA) and supported membranes consisting of CA porous substrate with a thin dense selective layer from carboxymethyl cellulose (CMC) modified with first-time synthesized Zn-based metal–organic frameworks (Zn(SEB), Zn(BDC)Si, Zn(BIM)) were developed to increase the efficiency of nanofiltration for the removal of heavy metal ions. Zn-based MOFs were characterized by sorption measurements, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The obtained membranes were studied by the spectroscopic (FTIR), standard porosimetry and microscopic (SEM and AFM) methods, and contact angle measurement. The CA porous support was compared with other, prepared in the present work, porous substrates from poly(m-phenylene isophthalamide) and polyacrylonitrile. Membrane performance was tested in the nanofiltration of the model and real mixtures containing heavy metal ions. The improvement of the transport properties of the developed membranes was achieved through Zn-based MOF modification due to their porous structure, hydrophilic properties, and different particle shapes.
Collapse
|
12
|
One pot synthesis of cyclodextrin MOF as a promising heterogeneous catalyst for the reduction of nitroaromatic compounds and azo dyes. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
13
|
One-Step Synthesis of Al-Doped UiO-66 Nanoparticle for Enhanced Removal of Organic Dyes from Wastewater. Molecules 2023; 28:molecules28052182. [PMID: 36903428 PMCID: PMC10004798 DOI: 10.3390/molecules28052182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
In this study, a series of Al-doped metal-organic frameworks (AlxZr(1-x)-UiO-66) were synthesized through a one-step solvothermal method. Various characterization techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and N2 sorption measurement, suggested that the Al doping was uniform and barely influenced the crystallinity, chemical stability, and thermal stability of the materials. Two cationic dyes, safranine T (ST) and methylene blue (MB), were selected for investigating the adsorption performances of Al-doped UiO-66 materials. Al0.3Zr0.7-UiO-66 exhibited 9.63 and 5.54 times higher adsorption capacities than UiO-66, 498 mg/g and 251 mg/g for ST and MB, respectively. The improved adsorption performance can be attributed to π-π interaction, hydrogen bond, and the coordination between the dye and Al-doped MOF. The pseudo-second-order and Langmuir models explained the adsorption process well, which indicated that the dye adsorption on Al0.3Zr0.7-UiO-66 mostly occurred through chemisorption on homogeneous surfaces. A thermodynamic study indicated the adsorption process was spontaneous and endothermic. The adsorption capacity did not decrease significantly after four cycles.
Collapse
|
14
|
Tarkhani M, Mousavi SA, Asadollahi M, Bastani D, Pourasad F. Investigating the effect of zirconium‐based and titanium‐based metal–organic frameworks nanoparticles on the performance of polysulfone hollow fiber mixed matrix membrane for dialysis application. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Mehdi Tarkhani
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| | - Seyyed Abbas Mousavi
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| | - Mahdieh Asadollahi
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| | - Dariush Bastani
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| | - Fatemeh Pourasad
- Department of Chemical and Petroleum Engineering Sharif University of Technology Tehran Iran
| |
Collapse
|
15
|
Frolova L, Blyuss B. Investigation of Cr(III) adsorption in aqueous solution using bentonite. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Zheng X, Rehman S, Zhang P. Room temperature synthesis of monolithic MIL-100(Fe) in aqueous solution for energy-efficient removal and recovery of aromatic volatile organic compounds. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129998. [PMID: 36152540 DOI: 10.1016/j.jhazmat.2022.129998] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The removal and recovery of volatile organic compounds (VOCs) are widely used in many industrials. Unfortunately, most conventional porous materials not only have low VOCs uptake, but also need to be regenerated at relatively high temperature. Metal-organic frameworks (MOFs) have great potential for the removal and recovery of VOCs as their record-breaking gas adsorption capacity, easy regeneration, tunable pore structure and functional groups. Whereas, powdered MOFs are hardly implemented in industrial fields owing to their low bulk density and high pressure drop. Exploring a green method to prepare granular MOFs for the removal and recovery of VOCs is still a challenge. Herein, we report the room temperature green synthesis of a stable Fe-based MOF monolith by using water as the solvent without applying high pressure and chemical binders. The static and dynamic experiments show that the optimized centimeter-scale monolith has high porosity and mechanical strength, and exhibits much better adsorption performance for representative aromatic VOCs (benzene, toluene and p-xylene), than commercial activated carbon and activated carbon fiber under the same conditions. Remarkably, as-synthesized monolith can be rapidly regenerated at lower temperature. These results clearly demonstrate the advantages of MOF monoliths in removing and recovering VOCs, and also provide new insight into the effects of drying temperature, washing and centrifugation procedures on MOF shaping.
Collapse
Affiliation(s)
- Xianming Zheng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environment and Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Sadia Rehman
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Pengyi Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Indoor Air Quality Evaluation and Control, Beijing 100084, China.
| |
Collapse
|
17
|
Ma C, Wolterbeek HT, Denkova AG, Serra Crespo P. Porphyrinic metal–organic frameworks as molybdenum adsorbents for the 99Mo/ 99mTc generator. Inorg Chem Front 2023. [DOI: 10.1039/d2qi01919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two porphyrinic metal–organic frameworks (PCN-222 and PCN-224) were prepared and their potential as molybdenum adsorbents for the 99Mo/99mTc generator was explored.
Collapse
Affiliation(s)
- Chao Ma
- Applied radiation and isotopes, Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, 2629 JB Delft, Mekelweg 15, The Netherlands
| | - Hubert T. Wolterbeek
- Applied radiation and isotopes, Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, 2629 JB Delft, Mekelweg 15, The Netherlands
| | - Antonia G. Denkova
- Applied radiation and isotopes, Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, 2629 JB Delft, Mekelweg 15, The Netherlands
| | - Pablo Serra Crespo
- Applied radiation and isotopes, Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, 2629 JB Delft, Mekelweg 15, The Netherlands
| |
Collapse
|
18
|
Yu ZQ, Mao WJ, Lin ZH, Hu XL, Su ZM. Synthesis of porous carbon by composing Co-MOF as a precursor for degrading antibiotics in the water. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Superior fatigue and mechanical properties of ethylene-propylene diene monomer rubber incorporated with Zr-based metal–organic framework. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Effects of carbon nanotubes on structure, performance and properties of polymer nanocomposite membranes for water/wastewater treatment applications: a comprehensive review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Ahmad NNR, Mohammad AW, Mahmoudi E, Ang WL, Leo CP, Teow YH. An Overview of the Modification Strategies in Developing Antifouling Nanofiltration Membranes. MEMBRANES 2022; 12:membranes12121276. [PMID: 36557183 PMCID: PMC9780855 DOI: 10.3390/membranes12121276] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 05/12/2023]
Abstract
Freshwater deficiency has become a significant issue affecting many nations' social and economic development because of the fast-growing demand for water resources. Nanofiltration (NF) is one of the promising technologies for water reclamation application, particularly in desalination, water, and wastewater treatment fields. Nevertheless, membrane fouling remains a significant concern since it can reduce the NF membrane performance and increase operating expenses. Consequently, numerous studies have focused on improving the NF membrane's resistance to fouling. This review highlights the recent progress in NF modification strategies using three types of antifouling modifiers, i.e., nanoparticles, polymers, and composite polymer/nanoparticles. The correlation between antifouling performance and membrane properties such as hydrophilicity, surface chemistry, surface charge, and morphology are discussed. The challenges and perspectives regarding antifouling modifiers and modification strategies conclude this review.
Collapse
Affiliation(s)
- Nor Naimah Rosyadah Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: author:
| | - Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Wei Lun Ang
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Choe Peng Leo
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Yeit Haan Teow
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
22
|
Zhao R, Bai X, Yang W, Fan K, Zhang H. Grafting (S)-2-Phenylpropionic Acid on Coordinatively Unsaturated Metal Centers of MIL-101(Al) Metal-Organic Frameworks for Improved Enantioseparation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8456. [PMID: 36499951 PMCID: PMC9740726 DOI: 10.3390/ma15238456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Chiral metal-organic frameworks (cMOFs) are emerging chiral stationary phases for enantioseparation owing to their porosity and designability. However, a great number of cMOF materials show poor separation performance for chiral drugs in high-performance liquid chromatography (HPLC). The possible reasons might be the irregular shapes of MOFs and the low grafting degree of chiral ligands. Herein, MIL-101-Ppa@SiO2 was synthesized by a simple coordination post-synthetic modification method using (S)-(+)-2-Phenylpropionic acid and applied as the chiral stationary phase to separate chiral compounds by HPLC. NH2-MIL-101-Ppa@SiO2 prepared via covalent post-synthetic modification was used for comparison. The results showed that the chiral ligand density of MIL-101-Ppa@SiO2 was higher than that of NH2-MIL-101-Ppa@SiO2, and the MIL-101-Ppa@SiO2 column exhibited better chiral separation performance and structural stability. The binding affinities between MIL-101-Ppa@SiO2 and chiral compounds were simulated to prove the mechanism of the molecular interactions during HPLC. These results revealed that cMOFs prepared by coordination post-synthetic modification could increase the grafting degree and enhance the separation performance. This method can provide ideas for the synthesis of cMOFs.
Collapse
Affiliation(s)
- Rui Zhao
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xueyan Bai
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wenhui Yang
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Kun Fan
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
23
|
Li H, Cheng Y, Li J, Li T, Zhu J, Deng W, Zhu J, He D. Preparation and Adsorption Performance Study of Graphene Quantum Dots@ZIF-8 Composites for Highly Efficient Removal of Volatile Organic Compounds. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4008. [PMID: 36432294 PMCID: PMC9695402 DOI: 10.3390/nano12224008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Based on the large specific surface area and excellent adsorption potential of graphene quantum dots (GQDs) and zeolitic imidazolate framework-8 (ZIF-8) materials, a GQDs@ZIF-8 composite was constructed to achieve optimal matching of the microstructure and to acquire efficient adsorption of volatile organic compounds (VOCs). GQDs and ZIF-8 were synthesized and then compounded by the solution co-deposition method to obtain GQDs@ZIF-8 composites. GQDs were uniformly decorated on the surface of the ZIF-8 metal-organic framework (MOF), effectively restraining the agglomeration, improving the thermal stability of ZIF-8 and forming abundant active sites. Thus, the VOC removal percentage and adsorption capacity of the GQDs@ZIF-8 composites were significantly improved. Toluene and ethyl acetate were chosen as simulated VOC pollutants to test the adsorption performance of the composites. The results showed that, after the addition of GQDs, the adsorption property of GQDs@ZIF-8 composites for toluene and ethyl acetate was obviously improved, with maximum adsorption capacities of 552.31 mg/g and 1408.59 mg/g, respectively, and maximum removal percentages of 80.25% and 93.78%, respectively, revealing extremely high adsorption performance. Compared with raw ZIF-8, the maximum adsorption capacities of the composites for toluene and ethyl acetate were increased by 53.82 mg/g and 104.56 mg/g, respectively. The kinetics and isotherm study revealed that the adsorption processes were in accordance with the pseudo-first-order kinetic model and the Freundlich isotherm model. The thermodynamic results indicated that the adsorption process of the GQDs@ZIF-8 composites was a spontaneous, endothermic and entropy increase process. This study provides a new way to explore MOF-based adsorption materials with high adsorption capacity which have broad application prospects in VOC removal fields.
Collapse
Affiliation(s)
- Hao Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Youliang Cheng
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China
| | - Jiaxian Li
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China
| | - Tiehu Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jia Zhu
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China
| | - Weibin Deng
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jiajia Zhu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Delong He
- Laboratoire de Mécanique Paris-Saclay, Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France
| |
Collapse
|
24
|
Li Q, Jiang S, Jia W, Wang F, Wang Z, Cao X, Shen X, Yao Z. Novel silver-modified carboxymethyl chitosan antibacterial membranes using environment-friendly polymers. CHEMOSPHERE 2022; 307:136059. [PMID: 35977569 DOI: 10.1016/j.chemosphere.2022.136059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The rapid reproduction of foodborne bacteria in food packaging threatens the health of consumers, the massive use and waste of packaging also causes serious environmental pollution. In this study, novel biodegradable antibacterial membranes based on silver-modified carboxymethyl chitosan (Ag-CMCS) were prepared. Polylactic acid (PLA) and polybutylene adipate-co-terephthalate (PBAT) were used as the base membrane materials. Characterization of the prepared membranes was performed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), water contact angle, and so on. Especially, the silver on the surface of Ag-CMCS was proved to be metallic silver. For the first cycle of zone of inhibition test, the diameter of inhibition zone could reach up to 17 mm while the mass of silver released was negligible. The prepared antibacterial membranes could kill almost 100% of bacteria under certain conditions and inhibition zone still existed after more than 7 cycles of tests, indicating the prepared antibacterial membranes were effective. This study could provide new ideas for preparing efficient and environment-friendly antibacterial food packaging membranes.
Collapse
Affiliation(s)
- Qirun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing, Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing, Technology and Business University, Beijing 100048, China
| | - Wenting Jia
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing, Technology and Business University, Beijing 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing, Technology and Business University, Beijing 100048, China
| | - Zeru Wang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyue Cao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing, Technology and Business University, Beijing 100048, China
| | - Xianbao Shen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing, Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing, Technology and Business University, Beijing 100048, China.
| |
Collapse
|
25
|
Fine regulation on hour-glass like spongy structure of polyphenylsulfone (PPSU)/sulfonated polysulfone (SPSf) microfiltration membranes via a vapor-liquid induced phase separation (V-LIPS) technique. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
26
|
Comprehensive treatment of latex wastewater and resource utilization of concentrated liquid. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Liu X, Ding M, Ma P, Duan C, Yao J. Rational fabrication of ZIF-8 forests via metal template-guided growth for promoting CO2 chemical transformation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Jain H, Verma AK, Dhupper R, Wadhwa S, Garg MC. Development of CA-TiO2-incorporated thin-film nanocomposite forward osmosis membrane for enhanced water flux and salt rejection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2022; 19:5387-5400. [DOI: 10.1007/s13762-021-03415-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/11/2020] [Accepted: 05/22/2021] [Indexed: 08/20/2024]
|
29
|
Constructing visible-light-driven self-cleaning UF membrane by quaternary ammonium-functionalized Ti-MOFs for water remediation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Peydayesh M, Chen X, Vogt J, Donat F, Müller CR, Mezzenga R. Amyloid fibril-UiO-66-NH 2 aerogels for environmental remediation. Chem Commun (Camb) 2022; 58:5104-5107. [PMID: 35388383 DOI: 10.1039/d2cc00695b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A sustainable hybrid aerogel based on β-lactoglobulin amyloid fibril/UiO-66-NH2 is developed for environmental remediation. The hybrid aerogel's CO2 capture and water purification performances were investigated. The hybrid aerogel can achieve CO2 capture and possesses excellent adsorption capacities for several heavy metals, dyes, and organic solvents.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
| | - Xiulin Chen
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
| | - Julia Vogt
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland. .,Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
31
|
Al‐Ghazzawi F, Conte L, Richardson C, Wagner P. Reactive Extrusion Printing for Simultaneous Crystallization-Deposition of Metal-Organic Framework Films. Angew Chem Int Ed Engl 2022; 61:e202117240. [PMID: 35146859 PMCID: PMC9303373 DOI: 10.1002/anie.202117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/06/2022]
Abstract
Reactive extrusion printing (REP) is demonstrated as an approach to simultaneously crystallize and deposit films of the metal-organic framework (MOF) Cu3 btc2 (btc=1,3,5-benzenetricarboxylate), also known as HKUST-1. The technique co-delivers inks of the copper(II) acetate and H3 btc starting materials directly on-surface and on-location for rapid nucleation into films at room temperature. The films were analyzed using PXRD, profilometry, SEM and thermal analysis techniques and confirmed high-quality Cu3 btc2 films are produced in low-dispersity interconnected nanoparticulate form. The porosity was examined using gas adsorption which showed REP gives Cu3 btc2 films with open interconnected pore structures, demonstrating the method bestows features that traditional synthesis does not. REP is a technique that opens the field to time-efficient large-scale fabrication of MOF interfaces and should find use in a wide variety of coating application settings.
Collapse
Affiliation(s)
- Fatimah Al‐Ghazzawi
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAIIM FacultyInnovation CampusUniversity of WollongongNorth WollongongNSW 2522Australia
- Al-Nasiriyah Technical InstituteSouthern Technical UniversityThi-QarIraq
| | - Luke Conte
- School of Chemistry and Molecular BioscienceFaculty of Science Medicine and HealthUniversity of WollongongNorth WollongongNSW 2522Australia
| | - Christopher Richardson
- School of Chemistry and Molecular BioscienceFaculty of Science Medicine and HealthUniversity of WollongongNorth WollongongNSW 2522Australia
| | - Pawel Wagner
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAIIM FacultyInnovation CampusUniversity of WollongongNorth WollongongNSW 2522Australia
| |
Collapse
|
32
|
MoS2 composite hydrogel supported by two-dimensional montmorillonite nanosheets for Pb2+ removal from water. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Saidulu D, Srivastava A, Gupta AK. Enhancement of wastewater treatment performance using 3D printed structures: A major focus on material composition, performance, challenges, and sustainable assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114461. [PMID: 35032942 DOI: 10.1016/j.jenvman.2022.114461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
In order to enhance the performance and sustainability of wastewater treatment technologies, researchers are showing keen interest in the development of novel materials which can overcome the drawbacks associated with conventional materials. In this context, 3D printing gained significant attention due to its capability of fabricating complex geometrics using different material compositions. The present review focuses on recent advancements of 3D printing applications in various physicochemical and biological wastewater treatment techniques. In physicochemical treatment methods, substantial research has been aimed at fabricating feed spacers and other membrane parts, photocatalytic feed spacers, catalysts, scaffolds, monoliths, and capsules. Several advantages, such as membrane fouling mitigation, enhanced degradation efficiency, and recovery and reusability potential, have been associated with the aforementioned 3D printed materials. While in biofilm-based biological treatment methods, the use of 3D printed bio-carriers has led to enhanced mass transfer efficiency and microbial activities. Moreover, the application of these bio-carriers has shown better removal efficiency of chemical oxygen demand (∼90%), total nitrogen (∼73%), ammonia nitrogen (95%), and total phosphorous (∼100%). Although the removal efficiencies were comparable with conventional carriers, 3D printed carriers led to ∼40% reduction in hydraulic retention time, which could significantly save capital and operational expenditures. This review also emphasizes the challenges and sustainability aspects of 3D printing technology and outlines future recommendations which could be vital for further research in this field.
Collapse
Affiliation(s)
- Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashish Srivastava
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
34
|
Shahcheraghi N, Golchin H, Sadri Z, Tabari Y, Borhanifar F, Makani S. Nano-biotechnology, an applicable approach for sustainable future. 3 Biotech 2022; 12:65. [PMID: 35186662 PMCID: PMC8828840 DOI: 10.1007/s13205-021-03108-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Nanotechnology is one of the most emerging fields of research within recent decades and is based upon the exploitation of nano-sized materials (e.g., nanoparticles, nanotubes, nanomembranes, nanowires, nanofibers and so on) in various operational fields. Nanomaterials have multiple advantages, including high stability, target selectivity, and plasticity. Diverse biotic (e.g., Capsid of viruses and algae) and abiotic (e.g., Carbon, silver, gold and etc.) materials can be utilized in the synthesis process of nanomaterials. "Nanobiotechnology" is the combination of nanotechnology and biotechnology disciplines. Nano-based approaches are developed to improve the traditional biotechnological methods and overcome their limitations, such as the side effects caused by conventional therapies. Several studies have reported that nanobiotechnology has remarkably enhanced the efficiency of various techniques, including drug delivery, water and soil remediation, and enzymatic processes. In this review, techniques that benefit the most from nano-biotechnological approaches, are categorized into four major fields: medical, industrial, agricultural, and environmental.
Collapse
Affiliation(s)
- Nikta Shahcheraghi
- Department of Engineering, University of Science and Culture, Tehran, Iran
| | - Hasti Golchin
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Zahra Sadri
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Yasaman Tabari
- Faculty of Sciences and Advanced Technologies, Science and Culture University, 1461968151 Tehran, Iran
| | - Forough Borhanifar
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| |
Collapse
|
35
|
Zhao H, Li X, Ding X, Zhang L, Zhang Y. Performance improvement of thin film nanocomposite membranes by covalently bonding with Janus porous hollow nanoparticles for nanofiltration applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.51695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hongyong Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes Tiangong University Tianjin China
- Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes Tiangong University Tianjin China
- School of Chemistry and Chemical Engineering Tiangong University Tianjin China
| | - Xiaofeng Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes Tiangong University Tianjin China
- Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes Tiangong University Tianjin China
- School of Material Science and Engineering Tiangong University Tianjin China
| | - Xiaoli Ding
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes Tiangong University Tianjin China
- Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes Tiangong University Tianjin China
- School of Material Science and Engineering Tiangong University Tianjin China
| | - Liang Zhang
- School of Material Science and Engineering Tiangong University Tianjin China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes Tiangong University Tianjin China
- Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes Tiangong University Tianjin China
- School of Material Science and Engineering Tiangong University Tianjin China
| |
Collapse
|
36
|
Al-Ghazzawi F, Conte L, Richardson C, Wagner P. Reactive Extrusion Printing for Simultaneous Crystallization‐Deposition of Metal‐Organic Frameworks Films. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fatimah Al-Ghazzawi
- University of Wollongong Intelligent Polymer Research Institute Innovation CampusNorth Wollongong 2522 Wollongong AUSTRALIA
| | - Luke Conte
- University of Wollongong School of Chemistry and Molecular Bioscience Northfields Avenue 2522 Wollongong AUSTRALIA
| | - Christopher Richardson
- University of Wollongong Faculty of Science Medicine and Health School of Chemistry and Molecular Bioscience Northfields Avenue 2522 Wollongong AUSTRALIA
| | - Pawel Wagner
- University of Wollongong Intelligent Polymer Research Institute Innovation CampusNorth Wollongong 2522 Wollongong AUSTRALIA
| |
Collapse
|
37
|
Yuan G, Tian Y, Wang B, You X, Liao Y. Mitigation of membrane biofouling via immobilizing Ag-MOFs on composite membrane surface for extractive membrane bioreactor. WATER RESEARCH 2022; 209:117940. [PMID: 34923442 DOI: 10.1016/j.watres.2021.117940] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 05/26/2023]
Abstract
The extractive membrane bioreactor (EMBR) combines an extractive membrane process and bioreactor to treat highly saline recalcitrant organic wastewater, in which the organic contaminations diffuse through a semi-permeable polydimethysiloxane (PDMS) composite membrane from the feed wastewater to the receiving biomedium. During the long-term EMBR operation, membrane biofouling is an inevitable phenomenon, which is one of the main obstacles impeding its wide applications. The excessive biofilm deposited on membrane surface could significantly reduce the organic mass transfer coefficient of composite membranes by more than 40%. Therefore, in this work, the silver (Ag)-metal organic frameworks (MOFs) were synthesized and immobilized on the PDMS surface of nanofibrous composite membranes to mitigate the membrane biofouling. The robustness of Ag-MOFs coating on membrane surface was well demonstrated by ultrasonic treatment. In addition, the silver nanoparticles (AgNPs) were coated on the PDMS surface of composite membranes for comparison. In contrast with the unmodified composite membrane #M0, the AgNPs-coated (#M1) and Ag-MOFs modified (#M2) composite membranes possessed less hydrophobic and negatively charged surfaces due to the coating layers. Although the modified membranes exhibited lower phenol mass transfer coefficients (k0's) in the aqueous-aqueous extractive membrane process due to these additional modification layers, both #M1 and #M2 displayed better long-term performance in the 12-days continuous EMBR operations due to their excellent anti-biofouling properties. Moreover, #M2 exhibited the most stable EMBR performance among the composite membranes developed in this work and other reported membranes with a finally stabilized k0 of 33.0 × 10-7 m/s (89% of initial k0). The least amounts of proteins, polysaccharides and total suspended solids (TSS) on the surface of tested #M2 also demonstrated its outstanding biofouling resistance. This excellent anti-biofouling performance should be attributed to the stable, controlled and long-lasting Ag+release from Ag-MOFs, as well as its less hydrophobic and negative charged surface properties, which made #M2 undergo the k0's increasing and gradual stabilization stages in the long-term EMBR operations.
Collapse
Affiliation(s)
- Guoyu Yuan
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Tianjin, Jinnan 300350, PR China
| | - Yuxiao Tian
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Tianjin, Jinnan 300350, PR China
| | - Bingxin Wang
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Tianjin, Jinnan 300350, PR China
| | - Xiaofei You
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Tianjin, Jinnan 300350, PR China.
| |
Collapse
|
38
|
Yuan N, Zhao A, Hu Z, Tan K, Zhang J. Preparation and application of porous materials from coal gasification slag for wastewater treatment: A review. CHEMOSPHERE 2022; 287:132227. [PMID: 34826920 DOI: 10.1016/j.chemosphere.2021.132227] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
In recent years, coal gasification has been gradually promoted as clean technology, and coal gasification slag (CGS) emissions have increased accordingly. CGS, including coarse slag and fine slag, is rich in SiO2 and Al2O3 and has pozzolanic activity, and thus CGS can be regarded as a cheap source of aluminosilicate. Also, CGS, especially the fine slag, usually contains higher contents of residual carbon which has a large specific surface area and low volatility and hence can be considered as a favorable precursor of activated carbon. Benefiting from these characteristics, CGS can be used to prepare high value-added porous materials, such as zeolite, mesoporous silica, carbon-silicon composite, and porous ceramics, and the obtained structures accommodate both sufficient adsorption capacity and low cost. Here, we review the research advances in characteristics of CGS and preparation methods of CGS-based porous materials, as well as their adsorption performance of heavy metal ions, organic dyes, ammonia nitrogen, and other water pollutants. The current studies indicate that CGS-derived adsorbents are effective and economical alternatives for removing aqueous pollutants. In addition, further research prospects on CGS-based porous materials are proposed.
Collapse
Affiliation(s)
- Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Aijing Zhao
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Zekai Hu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Kaiqi Tan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Jianbo Zhang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100090, China
| |
Collapse
|
39
|
Jiang S, Wang F, Cao X, Slater B, Wang R, Sun H, Wang H, Shen X, Yao Z. Novel application of ion exchange membranes for preparing effective silver and copper based antibacterial membranes. CHEMOSPHERE 2022; 287:132131. [PMID: 34492413 DOI: 10.1016/j.chemosphere.2021.132131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Ion exchange membranes (IEMs) are widely used in water treatment applications such as electrodialysis. However, the exploration of IEMs as effective antibacterial food contact materials (e.g., food packaging membranes) against pathogenic bacteria to ensure food safety has not been reported. Here, we report a simple but effective method to prepare high performance antibacterial membranes via ion exchange coupled with in-situ reduction. The general membrane properties are characterized using SEM, EDS, FTIR, XPS, XRD, DSC, TGA, water uptake, etc. The distribution of silver and copper in the membranes are generally in line with the distribution of sulfur, indicating that the antibacterial ions are introduced into the membranes via ion exchange and are bonded with the sulfonate groups in the membranes. The antibacterial performance is investigated using zone of inhibition tests and continuous bacteria growth inhibition tests. All of the prepared membranes show obvious antibacterial activities compared to the bare cation exchange membranes. The diameters of inhibition zone against Staphylococcus aureus (S. aureus) are all larger than those of Escherichia coli (E. coli), indicating that the prepared membranes are more efficient in inhibiting S. aureus compared to E. coli. Furthermore, the silver-based membrane shows more sustainable antibacterial activities compared to the copper-based membrane. Especially, the results clearly reveal that the silver-based membrane is capable of killing bacteria instead of just inhibiting the growth of bacteria. We have shown for the first time that membranes derived from IEMs have the potential as food contact materials to inhibit the growth of pathogenic bacteria so as to eliminate the risk of bacterial infections and meanwhile delay food spoilage due to bacteria growth.
Collapse
Affiliation(s)
- Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinyue Cao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Ben Slater
- Institute of Porous Materials, Ecole Normale Supérieure, 24 Rue Lhomond, 75005, Paris, France
| | - Rongrong Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Haishu Sun
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xianbao Shen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
40
|
Sajid M, Sajid Jillani SM, Baig N, Alhooshani K. Layered double hydroxide-modified membranes for water treatment: Recent advances and prospects. CHEMOSPHERE 2022; 287:132140. [PMID: 34523432 DOI: 10.1016/j.chemosphere.2021.132140] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Layered double hydroxides (LDHs) represent an exciting class of two-dimensional inorganic materials with unique physicochemical properties. They have been widely employed in water treatment due to their high surface areas, excellent ion exchange capacities, and highly tunable structures. They have also been employed in the fabrication and development of membranes for water treatment. 2D nanostructures as well as tailorable "structure forming units", surface functionalization with desired moieties, and interlayer galleries with adjustable heights and internal compositions make them attractive materials for membrane separations. This paper critically overviews the recent advancements in the synthesis and applications of LDH based membranes in water purification. The synthesis techniques and the effect of LDH incorporation into different membrane compositions have been described. LDH-based membranes showed excellent antifouling capability and improved water flux due to enhanced hydrophilicity. Such membranes have been successfully used for the treatment of inorganics, organics from environmental water samples. This review will be useful for understanding the current state of the LDH-based membranes for water purification and defining future research dimensions. In the end, we highlight some challenges and future prospects for the efficient application of LDH-based membranes in water decontamination.
Collapse
Affiliation(s)
- Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Shehzada Muhammad Sajid Jillani
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Khalid Alhooshani
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
41
|
Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214263] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Khosroshahi N, Darabi Goudarzi M, Safarifard V. Fabrication of a novel heteroepitaxial structure from an MOF-on-MOF architecture as a photocatalyst for highly efficient Cr( vi) reduction. NEW J CHEM 2022. [DOI: 10.1039/d1nj05440f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ce-on-Zr-MOF-808, a novel MOF-on-MOF hybrid used for efficient chromium reduction under visible-light irradiation.
Collapse
Affiliation(s)
- Negin Khosroshahi
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Moein Darabi Goudarzi
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
43
|
He X, Lei L, Dai Z. Green hydrogen enrichment with carbon membrane processes: Techno-economic feasibility and sensitivity analysis. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Purification of uranium-contaminated radioactive water by adsorption: A review on adsorbent materials. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119675] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Liu X, Zhang L, Cui X, Zhang Q, Hu W, Du J, Zeng H, Xu Q. 2D Material Nanofiltration Membranes: From Fundamental Understandings to Rational Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102493. [PMID: 34668340 PMCID: PMC8655186 DOI: 10.1002/advs.202102493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/07/2021] [Indexed: 05/05/2023]
Abstract
Since the discovery of 2D materials, 2D material nanofiltration (NF) membranes have attracted great attention and are being developed with a tremendously fast pace, due to their energy efficiency and cost effectiveness for water purification. The most attractive aspect for 2D material NF membranes is that, anomalous water and ion permeation phenomena have been constantly observed because of the presence of the severely confined nanocapillaries (<2 nm) in the membrane, leading to its great potential in achieving superior overall performance, e.g., high water flux, high rejection rates of ions, and high resistance to swelling. Hence, fundamental understandings of such water and ion transport behaviors are of great significance for the continuous development of 2D material NF membranes. In this work, the microscopic understandings developed up to date on 2D material NF membranes regarding the abnormal transport phenomena are reviewed, including ultrafast water and ion permeation rates with the magnitude several orders higher than that predicted by conventional diffusion behavior, ion dehydration, ionic Coulomb blockade, ion-ion correlations, etc. The state-of-the-art structural designs for 2D material NF membranes are also reviewed. Discussion and future perspectives are provided highlighting the rational design of 2D material membrane structures in the future.
Collapse
Affiliation(s)
- Xiaopeng Liu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Ling Zhang
- School of Chemical EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Xinwei Cui
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
- Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| | - Qian Zhang
- Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| | - Wenjihao Hu
- School of Metallurgy & EnvironmentCentral South UniversityChangshaHunan410083China
| | - Jiang Du
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Hongbo Zeng
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Qun Xu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
- Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| |
Collapse
|
46
|
|
47
|
Yang F, Yang P. Biopolymer-Based Membrane Adsorber for Removing Contaminants from Aqueous Solution: Progress and Prospects. Macromol Rapid Commun 2021; 43:e2100669. [PMID: 34816531 DOI: 10.1002/marc.202100669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Indexed: 12/21/2022]
Abstract
The demand for energy-efficient water treatment as well as the limitation in adsorption of existing membranes has motivated the pursuit of membranes that can break the selectivity-permeability trade-off and provide high selective adsorption for chemicals of interest. The membrane adsorbers have received a lot of attention for removing contaminants from aqueous solution due to combine both advantages of adsorption and membrane separation. Membrane adsorbers constructed by biopolymer with many functional groups are widely used in water purification, because the biopolymers are easily available from biomass materials in nature, degradable, and low-cost. This paper summarizes the characteristics and important development direction of these types of biomass-based membrane adsorption materials to adsorb organic/inorganic contaminants of water and analyzes the preparation methods of natural biomacromolecule cellulose, chitosan, sodium alginate, and protein to construct the membrane adsorption materials, as well as the application of pollutant removal from aqueous solutions. According to the current problems and shortcomings in the research of biopolymer-based membrane adsorbers, it is proposed to improve the understanding of the adsorption mechanism of biopolymer-based membrane adsorbers and accelerate the development of practical applications as the focus of future research.
Collapse
Affiliation(s)
- Facui Yang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
48
|
Jiang S, Sun H, Wang H, Ladewig BP, Yao Z. A comprehensive review on the synthesis and applications of ion exchange membranes. CHEMOSPHERE 2021; 282:130817. [PMID: 34091294 DOI: 10.1016/j.chemosphere.2021.130817] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Ion exchange membranes (IEMs) are undergoing prosperous development in recent years. More than 30,000 papers which are indexed by Science Citation Index Expanded (SCIE) have been published on IEMs during the past twenty years (2001-2020). Especially, more than 3000 papers are published in the year of 2020, revealing researchers' great interest in this area. This paper firstly reviews the different types (e.g., cation exchange membrane, anion exchange membrane, proton exchange membrane, bipolar membrane) and electrochemical properties (e.g., permselectivity, electrical resistance/ionic conductivity) of IEMs and the corresponding working principles, followed by membrane synthesis methods, including the common solution casting method. Especially, as a promising future direction, green synthesis is critically discussed. IEMs are extensively applied in various applications, which can be generalized into two big categories, where the water-based category mainly includes electrodialysis, diffusion dialysis and membrane capacitive deionization, while the energy-based category mainly includes reverse electrodialysis, fuel cells, redox flow battery and electrolysis for hydrogen production. These applications are comprehensively discussed in this paper. This review may open new possibilities for the future development of IEMs.
Collapse
Affiliation(s)
- Shanxue Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China; Barrer Centre, Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
| | - Haishu Sun
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Bradley P Ladewig
- Barrer Centre, Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom; Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Zhiliang Yao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
49
|
Al-Shaeli M, Smith SJ, Jiang S, Wang H, Zhang K, Ladewig BP. Long-term stable metal organic framework (MOF) based mixed matrix membranes for ultrafiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119339] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Liao Z, Zhu J, Li X, Van der Bruggen B. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118567] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|