1
|
Aftab ZEH, Mirza FS, Anjum T, Rizwana H, Akram W, Aftab M, Ali MD, Li G. Antifungal Potential of Biogenic Zinc Oxide Nanoparticles for Controlling Cercospora Leaf Spot in Mung Bean. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:143. [PMID: 39852758 PMCID: PMC11767459 DOI: 10.3390/nano15020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025]
Abstract
Agricultural growers worldwide face significant challenges in promoting plant growth. This research introduces a green strategy utilizing nanomaterials to enhance crop production. While high concentrations of nanomaterials are known to be hazardous to plants, this study demonstrates that low doses of biologically synthesized zinc oxide nanoparticles (ZnO NPs) can serve as an effective regulatory tool to boost plant growth. These nanoparticles were produced using Nigella sativa seed extract and characterized through UV-Vis spectroscopy, FT-IR, X-ray diffraction, and scanning electron microscopy (SEM). The antifungal properties of ZnO NPs were evaluated against Cercospora canescens, the causative agent of Cercospora leaf spot in mung bean. Application of ZnO NPs significantly improved plant metrics, including shoot, root, pod, leaf, and root nodule counts, as well as plant length, fresh weight, and dry weight-all indicators of healthy growth. Moreover, low-dose ZnO NPs positively influenced enzymatic activity, physicochemical properties, and photosynthetic parameters. These findings suggest that biologically synthesized ZnO NPs offer a promising approach for enhancing crop yield and accelerating plant growth.
Collapse
Affiliation(s)
- Zill-e-Huma Aftab
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54000, Pakistan; (Z.-e.-H.A.); (F.S.M.); (T.A.); (W.A.)
| | - Faisal Shafiq Mirza
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54000, Pakistan; (Z.-e.-H.A.); (F.S.M.); (T.A.); (W.A.)
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54000, Pakistan; (Z.-e.-H.A.); (F.S.M.); (T.A.); (W.A.)
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Waheed Akram
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54000, Pakistan; (Z.-e.-H.A.); (F.S.M.); (T.A.); (W.A.)
| | - Muzamil Aftab
- Department of Physics, Government Shah Hussain College, Chung, Lahore 54000, Pakistan;
| | - Muhammad Danish Ali
- Institute of Physics Center for Science and Education, Silesian University of Technology, Krasińskiego 8A, 40-019 Katowice, Poland
- PhD School, Silesian University of Technology, 2a Akademicka Str., 44-100 Gliwice, Poland
| | - Guihua Li
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 150640, China;
| |
Collapse
|
2
|
Okaiyeto K, Gigliobianco MR, Di Martino P. Biogenic Zinc Oxide Nanoparticles as a Promising Antibacterial Agent: Synthesis and Characterization. Int J Mol Sci 2024; 25:9500. [PMID: 39273447 PMCID: PMC11395547 DOI: 10.3390/ijms25179500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Nanotechnology has gained popularity in recent years due to its wide-ranging applications within the scientific community. The three main methods for synthesizing nanoparticles are physical, chemical, and biological. However, the adverse effects associated with physical and chemical methods have led to a growing interest in biological methods. Interestingly, green synthesis using plants has gained prominence in developing new treatments for bacterial infections. Zinc oxide nanoparticles (ZnO NPs) produced using environmentally friendly methods are more biocompatible and have potential applications as antibacterial agents in the biomedical field. As a result, this review discusses the green synthesis of ZnO NPs, factors influencing optimal synthesis, characterization techniques, and the antibacterial activity of some plant-mediated ZnO NPs. It also provides a comprehensive and analytical exploration of ZnO NP biosynthesis, the role of phytochemical compounds as reducing and stabilizing agents, the mechanism of action of their antibacterial properties and further highlights the challenges and prospects in this innovative research area.
Collapse
Affiliation(s)
- Kunle Okaiyeto
- Department of Pharmacy, University of "G. d'Annunzio" of Chieti and Pescara, Via dei Vestini, 1, 66100 Chieti, Italy
| | - Maria Rosa Gigliobianco
- Department of Pharmacy, University of "G. d'Annunzio" of Chieti and Pescara, Via dei Vestini, 1, 66100 Chieti, Italy
| | - Piera Di Martino
- Department of Pharmacy, University of "G. d'Annunzio" of Chieti and Pescara, Via dei Vestini, 1, 66100 Chieti, Italy
| |
Collapse
|
3
|
Kavipriya R, Ramasubburayan R. Phytofabrication of biocompatible zinc oxide nanoparticle using Gymnema sylvestre and its potent in vitro antibacterial, antibiofilm, and cytotoxicity against human breast cancer cells (MDA-MB-231). Bioprocess Biosyst Eng 2024; 47:1377-1391. [PMID: 38819452 DOI: 10.1007/s00449-024-03035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The increasing incidence of breast cancer and bacterial biofilm in medical devices significantly heightens global mortality and morbidity, challenging synthetic drugs. Consequently, greener-synthesized nanomaterials have emerged as a versatile alternative for various biomedical applications, offering new therapeutic avenues. This study explores the synthesis of biocompatible zinc oxide (ZnONPs) nanoparticles using Gymnema sylvestre and its antibacterial, antibiofilm, and cytotoxic properties. Characterization of ZnONPs inferred that UV-Vis spectra exhibited a sharp peak at 370 nm. Fourier transform infrared spectroscopical analysis revealed the presence of active functional groups such as aldehyde, alkyne, cyclic alkene, sulfate, alkyl aryl ether, and Zn-O bonds. X-ray diffraction analysis results confirmed the crystalline nature of the nanoparticle. Scanning electron microscope analysis evidenced hexagonal morphology, and energy-dispersive X-ray analysis confirmed zinc content. High-resolution transmission electron microscope analysis showed hexagonal and rod-shaped ZnONPs with a size of 5 nm. Zeta potential results affirmed the stability of nanoparticles. The ZnONPs effectively inhibited gram-positive (18-20 mm) than gram-negative (12-18 mm) bacterial pathogens with lower bacteriostatic and higher bactericidal values. Biofilm inhibitory property inferred ZnONPs were more effective against gram-positive (38-94%) than gram-negative bacteria (27-86%). The concentration of ZnONPs to exert 50% biofilm-inhibitory is lower against gram-positive bacteria (179.26-203.95 μg/mL) than gram-negative bacteria (201.46-236.19 μg/mL). Microscopic visualization inferred that at 250 μg/mL, ZnONPs strongly disrupted biofilm formation, as evidenced by decreased biofilm density and altered architecture. The cytotoxicity of ZnONPs against breast cancer cells showed a dose-dependent reduction in cell viability with an IC50 value of 19.4 µg/mL. AO/EB staining indicated early and late apoptotic cell death of breast cancer cells under fluorescence microscopy. The results of hemolytic activity validated the biocompatibility of the ZnONPs. Thus, the unique properties of the green-synthesized ZnONPs suggest their potential as effective drug carriers for targeted delivery in cancer therapy and the treatment of biofilm-related infections.
Collapse
Affiliation(s)
- R Kavipriya
- Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - R Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
| |
Collapse
|
4
|
Rezaei H, Iranbakhsh A, Sepahi AA, Mirzaie A, Larijani K. Formulation, preparation of niosome loaded zinc oxide nanoparticles and biological activities. Sci Rep 2024; 14:16692. [PMID: 39030347 PMCID: PMC11271597 DOI: 10.1038/s41598-024-67509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
In this study, zinc oxide nanoparticles (Zn-NPs) were prepared by the green synthesis method and loaded inside niosomes as a drug release system and their physicochemical and biological properties were determined. Zn-NPs were prepared by the eco-friendly green strategy, the structure, and morphological properties were studied and loaded into niosomes. Subsequently, different formulations of niosomes containing Zn-NPs were prepared and the optimal formulation was used for biological studies. Scanning electron microscope (SEM) and dynamic light scattering (DLS) were used to investigate the morphology and size of nanoparticles. Fourier transform infrared spectroscopy (FTIR) and UV-Vis were used to confirm the synthesis of Zn-NPs. Energy dispersive X-ray spectrometer (EDS) determined the elemental analysis of the Zn-NPs synthesis solution and the crystalline structure of Zn-NPs was analysed by XRD (X-Ray diffraction). Furthermore, Zn-NPs were loaded inside the niosomes, and their structural characteristics, entrapment efficiency (EE%), the release profile of Zn-NPs, and their stability also were assessed. Moreover, its antimicrobial properties against some microbial pathogens, its effect on the expression of biofilm genes, and its anticancer activity on the breast cancer cell lines were also determined. To study the cytocompatibility, exposure of niosomes against normal HEK-293 cells was carried out. In addition, the impact of niosomes on the expression of genes involved in the apoptosis (Bcl2, Casp3, Casp9, Bax) at the mRNA level was measured. Our findings revealed that the Zn-NPs have a round shape and an average size of 27.60 nm. Meanwhile, UV-Vis, FTIR, and XRD results confirmed the synthesis of Zn-NPs. Also, the EE% and the size of the optimized niosomal formulation were 31.26% and 256.6 ± 12 nm, respectively. The release profile showed that within 24 h, 26% of Zn-NPs were released from niosomes, while in the same period, 99% of free Zn-NPs were released, which indicates the slow release of Zn-NPs from niosomes. Antimicrobial effects exhibited that niosomes containing Zn-NPs had more significant antimicrobial and anti-biofilm effects than Zn-NPs alone, the antimicrobial and anti-biofilm effects increased 2 to 4 times. Cytotoxic effects indicated that when Zn-NPs are loaded into niosomes, the anticancer activity increases compared to Zn-NPs alone and has low cytotoxicity on cancer cells. Niosomes containing ZnNPs increased the apoptosis-related gene expression level and reduced the Bcl2 genes. In general, the results show that niosomes can increase the biological effects of free Zn-NPs and therefore can be a suitable carrier for targeted delivery of Zn-NPs.
Collapse
Affiliation(s)
- Hossein Rezaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Kambiz Larijani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Elankathirselvan K, Fathima H A, K P, Al-Ansari MM. Synthesis and characterization of Pyrus communis fruit extract synthesized ZnO NPs and assessed their anti-diabetic and anti-microbial potential. ENVIRONMENTAL RESEARCH 2024; 258:119450. [PMID: 38901812 DOI: 10.1016/j.envres.2024.119450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
The fruit Pyrus communis, owing to its presence of phenolics and flavonoids, was chosen for its nanoparticle's reducing and stabilizing properties. Furthermore, the zinc metal may be nano-absorbed by the human body. As a result, the study involves synthesizing zinc oxide nanoparticles (ZnO NPs) from P. communis fruit extract using the green method. The synthesized nanoparticle was examined with a UV-visible spectrophotometer, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Dynamic Light Scattering (DLS). When absorption studies were performed with a UV-visible spectrophotometer, the nanoparticle exhibited a blue shift. The FTIR spectrum revealed the molecular groups present in both the fruit extract and metal. In the SEM analysis, the ZnO NPs appeared as spherical particles, agglomerated together, and of nano-size. The larger size of the ZnO NPs in DLS can be attributed to their ability to absorb water. After characterization, nanoparticles were tested for anti-diabetic (α-amylase and yeast glucose uptake activity) and anti-microbial properties. The α-amylase inhibition percentage was 46.46 ± 0.15% for 100 μg/mL, which was comparable to the acarbose inhibition percentage of 50.58 ± 0.67% at the same concentration. The yeast glucose uptake activity was 64.24 ± 0.80% at 20 mM glucose concentration, which was comparable to the standard of 78.03 ± 0.80. The nanoparticle was more effective against Gram-negative bacteria Shigella sp. and Salmonella typhi than against Gram-positive bacteria Bacillus cereus and Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Kasber Elankathirselvan
- Department of Chemistry, Thiruvalluvar University, Serkkadu, Vellore, 632 115, Tamil Nadu, India
| | - Aafreen Fathima H
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Praveen K
- Department of Biomedical Engineering, Paavai Engineering College, Tamil Nadu, India
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box:2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
6
|
Sugitha SKJ, Venkatesan R, Latha RG, Vetcher AA, Al-Asbahi BA, Kim SC. A Study on the Antibacterial, Antispasmodic, Antipyretic, and Anti-Inflammatory Activity of ZnO Nanoparticles Using Leaf Extract from Jasminum sambac (L. Aiton). Molecules 2024; 29:1464. [PMID: 38611744 PMCID: PMC11012760 DOI: 10.3390/molecules29071464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The green synthesis of zinc oxide nanoparticles (ZnO NPs) using plants has grown in significance in recent years. ZnO NPs were synthesized in this work via a chemical precipitation method with Jasminum sambac (JS) leaf extract serving as a capping agent. These NPs were characterized using UV-vis spectroscopy, FT-IR, XRD, SEM, TEM, TGA, and DTA. The results from UV-vis and FT-IR confirmed the band gap energies (3.37 eV and 3.50 eV) and the presence of the following functional groups: CN, OH, C=O, and NH. A spherical structure and an average grain size of 26 nm were confirmed via XRD. The size and surface morphology of the ZnO NPs were confirmed through the use of SEM analysis. According to the TEM images, the ZnO NPs had an average mean size of 26 nm and were spherical in shape. The TGA curve indicated that the weight loss starts at 100 °C, rising to 900 °C, as a result of the evaporation of water molecules. An exothermic peak was seen during the DTA analysis at 480 °C. Effective antibacterial activity was found at 7.32 ± 0.44 mm in Gram-positive bacteria (S. aureus) and at 15.54 ± 0.031 mm in Gram-negative (E. coli) bacteria against the ZnO NPs. Antispasmodic activity: the 0.3 mL/mL sample solution demonstrated significant reductions in stimulant effects induced by histamine (at a concentration of 1 µg/mL) by (78.19%), acetylcholine (at a concentration of 1 µM) by (67.57%), and nicotine (at a concentration of 2 µg/mL) by (84.35%). The antipyretic activity was identified using the specific Shodhan vidhi method, and their anti-inflammatory properties were effectively evaluated with a denaturation test. A 0.3 mL/mL sample solution demonstrated significant reductions in stimulant effects induced by histamine (at a concentration of 1 µg/mL) by 78.19%, acetylcholine (at a concentration of 1 µM) by 67.57%, and nicotine (at a concentration of 2 µg/mL) by 84.35%. These results underscore the sample solution's potential as an effective therapeutic agent, showcasing its notable antispasmodic activity. Among the administered doses, the 150 mg/kg sample dose exhibited the most potent antipyretic effects. The anti-inflammatory activity of the synthesized NPs showed a remarkable inhibition percentage of (97.14 ± 0.005) at higher concentrations (250 µg/mL). Furthermore, a cytotoxic effect was noted when the biologically synthesized ZnO NPs were introduced to treated cells.
Collapse
Affiliation(s)
- S. K. Johnsy Sugitha
- Department of Chemistry, Holy Cross College, Nagercoil, Affiliated to Manonmaniam Sundaranar University, Tirunelveli 627012, India;
| | - Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea;
| | - R. Gladis Latha
- Department of Chemistry and Research Centre, Holy Cross College, Nagercoil 629002, India
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| | - Bandar Ali Al-Asbahi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
7
|
Shandhiya M, Janarthanan B, Sharmila S. A comprehensive review on antibacterial analysis of natural extract-based metal and metal oxide nanoparticles. Arch Microbiol 2024; 206:52. [PMID: 38175198 DOI: 10.1007/s00203-023-03743-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024]
Abstract
Pharmaceutical, food packing, cosmetics, agriculture, energy storage devices widely utilize metal and metal oxide nanoparticles prepared via different physical and chemical methods. It resulted in the release of several dangerous compounds and solvents as the nanoparticles were being formed. Currently, Researchers interested in preparing nanoparticles (NPs) via biological approach due to their unique physiochemical properties which took part in reducing the environmental risks. However, a number of microbial species are causing dangerous illnesses and are a threat to the entire planet. The metal and metal oxide nanoparticles played a significant role in the identification and elimination of microbes when prepared using natural extract. Its biological performance is thus also becoming exponentially more apparent than it was using in conventional techniques. Despite the fact that they hurt germs, their small size and well-defined shape encourage surface contact with them. The generation of Reactive Oxygen Species (ROS), weakens the bacterial cell membrane by allowing internal cellular components to seep out. The bacterium dies as a result of this. Numerous studies on different nanoparticles and their antibacterial efficacy against various diseases are still accessible. The main objective of the biogenic research on the synthesis of key metals and metal oxides (such as gold, silver, titanium dioxide, nickel oxide, and zinc oxide) using various plant extracts is reviewed in this study along with the process of nanoparticle formation and the importance of phytochemicals found in the plant extract.
Collapse
Affiliation(s)
- M Shandhiya
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore, India
| | - B Janarthanan
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore, India
| | - S Sharmila
- Department of Physics, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, India.
| |
Collapse
|
8
|
Vosoughian N, Asadbeygi M, Mohammadi A, Soudi MR. Green synthesis of zinc oxide nanoparticles using novel bacterium strain (Bacillus subtilis NH1-8) and their in vitro antibacterial and antibiofilm activities against Salmonellatyphimurium. Microb Pathog 2023; 185:106457. [PMID: 37993074 DOI: 10.1016/j.micpath.2023.106457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are used in a range of applications, including food packaging, preservation, and storage. In the current investigation, extracellular green synthesis of ZnO NPs through an simple, eco-friendly, and rapid approach using a novel bacterial strain (Bacillus subtilis NH1-8) was studied. To assess the morphological, optical, and structural properties of ZnO NPs, transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, and X-ray diffraction (XRD) techniques were carried out. In addition, disk diffusion, minimum bactericidal concentration (MBC), and minimum inhibitory concentration (MIC) methods were performed to determine the antibacterial activity of ZnO NPs. The average size of biosynthesized ZnO NPs was 39 nm, exhibiting semi-spherical, which was confirmed by TEM analyses. The UV-vis spectroscopy exhibited the absorption peak at 200-800nm. The ZnO NPs have shown effective antimicrobial and antibiofilm activities against S. typhimurium. Thus, biosynthesized ZnO NPs could be exploited as a breakthrough technology in the surface coating of food containers and cans to minimize contamination by S. typhimurium.
Collapse
Affiliation(s)
- Nikta Vosoughian
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak St., Tehran, Iran
| | - Mastoore Asadbeygi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak St., Tehran, Iran
| | - Ali Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak St., Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology (CAMB), Alzahra University, Tehran, Iran.
| | - Mohammad Reza Soudi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak St., Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology (CAMB), Alzahra University, Tehran, Iran
| |
Collapse
|
9
|
Saleha A, Shende SS, Ingle P, Rai M, Minkina TM, Gade A. Cell free extract-mediated biogenic synthesis of ZnONPs and their application with kanamycin as a bactericidal combination. World J Microbiol Biotechnol 2023; 39:334. [PMID: 37807015 DOI: 10.1007/s11274-023-03777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
Antimicrobial resistance (AMR) is a main public health issue and a challenge for the scientific community all over the globe. Hence, there is a burning need to build new bactericides that resist the AMR. The ZnONPs were produced by cell free extract of mint (Mentha piperita L.) leaves. Antibiotics that are ineffective against resistant bacteria like Escherichia coli and Staphylococcus aureus were treated. The antibiotics were first screened, and then antibacterial activity was checked by disk diffusion, and MIC of Mp-ZnONPs individually and using Kanamycin (KAN) were determined against these pathogens by broth microdilution method. The synergism between Mp-ZnONPs and KAN was confirmed by checkerboard assay. The MIC showed robust antibacterial activity against the tested pathogens. The combination of KAN and Mp-ZnONPs reduces the MIC of KAN as it efficiently inhibits E. coli's growth, and KAN significantly enhances the antibacterial activity of Mp-ZnONPs. Taken together, Mp-ZnONPs have strong antimicrobial activity, and KAN significantly improves it against the tested pathogens, which would offer an effective, novel, and benign therapeutic methodology to regulate the incidence. The combination of Mp-ZnONPs and KAN would lead to the development of novel bactericides, that could be used in the formulation of pharmaceutical products.
Collapse
Affiliation(s)
- Asma Saleha
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MS, 444 602, India
| | - Sudhir S Shende
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MS, 444 602, India.
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia.
| | - Pramod Ingle
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MS, 444 602, India
| | - Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MS, 444 602, India
- Department of Microbiology, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - Tatiana M Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Aniket Gade
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MS, 444 602, India.
- Department of Microbiology, Nicolaus Copernicus University, 87-100, Torun, Poland.
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
10
|
Villegas-Fuentes A, Rosillo-de la Torre A, Vilchis-Nestor AR, Luque PA. Improvement of the optical, photocatalytic and antibacterial properties of ZnO semiconductor nanoparticles using different pepper aqueous extracts. CHEMOSPHERE 2023; 339:139577. [PMID: 37480957 DOI: 10.1016/j.chemosphere.2023.139577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Peppers are fruits that grow on plants of the genus Capsicum and are popular for their use in gastronomy as a condiment and for their anti-inflammatory and anti-cancer properties due to their phytocompounds such as flavonoids, polyphenols, or alkaloids. Semiconductor zinc oxide (ZnO) nanoparticles (NPs) were synthesized using a green approach employing natural aqueous extracts of several varieties of peppers (jalapeño, morita, and ghost). The obtained NPs were characterized by different techniques, and their photocatalytic and antibacterial activity was studied. The signal at 620 cm-1 in the FTIR spectra belonging to the Zn-O bond, the appearance of the main peaks of a hexagonal wurtzite structure in the XRD pattern, and the characteristic signals in the UV-Vis spectra confirm the correct formation of ZnO NPs. The photocatalytic activity was analyzed against Methylene Blue (MB), Rhodamine B (RB), and Methyl Orange (MO) under UV and sunlight. All syntheses were able to degrade more than 93% of the pollutants under UV light. Antibacterial assays were performed against gram-positive and gram-negative bacteria. All syntheses exhibited antibacterial activity against all bacteria and maximum growth inhibition against Bacillus subtilis. The prominent results demonstrate that natural aqueous extracts obtained from peppers can be used to synthesize ZnO NPs with photocatalytic and biomedical applications.
Collapse
Affiliation(s)
- A Villegas-Fuentes
- Universidad Autónoma de Baja California, Facultad de Ingeniería, Arquitectura y Diseño, C.P. 22860, Ensenada, B.C, Mexico
| | - A Rosillo-de la Torre
- Universidad de Guanajuato, División de Ciencias e Ingeniería, Loma del Bosque #103, Col. Lomas del campestre, C.P. 37150, León, Gto, Mexico
| | - A R Vilchis-Nestor
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Toluca, Mexico
| | - P A Luque
- Universidad Autónoma de Baja California, Facultad de Ingeniería, Arquitectura y Diseño, C.P. 22860, Ensenada, B.C, Mexico.
| |
Collapse
|
11
|
Priya, Ashique S, Afzal O, Khalid M, Faruque Ahmad M, Upadhyay A, Kumar S, Garg A, Ramzan M, Hussain A, Altamimi MA, Altamimi ASA, Webster TJ, Khanam A. Biogenic nanoparticles from waste fruit peels: Synthesis, applications, challenges and future perspectives. Int J Pharm 2023; 643:123223. [PMID: 37442399 DOI: 10.1016/j.ijpharm.2023.123223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Nanotechnology is a continually growing field with a wide range of applications from food science to biotechnology and nanobiotechnology. As the current world is grappling with non-biodegradable waste, considered more challenging and expensive to dispose of than biodegradable waste, new technologies are needed today more than ever. Modern technologies, especially nanotechnology, can transform biodegradable waste into products for human use. Researchers are exploring sustainable pathways for nanotechnology by utilizing biodegradable waste as a source for preparing nanomaterials. Over the past ten years, the biogenic production of metallic nanoparticles (NPs) has become a promising alternative technique to traditional NPs synthesis due to its simplicity, eco-friendliness, and biocompatibility in nature. Fruit and vegetable waste (after industrial processing) contain various bioactives (such as flavonoids, phenols, tannins, steroids, triterpenoids, glycosides, anthocyanins, carotenoids, ellagitannins, vitamin C, and essential oils) serving as reducing and capping agents for NP synthesis and they possess antibacterial, antioxidant, and anti-inflammatory properties. This review addresses various sources of biogenic NPs including their synthesis using fruit/vegetable waste, types of biogenic NPs, extraction processes and extracted biomaterials, the pharmacological functionality of NPs, industrial aspects, and future perspectives. In this manner, this review will cover the most recent research on the biogenic synthesis of NPs from fruit/vegetable peels to transform them into therapeutic nanomedicines.
Collapse
Affiliation(s)
- Priya
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, UP, India
| | - Sumel Ashique
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal 713378, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Aakash Upadhyay
- Department of Pharmacy, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut 250103, UP, India
| | - Shubneesh Kumar
- Department of Pharmacy, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut 250103, UP, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Mohhammad Ramzan
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwada, Punjab, India
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China; School of Engineering, Saveetha University, Chennai, India; Program in Materials Science, UFPI, Teresina, Brazil
| | - Anjum Khanam
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
12
|
Maro CAG, Gálvez HEG, Olivas ODJN, Morales ML, Hernández DV, Flores HG, Carmona VMO, Chinchillas MDJC. Peumus boldus Used in the Synthesis of ZnO Semiconductor Nanoparticles and Their Evaluation in Organic Contaminants. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4344. [PMID: 37374529 DOI: 10.3390/ma16124344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023]
Abstract
The high demand for nanomaterials in the field of industry and science has forced researchers to develop new synthesis methods that are more efficient, economical, and environmentally friendly. At present, the application of green synthesis has taken a great advantage over conventional synthesis methods because it helps with the control of the characteristics and properties of the resulting nanomaterials. In this research, ZnO nanoparticles (NPs) were synthesized by biosynthesis using dried boldo (Peumus boldus) leaves. The resulting biosynthesized NPs had a high purity, quasi-spherical shape with average sizes ranging from 15 to 30 nm and a band gap of ~2.8-3.1 eV. These NPs were used in the photocatalytic activity of three organic dyes. The results showed degradation of 100% methylene blue (MB) in 180 min, 92% methyl orange (MO) in 180 min, and 100% Rhodamine B (RhB) in 30 min of exposure. These results show that the Peumus boldus leaf extract is effective in the biosynthesis of ZnO NPs with good photocatalytic properties.
Collapse
Affiliation(s)
- Caree Abigail García Maro
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel Flores S/N, Los Mochis C.P. 81223, Mexico
| | - Horacio Edgardo Garrafa Gálvez
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel Flores S/N, Los Mochis C.P. 81223, Mexico
| | | | - Mizael Luque Morales
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada C.P. 22860, Mexico
- Instituto Tecnológico Nacional, Campus Guasave, Guasave C.P. 81149, Mexico
| | - Diana Vargas Hernández
- Departamento de Investigación en Polímeros y Materiales, CONACYT-Universidad de Sonora, Blvd. Luis Encinas Johnson y Rosales S/N, Hermosillo 83000, Mexico
| | - Hugo Galindo Flores
- Departamento de Ingeniería y Tecnología, Universidad Autónoma de Occidente (UAdeO), Guasave 81048, Mexico
| | - Víctor Manuel Orozco Carmona
- Departamento de Metalurgia e Integridad Estructural, Centro de Investigación en Materiales Avanzados (CIMAV), Av. Miguel de Cervantes Saavedra 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
| | | |
Collapse
|
13
|
Rehman FU, Paker NP, Khan M, Naeem M, Munis MFH, Rehman SU, Chaudhary HJ. Bio-fabrication of zinc oxide nanoparticles from Picea smithiana and their potential antimicrobial activities against Xanthomonas campestris pv. Vesicatoria and Ralstonia solanacearum causing bacterial leaf spot and bacterial wilt in tomato. World J Microbiol Biotechnol 2023; 39:176. [PMID: 37115313 DOI: 10.1007/s11274-023-03612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Due to an inevitable disadvantage of chemical or physical synthesis routes, biosynthesis approach to nanoparticles, especially metallic oxide is attractive nowadays. Metallic oxides nanoparticles present a new approach to the control of plant pathogens. ZnO nanoparticles (ZNPs) have very important role in phytopathology. In current study, biosynthesized ZNPs were tested against two devastating bacterial pathogens including Xanthomonas campestris pv. vesicatoria and Ralstonia solanacearum causing bacterial leaf spot and bacterial wilt in tomato. ZNPs were produced using a new extract from the plant Picea smithiana using an environmentally friendly, cost-effective and simple procedure. Zinc acetate was added to P. smithiana extract, stirred and heated to 200 °C. The white precipitation at the bottom were clear indication of synthesis of nanoparticles, which were further dried by subjecting them at 450 °C. X-ray diffraction pattern determined that the ZNPs had a crystallite size of about 26 nm, Fourier transform infrared spectroscopy indicated a peak between 450 and 550 cm-1 and the particle size estimated by dynamic light scattering was about 25 nm on average. Scanning electron microscopic analysis indicated that the particles were hexagonal in shape 31 nm in diameter. Antibacterial tests showed ZNPs synthesized by P. smithiana resulted in clear inhibition zones of 20.1 ± 1.5 and 18.9 ± 1.5 mm and 44.74 and 45.63% reduction in disease severity and 78.40 and 80.91% reduction in disease incidence in X. compestris pv. vesicatoria and R. solanacearum respectively at concentration of 100 µg/ml. Our findings reveal that the concentration of ZNPs was important for their efficient antibacterial activity. Overall, the biosynthesized ZNPs have been found to have effective antimicrobial activities against bacterial wilt and bacterial leaf spot in tomato.
Collapse
Affiliation(s)
- Fazal Ur Rehman
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Najeeba Paree Paker
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Mohsin Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Naeem
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Shafiq Ur Rehman
- Department of Botany, University of Okara, Okara, 56300, Pakistan
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
14
|
Jha S, Rani R, Singh S. Biogenic Zinc Oxide Nanoparticles and Their Biomedical Applications: A Review. J Inorg Organomet Polym Mater 2023; 33:1-16. [PMID: 37359387 PMCID: PMC10118236 DOI: 10.1007/s10904-023-02550-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/18/2023] [Indexed: 06/28/2023]
Abstract
Nanotechnology has inscribed novel perception into the material science and one of the most extensively used nanomaterials is Zinc oxide nanoparticles (ZnO NPs) with healthcare and biomedical applications. Because of its outstanding biocompatibility, low toxicity, and low cost, ZnO NPs have become one of the most prominent metal oxide NPs in biological applications. This review highlights the different aspects of ZnO NPs, like their green synthesis as a substitute of conventional route due to avoidance of threat of hazardous, costly precursors and subsequent mostly therapeutic applications. Due to their wide bandwidth and high excitation binding energy, ZnO NPs have undergone extensive research. In addition to their potential applications as antibiotics, antioxidants, anti-diabetics, and cytotoxic agents, ZnO NPs also hold a promising future as an antiviral treatment for SARS-CoV-2. Zn has antiviral properties and may be effective against a variety of respiratory virus species, particularly SARS-CoV-2. This review includes a variety of topics, including the virus's structural properties, an overview of infection mechanism, and current COVID-19 treatments. Nanotechnology-based techniques for the prevention, diagnosis, and treatment of COVID-19 are also discussed in this review.
Collapse
Affiliation(s)
- Shruti Jha
- Department of Biochemistry, M.D. University, Rohtak, 124001 India
| | - Ritu Rani
- Department of Biochemistry, M.D. University, Rohtak, 124001 India
| | - Sandeep Singh
- Department of Biochemistry, M.D. University, Rohtak, 124001 India
| |
Collapse
|
15
|
Fouda A, Saied E, Eid AM, Kouadri F, Alemam AM, Hamza MF, Alharbi M, Elkelish A, Hassan SED. Green Synthesis of Zinc Oxide Nanoparticles Using an Aqueous Extract of Punica granatum for Antimicrobial and Catalytic Activity. J Funct Biomater 2023; 14:jfb14040205. [PMID: 37103295 PMCID: PMC10144860 DOI: 10.3390/jfb14040205] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
The peel aqueous extract of Punica granatum was utilized to fabricate zinc oxide nanoparticles (ZnO-NPs) as a green approach. The synthesized NPs were characterized by UV-Vis spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy, which was attached to an energy dispersive X-ray (SEM-EDX). Spherical, well arranged, and crystallographic structures of ZnO-NPs were formed with sizes of 10-45 nm. The biological activities of ZnO-NPs, including antimicrobial and catalytic activity for methylene blue dye, were assessed. Data analysis showed that the antimicrobial activity against pathogenic Gram-positive and Gram-negative bacteria, as well as unicellular fungi, was observed to occur in a dose-dependent manner, displaying varied inhibition zones and low minimum inhibitory concentration (MIC) values in the ranges of 6.25-12.5 µg mL-1. The degradation efficacy of methylene blue (MB) using ZnO-NPs is dependent on nano-catalyst concentration, contact time, and incubation condition (UV-light emission). The maximum MB degradation percentages of 93.4 ± 0.2% was attained at 20 µg mL-1 after 210 min in presence of UV-light. Data analysis showed that there is no significant difference between the degradation percentages after 210, 1440, and 1800 min. Moreover, the nano-catalyst showed high stability and efficacy to degrade MB for five cycles with decreasing values of 4%. Overall, P. granatum-based ZnO-NPs are promising tools to inhibit the growth of pathogenic microbes and degradation of MB in the presence of UV-light emission.
Collapse
Affiliation(s)
- Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ebrahim Saied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ahmed M Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Fayza Kouadri
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Ahmed M Alemam
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohammed F Hamza
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo 11728, Egypt
| | - Maha Alharbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amr Elkelish
- Biology Department, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
16
|
Smaoui S, Chérif I, Ben Hlima H, Khan MU, Rebezov M, Thiruvengadam M, Sarkar T, Shariati MA, Lorenzo JM. Zinc oxide nanoparticles in meat packaging: A systematic review of recent literature. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Dave PN, Sirach R. Effects of Barium‐Copper‐Cobalt oxide composites supported on reduced graphene oxide in the thermolysis of ammonium perchlorate and 3‐nitro‐1,2,4‐triazol‐5‐one. ChemistrySelect 2023. [DOI: 10.1002/slct.202204797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Pragnesh N. Dave
- Department of Chemistry Sardar Patel University Vallabh Vidyanagar 388 120 Gujarat India
| | - Ruksana Sirach
- Department of Chemistry Sardar Patel University Vallabh Vidyanagar 388 120 Gujarat India
| |
Collapse
|
18
|
Panwar NR, Saritha M, Kumar P, Burman U. A common platform technology for green synthesis of multiple nanoparticles and their applicability in crop growth. INTERNATIONAL NANO LETTERS 2023. [DOI: 10.1007/s40089-023-00399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
19
|
Green synthesis of nanoparticles using botanicals and their application in management of fungal phytopathogens: a review. Arch Microbiol 2023; 205:94. [PMID: 36800046 DOI: 10.1007/s00203-023-03431-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Green synthesis of nanoparticles is an emerging aspect in plant disease management that blends nanotechnology and plant-derived ingredients to produce a biocontrol formulation. Different physical and chemical processes employed in the synthesis of nanoparticles are polluting, expensive, and also release hazardous by- products. The range of secondary metabolites present in plants makes them efficient reducing and stabilizing agent during the synthesis process. These metabolites serve a vital role in plant defense against the invasion of phytopathogens including fungi, bacteria, viruses, insect pests, etc. The plant metabolites, such as sugars, terpenoids, polyphenols, alkaloids, phenolic acids, and proteins, have been shown to be crucial in the reduction of metal ions into nanoparticles. In green synthesis of nanoparticles, the plant extracts are used as potential reducing and capping. This also restricts the formation of clusters or aggregates and improves the colloidal stability. The nanoparticles exhibit excellent antimycotic against a variety of phytopathogens and are very efficient in managing plant diseases. The aim of this review is to highlight plants, phytochemicals exhibiting antifungal properties, green synthesis of nanoparticles using plant material and their antimycotic activity.
Collapse
|
20
|
Dhiman V, Kondal N, Prashant. Bryophyllum pinnatum leaf extract mediated ZnO nanoparticles with prodigious potential for solar driven photocatalytic degradation of industrial contaminants. ENVIRONMENTAL RESEARCH 2023; 216:114751. [PMID: 36370810 DOI: 10.1016/j.envres.2022.114751] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
In an era of environment-friendly development plant extract-based biological techniques for synthesizing nanoparticles have gained a lot of attention over traditionally famous chemical and physical synthesis techniques. In the present study we have synthesized biogenic zinc oxide nanoparticles (BPLE-ZnO NPs) using Bryophyllum pinnatum leaf extract, compared its native properties and solar-driven photocatalytic activity with chemically prepared ZnO nanoparticles (Chem-ZnO NPs). In order to characterize and compare the Chem-ZnO and BPLE-ZnO, various techniques were used, including UV-visible spectroscopy, x-ray diffractrometry, photoluminescence spectroscopy, field emission scanning electron microscopy, electron dispersive x-ray spectroscopy, fourier transform infrared spectroscopy, and zeta potential analyzer. The results revealed the formation of hexagonal wurtzite ZnO, with no significant difference between the two methods; however, the use of Bryophyllum pinnatum leaf extract in ZnO NPs synthesis resulted in reduced size, presence of biomolecules on its surface and better monodispersity than purely chemical synthesis. Further, the BPLE-ZnO NPs showed better efficiency in the solar-driven photocatalytic degradation of methylene blue (MB) dye compared to Chem-ZnO NPs. Under solar exposure at a dose of 0.50 mg/mL BPLE-ZnO, resulted in 97.31% photodegradation with a rate constant of 0.06 min-1 of 20 mg/L MB solution within just 60 min which was 9.51% higher compared to the Chem-ZnO NPs. The BPLE-ZnO NPs were also employed to investigate their solar-driven photocatalytic performance for degrading the pharmaceutical (Metronidazole and Amoxycillin) and textile pollutants (Methyl orange dye) under sunlight. The results show that Bryophyllum pinnatum leaf extract-mediated ZnO NPs have an excellent potential in solar-based photocatalytic applications.
Collapse
Affiliation(s)
- Vikas Dhiman
- Department of Physics, Chandigarh University, Gharuan, Mohali, Punjab, India; Govt. College Dhaliara, Kangra, Himachal Pradesh, India
| | - Neha Kondal
- Department of Physics, Chandigarh University, Gharuan, Mohali, Punjab, India.
| | - Prashant
- Department of Physics, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
21
|
Lopez GP, Gallegos MV, Peluso MA, Damonte LC, Sambeth JE, Bellotti N. ZnO recovered from spent alkaline batteries as antimicrobial additive for waterborne paints. EMERGENT MATERIALS 2022; 6:147-158. [PMID: 36597484 PMCID: PMC9801357 DOI: 10.1007/s42247-022-00443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Biocides are employed to prevent biodeterioration in waterborne paints. In the present study, we used zinc oxide nanoparticles (obtained from spent alkaline batteries) as biocide for indoor waterborne paint at 1.5% of the total solid content in paint. Two different zinc oxides synthesized from spent alkaline batteries, which showed photocatalyst activity, were employed as an antimicrobial agents. After leaching the anode of alkaline batteries, zinc was precipitated from the leachate liquor by introducing oxalic acid (O-ZnO) or sodium carbonate (C-ZnO). The antimicrobial properties of the prepared oxides were tested against Staphylococcus aureus (bacteria), Chaetomium globosum, and Aspergillus fumigatus (fungi) using agar well diffusion method. C-ZnO inhibited the growth of all the strains studied and presented enhanced activity than O-ZnO. The better performance as antimicrobial agent of C-ZnO compared to O-ZnO was attributed to its lower crystallite size, higher amount of oxygen monovacancies, and to its lower band gap energy. The oxide with the best performance in antimicrobial activity, C-ZnO, was employed for the formulation of waterborne acrylic paints. It was observed that 1.5% C-ZnO improved the antifungal properties and antibacterial properties compared to the control sample.
Collapse
Affiliation(s)
- Guillermo P. Lopez
- Centro de Investigación Y Desarrollo en Tecnología de Pinturas - CIDEPINT (CIC-CONICET-UNLP), La Plata, Argentina
| | - María V. Gallegos
- Centro de Investigación Y Desarrollo en Ciencias Aplicadas, CIC-CONICET-UNLP, La Plata, Argentina
| | - Miguel A. Peluso
- Centro de Investigación Y Desarrollo en Ciencias Aplicadas, CIC-CONICET-UNLP, La Plata, Argentina
| | - Laura C. Damonte
- Instituto de Física, Dto. De Física, Facultad de Cs. Exactas, CCT-CONICET-UNLP, La Plata, Argentina
| | - Jorge E. Sambeth
- Centro de Investigación Y Desarrollo en Ciencias Aplicadas, CIC-CONICET-UNLP, La Plata, Argentina
| | - Natalia Bellotti
- Centro de Investigación Y Desarrollo en Tecnología de Pinturas - CIDEPINT (CIC-CONICET-UNLP), La Plata, Argentina
| |
Collapse
|
22
|
Cow dung extract mediated green synthesis of zinc oxide nanoparticles for agricultural applications. Sci Rep 2022; 12:20371. [PMID: 36437253 PMCID: PMC9701797 DOI: 10.1038/s41598-022-22099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
In the present study, zinc oxide nanoparticles (ZnO) were synthesized using cow dung extract to apply sustainable agriculture from rural resources. Studies on their antibacterial potential against E. coli DH 5 alpha indicated lower antimicrobial activities than the bulk Zn and commercial Zn nanoparticles. Compared with control and commercial ZnO nanoparticles, the maximum seed germination, root length, and shoot length were observed after the priming of synthesized ZnO NPs. This study suggests that ZnO may significantly increase seed germination and have lower antimicrobial potential. Further, the lower in-vitro cellular leakage and reactive oxygen species (ROS) production provided new hope for using cow dung extract mediated nanoparticles for agricultural and industrial applications.
Collapse
|
23
|
Ishwarya R, Jeyavani J, Jayakumar R, Alarifi S, Govindarajan M, Nicoletti M, Vaseeharan B. Citrullus lanatus-encased zinc oxide nanoparticles as potential anti-diabetic, anti-inflammatory and antibacterial agents: A new strategy towards biocompatible nano-drugs. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Sportelli MC, Gaudiuso C, Volpe A, Izzi M, Picca RA, Ancona A, Cioffi N. Biogenic Synthesis of ZnO Nanoparticles and Their Application as Bioactive Agents: A Critical Overview. REACTIONS 2022; 3:423-441. [DOI: 10.3390/reactions3030030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Zinc oxide is a safe material for humans, with high biocompatibility and negligible cytotoxicity. Interestingly, it shows exceptional antimicrobial activity against bacteria, viruses, fungi, etc., especially when reduced to the nanometer size. As it is easily understandable, thanks to its properties, it is at the forefront of safe antimicrobials in this pandemic era. Besides, in the view of the 2022 European Green Deal announced by the European Commission, even science and nanotechnology are moving towards “greener” approaches to the synthesis of nanoparticles. Among them, biogenic ZnO nanoparticles have been extensively studied for their biological applications and environmental remediation. Plants, algae, fungi, yeast, etc., (which are composed of naturally occurring biomolecules) play, in biogenic processes, an active role in the formation of nanoparticles with distinct shapes and sizes. The present review targets the biogenic synthesis of ZnO nanoparticles, with a specific focus on their bioactive properties and antimicrobial application.
Collapse
Affiliation(s)
- Maria Chiara Sportelli
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
| | - Caterina Gaudiuso
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
- Physics Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Annalisa Volpe
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
- Physics Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Margherita Izzi
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Centre for Colloid and Surface Science (CSGI), University of Bari Aldo Moro, 70125 Bari, Italy
| | - Rosaria Anna Picca
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Centre for Colloid and Surface Science (CSGI), University of Bari Aldo Moro, 70125 Bari, Italy
| | - Antonio Ancona
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
- Physics Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Centre for Colloid and Surface Science (CSGI), University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
25
|
Alqarni LS, Alghamdi MD, Alshahrani AA, Nassar AM. Green Nanotechnology: Recent Research on Bioresource-Based Nanoparticle Synthesis and Applications. J CHEM-NY 2022; 2022:1-31. [DOI: 10.1155/2022/4030999] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
In the last decades, the idea of green nanotechnology has been expanding, and researchers are developing greener and more sustainable techniques for synthesizing nanoparticles (NPs). The major objectives are to fabricate NPs using simple, sustainable, and cost-effective procedures while avoiding the use of hazardous materials that are usually utilized as reducing or capping agents. Many biosources, including plants, bacteria, fungus, yeasts, and algae, have been used to fabricate NPs of various shapes and sizes. The authors of this study emphasized the most current studies for fabricating NPs from biosources and their applications in a wide range of fields. This review addressed studies that cover green techniques for synthesizing nanoparticles of Ag, Au, ZnO, CuO, Co3O4, Fe3O4, TiO2, NiO, Al2O3, Cr2O3, Sm2O3, CeO2, La2O3, and Y2O3. Also, their applications were taken under consideration and discussed.
Collapse
Affiliation(s)
- Laila S. Alqarni
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Maha D. Alghamdi
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Aisha A. Alshahrani
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Amr M. Nassar
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
26
|
Biomimetically synthesized Physalis minima fruit extract-based zinc oxide nanoparticles as eco-friendly biomaterials for biological applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Rexlin J, Vijayakumar S, Nilavukkarasi M, Vidhya E, Alharthi NS, Sajjad M, Punitha VN, Praseetha PK. Bioengineered ZnO nanoparticles as a nano priming agent in Cyamopsis tetragonoloba (L).Taub. to improve yield and disease resistance. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Rani S, Kumar P, Dahiya P, Dang AS, Suneja P. Biogenic Synthesis of Zinc Nanoparticles, Their Applications, and Toxicity Prospects. Front Microbiol 2022; 13:824427. [PMID: 35756000 PMCID: PMC9226681 DOI: 10.3389/fmicb.2022.824427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/28/2022] [Indexed: 12/16/2022] Open
Abstract
Nanofertilizers effectively deliver the micronutrients besides reducing the phytotoxicity and environmental damage associated with chemical fertilizers. Zinc, an essential micronutrient, is significant for chloroplast development, activation of certain enzymes, and primary metabolism. Nano zinc oxide (ZnO) is the most widely used zinc nanoparticle. Concerns regarding the toxicity of conventional physical and chemical methods of synthesizing the nanoparticles have generated the need for a green approach. It involves the biogenic synthesis of metallic nanoparticles using plants and microorganisms. Microbe-mediated biogenic synthesis of metallic nanoparticles is a bottom-up approach in which the functional biomolecules of microbial supernatant reduce the metal ions into its nanoparticles. This review discusses the biological synthesis of nano-ZnO from microorganisms and related aspects such as the mechanism of synthesis, factors affecting the same, methods of application, along with their role in conferring drought stress tolerance to the plants and challenges involved in their large-scale synthesis and applications.
Collapse
Affiliation(s)
- Simran Rani
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pradeep Kumar
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Priyanka Dahiya
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Amita Suneja Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Suneja
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
29
|
Alahmdi MI, Khasim S, Vanaraj S, Panneerselvam C, Mahmoud MAA, Mukhtar S, Alsharif MA, Zidan NS, Abo-Dya NE, Aldosari OF. Green Nanoarchitectonics of ZnO Nanoparticles from Clitoria ternatea Flower Extract for In Vitro Anticancer and Antibacterial Activity: Inhibits MCF-7 Cell Proliferation via Intrinsic Apoptotic Pathway. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02263-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Gonçalves JPZ, Seraglio J, Macuvele DLP, Padoin N, Soares C, Riella HG. Green synthesis of manganese based nanoparticles mediated by Eucalyptus robusta and Corymbia citriodora for agricultural applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Sharma P, Urfan M, Anand R, Sangral M, Hakla HR, Sharma S, Das R, Pal S, Bhagat M. Green synthesis of zinc oxide nanoparticles using Eucalyptus lanceolata leaf litter: characterization, antimicrobial and agricultural efficacy in maize. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:363-381. [PMID: 35400882 PMCID: PMC8943116 DOI: 10.1007/s12298-022-01136-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 05/07/2023]
Abstract
In the present study, green synthesis of zinc oxide nanoparticles (ZnO NP) using Eucalyptus lanceolatus (leaf litter) extract was explored after characterization with UV spectrophotometery, Fourier Transform Infrared analysis, X-ray diffraction and TEM studies. ZnO NPs stability was ensured with - 32.1 mV zeta potential, while TEM showed ZnO NP as hexagonal structure (100 nm). In vitro antimicrobial activity showed potential of ZnO NP against pathogens causing diseases in maize plants. Both in vitro and in vivo studies of ZnO NP and ZnSO4 (200 ppm and 400 ppm) over a two year period (2019, 2020) were conducted on Zea mays L. var. PG2458. ZnO NP seed priming improved seed vigor index, germination percentage, shoot and root length and fresh biomass. Foliar application improved stem diameter and leaf surface area. Physiological status was relatively better, while reproductive attributes got altered to guide resource allocation for better cob growth and biomass with ZnO NP. Leaf, cob, grain and total Zn was maximum for 200 ppm ZnO NP. Translocation of Zn from leaf to cob and cob to grain was faster for ZnO NP compared to ZnSO4. Higher concentration (400 ppm) of ZnO NPs and ZnSO4 proved phytotoxic for plant growth attributes. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01136-0.
Collapse
Affiliation(s)
- Pooja Sharma
- School of Biotechnology, University of Jammu, Jammu, 180006 India
| | - Mohammad Urfan
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006 India
| | - Rythem Anand
- School of Biotechnology, University of Jammu, Jammu, 180006 India
| | - Monica Sangral
- School of Biotechnology, University of Jammu, Jammu, 180006 India
| | - Haroon Rashid Hakla
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006 India
| | - Shubham Sharma
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006 India
| | - Ranjan Das
- Department of Crop Physiology, Assam Agricultural University, Jorhat, 78501 India
| | - Sikander Pal
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006 India
| | - Madhulika Bhagat
- School of Biotechnology, University of Jammu, Jammu, 180006 India
| |
Collapse
|
32
|
Evaluation on Synthesis and Catalytic Properties of ZnO Enriched MgO Nanomaterials Using Limonia Acidissima as Effective Green Substrate. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06344-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Joshi N, Pathak A, Chandel Upadhyaya D, Naidu Krishna SB, Upadhyay CP. Synthesis of biocompatible Fe3O4 and MnO2 nanoparticles for enhanced tuberization in potato (Solanum tuberosum L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Facile synthesis and characterization of ZnO nanoparticles using Abutilon indicum leaf extract: An eco-friendly nano-drug on human microbial pathogens. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Green Synthesis of Metal and Metal Oxide Nanoparticles Using Different Plants’ Parts for Antimicrobial Activity and Anticancer Activity: A Review Article. COATINGS 2021. [DOI: 10.3390/coatings11111374] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology emerged as a scientific innovation in the 21st century. Metallic nanoparticles (metal or metal oxide nanoparticles) have attained remarkable popularity due to their interesting biological, physical, chemical, magnetic, and optical properties. Metal-based nanoparticles can be prepared by utilizing different biological, physical, and chemical methods. The biological method is preferred as it provides a green, simple, facile, ecofriendly, rapid, and cost-effective route for the green synthesis of nanoparticles. Plants have complex phytochemical constituents such as carbohydrates, amino acids, phenolics, flavonoids, terpenoids, and proteins, which can behave as reducing and stabilizing agents. However, the mechanism of green synthesis by using plants is still highly debatable. In this report, we summarized basic principles or mechanisms of green synthesis especially for metal or metal oxide (i.e., ZnO, Au, Ag, and TiO2, Fe, Fe2O3, Cu, CuO, Co) nanoparticles. Finally, we explored the medical applications of plant-based nanoparticles in terms of antibacterial, antifungal, and anticancer activity.
Collapse
|
36
|
Kamli MR, Malik MA, Srivastava V, Sabir JSM, Mattar EH, Ahmad A. Biogenic ZnO Nanoparticles Synthesized from Origanum vulgare Abrogates Quorum Sensing and Biofilm Formation in Opportunistic Pathogen Chromobacterium violaceum. Pharmaceutics 2021; 13:1743. [PMID: 34834158 PMCID: PMC8625425 DOI: 10.3390/pharmaceutics13111743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/23/2022] Open
Abstract
This study presents an inexpensive, eco-friendly, and simple green synthesis of ZnO nanoparticles using Origanum vulgare extract. These nanoparticles are non-hazardous, environmentally friendly, and cheaper than other methods of biosynthesis. Ongoing research determines the role of phytochemicals in the fabrication and biosynthesis of ZnO NPs and their role in antibacterial activity and biomedical applications. Characterizations by fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV-visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) determine the successful biosynthesis of ZnO NPs. Meanwhile, TEM and X-ray diffraction studies approximated the spherical morphology and crystalline nature of biosynthesized ZnO NPs of nano size in the range of 20-30 nm. The global increase in drug resistance necessitates the search for new drugs with different mechanisms of action. Quorum sensing (QS), a cell-to-cell communication, has gained attention as an emerging drug target. It controls numerous biochemical processes in bacteria, which are essential for their survival and pathogenicity. The potential of nanomedicines has also been tested to synthesize new antibiotics to tackle drug resistance. ZnO NPs were explored for their antibacterial, antiquorum sensing, and antibiofilm activities with a bioreporter strain of Chromobacterium violaceum. Susceptibility testing results indicated the potential antibacterial activity of ZnO NPs with a minimum inhibitory concentration (MIC) of 4 µg/mL and minimum bactericidal concentration (MBC) of 16 µg/mL. Antiquorum-sensing assays revealed that these nanoparticles inhibit quorum sensing with minimum antiquorum sensing activity (MQSIC) of 1 µg/mL, without causing any bacterial growth inhibition. In addition, ZnO NPs inhibit biofilm formation at inhibitory and higher concentrations. RT-qPCR results supported the downregulation of the quorum sensing genes when C. violaceum was treated with ZnO NPs. The outcomes of this study are promising with regard to the biofilm and quorum sensing, emphasizing the potential applications of ZnO NPs against bacterial communication and biofilm formation.
Collapse
Affiliation(s)
- Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (J.S.M.S.); (E.H.M.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maqsood Ahmad Malik
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vartika Srivastava
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (V.S.); (A.A.)
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (J.S.M.S.); (E.H.M.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ehab H. Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (J.S.M.S.); (E.H.M.)
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (V.S.); (A.A.)
- Infection Control Unit, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| |
Collapse
|
37
|
El-Ramady H, Abdalla N, Elbasiouny H, Elbehiry F, Elsakhawy T, Omara AED, Amer M, Bayoumi Y, Shalaby TA, Eid Y, Zia-Ur-Rehman M. Nano-biofortification of different crops to immune against COVID-19: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112500. [PMID: 34274837 PMCID: PMC8270734 DOI: 10.1016/j.ecoenv.2021.112500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 05/04/2023]
Abstract
Human health and its improvement are the main target of several studies related to medical, agricultural and industrial sciences. The human health is the primary conclusion of many studies. The improving of human health may include supplying the people with enough and safe nutrients against malnutrition to fight against multiple diseases like COVID-19. Biofortification is a process by which the edible plants can be enriched with essential nutrients for human health against malnutrition. After the great success of biofortification approach in the human struggle against malnutrition, a new biotechnological tool in enriching the crops with essential nutrients in the form of nanoparticles to supplement human diet with balanced diet is called nano-biofortification. Nano biofortification can be achieved by applying the nano particles of essential nutrients (e.g., Cu, Fe, Se and Zn) foliar or their nano-fertilizers in soils or waters. Not all essential nutrients for human nutrition can be biofortified in the nano-form using all edible plants but there are several obstacles prevent this approach. These stumbling blocks are increased due to COVID-19 and its problems including the global trade, global breakdown between countries, and global crisis of food production. The main target of this review was to evaluate the nano-biofortification process and its using against malnutrition as a new approach in the era of COVID-19. This review also opens many questions, which are needed to be answered like is nano-biofortification a promising solution against malnutrition? Is COVID-19 will increase the global crisis of malnutrition? What is the best method of applied nano-nutrients to achieve nano-biofortification? What are the challenges of nano-biofortification during and post of the COVID-19?
Collapse
Affiliation(s)
- Hassan El-Ramady
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Neama Abdalla
- Plant Biotechnology Department, Genetic Engineering and Biotechnology Division, National Research Center, 12622 Cairo, Egypt.
| | - Heba Elbasiouny
- Department of Environmental and Biological Sciences, Home Economy faculty, Al-Azhar University, 31732 Tanta, Egypt.
| | - Fathy Elbehiry
- Central Laboratory of Environmental Studies, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Tamer Elsakhawy
- Agriculture Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Sakha Agricultural Research Station, Agriculture Research Center (ARC), 33717 Kafr El-Sheikh, Egypt.
| | - Alaa El-Dein Omara
- Agriculture Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Sakha Agricultural Research Station, Agriculture Research Center (ARC), 33717 Kafr El-Sheikh, Egypt.
| | - Megahed Amer
- Soils Improvement Department, Soils, Water and Environment Research Institute (SWERI), Sakha Station, Agricultural Research Center (ARC), 33717 Kafr El-Sheikh, Egypt.
| | - Yousry Bayoumi
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Tarek A Shalaby
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Yahya Eid
- Poultry Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
38
|
Obayomi KS, Oluwadiya AE, Lau SY, Dada AO, Akubuo-Casmir D, Adelani-Akande TA, Fazle Bari A, Temidayo SO, Rahman MM. Biosynthesis of Tithonia diversifolia leaf mediated Zinc Oxide Nanoparticles loaded with flamboyant pods (Delonix regia) for the treatment of Methylene Blue Wastewater. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|