1
|
Lattanzi G, Strati F, Díaz-Basabe A, Perillo F, Amoroso C, Protti G, Rita Giuffrè M, Iachini L, Baeri A, Baldari L, Cassinotti E, Ghidini M, Galassi B, Lopez G, Noviello D, Porretti L, Trombetta E, Messuti E, Mazzarella L, Iezzi G, Nicassio F, Granucci F, Vecchi M, Caprioli F, Facciotti F. iNKT cell-neutrophil crosstalk promotes colorectal cancer pathogenesis. Mucosal Immunol 2023; 16:326-340. [PMID: 37004750 DOI: 10.1016/j.mucimm.2023.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
iNKT cells account for a relevant fraction of effector T-cells in the intestine and are considered an attractive platform for cancer immunotherapy. Although iNKT cells are cytotoxic lymphocytes, their functional role in colorectal cancer (CRC) is still controversial, limiting their therapeutic use. Thus, we examined the immune cell composition and iNKT cell phenotype of CRC lesions in patients (n = 118) and different murine models. High-dimensional single-cell flow-cytometry, metagenomics, and RNA sequencing experiments revealed that iNKT cells are enriched in tumor lesions. The tumor-associated pathobiont Fusobacterium nucleatum induces IL-17 and Granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in iNKT cells without affecting their cytotoxic capability but promoting iNKT-mediated recruitment of neutrophils with polymorphonuclear myeloid-derived suppressor cells-like phenotype and functions. The lack of iNKT cells reduced the tumor burden and recruitment of immune suppressive neutrophils. iNKT cells in-vivo activation with α-galactosylceramide restored their anti-tumor function, suggesting that iNKT cells can be modulated to overcome CRC-associated immune evasion. Tumor co-infiltration by iNKT cells and neutrophils correlates with negative clinical outcomes, highlighting the importance of iNKT cells in the pathophysiology of CRC. Our results reveal a functional plasticity of iNKT cells in CRC, suggesting a pivotal role of iNKT cells in shaping the tumor microenvironment, with relevant implications for treatment.
Collapse
Affiliation(s)
- Georgia Lattanzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Francesco Strati
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Angélica Díaz-Basabe
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Protti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Maria Rita Giuffrè
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Iachini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alberto Baeri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Ludovica Baldari
- General and Emergency Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Cassinotti
- General and Emergency Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Michele Ghidini
- Medical Oncology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Galassi
- Medical Oncology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca Lopez
- Pathology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Noviello
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Laura Porretti
- Clinical Chemistry and Microbiology Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Trombetta
- Clinical Chemistry and Microbiology Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eleonora Messuti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Mazzarella
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giandomenica Iezzi
- Department of Visceral Surgery, EOC Translational Research Laboratory, Bellinzona, Switzerland
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
2
|
Peck AB, Nguyen CQ, Ambrus JL. A MZB Cell Activation Profile Present in the Lacrimal Glands of Sjögren's Syndrome-Susceptible C57BL/6.NOD- Aec1Aec2 Mice Defined by Global RNA Transcriptomic Analyses. Int J Mol Sci 2022; 23:6106. [PMID: 35682784 PMCID: PMC9181468 DOI: 10.3390/ijms23116106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
The C57BL/6.NOD-Aec1Aec2 mouse has been extensively studied to define the underlying cellular and molecular basis for the onset and development of Sjögren's syndrome (SS), a human systemic autoimmune disease characterized clinically as the loss of normal lacrimal and salivary gland functions leading respectively to dry eye and dry mouth pathologies. While an overwhelming majority of SS studies in both humans and rodent models have long focused primarily on pathophysiological events and the potential role of T lymphocytes in these events, recent studies in our murine models have indicated that marginal zone B (MZB) lymphocytes are critical for both development and onset of SS disease. Although migration and function of MZB cells are difficult to study in vivo and in vitro, we have carried out ex vivo investigations that use temporal global RNA transcriptomic analyses to track early cellular and molecular events in these exocrine glands of C57BL/6.NOD-Aec1Aec2 mice. In the present report, genome-wide transcriptome analyses of lacrimal glands indicate that genes and gene-sets temporally upregulated during early onset of disease define the Notch2/NF-kβ14 and Type1 interferon signal transduction pathways, as well as identify chemokines, especially Cxcl13, and Rho-GTPases, including DOCK molecules, in the cellular migration of immune cells to the lacrimal glands. We discuss how the current results compare with our recently published salivary gland data obtained from similar studies carried out in our C57BL/6.NOD-Aec1Aec2 mice, pointing out both similarities and differences in the etiopathogeneses underlying the autoimmune response within the two glands. Overall, this study uses the power of transcriptomic analyses to identify temporal molecular bioprocesses activated during the preclinical covert pathogenic stage(s) of SS disease and how these findings may impact future intervention therapies as the disease within the two exocrine glands may not be identical.
Collapse
Affiliation(s)
- Ammon B. Peck
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 100125, Gainesville, FL 32610, USA; (C.Q.N.); (J.L.A.J.)
| | - Cuong Q. Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 100125, Gainesville, FL 32610, USA; (C.Q.N.); (J.L.A.J.)
| | - Julian L. Ambrus
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 100125, Gainesville, FL 32610, USA; (C.Q.N.); (J.L.A.J.)
- Division of Allergy, Immunology and Rheumatology, SUNY Buffalo School of Medicine, 875 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
3
|
Zhao L, Yang X. Cross Talk Between Natural Killer T and Dendritic Cells and Its Impact on T Cell Responses in Infections. Front Immunol 2022; 13:837767. [PMID: 35185930 PMCID: PMC8850912 DOI: 10.3389/fimmu.2022.837767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Both innate and adaptive immunity is vital for host defense against infections. Dendritic cells (DCs) are critical for initiating and modulating adaptive immunity, especially for T-cell responses. Natural killer T (NKT) cells are a small population of innate-like T cells distributed in multiple organs. Many studies have suggested that the cross-talk between these two immune cells is critical for immunobiology and host defense mechanisms. Not only can DCs influence the activation/function of NKT cells, but NKT cells can feedback on DCs also, thus modulating the phenotype and function of DCs and DC subsets. This functional feedback of NKT cells on DCs, especially the preferential promoting effect on CD8α+ and CD103+ DC subsets in lymphoid and non-lymphoid tissues, significantly impacts the systemic and local adaptive CD4 and CD8 T cell responses in infections. This review focuses on the two-way interaction between NKT cells and DCs, emphasizing the importance of NKT cell feedback on DCs in bridging innate and adaptive immune responses for host defense purposes.
Collapse
Affiliation(s)
- Lei Zhao
- Departments of Immunology and Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, China
| | - Xi Yang
- Departments of Immunology and Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Differential iNKT and T Cells Activation in Non-Alcoholic Fatty Liver Disease and Drug-Induced Liver Injury. Biomedicines 2021; 10:biomedicines10010055. [PMID: 35052736 PMCID: PMC8772872 DOI: 10.3390/biomedicines10010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) and idiosyncratic drug-induced liver injury (DILI) could share molecular mechanisms involving the immune system. We aimed to identify activation immunological biomarkers in invariant natural killer T (iNKT) and CD4/CD8+ T cells in NAFLD and DILI. Methods: We analyzed the activation profile (CD69, CD25, and HLA-DR) and natural killer group 2 member D (NKG2D) on iNKT cells, and CD4/CD8 T cells in peripheral blood mononuclear cells from NAFLD, with or without significant liver fibrosis, and DILI patients. Results: There was an increase in iNKT cells in NAFLD patients compared to DILI or control subjects. Regarding the cellular activation profile, NAFLD with significant liver fibrosis (F ≥ 2) displayed higher levels of CD69+iNKT cells compared to NAFLD with none or mild liver fibrosis (F ≤ 1) and control patients. CD69+iNKT positively correlated with insulin resistance, aspartate aminotransferase (AST) level, liver fibrosis-4 index (FIB4) and AST to Platelet Ratio Index (APRI). DILI patients showed an increase in CD69+ and HLA-DR+ in both CD4+ and CD8+ T cells, detecting the most relevant difference in the case of CD69+CD8+ T cells. Conclusions: CD69+iNKT may be a biomarker to assess liver fibrosis progression in NAFLD. CD69+CD8+ T cells were identified as a potential distinctive biomarker for distinguishing DILI from NAFLD.
Collapse
|
5
|
Abstract
The immune and endocrine systems collectively control homeostasis in the body. The endocrine system ensures that values of essential factors and nutrients such as glucose, electrolytes and vitamins are maintained within threshold values. The immune system resolves local disruptions in tissue homeostasis, caused by pathogens or malfunctioning cells. The immediate goals of these two systems do not always align. The immune system benefits from optimal access to nutrients for itself and restriction of nutrient availability to all other organs to limit pathogen replication. The endocrine system aims to ensure optimal nutrient access for all organs, limited only by the nutrients stores that the body has available. The actual state of homeostatic parameters such as blood glucose levels represents a careful balance based on regulatory signals from the immune and endocrine systems. This state is not static but continuously adjusted in response to changes in the current metabolic needs of the body, the amount of resources it has available and the level of threats it encounters. This balance is maintained by the ability of the immune and endocrine systems to interact and co-regulate systemic metabolism. In context of metabolic disease, this system is disrupted, which impairs functionality of both systems. The failure of the endocrine system to retain levels of nutrients such as glucose within threshold values impairs functionality of the immune system. In addition, metabolic stress of organs in context of obesity is perceived by the immune system as a disruption in local homeostasis, which it tries to resolve by the excretion of factors which further disrupt normal metabolic control. In this chapter, we will discuss how the immune and endocrine systems interact under homeostatic conditions and during infection with a focus on blood glucose regulation. In addition, we will discuss how this system fails in the context of metabolic disease.
Collapse
|
6
|
Zhu T, Wang R, Miller H, Westerberg LS, Yang L, Guan F, Lee P, Gong Q, Chen Y, Liu C. The interaction between iNKT cells and B cells. J Leukoc Biol 2021; 111:711-723. [PMID: 34312907 DOI: 10.1002/jlb.6ru0221-095rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Invariant natural killer T cells (iNKTs) bridge the innate immunity with the adaptive immunity and their interaction with B cells has been extensively studied. Here, we give a complete overview of these two cells, from their mechanism of interaction to clinical prospects and existing problems. In our introduction, we describe the relationship between iNKTs and B cells and explore the current research hotspots and future directions. We begin with how B cells interact and benefit from the innate and adaptive help of iNKTs. Next, we describe the multiple roles of these cells in infections, autoimmunity, and cancers. Lastly, we look into the potential immunotherapies that can be based on iNKTs and the possible treatments for infectious, autoimmune, and other diseases.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongli Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, GuiZhou Province, Zunyi, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Medved J, Knott BM, Tarrah SN, Li AN, Shah N, Moscovich TC, Boscia AR, Salazar JE, Santhanakrishnan M, Hendrickson JE, Fu X, Zimring JC, Luckey CJ. The lysophospholipid-binding molecule CD1D is not required for the alloimmunization response to fresh or stored RBCs in mice despite RBC storage driving alterations in lysophospholipids. Transfusion 2021; 61:2169-2178. [PMID: 34181769 DOI: 10.1111/trf.16554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite the significant adverse clinical consequences of RBC alloimmunization, our understanding of the signals that induce immune responses to transfused RBCs remains incomplete. Though RBC storage has been shown to enhance alloimmunization in the hen egg lysozyme, ovalbumin, and human Duffy (HOD) RBC alloantigen mouse model, the molecular signals leading to immune activation in this system remain unclear. Given that the nonclassical major histocompatibility complex (MHC) Class I molecule CD1D can bind to multiple different lysophospholipids and direct immune activation, we hypothesized that storage of RBCs increases lysophospholipids known to bind CD1D, and further that recipient CD1D recognition of these altered lipids mediates storage-induced alloimmunization responses. STUDY DESIGN AND METHODS We used a mass spectrometry-based approach to analyze the changes in lysophospholipids that are induced during storage of mouse RBCs. CD1D knockout (CD1D-KO) and wild-type (WT) control mice were transfused with stored HOD RBCs to measure the impact of CD1D deficiency on RBC alloimmunization. RESULTS RBC storage results in alterations in multiple lysophospholipid species known to bind to CD1D and activate the immune system. Prior to transfusion, CD1D-deficient mice had lower baseline levels of polyclonal immunoglobulin (IgG) relative to WT mice. In response to stored RBC transfusion, CD1D-deficient mice generated similar levels of anti-HOD IgM and anti-HOD IgG. CONCLUSION Although storage of RBCs leads to alteration of several lysophospholipids known to be capable of binding CD1D, storage-induced RBC alloimmunization responses are not impacted by recipient CD1D deficiency.
Collapse
Affiliation(s)
- Jelena Medved
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Brittney M Knott
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Soraya N Tarrah
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Andria N Li
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Neha Shah
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Tamara C Moscovich
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Alexis R Boscia
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Juan E Salazar
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Jeanne E Hendrickson
- Departments of Laboratory Medicine and Pediatrics, Yale University, New Haven, Connecticut, USA
| | - Xiaoyun Fu
- Bloodworks NW Research Institute, and Department of Internal Medicine, Division of Hematology, University of Washington School of Medicine, Seattle, Washington, USA
| | - James C Zimring
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Chance John Luckey
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Sarmiento Varón L, De Rosa J, Rodriguez R, Fernández PM, Billordo LA, Baz P, Beccaglia G, Spada N, Mendoza FT, Barberis CM, Vay C, Arabolaza ME, Paoli B, Arana EI. Role of Tonsillar Chronic Inflammation and Commensal Bacteria in the Pathogenesis of Pediatric OSA. Front Immunol 2021; 12:648064. [PMID: 33995367 PMCID: PMC8116894 DOI: 10.3389/fimmu.2021.648064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Immune responses at the boundary between the host and the world beyond are complex and mucosal tissue homeostasis relies on them. Obstructive sleep apnea (OSA) is a syndrome suffered by children with hypertrophied tonsils. We have previously demonstrated that these tonsils present a defective regulatory B cell (Breg) compartment. Here, we extend those findings by uncovering the crucial role of resident pro-inflammatory B and T cells in sustaining tonsillar hypertrophy and hyperplasia by producing TNFα and IL17, respectively, in ex vivo cultures. Additionally, we detected prominent levels of expression of CD1d by tonsillar stratified as well as reticular epithelium, which have not previously been reported. Furthermore, we evidenced the hypertrophy of germinal centers (GC) and the general hyperplasia of B lymphocytes within the tissue and the lumen of the crypts. Of note, such B cells resulted mainly (IgG/IgM)+ cells, with some IgA+ cells located marginally in the follicles. Finally, by combining bacterial culture from the tonsillar core and subsequent identification of the respective isolates, we determined the most prevalent species within the cohort of OSA patients. Although the isolated species are considered normal oropharyngeal commensals in children, we confirmed their capacity to breach the epithelial barrier. Our work sheds light on the pathological mechanism underlying OSA, highlighting the relevance taken by the host immune system when defining infection versus colonization, and opening alternatives of treatment.
Collapse
Affiliation(s)
- Lindybeth Sarmiento Varón
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Javier De Rosa
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Raquel Rodriguez
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.,Allergy and Immunology Division, Clinical Hospital 'José de San Martín', UBA, Buenos Aires, Argentina
| | - Pablo M Fernández
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.,Department of Immunology, School of Medicine, UBA, Buenos Aires, Argentina
| | - L Ariel Billordo
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Plácida Baz
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Gladys Beccaglia
- Department of Pathology, Clinical Hospital 'José de San Martín', Buenos Aires, Argentina
| | - Nicolás Spada
- Department of Pathology, Clinical Hospital 'José de San Martín', Buenos Aires, Argentina
| | - F Tatiana Mendoza
- Department of Clinical Biochemistry and Bacteriology, School of Pharmacy and Biochemistry, Clinical Hospital 'Jose de San Martín', UBA, Buenos Aires, Argentina
| | - Claudia M Barberis
- Department of Clinical Biochemistry and Bacteriology, School of Pharmacy and Biochemistry, Clinical Hospital 'Jose de San Martín', UBA, Buenos Aires, Argentina
| | - Carlos Vay
- Department of Clinical Biochemistry and Bacteriology, School of Pharmacy and Biochemistry, Clinical Hospital 'Jose de San Martín', UBA, Buenos Aires, Argentina
| | - M Elena Arabolaza
- Pediatric Otolaryngology Division, Clinical Hospital 'José de San Martín', Buenos Aires, Argentina
| | - Bibiana Paoli
- Pediatric Otolaryngology Division, Clinical Hospital 'José de San Martín', Buenos Aires, Argentina
| | - Eloísa I Arana
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.,Department of Immunology, School of Medicine, UBA, Buenos Aires, Argentina
| |
Collapse
|
9
|
Driver JP, de Carvalho Madrid DM, Gu W, Artiaga BL, Richt JA. Modulation of Immune Responses to Influenza A Virus Vaccines by Natural Killer T Cells. Front Immunol 2020; 11:2172. [PMID: 33193296 PMCID: PMC7606973 DOI: 10.3389/fimmu.2020.02172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Influenza A viruses (IAVs) circulate widely among different mammalian and avian hosts and sometimes give rise to zoonotic infections. Vaccination is a mainstay of IAV prevention and control. However, the efficacy of IAV vaccines is often suboptimal because of insufficient cross-protection among different IAV genotypes and subtypes as well as the inability to keep up with the rapid molecular evolution of IAV strains. Much attention is focused on improving IAV vaccine efficiency using adjuvants, which are substances that can modulate and enhance immune responses to co-administered antigens. The current review is focused on a non-traditional approach of adjuvanting IAV vaccines by therapeutically targeting the immunomodulatory functions of a rare population of innate-like T lymphocytes called invariant natural killer T (iNKT) cells. These cells bridge the innate and adaptive immune systems and are capable of stimulating a wide array of immune cells that enhance vaccine-mediated immune responses. Here we discuss the factors that influence the adjuvant effects of iNKT cells for influenza vaccines as well as the obstacles that must be overcome before this novel adjuvant approach can be considered for human or veterinary use.
Collapse
Affiliation(s)
- John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | | | - Weihong Gu
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Bianca L Artiaga
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Jürgen A Richt
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
10
|
David BA, Kubes P. Exploring the complex role of chemokines and chemoattractants in vivo on leukocyte dynamics. Immunol Rev 2020; 289:9-30. [PMID: 30977202 DOI: 10.1111/imr.12757] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
Chemotaxis is fundamental for leukocyte migration in immunity and inflammation and contributes to the pathogenesis of many human diseases. Although chemokines and various other chemoattractants were initially appreciated as important mediators of acute inflammation, in the past years they have emerged as critical mediators of cell migration during immune surveillance, organ development, and cancer progression. Such advances in our knowledge in chemokine biology have paved the way for the development of specific pharmacological targets with great therapeutic potential. Chemoattractants may belong to different classes, including a complex chemokine system of approximately 50 endogenous molecules that bind to G protein-coupled receptors, which are expressed by a wide variety of cell types. Also, an unknown number of other chemoattractants may be generated by pathogens and damaged/dead cells. Therefore, blocking chemotaxis without causing side effects is an extremely challenging task. In this review, we focus on recent advances in understanding how the chemokine system orchestrates immune cell migration and positioning at the whole organ level in homeostasis, inflammation, and infection.
Collapse
Affiliation(s)
- Bruna A David
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Kang SJ, Jin HM, Cho YN, Oh TH, Kim SE, Kim UJ, Park KH, Jang HC, Jung SI, Kee SJ, Park YW. Dysfunction of Circulating Natural Killer T Cells in Patients With Scrub Typhus. J Infect Dis 2019; 218:1813-1821. [PMID: 29982731 DOI: 10.1093/infdis/jiy402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/28/2018] [Indexed: 01/01/2023] Open
Abstract
Background Human natural killer T (NKT) cells are known to serve as regulatory and/or effector cells in infectious diseases. However, little is known about the role of NKT cells in Orientia tsutsugamushi infection. Accordingly, the objective of this study was to examine the level and function of NKT cells in patients with scrub typhus. Methods This study included 62 scrub typhus patients and 62 healthy controls (HCs). NKT cell level and function in peripheral blood samples were measured by flow cytometry. Results Proliferation of NKT cells and their ability to produce interferon-γ and interleukin-4 (IL-4) were significantly lower in scrub typhus patients compared to those in HCs. However, circulating NKT cell levels were comparable between patients and HCs. Expression levels of CD69, programmed death-1 (PD-1), lymphocyte activation gene-3 (LAG-3), and T-cell immunoglobulin domain and mucin domain-containing molecule-3 (TIM-3) were significantly increased in scrub typhus patients. Elevated expression of CD69, PD-1, LAG-3, and TIM-3, impaired proliferation, and decreased IL-4 production by NKT cells were recovered in the remission phase. Conclusions This study demonstrates that circulating NKT cells are numerically preserved but functionally impaired in scrub typhus patients. In addition, NKT cell dysfunction is recovered in the remission phase.
Collapse
Affiliation(s)
- Seung-Ji Kang
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hye-Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Young-Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Tae-Hoon Oh
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seong Eun Kim
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Uh Jin Kim
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Kyung-Hwa Park
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hee-Chang Jang
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Sook-In Jung
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| |
Collapse
|
12
|
Abstract
Invariant natural killer T cells (iNKT cells) are an innate-like T cell subset that expresses an invariant T cell receptor (TCR) α-chain and recognizes lipids presented on CD1d. They secrete diverse cytokines and can influence many types of immune responses. Despite having highly similar TCR specificities, iNKT cells differentiate in the thymus into distinct subsets that are analogous to T helper 1 (TH1), TH2 and TH17 cell subsets. Additional iNKT cell subsets that may require peripheral activation have also been described, including one that produces IL-10. In general, iNKT cells are non-circulating, tissue-resident lymphocytes, but the prevalence of different iNKT cell subsets differs markedly between tissues. Here, we summarize the functions of iNKT cells in four tissues in which they are prevalent, namely, the liver, the lungs, adipose tissue and the intestine. Importantly, we explain how local iNKT cell responses at each site contribute to tissue homeostasis and protection from infection but can also contribute to tissue inflammation and damage.
Collapse
|
13
|
Compton BJ, Farrand KJ, Tang CW, Osmond TL, Speir M, Authier-Hall A, Wang J, Ferguson PM, Chan STS, Anderson RJ, Cooney TR, Hayman CM, Williams GM, Brimble MA, Brooks CR, Yong LK, Metelitsa LS, Zajonc DM, Godfrey DI, Gasser O, Weinkove R, Painter GF, Hermans IF. Enhancing T cell responses and tumour immunity by vaccination with peptides conjugated to a weak NKT cell agonist. Org Biomol Chem 2019; 17:1225-1237. [PMID: 30656346 DOI: 10.1039/c8ob02982b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Activated NKT cells can stimulate antigen-presenting cells leading to enhanced peptide antigen-specific immunity. However, administration of potent NKT cell agonists like α-galactosylceramide (α-GalCer) can be associated with release of high levels of cytokines, and in some situations, hepatotoxicity. Here we show that it is possible to provoke sufficient NKT cell activity to stimulate strong antigen-specific T cell responses without these unwanted effects. This was achieved by chemically conjugating antigenic peptides to α-galactosylphytosphingosine (α-GalPhs), an NKT cell agonist with very weak activity based on structural characterisation and biological assays. Conjugation improved delivery to antigen-presenting cells in vivo, while use of a cathepsin-sensitive linker to release the α-GalPhs and peptide within the same cell promoted strong T cell activation and therapeutic anti-tumour responses in mice. The conjugates activated human NKT cells and enhanced human T cell responses to a viral peptide in vitro. Accordingly, we have demonstrated a means to safely exploit the immunostimulatory properties of NKT cells to enhance T cell activation for virus- and tumour-specific immunity.
Collapse
Affiliation(s)
- Benjamin J Compton
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu J, Gallo RM, Khan MA, Iyer AK, Kratzke IM, Brutkiewicz RR. JNK2 modulates the CD1d-dependent and -independent activation of iNKT cells. Eur J Immunol 2018; 49:255-265. [PMID: 30467836 DOI: 10.1002/eji.201847755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/30/2018] [Accepted: 11/21/2018] [Indexed: 01/01/2023]
Abstract
Invariant natural killer T (iNKT) cells play critical roles in autoimmune, anti-tumor, and anti-microbial immune responses, and are activated by glycolipids presented by the MHC class I-like molecule, CD1d. How the activation of signaling pathways impacts antigen (Ag)-dependent iNKT cell activation is not well-known. In the current study, we found that the MAPK JNK2 not only negatively regulates CD1d-mediated Ag presentation in APCs, but also contributes to CD1d-independent iNKT cell activation. A deficiency in the JNK2 (but not JNK1) isoform enhanced Ag presentation by CD1d. Using a vaccinia virus (VV) infection model known to cause a loss in iNKT cells in a CD1d-independent, but IL-12-dependent manner, we found the virus-induced loss of iNKT cells in JNK2 KO mice was substantially lower than that observed in JNK1 KO or wild-type (WT) mice. Importantly, compared to WT mice, JNK2 KO mouse iNKT cells were found to express less surface IL-12 receptors. As with a VV infection, an IL-12 injection also resulted in a smaller decrease in JNK2 KO iNKT cells as compared to WT mice. Overall, our work strongly suggests JNK2 is a negative regulator of CD1d-mediated Ag presentation and contributes to IL-12-induced iNKT cell activation and loss during viral infections.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Richard M Gallo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Masood A Khan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.,College of Applied Medical Sciences, Al-Qassim University, Buraidah, Saudi Arabia
| | - Abhirami K Iyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ian M Kratzke
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
15
|
Stolk D, van der Vliet HJ, de Gruijl TD, van Kooyk Y, Exley MA. Positive & Negative Roles of Innate Effector Cells in Controlling Cancer Progression. Front Immunol 2018; 9:1990. [PMID: 30298063 PMCID: PMC6161645 DOI: 10.3389/fimmu.2018.01990] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Innate immune cells are active at the front line of host defense against pathogens and now appear to play a range of roles under non-infectious conditions as well, most notably in cancer. Establishing the balance of innate immune responses is critical for the “flavor” of these responses and subsequent adaptive immunity and can be either “good or bad” in controlling cancer progression. The importance of innate NK cells in tumor immune responses has already been extensively studied over the last few decades, but more recently several relatively mono- or oligo-clonal [i.e., (semi-) invariant] innate T cell subsets received substantial interest in tumor immunology including invariant natural killer T (iNKT), γδ-T and mucosal associated invariant T (MAIT) cells. These subsets produce high levels of various pro- and/or anti-inflammatory cytokines/chemokines reflecting their capacity to suppress or stimulate immune responses. Survival of patients with cancer has been linked to the frequencies and activation status of NK, iNKT, and γδ-T cells. It has become clear that NK, iNKT, γδ-T as well as MAIT cells all have physiological roles in anti-tumor responses, which emphasize their possible relevance for tumor immunotherapy. A variety of clinical trials has focused on manipulating NK, iNKT, and γδ-T cell functions as a cancer immunotherapeutic approach demonstrating their safety and potential for achieving beneficial therapeutic effects, while the exploration of MAIT cell related therapies is still in its infancy. Current issues limiting the full therapeutic potential of these innate cell subsets appear to be related to defects and suppressive properties of these subsets that, with the right stimulus, might be reversed. In general, how innate lymphocytes are activated appears to control their subsequent abilities and consequent impact on adaptive immunity. Controlling these potent regulators and mediators of the immune system should enable their protective roles to dominate and their deleterious potential (in the specific context of cancer) to be mitigated.
Collapse
Affiliation(s)
- Dorian Stolk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Mark A Exley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Agenus, Inc., Lexington, MA, United States
| |
Collapse
|
16
|
Singh AK, Tripathi P, Cardell SL. Type II NKT Cells: An Elusive Population With Immunoregulatory Properties. Front Immunol 2018; 9:1969. [PMID: 30210505 PMCID: PMC6120993 DOI: 10.3389/fimmu.2018.01969] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Natural killer T (NKT) cells are unique unconventional T cells that are reactive to lipid antigens presented on the non-polymorphic major histocompatibility class (MHC) I-like molecule CD1d. They have characteristics of both innate and adaptive immune cells, and have potent immunoregulatory roles in tumor immunity, autoimmunity, and infectious diseases. Based on their T cell receptor (TCR) expression, NKT cells are divided into two subsets, type I NKT cells with an invariant TCRα-chain (Vα24 in humans, Vα14 in mice) and type II NKT cells with diverse TCRs. While type I NKT cells are well-studied, knowledge about type II NKT cells is still limited, and it is to date only possible to identify subsets of this population. However, recent advances have shown that both type I and type II NKT cells play important roles in many inflammatory situations, and can sometimes regulate the functions of each other. Type II NKT cells can be both protective and pathogenic. Here, we review current knowledge on type II NKT cells and their functions in different disease settings and how these cells can influence immunological outcomes.
Collapse
Affiliation(s)
- Avadhesh Kumar Singh
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Prabhanshu Tripathi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Garner LC, Klenerman P, Provine NM. Insights Into Mucosal-Associated Invariant T Cell Biology From Studies of Invariant Natural Killer T Cells. Front Immunol 2018; 9:1478. [PMID: 30013556 PMCID: PMC6036249 DOI: 10.3389/fimmu.2018.01478] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells and invariant natural killer T (iNKT) cells are innate-like T cells that function at the interface between innate and adaptive immunity. They express semi-invariant T cell receptors (TCRs) and recognize unconventional non-peptide ligands bound to the MHC Class I-like molecules MR1 and CD1d, respectively. MAIT cells and iNKT cells exhibit an effector-memory phenotype and are enriched within the liver and at mucosal sites. In humans, MAIT cell frequencies dwarf those of iNKT cells, while in laboratory mouse strains the opposite is true. Upon activation via TCR- or cytokine-dependent pathways, MAIT cells and iNKT cells rapidly produce cytokines and show direct cytotoxic activity. Consequently, they are essential for effective immunity, and alterations in their frequency and function are associated with numerous infectious, inflammatory, and malignant diseases. Due to their abundance in mice and the earlier development of reagents, iNKT cells have been more extensively studied than MAIT cells. This has led to the routine use of iNKT cells as a reference population for the study of MAIT cells, and such an approach has proven very fruitful. However, MAIT cells and iNKT cells show important phenotypic, functional, and developmental differences that are often overlooked. With the recent availability of new tools, most importantly MR1 tetramers, it is now possible to directly study MAIT cells to understand their biology. Therefore, it is timely to compare the phenotype, development, and function of MAIT cells and iNKT cells. In this review, we highlight key areas where MAIT cells show similarity or difference to iNKT cells. In addition, we discuss important avenues for future research within the MAIT cell field, especially where comparison to iNKT cells has proven less informative.
Collapse
Affiliation(s)
- Lucy C. Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Nicholas M. Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Brutkiewicz RR, Yunes-Medina L, Liu J. Immune evasion of the CD1d/NKT cell axis. Curr Opin Immunol 2018; 52:87-92. [PMID: 29734045 DOI: 10.1016/j.coi.2018.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/19/2018] [Indexed: 01/03/2023]
Abstract
Many reviews on the CD1d/NKT cell axis focus on the ability of CD1d-restricted NKT cells to serve as effector cells in a variety of disorders, be they infectious diseases, cancer or autoimmunity. In contrast, here, we discuss the ways that viruses, bacteria and tumor cells can evade the CD1d/NKT cell axis. As a result, these disease states have a better chance to establish a foothold and potentially cause problems for the subsequent adaptive immune response, as the host tries to rid itself of infections or tumors.
Collapse
Affiliation(s)
- Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, United States.
| | - Laura Yunes-Medina
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, United States
| | - Jianyun Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, United States
| |
Collapse
|
19
|
Chen Z, Zhu S, Wang L, Xie D, Zhang H, Li X, Zheng X, Du Z, Li J, Bai L. Memory Follicular Helper Invariant NKT Cells Recognize Lipid Antigens on Memory B Cells and Elicit Antibody Recall Responses. THE JOURNAL OF IMMUNOLOGY 2018; 200:3117-3127. [DOI: 10.4049/jimmunol.1701026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022]
|
20
|
Abstract
Natural Killer T (NKT) cells based cancer immunotherapy is an evolving area of cancer therapy, but tumors escape from this treatment modality by altering CD1d expression and its antigen presentation pathway. Here, we have studied the relation of CD1d expression in various breast cancer cell lines to their viability and progression. We observed a novel phenomenon that CD1d expression level increases with the progressive stage of the cancer. A small molecule, zerumbone (ZER) caused down-regulation of CD1d that was accompanied by breast cancer cell growth in vitro. The growth inhibitory effect of ZER against breast cancer cells was augmented by treatment with anti-CD1d mAb. This effect was mediated by G1-phase cell cycle arrest and apoptosis induction coupled with an increase in mitochondrial membrane depolarization. CD1d expression and cell proliferation were inhibited by both CD1d siRNA and ZER. The α-galactosylceramide, a ligand for CD1d, showed increased CD1d expression as well as cell proliferation which was opposite to the effects of ZER. This study shows that, CD1d overexpression is associated with the progressive stages of breast cancer and ZER could be an adjuvant to potentiate cancer immunotherapy.
Collapse
|
21
|
Littwitz-Salomon E, Schimmer S, Dittmer U. Natural killer T cells contribute to the control of acute retroviral infection. Retrovirology 2017; 14:5. [PMID: 28122574 PMCID: PMC5267384 DOI: 10.1186/s12977-017-0327-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/03/2017] [Indexed: 01/12/2023] Open
Abstract
Background Natural killer T cells (NKT cells) play an important role in the immunity against viral infections. They produce cytokines or have direct cytolytic effects that can restrict virus replication. However, the exact function of NKT cells in retroviral immunity is not fully elucidated. Therefore, we analyzed the antiretroviral functions of NKT cells in mice infected with the Friend retrovirus (FV). Results After FV infection numbers of NKT cells remained unchanged but activation as well as improved effector functions of NKT cells were found. While the release of pro-inflammatory cytokines was not changed after infection, activated NKT cells revealed an elevated cytotoxic potential. Stimulation with α-Galactosylceramide significantly increased not only total NKT cell numbers and activation but also the anti-retroviral capacity of NKT cells. Conclusion We demonstrate a strong activation and a potent cytolytic function of NKT cells during acute retroviral infection. Therapeutic treatment with α-Galactosylceramide could further improve the reduction of early retroviral replication by NKT cells, which could be utilized for future treatment against viral infections. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0327-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisabeth Littwitz-Salomon
- Institute for Virology of the University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Simone Schimmer
- Institute for Virology of the University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology of the University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
22
|
Wohlleber D, Knolle PA. The role of liver sinusoidal cells in local hepatic immune surveillance. Clin Transl Immunology 2016; 5:e117. [PMID: 28090319 PMCID: PMC5192065 DOI: 10.1038/cti.2016.74] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 02/06/2023] Open
Abstract
Although the liver's function as unique immune organ regulating immunity has received a lot of attention over the last years, the mechanisms determining hepatic immune surveillance against infected hepatocytes remain less well defined. Liver sinusoidal cells, in particular, liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs), serve as physical platform for recruitment and anchoring of blood-borne immune cells in the liver. Liver sinusoidal cells also function as portal of entry for infectious microorganisms targeting the liver such as hepatotropic viruses, bacteria or parasites. At the same time, liver sinusoidal cells actively contribute to achieve immune surveillance against bacterial and viral infections. KCs function as adhesion hubs for CD8 T cells from the circulation, which initiates the interaction of virus-specific CD8 T cells with infected hepatocytes. Through their phagocytic function, KCs contribute to removal of bacteria from the circulation and engage in cross talk with sinusoidal lymphocyte populations to achieve elimination of phagocytosed bacteria. LSECs contribute to local immune surveillance through cross-presentation of viral antigens that causes antigen-specific retention of CD8 T cells from the circulation. Such cross-presentation of viral antigens activates CD8 T cells to release TNF that in turn triggers selective killing of virus-infected hepatocytes. Beyond major histocompatibility complex (MHC)-restricted T-cell immunity, CD1- and MR1-restricted innate-like lymphocytes are found in liver sinusoids whose roles in local immune surveillance against infection need to be defined. Thus, liver sinusoidal cell populations bear key functions for hepatic recruitment and for local activation of immune cells, which are both required for efficient immune surveillance against infection in the liver.
Collapse
Affiliation(s)
- Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München , München, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, München, Germany; Institute of Experimental Immunology, Universität Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Braunschweig, Germany
| |
Collapse
|
23
|
Kovats S, Turner S, Simmons A, Powe T, Chakravarty E, Alberola-Ila J. West Nile virus-infected human dendritic cells fail to fully activate invariant natural killer T cells. Clin Exp Immunol 2016; 186:214-226. [PMID: 27513522 DOI: 10.1111/cei.12850] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 01/18/2023] Open
Abstract
West Nile virus (WNV) infection is a mosquito-borne zoonosis with increasing prevalence in the United States. WNV infection begins in the skin, and the virus replicates initially in keratinocytes and dendritic cells (DCs). In the skin and cutaneous lymph nodes, infected DCs are likely to interact with invariant natural killer T cells (iNKTs). Bidirectional interactions between DCs and iNKTs amplify the innate immune response to viral infections, thus controlling viral load and regulating adaptive immunity. iNKTs are stimulated by CD1d-bound lipid antigens or activated indirectly by inflammatory cytokines. We exposed human monocyte-derived DCs to WNV Kunjin and determined their ability to activate isolated blood iNKTs. DCs became infected as judged by synthesis of viral mRNA and Envelope and NS-1 proteins, but did not undergo significant apoptosis. Infected DCs up-regulated the co-stimulatory molecules CD86 and CD40, but showed decreased expression of CD1d. WNV infection induced DC secretion of type I interferon (IFN), but no or minimal interleukin (IL)-12, IL-23, IL-18 or IL-10. Unexpectedly, we found that the WNV-infected DCs stimulated human iNKTs to up-regulate CD69 and produce low amounts of IL-10, but not proinflammatory cytokines such as IFN-γ or tumour necrosis factor (TNF)-α. Both CD1d and IFNAR blockade partially abrogated this iNKT response, suggesting involvement of a T cell receptor (TCR)-CD1d interaction and type I interferon receptor (IFNAR) signalling. Thus, WNV infection interferes with DC-iNKT interactions by preventing the production of proinflammatory cytokines. iNKTs may be a source of IL-10 observed in human flavivirus infections and initiate an anti-inflammatory innate response that limits adaptive immunity and immune pathology upon WNV infection.
Collapse
Affiliation(s)
- S Kovats
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - S Turner
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - A Simmons
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - T Powe
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - E Chakravarty
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - J Alberola-Ila
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
24
|
Lin SJ, Huang YC, Cheng PJ, Lee PT, Hsiao HS, Kuo ML. Interleukin-15 enhances the expansion and function of natural killer T cells from adult peripheral and umbilical cord blood. Cytokine 2016; 76:348-355. [PMID: 26481260 DOI: 10.1016/j.cyto.2015.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/17/2015] [Accepted: 09/22/2015] [Indexed: 01/03/2023]
Abstract
Invariant natural killer T cells (iNKT cells) are innate-like non-conventional T cells restricted by the CD1d molecule that are unique in their ability to play a pivotal role in immune regulation. Deficient iNKT function has been reported in patients receiving umbilical cord blood (UCB) transplantation. We sought to determine the effect of interleukin (IL)-15 on α-galactosylceramide (α-GalCer)-expanded iNKT cell function from UCB and adult peripheral blood (APB) mononuclear cells (MNCs). Fresh APB and UCB MNCs were cultured with IL-15 (50 ng/ml) in the presence or absence of α-GalCer (100 ng/ml) for 10 days. Cells were harvested for examination of cell yield, apoptosis, cytokine production and cytotoxic function of Vα24(+)/Vβ11(+) iNKT cells. We observed that α-GalCer-expanded APB and UCB iNKT cells and such expansion was further enhanced with IL-15. The percentage of CD3(+)CD56(+) NKT-like cells in both APB and UCB MNCs was increased with IL-15 but not with α-GalCer. Apoptosis of UCB iNKT cells was ameliorated by IL-15. Although APB and UCB iNKT cells secreted lower IFN-γ, it could be enhanced with IL-15. The expression of perforin in APB iNKT cells can also be enhanced with IL-15. UCB Vα24(+)Vβ11(+) iNKT cells further augmented K562 cytotoxicity mediated by IL-15. Taken together, these results demonstrated the relative functional deficiencies of α-GalCer induced UCB iNKT cells, which can be ameliorated by IL-15. Our findings suggest a therapeutic benefit of IL-15 immunotherapy during the post-UCB transplant period when iNKT function remains poor.
Collapse
Affiliation(s)
- Syh-Jae Lin
- Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Ying-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Po-Jen Cheng
- Department of Obstetrics/Gynecology, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Pei-Tzu Lee
- Health Research Division, Chang Gung Children's Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Hsiu-Shan Hsiao
- Health Research Division, Chang Gung Children's Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
25
|
Kohlgruber AC, Donado CA, LaMarche NM, Brenner MB, Brennan PJ. Activation strategies for invariant natural killer T cells. Immunogenetics 2016; 68:649-63. [PMID: 27457886 PMCID: PMC5745583 DOI: 10.1007/s00251-016-0944-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/15/2016] [Indexed: 12/17/2022]
Abstract
Invariant natural killer T (iNKT) cells are a specialized T cell subset that plays an important role in host defense, orchestrating both innate and adaptive immune effector responses against a variety of microbes. Specific microbial lipids and mammalian self lipids displayed by the antigen-presenting molecule CD1d can activate iNKT cells through their semi-invariant αβ T cell receptors (TCRs). iNKT cells also constitutively express receptors for inflammatory cytokines typically secreted by antigen-presenting cells (APCs) after recognition of pathogen-associated molecular patterns (PAMPs), and they can be activated through these cytokine receptors either in combination with TCR signals, or in some cases even in the absence of TCR signaling. During infection, experimental evidence suggests that both TCR-driven and cytokine-driven mechanisms contribute to iNKT cell activation. While the relative contributions of these two signaling mechanisms can vary widely depending on the infectious context, both lipid antigens and PAMPs mediate reciprocal activation of iNKT cells and APCs, leading to downstream activation of multiple other immune cell types to promote pathogen clearance. In this review, we discuss the mechanisms involved in iNKT cell activation during infection, focusing on the central contributions of both lipid antigens and PAMP-induced inflammatory cytokines, and highlight in vivo examples of activation during bacterial, viral, and fungal infections.
Collapse
Affiliation(s)
- Ayano C Kohlgruber
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Donado
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nelson M LaMarche
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael B Brenner
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick J Brennan
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Felley L, Gumperz JE. Are human iNKT cells keeping tabs on lipidome perturbations triggered by oxidative stress in the blood? Immunogenetics 2016; 68:611-22. [PMID: 27393663 DOI: 10.1007/s00251-016-0936-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/25/2016] [Indexed: 01/26/2023]
Abstract
The central paradigm of conventional MHC-restricted T cells is that they respond specifically to foreign peptides, while displaying tolerance to self-antigens. In contrast, it is now becoming clear that a number of innate-like T cell subsets-CD1-restricted T cells, Vγ9Vδ2 T cells, and MAIT cells-may operate by different rules: rather than focusing on the recognition of specific foreign antigens, these T cells all appear to respond to alterations to lipid-related pathways. By monitoring perturbations to the "lipidome," these T cells may be able to spring into action to deal with physiological situations that are of self as well as microbial origin. iNKT cells are a prime example of this type of lipidome-reactive T cell. As a result of their activation by self lyso-phospholipid species that are generated downstream of blood lipid oxidation, human iNKT cells in the vasculature may respond sensitively to a variety of oxidative stresses. Some of the cytokines produced by activated iNKT cells have angiogenic effects (e.g., GM-CSF, IL-8), whereas others (e.g., IFN-γ) are pro-inflammatory factors that can propagate vascular pathology by influencing the functions of macrophages and dendritic cells. Consistent with this, evidence is accumulating that iNKT cells contribute to atherosclerosis, which is one of the most common inflammatory pathologies, and one that is integrally related to characteristics of the lipidome.
Collapse
Affiliation(s)
- Laura Felley
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Jenny E Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA.
| |
Collapse
|
27
|
Webb TJ, Carey GB, East JE, Sun W, Bollino DR, Kimball AS, Brutkiewicz RR. Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses. Pathog Dis 2016; 74:ftw055. [PMID: 27297969 DOI: 10.1093/femspd/ftw055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 01/27/2023] Open
Abstract
Natural killer T (NKT) cells play a critical role in the host's innate immune response. CD1d-mediated presentation of glycolipid antigens to NKT cells has been established; however, the mechanisms by which NKT cells recognize infected or cancerous cells remain unclear. 5(')-AMP activated protein kinase (AMPK) is a master regulator of lipogenic pathways. We hypothesized that activation of AMPK during infection and malignancy could alter the repertoire of antigens presented by CD1d and serve as a danger signal to NKT cells. In this study, we examined the effect of alterations in metabolism on CD1d-mediated antigen presentation to NKT cells and found that an infection with lymphocytic choriomeningitis virus rapidly increased CD1d-mediated antigen presentation. Hypoxia inducible factors (HIF) enhance T-cell effector functions during infection, therefore antigen presenting cells pretreated with pharmacological agents that inhibit glycolysis, induce HIF and activate AMPK were assessed for their ability to induce NKT-cell responses. Pretreatment with 2-deoxyglucose, cobalt chloride, AICAR and metformin significantly enhanced CD1d-mediated NKT-cell activation. In addition, NKT cells preferentially respond to malignant B cells and B-cell lymphomas express HIF-1α. These data suggest that targeting cellular metabolism may serve as a novel means of inducing innate immune responses.
Collapse
Affiliation(s)
- Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Gregory B Carey
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - James E East
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Wenji Sun
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Dominique R Bollino
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Amy S Kimball
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
28
|
Bandyopadhyay K, Marrero I, Kumar V. NKT cell subsets as key participants in liver physiology and pathology. Cell Mol Immunol 2016; 13:337-46. [PMID: 26972772 PMCID: PMC4856801 DOI: 10.1038/cmi.2015.115] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/19/2015] [Accepted: 12/23/2015] [Indexed: 12/17/2022] Open
Abstract
Natural killer T (NKT) cells are innate-like lymphocytes that generally recognize lipid antigens and are enriched in microvascular compartments of the liver. NKT cells can be activated by self- or microbial-lipid antigens and by signaling through toll-like receptors. Following activation, NKT cells rapidly secrete pro-inflammatory or anti-inflammatory cytokines and chemokines, and thereby determine the milieu for subsequent immunity or tolerance. It is becoming clear that two different subsets of NKT cells-type I and type II-have different modes of antigen recognition and have opposing roles in inflammatory liver diseases. Here we focus mainly on the roles of both NKT cell subsets in the maintenance of immune tolerance and inflammatory diseases in liver. Furthermore, how the differential activation of type I and type II NKT cells influences other innate cells and adaptive immune cells to result in important consequences for tissue integrity is discussed. It is crucial that better reagents, including CD1d tetramers, be used in clinical studies to define the roles of NKT cells in liver diseases in patients.
Collapse
Affiliation(s)
- Keya Bandyopadhyay
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Idania Marrero
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Vipin Kumar
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
29
|
Mathews S, Feng D, Maricic I, Ju C, Kumar V, Gao B. Invariant natural killer T cells contribute to chronic-plus-binge ethanol-mediated liver injury by promoting hepatic neutrophil infiltration. Cell Mol Immunol 2016; 13:206-16. [PMID: 25661730 PMCID: PMC4786627 DOI: 10.1038/cmi.2015.06] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 12/12/2022] Open
Abstract
Neutrophil infiltration is a hallmark of alcoholic steatohepatitis; however, the underlying mechanisms remain unclear. We previously reported that chronic-plus-binge ethanol feeding synergistically induces hepatic recruitment of neutrophils, which contributes to liver injury. In this paper, we investigated the roles of invariant natural killer T (iNKT) cells in chronic-plus-binge ethanol feeding-induced hepatic neutrophil infiltration and liver injury. Wild-type and two strains of iNKT cell-deficient mice (CD1d- and Jα18-deficient mice) were subjected to chronic-plus-binge ethanol feeding. Liver injury and inflammation were examined. Chronic-plus-binge ethanol feeding synergistically increased the number of hepatic iNKT cells and induced their activation, compared with chronic feeding or binge alone. iNKT cell-deficient mice were protected from chronic-plus-binge ethanol-induced hepatic neutrophil infiltration and liver injury. Moreover, chronic-plus-binge ethanol feeding markedly upregulated the hepatic expression of several genes associated with inflammation and neutrophil recruitment in wild-type mice, but induction of these genes was abrogated in iNKT cell-deficient mice. Importantly, several cytokines and chemokines (e.g., MIP-2, MIP-1, IL-4, IL-6 and osteopontin) involved in neutrophil infiltration were upregulated in hepatic NKT cells isolated from chronic-plus-binge ethanol-fed mice compared to pair-fed mice. Finally, treatment with CD1d blocking antibody, which blocks iNKT cell activation, partially prevented chronic-plus-binge ethanol-induced liver injury and inflammation. Chronic-plus-binge ethanol feeding activates hepatic iNKT cells, which play a critical role in the development of early alcoholic liver injury, in part by releasing mediators that recruit neutrophils to the liver, and thus, iNKT cells represent a potential therapeutic target for the treatment of alcoholic liver disease.
Collapse
Affiliation(s)
- Stephanie Mathews
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Igor Maricic
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
| | - Cynthia Ju
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Integrated Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Beitzen-Heineke A, Bouzani M, Schmitt AL, Kurzai O, Hünniger K, Einsele H, Loeffler J. Human Invariant Natural Killer T cells possess immune-modulating functions during Aspergillus infection. Med Mycol 2015; 54:169-76. [PMID: 26483428 DOI: 10.1093/mmy/myv074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 07/12/2015] [Indexed: 01/25/2023] Open
Abstract
Aspergillus fumigatus is the most common cause for invasive fungal infections, a disease associated with high mortality in immune-compromised patients. CD1d-restricted invariant natural killer T (iNKT) cells compose a small subset of T cells known to impact the immune response toward various infectious pathogens. To investigate the role of human iNKT cells during A. fumigatus infection, we studied their activation as determined by CD69 expression and cytokine production in response to distinct fungal morphotypes in the presence of different CD1d(+) antigen presenting cells using flow cytometry and multiplex enzyme-linked immunosorbent assay (ELISA). Among CD1d(+) subpopulations, CD1d(+)CD1c(+) mDCs showed the highest potential to activate iNKT cells on a per cell basis. The presence of A. fumigatus decreased this effect of CD1d(+)CD1c(+) mDCs on iNKT cells and led to reduced secretion of TNF-α, G-CSF and RANTES. Production of other Th1 and Th2 cytokines was not affected by the fungus, suggesting an immune-modulating function for human iNKT cells during A. fumigatus infection.
Collapse
Affiliation(s)
| | - Maria Bouzani
- Medizinische Klinik und Poliklinik II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Anna-Lena Schmitt
- Medizinische Klinik und Poliklinik II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Oliver Kurzai
- Septomics Research Centre, Friedrich-Schiller-University Jena and Leibniz-Institute for Natural Products Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Kerstin Hünniger
- Septomics Research Centre, Friedrich-Schiller-University Jena and Leibniz-Institute for Natural Products Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Juergen Loeffler
- Medizinische Klinik und Poliklinik II, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
31
|
Fichtner AS, Paletta D, Starick L, Schumann RF, Niewiesk S, Herrmann T. Function and expression of CD1d and invariant natural killer T-cell receptor in the cotton rat (Sigmodon hispidus). Immunology 2015; 146:618-29. [PMID: 26346465 DOI: 10.1111/imm.12532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/12/2015] [Accepted: 09/02/2015] [Indexed: 12/16/2022] Open
Abstract
The cotton rat (Sigmodon hispidus) belongs to the rodent family of Cricetidae and provides a powerful model to study the pathogenesis of human respiratory viruses and measles virus. Recent studies in other rodent models have suggested a role for invariant natural killer T (iNKT) cells in antiviral immunity and vaccination against respiratory virus infections. Using new experimental tools, we provide the first evidence for a functional CD1d cell molecule (crCD1d) and iNKT T-cell receptor in cotton rats. The crCD1d cDNA sequence was identified and crCD1d transductants showed that monoclonal antibody WTH-2 stains crCD1d as efficiently as mouse or rat CD1d. The expression of crCD1d was clearly weaker for thymocytes and B cells, and higher for T cells, which is different to what is found in murine species. The antigen-presenting capacity of crCD1d was demonstrated with crCD1d-immunoglobulin dimers loaded with the glycolipid PBS57, which bound iNKT T-cell receptors. Evidence for functional cotton rat iNKT cells was provided by detection of interferon-γ and interleukin-4 in cultures of splenocytes stimulated with PBS57 and α-galactosylceramide and by specific staining of about 0·2% of splenocytes with PBS57-loaded crCD1d dimers. Canonical AV14/AJ18 rearrangements were identified and found to contain multiple members of the AV14 (AV11) family. One of them was expressed and found to bind CD1d dimers. In summary, these data provide the first evidence for functional CD1d molecules and iNKT T-cell receptors in cotton rats and provide the tools to analyse them both in the cotton rat model of infectious diseases.
Collapse
Affiliation(s)
| | - Daniel Paletta
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Lisa Starick
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
32
|
Cognate interaction with iNKT cells expands IL-10-producing B regulatory cells. Proc Natl Acad Sci U S A 2015; 112:12474-9. [PMID: 26392556 DOI: 10.1073/pnas.1504790112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Successful induction of B-cell activation and memory depends on help from CD4+ T cells. Invariant natural killer T (iNKT) cells (glycolipid-specific, CD1d-restricted innate lymphocytes) provide both cognate (direct) and noncognate (indirect) helper signals to enhance B-cell responses. Both forms of iNKT-cell help induce primary humoral immune responses, but only noncognate iNKT-cell help drives humoral memory and plasma cells. Here, we show that iNKT cognate help for B cells is fundamentally different from the help provided by conventional CD4+ T cells. Cognate iNKT-cell help drives an early, unsustained germinal center B-cell expansion, less reduction of T follicular regulatory cells, an expansion of marginal zone B cells, and early increases in regulatory IL-10-producing B-cell numbers compared with noncognate activation. These results are consistent with a mechanism whereby iNKT cells preferentially provide an innate form of help that does not generate humoral memory and has important implications for the application of glycolipid molecules as vaccine adjuvants.
Collapse
|
33
|
Macho-Fernandez E, Brigl M. The Extended Family of CD1d-Restricted NKT Cells: Sifting through a Mixed Bag of TCRs, Antigens, and Functions. Front Immunol 2015; 6:362. [PMID: 26284062 PMCID: PMC4517383 DOI: 10.3389/fimmu.2015.00362] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/04/2015] [Indexed: 01/21/2023] Open
Abstract
Natural killer T (NKT) cells comprise a family of specialized T cells that recognize lipid antigens presented by CD1d. Based on their T cell receptor (TCR) usage and antigen specificities, CD1d-restricted NKT cells have been divided into two main subsets: type I NKT cells that use a canonical invariant TCR α-chain and recognize α-galactosylceramide (α-GalCer), and type II NKT cells that use a more diverse αβ TCR repertoire and do not recognize α-GalCer. In addition, α-GalCer-reactive NKT cells that use non-canonical αβ TCRs and CD1d-restricted T cells that use γδ or δ/αβ TCRs have recently been identified, revealing further diversity among CD1d-restricted T cells. Importantly, in addition to their distinct antigen specificities, functional differences are beginning to emerge between the different members of the CD1d-restricted T cell family. In this review, while using type I NKT cells as comparison, we will focus on type II NKT cells and the other non-invariant CD1d-restricted T cell subsets, and discuss our current understanding of the antigens they recognize, the formation of stimulatory CD1d/antigen complexes, the modes of TCR-mediated antigen recognition, and the mechanisms and consequences of their activation that underlie their function in antimicrobial responses, anti-tumor immunity, and autoimmunity.
Collapse
Affiliation(s)
- Elodie Macho-Fernandez
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Manfred Brigl
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Siddiqui S, Visvabharathy L, Wang CR. Role of Group 1 CD1-Restricted T Cells in Infectious Disease. Front Immunol 2015; 6:337. [PMID: 26175733 PMCID: PMC4484338 DOI: 10.3389/fimmu.2015.00337] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/16/2015] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved CD1 family of antigen-presenting molecules presents lipid antigens rather than peptide antigens to T cells. CD1 molecules, unlike classical MHC molecules, display limited polymorphism, making CD1-restricted lipid antigens attractive vaccine targets that could be recognized in a genetically diverse human population. Group 1 CD1 (CD1a, CD1b, and CD1c)-restricted T cells have been implicated to play critical roles in a variety of autoimmune and infectious diseases. In this review, we summarize current knowledge and recent discoveries on the development of group 1 CD1-restricted T cells and their function in different infection models. In particular, we focus on (1) newly identified microbial and self-lipid antigens, (2) kinetics, phenotype, and unique properties of group 1 CD1-restricted T cells during infection, and (3) the similarities of group 1 CD1-restricted T cells to the closely related group 2 CD1-restricted T cells.
Collapse
Affiliation(s)
- Sarah Siddiqui
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| | - Lavanya Visvabharathy
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| |
Collapse
|
35
|
Chung BK, Priatel JJ, Tan R. CD1d Expression and Invariant NKT Cell Responses in Herpesvirus Infections. Front Immunol 2015; 6:312. [PMID: 26161082 PMCID: PMC4479820 DOI: 10.3389/fimmu.2015.00312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 12/26/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a highly conserved subset of unconventional T lymphocytes that express a canonical, semi-invariant T cell receptor and surface markers shared with the natural killer cell lineage. iNKT cells recognize exogenous and endogenous glycolipid antigens restricted by non-polymorphic CD1d molecules, and are highly responsive to the prototypical agonist, α-galactosylceramide. Upon activation, iNKT cells rapidly coordinate signaling between innate and adaptive immune cells through the secretion of proinflammatory cytokines, leading to the maturation of antigen-presenting cells, and expansion of antigen-specific CD4+ and CD8+ T cells. Because of their potent immunoregulatory properties, iNKT cells have been extensively studied and are known to play a pivotal role in mediating immune responses against microbial pathogens including viruses. Here, we review evidence that herpesviruses manipulate CD1d expression to escape iNKT cell surveillance and establish lifelong latency in humans. Collectively, published findings suggest that iNKT cells play critical roles in anti-herpesvirus immune responses and could be harnessed therapeutically to limit viral infection and viral-associated disease.
Collapse
Affiliation(s)
- Brian K. Chung
- NIHR Birmingham Liver Biomedical Research Unit, Centre for Liver Research, University of Birmingham, Birmingham, UK
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - John J. Priatel
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rusung Tan
- Department of Pathology, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
36
|
Shekhar S, Joyee AG, Yang X. Dynamics of NKT-Cell Responses to Chlamydial Infection. Front Immunol 2015; 6:233. [PMID: 26029217 PMCID: PMC4432794 DOI: 10.3389/fimmu.2015.00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/30/2015] [Indexed: 12/03/2022] Open
Abstract
Natural killer T (NKT) cells have gained great attention owing to their critical functional roles in immunity to various pathogens. In this review, we provide an overview of the current knowledge on the role of NKT cells in host defense against and pathogenesis due to Chlamydia, which is an intracellular bacterial pathogen that poses a threat to the public health worldwide. Accumulating evidence has demonstrated that NKT cells, particularly invariant NKT (iNKT) cells, play a crucial role in host defense against chlamydial infections, especially in C. pneumoniae infection. iNKT cells can promote type-1 protective responses to C. pneumoniae by inducing enhanced production of IL-12 by dendritic cells (DCs), in particular CD8α+ DCs, which promote the differentiation of naive T cells into protective IFN-γ-producing Th1/Tc1 type CD4+/CD8+ T cells. This iNKT-cell-mediated modulation of DC function is largely dependent upon CD40–CD40L interaction, IFN-γ production, and cell-to-cell contact. In addition, iNKT cells modulate the function of natural killer cells. NKT cells may be also involved in the pathogenesis of some chlamydial diseases by inducing different patterns of cytokine production. A better understanding of NKT-cell biology will enable us to rationally design prophylactic and therapeutic tools to combat infectious diseases.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada
| | - Antony George Joyee
- Department of Immunology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada
| | - Xi Yang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada ; Department of Immunology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada
| |
Collapse
|
37
|
Li L, Yang J, Jiang Y, Tu J, Schust DJ. Activation of decidual invariant natural killer T cells promotes lipopolysaccharide-induced preterm birth. Mol Hum Reprod 2015; 21:369-81. [PMID: 25589517 DOI: 10.1093/molehr/gav001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/08/2015] [Indexed: 12/14/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are crucial for host defense against a variety of microbial pathogens, but the underlying mechanisms of iNKT cells activation by microbes are not fully explained. In this study, we investigated the molecular mechanisms of iNKT cell activation in lipopolysaccharide (LPS)-stimulated preterm birth using an adoptive transfer system and diverse neutralizing antibodies (Abs) and inhibitors. We found that adoptive transfer of decidual iNKT cells to LPS-stimulated iNKT cell deficient Jα18(-/-) mice that lack invariant Vα14Jα281T cell receptor (TCR) expression significantly decreased the time to delivery and increased the percentage of decidual iNKT cells. Neutralizing Abs against Toll-like receptor 4 (TLR-4), CD1d, interleukin (IL)-12 and IL-18, and inhibitors blocking the activation of nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK) p38 and extracellular signal-regulated kinase (ERK) significantly reduced in vivo percentages of decidual iNKT cells, their intracellular interferon (IFN)-γ production and surface CD69 expression. In vitro, in the presence of the same Abs and inhibitors used as in vivo, decidual iNKT cells co-cultured with LPS-pulsed dendritic cells (DCs) showed significantly decreased extracellular and intracellular IFN-γ secretion and surface CD69 expression. Our data demonstrate that the activation of decidual iNKT cells plays an important role in inflammation-induced preterm birth. Activation of decidual iNKT cells also requires TLR4-mediated NF-κB, MAPK p38 and ERK pathways, the proinflammatory cytokines IL-12 and IL-18, and endogenous glycolipid antigens presented by CD1d.
Collapse
Affiliation(s)
- Liping Li
- Department of Obstetrics and Gynecology, Guangzhou Medical University Affiliated Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Guangzhou Medical University Affiliated Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Yao Jiang
- Department of Obstetrics and Gynecology, Guangzhou Medical University Affiliated Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Jiaoqin Tu
- Department of Obstetrics and Gynecology, Guangzhou Medical University Affiliated Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Danny J Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO 65201, USA
| |
Collapse
|
38
|
Navabi SS, Doroudchi M, Tashnizi AH, Habibagahi M. Natural Killer Cell Functional Activity After 4-1BB Costimulation. Inflammation 2014; 38:1181-90. [DOI: 10.1007/s10753-014-0082-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Cowley SC. MAIT cells and pathogen defense. Cell Mol Life Sci 2014; 71:4831-40. [PMID: 25164578 PMCID: PMC11113923 DOI: 10.1007/s00018-014-1708-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/25/2014] [Accepted: 08/15/2014] [Indexed: 12/18/2022]
Abstract
Mucosa-associated invariant T (MAIT) cells are a unique population of innate T cells that are abundant in humans. These cells possess an evolutionarily conserved invariant T cell receptor α chain restricted by the nonpolymorphic class Ib major histocompatibility (MHC) molecule, MHC class I-related protein (MR1). The recent discovery that MAIT cells are activated by MR1-bound riboflavin metabolite derivatives distinguishes MAIT cells from all other αβ T cells in the immune system. Since mammals lack the capacity to synthesize riboflavin, intermediates from the riboflavin biosynthetic pathway are distinct microbial molecular patterns that provide a unique signal to the immune system. Multiple lines of evidence suggest that MAIT cells, which produce important cytokines such as IFN-γ, TNF, and IL-17A, have the potential to influence immune responses to a broad range of pathogens. Here we will discuss our current understanding of MAIT cell biology and their role in pathogen defense.
Collapse
Affiliation(s)
- Siobhán C Cowley
- Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mycobacterial Diseases and Cellular Immunology, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 1401 Rockville Pike HFM-431, Rockville, MD, 20852, USA,
| |
Collapse
|
40
|
Ivanov S, Paget C, Trottein F. Role of non-conventional T lymphocytes in respiratory infections: the case of the pneumococcus. PLoS Pathog 2014; 10:e1004300. [PMID: 25299581 PMCID: PMC4192596 DOI: 10.1371/journal.ppat.1004300] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-conventional T lymphocytes constitute a special arm of the immune system and act as sentinels against pathogens at mucosal surfaces. These non-conventional T cells (including mucosal-associated invariant T [MAIT] cells, gamma delta [γδ] T cells, and natural killer T [NKT] cells) display several innate cell-like features and are rapidly activated by the recognition of conserved, stress-induced, self, and microbial ligands. Here, we review the role of non-conventional T cells during respiratory infections, with a particular focus on the encapsulated extracellular pathogen Streptococcus pneumoniae, the leading cause of bacterial pneumonia worldwide. We consider whether MAIT cells, γδ T cells, and NKT cells might offer opportunities for preventing and/or treating human pneumococcus infections.
Collapse
Affiliation(s)
- Stoyan Ivanov
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
| | - Christophe Paget
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
| | - François Trottein
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
41
|
Matangkasombut P, Chan-in W, Opasawaschai A, Pongchaikul P, Tangthawornchaikul N, Vasanawathana S, Limpitikul W, Malasit P, Duangchinda T, Screaton G, Mongkolsapaya J. Invariant NKT cell response to dengue virus infection in human. PLoS Negl Trop Dis 2014; 8:e2955. [PMID: 24945350 PMCID: PMC4063705 DOI: 10.1371/journal.pntd.0002955] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/07/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Dengue viral infection is a global health threat without vaccine or specific treatment. The clinical outcome varies from asymptomatic, mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF). While adaptive immune responses were found to be detrimental in the dengue pathogenesis, the roles of earlier innate events remain largely uninvestigated. Invariant natural killer T (iNKT) cells represent innate-like T cells that could dictate subsequent adaptive response but their role in human dengue virus infection is not known. We hypothesized that iNKT cells play a role in human dengue infection. METHODS Blood samples from a well-characterized cohort of children with DF, DHF, in comparison to non-dengue febrile illness (OFI) and healthy controls at various time points were studied. iNKT cells activation were analyzed by the expression of CD69 by flow cytometry. Their cytokine production was then analyzed after α-GalCer stimulation. Further, the CD1d expression on monocytes, and CD69 expression on conventional T cells were measured. RESULTS iNKT cells were activated during acute dengue infection. The level of iNKT cell activation associates with the disease severity. Furthermore, these iNKT cells had altered functional response to subsequent ex vivo stimulation with α-GalCer. Moreover, during acute dengue infection, monocytic CD1d expression was also upregulated and conventional T cells also became activated. CONCLUSION iNKT cells might play an early and critical role in the pathogenesis of severe dengue viral infection in human. Targeting iNKT cells and CD1d serve as a potential therapeutic strategy for severe dengue infection in the future.
Collapse
Affiliation(s)
- Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
| | - Wilawan Chan-in
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anunya Opasawaschai
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pisut Pongchaikul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nattaya Tangthawornchaikul
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | | | | | - Prida Malasit
- Center of Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thaneeya Duangchinda
- Center of Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Gavin Screaton
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith campus, Imperial College London, London, United Kingdom
| | - Juthathip Mongkolsapaya
- Center of Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith campus, Imperial College London, London, United Kingdom
| |
Collapse
|
42
|
Vomhof-DeKrey EE, Yates J, Leadbetter EA. Invariant NKT cells provide innate and adaptive help for B cells. Curr Opin Immunol 2014; 28:12-7. [PMID: 24514004 DOI: 10.1016/j.coi.2014.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/03/2014] [Accepted: 01/16/2014] [Indexed: 01/08/2023]
Abstract
B cells rely on CD4(+) T cells helper signals to optimize their responses to T-dependent antigens. Recently another subset of T cells has been identified which provides help for B cells, invariant natural killer T (iNKT) cells. iNKT cells are unique because they provide both innate and adaptive forms of help to B cells, with divergent outcomes. iNKT cells are widely distributed throughout the spleen at rest, consolidate in the marginal zone of the spleen early after activation, and are later found in germinal centers. Understanding the activation requirements for iNKT cells has led to the development of glycolipid containing nanoparticles which efficiently activate iNKT cells, enhance their cooperation with B cells, and which hold promise for vaccine development.
Collapse
|
43
|
Polyclonal type II natural killer T cells require PLZF and SAP for their development and contribute to CpG-mediated antitumor response. Proc Natl Acad Sci U S A 2014; 111:2674-9. [PMID: 24550295 DOI: 10.1073/pnas.1323845111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
CD1d-restricted natural killer T (NKT) cells are innate-like T cells with potent immunomodulatory function via rapid production of both Th1 and Th2 cytokines. NKT cells comprise well-characterized type I NKT cells, which can be detected by α-galactosylceramide-loaded CD1d tetramers, and less-studied type II NKT cells, which do not recognize α-galactosylceramide. Here we characterized type II NKT cells on a polyclonal level by using a Jα18-deficient IL-4 reporter mouse model. This model allows us to track type II NTK cells by the GFP(+)TCRβ(+) phenotype in the thymus and liver. We found type II NKT cells, like type I NKT cells, exhibit an activated phenotype and are dependent on the transcriptional regulator promyelocytic leukemia zinc finger (PLZF) and the adaptor molecule signaling lymphocyte activation molecule-associated protein (SAP) for their development. Type II NKT cells are potently activated by β-D-glucopyranosylceramide (β-GlcCer) but not sulfatide or phospholipids in a CD1d-dependent manner, with the stimulatory capacity of β-GlcCer influenced by acyl chain length. Compared with type I NKT cells, type II NKT cells produce lower levels of IFN-γ but comparable amounts of IL-13 in response to polyclonal T-cell receptor stimulation, suggesting they may play different roles in regulating immune responses. Furthermore, type II NKT cells can be activated by CpG oligodeoxynucletides to produce IFN-γ, but not IL-4 or IL-13. Importantly, CpG-activated type II NKT cells contribute to the antitumor effect of CpG in the B16 melanoma model. Taken together, our data reveal the characteristics of polyclonal type II NKT cells and their potential role in antitumor immunotherapy.
Collapse
|
44
|
Paget C, Trottein F. Role of type 1 natural killer T cells in pulmonary immunity. Mucosal Immunol 2013; 6:1054-67. [PMID: 24104457 DOI: 10.1038/mi.2013.59] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/18/2013] [Indexed: 02/04/2023]
Abstract
Mucosal sites are populated by a multitude of innate lymphoid cells and "innate-like" T lymphocytes expressing semiconserved T-cell receptors. Among the latter group, interest in type I natural killer T (NKT) cells has gained considerable momentum over the last decade. Exposure to NKT cell antigens is likely to occur continuously at mucosal sites. For this reason, and as they rapidly respond to stress-induced environmental cytokines, NKT cells are important contributors to immune and inflammatory responses. Here, we review the dual role of mucosal NKT cells during immune responses and pathologies with a particular focus on the lungs. Their role during pulmonary acute and chronic inflammation and respiratory infections is outlined. Whether NKT cells might provide a future attractive therapeutic target for treating human respiratory diseases is discussed.
Collapse
Affiliation(s)
- C Paget
- 1] Cancer Immunology Program, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia [3] Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France [4] Institut National de la Santé et de la Recherche Médicale, Lille, France [5] Centre National de la Recherche Scientifique, UMR 8204, Lille, France [6] Université Lille Nord de France, Lille, France [7] Institut Fédératif de Recherche 142, Lille, France
| | | |
Collapse
|
45
|
Selvanantham T, Escalante NK, Cruz Tleugabulova M, Fiévé S, Girardin SE, Philpott DJ, Mallevaey T. Nod1 and Nod2 enhance TLR-mediated invariant NKT cell activation during bacterial infection. THE JOURNAL OF IMMUNOLOGY 2013; 191:5646-54. [PMID: 24163408 DOI: 10.4049/jimmunol.1301412] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Invariant NKT (iNKT) cells act at the crossroad between innate and adaptive immunity and are important players in the defense against microbial pathogens. iNKT cells can detect pathogens that trigger innate receptors (e.g., TLRs, Rig-I, Dectin-1) within APCs, with the consequential induction of CD1d-mediated Ag presentation and release of proinflammatory cytokines. We show that the cytosolic peptidoglycan-sensing receptors Nod1 and Nod2 are necessary for optimal IFN-γ production by iNKT cells, as well as NK cells. In the absence of Nod1 and Nod2, iNKT cells had a blunted IFN-γ response following infection by Salmonella enterica serovar Typhimurium and Listeria monocytogenes. For Gram-negative bacteria, we reveal a synergy between Nod1/2 and TLR4 in dendritic cells that potentiates IL-12 production and, ultimately, activates iNKT cells. These findings suggest that multiple innate pathways can cooperate to regulate iNKT cell activation during bacterial infection.
Collapse
|
46
|
Kinjo Y, Kitano N, Kronenberg M. The role of invariant natural killer T cells in microbial immunity. J Infect Chemother 2013; 19:560-70. [PMID: 23846426 PMCID: PMC3822041 DOI: 10.1007/s10156-013-0638-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Indexed: 10/26/2022]
Abstract
Invariant natural killer T cells (iNKT cells) are unique lymphocytes with characteristic features, such as expression of an invariant T-cell antigen receptor (TCR) α-chain, recognition of glycolipid antigens presented by CD1d molecules, and ability to rapidly produce large amounts of cytokines, including interferon-γ (IFN-γ) and interleukin 4 (IL-4) upon TCR stimulation. Many studies have demonstrated that iNKT cells participate in immune response against diverse microbes, including bacteria, fungi, protozoan parasites, and viruses. Generally, these cells play protective roles in host defense against infections. However, in some contexts they play pathogenic roles, by inducing or augmenting inflammation. Recent reports show that iNKT cells recognize glycolipid antigens from pathogenic bacteria including Streptococcus pneumoniae, and they contribute to host defense against infection. iNKT cell responses to these microbial glycolipid antigens are highly conserved between rodents and humans, suggesting that iNKT cells are evolutionally conserved because their invariant TCR is useful in detecting certain pathogens. Furthermore, glycolipid-mediated iNKT cell activation during immunization has adjuvant activity, enhancing humoral and cell-mediated responses. Therefore, iNKT cell activation is an attractive target for developing new vaccines for infectious diseases.
Collapse
Affiliation(s)
- Yuki Kinjo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | | | | |
Collapse
|
47
|
King IL, Amiel E, Tighe M, Mohrs K, Veerapen N, Besra G, Mohrs M, Leadbetter EA. The mechanism of splenic invariant NKT cell activation dictates localization in vivo. THE JOURNAL OF IMMUNOLOGY 2013; 191:572-82. [PMID: 23785119 DOI: 10.4049/jimmunol.1300299] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Invariant NKT (iNKT) cells are glycolipid-specific innate lymphocytes emerging as critical players in the immune response to diverse infections and disease. iNKT cells are activated through cognate interactions with lipid-loaded APCs, by Ag-independent cytokine-mediated signaling pathways, or a combination of both. Although each of these modes of iNKT cell activation plays an important role in directing the humoral and cell-mediated immune response, the spatio-temporal nature of these interactions and the cellular requirements for activation are largely undefined. Combining novel in situ confocal imaging of αGalactosylceramide-loaded CD1d tetramer labeling to localize the endogenous iNKT cell population with cytokine reporter mice, we reveal the choreography of early murine splenic iNKT cell activation across diverse settings of glycolipid immunization and systemic infection with Streptococcus pneumoniae. We find that iNKT cells consolidate in the marginal zone and require dendritic cells lining the splenic marginal zone for activation following administration of cognate glycolipids and during systemic infection but not following exogenous cytokine administration. Although further establishing the importance of cognate iNKT cell interactions with APCs, we also show that noncognate iNKT-dependent mechanisms are sufficient to mediate effector outcomes, such as STAT signaling and dendritic cell licensing throughout the splenic parenchyma. Collectively, these data provide new insight into how iNKT cells may serve as a natural adjuvant in facilitating adaptive immune responses, irrespective of their tissue localization.
Collapse
Affiliation(s)
- Irah L King
- Trudeau Institute, Saranac Lake, NY 12983, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kunte A, Zhang W, Paduraru C, Veerapen N, Cox LR, Besra GS, Cresswell P. Endoplasmic reticulum glycoprotein quality control regulates CD1d assembly and CD1d-mediated antigen presentation. J Biol Chem 2013; 288:16391-16402. [PMID: 23615906 PMCID: PMC3675576 DOI: 10.1074/jbc.m113.474221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The non-classical major histocompatibility complex (MHC) homologue CD1d presents lipid antigens to innate-like lymphocytes called natural-killer T (NKT) cells. These cells, by virtue of their broad cytokine repertoire, shape innate and adaptive immune responses. Here, we have assessed the role of endoplasmic reticulum glycoprotein quality control in CD1d assembly and function, specifically the role of a key component of the quality control machinery, the enzyme UDP glucose glycoprotein glucosyltransferase (UGT1). We observe that in UGT1-deficient cells, CD1d associates prematurely with β2-microglobulin (β2m) and is able to rapidly exit the endoplasmic reticulum. At least some of these CD1d-β2m heterodimers are shorter-lived and can be rescued by provision of a defined exogenous antigen, α-galactosylceramide. Importantly, we show that in UGT1-deficient cells the CD1d-β2m heterodimers have altered antigenicity despite the fact that their cell surface levels are unchanged. We propose that UGT1 serves as a quality control checkpoint during CD1d assembly and further suggest that UGT1-mediated quality control can shape the lipid repertoire of newly synthesized CD1d. The quality control process may play a role in ensuring stability of exported CD1d-β2m complexes, in facilitating presentation of low abundance high affinity antigens, or in preventing deleterious responses to self lipids.
Collapse
Affiliation(s)
- Amit Kunte
- Section of Infectious Diseases, Department of Internal Medicine, New Haven, Connecticut 06520-8011
| | - Wei Zhang
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011
| | - Crina Paduraru
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011
| | - Natacha Veerapen
- School of Biosciences, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gurdyal S Besra
- School of Biosciences, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Peter Cresswell
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011.
| |
Collapse
|
49
|
Jervis P, Polzella P, Wojno J, Jukes JP, Ghadbane H, Garcia
Diaz YR, Besra GS, Cerundolo V, Cox LR. Design, synthesis, and functional activity of labeled CD1d glycolipid agonists. Bioconjug Chem 2013; 24:586-94. [PMID: 23458425 PMCID: PMC3630740 DOI: 10.1021/bc300556e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/21/2013] [Indexed: 02/01/2023]
Abstract
Invariant natural killer T cells (iNKT cells) are restricted by CD1d molecules and activated upon CD1d-mediated presentation of glycolipids to T cell receptors (TCRs) located on the surface of the cell. Because the cytokine response profile is governed by the structure of the glycolipid, we sought a method for labeling various glycolipids to study their in vivo behavior. The prototypical CD1d agonist, α-galactosyl ceramide (α-GalCer) 1, instigates a powerful immune response and the generation of a wide range of cytokines when it is presented to iNKT cell TCRs by CD1d molecules. Analysis of crystal structures of the TCR-α-GalCer-CD1d ternary complex identified the α-methylene unit in the fatty acid side chain, and more specifically the pro-S hydrogen at this position, as a site for incorporating a label. We postulated that modifying the glycolipid in this way would exert a minimal impact on the TCR-glycolipid-CD1d ternary complex, allowing the labeled molecule to function as a good mimic for the CD1d agonist under investigation. To test this hypothesis, the synthesis of a biotinylated version of the CD1d agonist threitol ceramide (ThrCer) was targeted. Both diastereoisomers, epimeric at the label tethering site, were prepared, and functional experiments confirmed the importance of substituting the pro-S, and not the pro-R, hydrogen with the label for optimal activity. Significantly, functional experiments revealed that biotinylated ThrCer (S)-10 displayed behavior comparable to that of ThrCer 5 itself and also confirmed that the biotin residue is available for streptavidin and antibiotin antibody recognition. A second CD1d agonist, namely α-GalCer C20:2 4, was modified in a similar way, this time with a fluorescent label. The labeled α-GalCer C20:2 analogue (11) again displayed functional behavior comparable to that of its unlabeled substrate, supporting the notion that the α-methylene unit in the fatty acid amide chain should be a suitable site for attaching a label to a range of CD1d agonists. The flexibility of the synthetic strategy, and late-stage incorporation of the label, opens up the possibility of using this labeling approach to study the in vivo behavior of a wide range of CD1d agonists.
Collapse
MESH Headings
- Animals
- Antigens, CD1d/chemistry
- Antigens, CD1d/drug effects
- Antigens, CD1d/immunology
- Cells, Cultured
- Cytokines/analysis
- Cytokines/biosynthesis
- Cytokines/immunology
- Drug Design
- Galactosylceramides/chemistry
- Galactosylceramides/immunology
- Galactosylceramides/pharmacology
- Humans
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- Molecular Conformation
- Natural Killer T-Cells/chemistry
- Natural Killer T-Cells/drug effects
- Natural Killer T-Cells/immunology
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Peter
J. Jervis
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Paolo Polzella
- Medical Research
Council Human
Immunology Unit, Nuffield Department of Medicine, Weatherall Institute
of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K
| | - Justyna Wojno
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - John-Paul Jukes
- Medical Research
Council Human
Immunology Unit, Nuffield Department of Medicine, Weatherall Institute
of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K
| | - Hemza Ghadbane
- Medical Research
Council Human
Immunology Unit, Nuffield Department of Medicine, Weatherall Institute
of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K
| | - Yoel R. Garcia
Diaz
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - Vincenzo Cerundolo
- Medical Research
Council Human
Immunology Unit, Nuffield Department of Medicine, Weatherall Institute
of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K
| | - Liam R. Cox
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| |
Collapse
|
50
|
Gately CM, Podbielska M, Counihan T, Hennessy M, Leahy T, Moran AP, Hogan EL, O'Keeffe J. Invariant Natural Killer T-cell anergy to endogenous myelin acetyl-glycolipids in multiple sclerosis. J Neuroimmunol 2013; 259:1-7. [PMID: 23537888 DOI: 10.1016/j.jneuroim.2013.02.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
Abstract
To extend our studies on glycolipid-reactive invariant Natural Killer T-cell (iNKT-cell) function in multiple sclerosis (MS), we investigated the stimulatory activities of two myelin-derived glycolipids that are poly-acetylated derivatives of β-galactosylceramide designated as fast-migrating cerebrosides (FMC) by thin-layer chromatography. In healthy subjects, FMC stimulation of peripheral blood cells significantly expanded iNKT-cells similar to α-GalCer and induced significant increases in Th1, Th2 and Th17 cytokines. In marked contrast, MS patients failed to respond to FMCs or to α-GalCer stimulation indicating an anergic response. We propose that myelin-derived FMC glycolipids stimulate iNKT-cell responses in vivo and this is blocked in MS.
Collapse
Affiliation(s)
- Carol M Gately
- Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|