1
|
Yu H, Ren K, Jin Y, Zhang L, Liu H, Huang Z, Zhang Z, Chen X, Yang Y, Wei Z. Mitochondrial DAMPs: Key mediators in neuroinflammation and neurodegenerative disease pathogenesis. Neuropharmacology 2025; 264:110217. [PMID: 39557152 DOI: 10.1016/j.neuropharm.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are increasingly linked to mitochondrial dysfunction and neuroinflammation. Central to this link are mitochondrial damage-associated molecular patterns (mtDAMPs), including mitochondrial DNA, ATP, and reactive oxygen species, released during mitochondrial stress or damage. These mtDAMPs activate inflammatory pathways, such as the NLRP3 inflammasome and cGAS-STING, contributing to the progression of neurodegenerative diseases. This review delves into the mechanisms by which mtDAMPs drive neuroinflammation and discusses potential therapeutic strategies targeting these pathways to mitigate neurodegeneration. Additionally, it explores the cross-talk between mitochondria and the immune system, highlighting the complex interplay that exacerbates neuronal damage. Understanding the role of mtDAMPs could pave the way for novel treatments aimed at modulating neuroinflammation and slowing disease progression, ultimately improving patient outcome.
Collapse
Affiliation(s)
- Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yage Jin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Li Zhang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Zhen Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Ziheng Zhang
- College of Life Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, PR China
| | - Xing Chen
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
2
|
Lauritzen KH, Yang K, Frisk M, Louwe MC, Olsen MB, Ziegler M, Louch WE, Halvorsen B, Aukrust P, Yndestad A, Sandanger Ø. Apigenin inhibits NLRP3 inflammasome activation in monocytes and macrophages independently of CD38. Front Immunol 2025; 15:1497984. [PMID: 39840045 PMCID: PMC11746122 DOI: 10.3389/fimmu.2024.1497984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction CD38, a regulator of intracellular calcium signalling, is highly expressed in immune cells. Mice lacking CD38 are very susceptible to acute bacterial infections, implicating CD38 in innate immune responses. The effects of CD38 inhibition on NLRP3 inflammasome activation in human primary monocytes and monocyte-derived macrophages have not been investigated. Apigenin is a naturally occurring flavonoid known to inhibit CD38. However, apigenin has also been proposed to inhibit the extracellular ATP receptor P2XR7, an upstream activator of NLRP3. In this study we aimed to investigate whether apigenin attenuates NLRP3 inflammasome activation in human monocytes and monocyte-derived macrophages through CD38 inhibition. Methods LPS-primed human monocytes and monocyte-derived macrophages were treated with apigenin, the CD38 inhibitor 78c, antagonists of CD38 second messengers (8-br-ADPR and 8-br-cADPR) or the ATP hydrolase, apyrase, prior to NLRP3 activation with ATP, monosodium urate crystals (MSU) or nigericin. IL-1β and TNF secretion and mRNA expression, as well as N-terminal gasdermin-D formation were quantified. Ca2+ mobilization was determined by live confocal microscopy. NLRP3 activity was also compared in WT and CD38-/- mouse bone marrow-derived macrophages (BMDMs) with and without CD38 inhibitors. Results Apigenin significantly inhibited IL-1β release from LPS-primed monocytes and macrophages activated with ATP, MSU, or nigericin. CD38 inhibition with 78c also attenuated NLRP3-dependent IL-1β release. Apigenin was a potent inhibitor of Ca2+ flux from the endoplasmic reticulum to the cytosol in human monocyte-derived macrophages. Apyrase attenuated IL-1β release induced by ATP or MSU, but not by nigericin. However, the NLRP3 inflammasome is not compromised in CD38-/- bone marrow-derived macrophages compared to corresponding WT cells, and apigenin moderated IL-1β release in both genotypes. Discussion Our data support that apigenin attenuates NLRP3 activation independently of CD38. Our results also suggest that MSU crystals activate NLRP3 through autocrine or paracrine ATP signalling.
Collapse
Affiliation(s)
- Knut Husø Lauritzen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kuan Yang
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Mieke C. Louwe
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Maria Belland Olsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - William E. Louch
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Øystein Sandanger
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Section of Dermatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
3
|
Goyal L, Singh S. Neurological Manifestations Following Traumatic Brain Injury: Role of Behavioral, Neuroinflammation, Excitotoxicity, Nrf-2 and Nitric Oxide. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:47-59. [PMID: 39082170 DOI: 10.2174/0118715273318552240708055413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 01/31/2025]
Abstract
Traumatic Brain Injury (TBI) is attributed to a forceful impact on the brain caused by sharp, penetrating bodies, like bullets and any sharp object. Some popular instances like falls, traffic accidents, physical assaults, and athletic injuries frequently cause TBI. TBI is the primary cause of both mortality and disability among young children and adults. Several individuals experience psychiatric problems, including cognitive dysfunction, depression, post-traumatic stress disorder, and anxiety, after primary injury. Behavioral changes post TBI include cognitive deficits and emotional instability (anxiety, depression, and post-traumatic stress disorder). These alterations are linked to neuroinflammatory processes. On the other hand, the direct impact mitigates inflammation insult by the release of pro-inflammatory cytokines, namely IL-1β, IL-6, and TNF-α, exacerbating neuronal injury and contributing to neurodegeneration. During the excitotoxic phase, activation of glutamate subunits like NMDA enhances the influx of Ca2+ and leads to mitochondrial metabolic impairment and calpain-mediated cytoskeletal disassembly. TBI pathological insult is also linked to transcriptional response suppression Nrf-2, which plays a critical role against TBI-induced oxidative stress. Activation of NRF-2 enhances the expression of anti-oxidant enzymes, providing neuroprotection. A possible explanation for the elevated levels of NO is that the stimulation of NMDA receptors by glutamate leads to the influx of calcium in the postsynaptic region, activating NOS's constitutive isoforms.
Collapse
Affiliation(s)
- Lav Goyal
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| |
Collapse
|
4
|
Butler JJ, Dankert JF, Keller LE, Azam MT, Dahmen J, Kerkhoffs GMMJ, Kennedy JG. Assessment of the Monocyte Subpopulations and M1/M2 Macrophage Ratio in Concentrated Bone Marrow Aspirate. Cartilage 2024:19476035241304308. [PMID: 39651680 PMCID: PMC11626554 DOI: 10.1177/19476035241304308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/29/2024] [Accepted: 11/17/2024] [Indexed: 12/11/2024] Open
Abstract
OBJECTIVE The purpose of this study was to determine the M1/M2 macrophage ratio in concentrated bone marrow aspirate (cBMA) in patients undergoing surgical intervention augmented with cBMA for osteochondral lesions of the talus (OLTs). DESIGN Samples of peripheral blood (PB), bone marrow aspirate (BMA), and cBMA were collected during the procedure. The samples were analyzed by automated cell counting and multicolor fluorescence-activated cell sorting with specific antibodies recognizing monocytes (CD14+ CD16+) and the M1 (CD86+) and M2 (CD163+CD206+) populations within that monocyte population. Cytokine concentrations within the samples were evaluated with enzyme-linked immunosorbent assay (ELISA). The composition of cBMA was compared between 2 commercially available BMA concentration systems. RESULTS Thirty-eight patients with a mean age of 43.2 ± 10.1 years old undergoing a surgical procedure for the treatment of OLTs involving the use of cBMA were included. cBMA had a mean fold increase of 4.7 for all white blood cells, 6.1 for monocytes, 7.9 for lymphocytes, 2.4 for neutrophils, and 9.6 for platelets when compared to BMA. The mean M1/M2 ratio for PB, BMA, and cBMA was 15.2 ± 12.0, 20.8 ± 13.3, and 22.1 ± 16.0, respectively. There was a statistically significant higher concentration of interleukin-1 receptor antagonist (IL-1Ra) in the cBMA sample (8243.3 ± 14,837.4 pg/mL) compared to both BMA (3143.0 ± 2218.5 pg/mL) and PB (1847.5 ± 1520.4 pg/mL) samples. The IL-1Ra/IL-1β ratio for PB, BMA, and cBMA was 790.6 ± 581.9, 764.7 ± 675.2, and 235.7 ± 192.1, respectively. There was no difference in the cBMA M1/M2 ratio (19.0 ± 11.1 vs 24.0 ± 18.3) between the Magellan (Isto Biologics, Hopkinton, Massachusetts) and Angel systems (Arthrex Inc, Naples, Florida). CONCLUSION This prospective study found that the M1/M2 ratio in cBMA was 22.1 ± 16.0, with significant patient to patient variation observed. Overall, there was no statistically significant difference in the M1/M2 ratio across PB, BMA, and cBMA samples. This is the first study to characterize the macrophage subpopulation within cBMA, which may have significant clinical implications in future studies.
Collapse
Affiliation(s)
- James J. Butler
- Foot and Ankle Division, Department of Orthopaedic Surgery, NYU Langone Health, New York City, NY, USA
| | - John F. Dankert
- Foot and Ankle Division, Department of Orthopaedic Surgery, NYU Langone Health, New York City, NY, USA
| | - Laura E. Keller
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Mohammad T. Azam
- Foot and Ankle Division, Department of Orthopaedic Surgery, NYU Langone Health, New York City, NY, USA
| | - Jari Dahmen
- Department of Orthopaedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gino M. M. J. Kerkhoffs
- Academic Center for Evidence-Based Sports Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Collaboration for Health and Safety in Sports, International Olympic Committee Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - John G. Kennedy
- Foot and Ankle Division, Department of Orthopaedic Surgery, NYU Langone Health, New York City, NY, USA
| |
Collapse
|
5
|
Grzelak N, Kaczmarek D, Poziemba KM, Mrówczyński W. Myocardial Disorders in BDNF-Deficient Rats: Limited Recovery Post-Moderate Endurance Training. Diabetes Metab Syndr Obes 2024; 17:4649-4660. [PMID: 39654953 PMCID: PMC11626974 DOI: 10.2147/dmso.s486807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction The study aimed to determine whether heterozygous BDNF-deficient (BDNF-knockout, SD-BDNF) rats exhibit pathological changes in the myocardium and to assess whether a 5-week moderate-intensity endurance training program can reverse adverse changes in the heart muscle. Methods Experiments were conducted on four groups of rats: control wild-type, control BDNF knockout, trained wild-type and trained BDNF knockout. Knockout rats were selected due to the presence of symptoms resembling metabolic syndrome in serum and liver while 5-week moderate endurance training was used as an intervention targeted at restoring heart function. Measurements of BDNF/Trk-B concentrations and molecules levels and activities, such as cardiac specific enzymes like creatine kinase and creatine kinase myocardial band, lipids as total cholesterol, low-density lipoprotein and triglycerides, metabolic enzymes including alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase and lactate dehydrogenase and interleukin-1 were carried out in myocardium homogenates. Results In BDNF-deficient rats, the myocardium showed significantly reduced lipid concentrations, decreased metabolic and cardiac enzyme activity, and elevated Trk-B levels, all of which are indicative of myocardial ischemia or hypoxia. These changes in critical biomarkers were consistent with those earlier observed in the livers of BDNF-deficient rats, suggesting a link between the liver and cardiac function. Moderate endurance training led to an increase in creatine kinase activity in the myocardium of trained rats, suggesting increased production and utilization of energy required for myocardial contraction in trained wild-type and knockout populations of rats. Discussion BDNF-deficient rats exhibited numerous myocardial abnormalities, most of which were not reversible after moderate-intensity endurance training. These findings provide a basis for a deeper understanding of the mechanisms underlying myocardial disorders in BDNF-deficient rats, which appear to be a suitable model for studying various aspects of metabolic disorders.
Collapse
Affiliation(s)
- Norbert Grzelak
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Dominik Kaczmarek
- Department of Physiology and Biochemistry, Poznań University of Physical Education, Poznań, Poland
| | - Krystian Marek Poziemba
- Department of Physiology and Biochemistry, Poznań University of Physical Education, Poznań, Poland
| | | |
Collapse
|
6
|
Atici AE, Noval Rivas M, Arditi M. The Central Role of Interleukin-1 Signalling in the Pathogenesis of Kawasaki Disease Vasculitis: Path to Translation. Can J Cardiol 2024; 40:2305-2320. [PMID: 39084253 PMCID: PMC11646188 DOI: 10.1016/j.cjca.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Kawasaki disease (KD) manifests as an acute febrile condition and systemic vasculitis, the etiology of which remains elusive. Primarily affecting children under 5 years of age, if untreated KD can lead to a significant risk of coronary artery aneurysms and subsequent long-term cardiovascular sequelae, including myocardial ischemia and myocardial infarction. Intravenous immunoglobulin therapy mitigates the risk of aneurysm formation, but a subset of patients exhibit resistance to this treatment, increasing the susceptibility of coronary artery lesions. Furthermore, the absence of a KD-specific diagnostic test or biomarkers complicates early detection and appropriate treatment. Experimental murine models of KD vasculitis have substantially improved our understanding of the disease pathophysiology, revealing the key roles of the NLRP3 inflammasome and interleukin-1 (IL-1) signalling pathway. This review aims to delineate the pathophysiologic findings of KD while summarising the findings for the emerging key role of IL-1β in its pathogenesis, derived from both human data and experimental murine models, and the translational potential of these findings for anti-IL-1 therapies for children with KD.
Collapse
Affiliation(s)
- Asli Ekin Atici
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, California, USA; Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Magali Noval Rivas
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, California, USA; Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Moshe Arditi
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, California, USA; Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
7
|
Wu Y, Sun X, Kang K, Yang Y, Li H, Zhao A, Niu T. Hemophagocytic lymphohistiocytosis: current treatment advances, emerging targeted therapy and underlying mechanisms. J Hematol Oncol 2024; 17:106. [PMID: 39511607 PMCID: PMC11542428 DOI: 10.1186/s13045-024-01621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rapidly progressing, life-threatening syndrome characterized by excessive immune activation, often presenting as a complex cytokine storm. This hyperactive immune response can lead to multi-organ failure and systemic damage, resulting in an extremely short survival period if left untreated. Over the past decades, although HLH has garnered increasing attention from researchers, there have been few advancements in its treatment. The cytokine storm plays a crucial role in the treatment of HLH. Investigating the detailed mechanisms behind cytokine storms offers insights into targeted therapeutic approaches, potentially aiding in early intervention and improving the clinical outcome of HLH patients. To date, there is only one targeted therapy, emapalumab targeting interferon-γ, that has gained approval for primary HLH. This review aims to summarize the current treatment advances, emerging targeted therapeutics and underlying mechanisms of HLH, highlighting its newly discovered targets potentially involved in cytokine storms, which are expected to drive the development of novel treatments and offer fresh perspectives for future studies. Besides, multi-targeted combination therapy may be essential for disease control, but further trials are required to determine the optimal treatment mode for HLH.
Collapse
Affiliation(s)
- Yijun Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xu Sun
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqi Yang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - He Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Pirzada RH, Yasmeen F, Haseeb M, Javaid N, Kim E, Choi S. Small molecule inhibitors of IL-1R1/IL-1β interaction identified via transfer machine learning QSAR modelling. Int J Biol Macromol 2024; 282:137295. [PMID: 39515709 DOI: 10.1016/j.ijbiomac.2024.137295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The human interleukin-1 receptor I (IL-1R1) is a cytokine receptor recognized by interleukin 1β (IL-1β), among other cytokines. Over activation of IL-1R1 has been implicated in various inflammatory conditions. This research aims to identify small-molecule inhibitors targeting the hIL1R1/IL1β interaction, employing a multi-task transfer learning approach for quantitative structure-activity relationship (QSAR) modelling. A comprehensive bioactivity dataset from functionally related proteins was utilised to build a robust ensemble machine learning model for predicting IC50 values against the target protein. Despite the availability of antibody-based therapies, the absence of orally available small-molecule inhibitors necessitates their development. By combining model predictions with docking and simulation approaches, the interleukin-1 receptor inhibitor (IRI-1) emerged as a lead compound. It potently inhibited human IL1-R1 with micromolar activity in THP-1 and Saos-2 cells and demonstrated good biocompatibility. Western blot analysis revealed that IRI-1 inhibits IL-1β-mediated phosphorylation of IL1-R1, JNK, IRAK-4, and ERK in THP-1 cells. Furthermore, molecular dynamics simulations confirmed the structural stability of the protein-ligand complexes. This study highlights the effectiveness of multi-task transfer learning approaches for building robust QSAR models against novel proteins or those with limited bioactivity data, such as hIL-1β/IL-1R1 protein.
Collapse
Affiliation(s)
- Rameez Hassan Pirzada
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Farzana Yasmeen
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Muhammad Haseeb
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Nasir Javaid
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Eunha Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Republic of Korea.
| |
Collapse
|
9
|
Challa N, Enns CB, Keith BA, Harding JCS, Loewen ME. Decreased expression of DRA ( SLC26A3) by a p38-driven IL-1α response contributes to diarrheal disease following in vivo challenge with Brachyspira spp. Am J Physiol Gastrointest Liver Physiol 2024; 327:G655-G672. [PMID: 39104321 DOI: 10.1152/ajpgi.00049.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
In this study, we uncovered the novel mechanism of IL-1α-mediated downregulated in adenoma (DRA) (SLC26A3) downregulation in the context of Brachyspira spp.-induced malabsorptive diarrhea. Experimentally infected pigs with Brachyspira spp. had significantly reduced DRA expression in the colon accompanied by IL-1α upregulation. This response was recapitulated in vitro by exposing Caco-2 cells to either Brachyspira lysate or IL-1α. Both p38 and MAPK-activated protein kinase 2 (MAPKAPK-2 also referred as MK-2) showed an increased phosphorylation after exposure to either. SB203580 application, a p38 inhibitor blocked the MK-2 phosphorylation and attenuated the DRA and IL-1α response to both lysate and IL-1α. Exposure to IL-1 receptor antagonist (IL-1RA) produced a similar response. In addition, exposure of cells to either of these blockers without IL-1α or lysate results in increased DRA and decreased IL-1α expression, revealing that DRA needs IL-1α signaling for basal physiological expression. Dual inhibition with both blockers completely inhibited the effect from IL-1α while significantly attenuating the response from Brachyspira lysate, suggesting a minor contribution from another pathway. Together this demonstrates that Brachyspira activates p38 MAPK signaling driving IL-1α expression, which activates IL-1R1 causing DRA downregulation while also driving upregulation of IL-1α through p38 in a positive feedback mechanism. In conclusion, we elucidated a major pathway involved in DRA downregulation and its role in Brachyspira-induced diarrhea. In addition, these observations will aid in our understanding of other inflammatory and infectious diarrhea conditions.NEW & NOTEWORTHY The diarrheal disease caused by the two infectious spirochete spp. B. hyodysenteriae and B. hampsonii reduced the expression of DRA (SLC26A3), a major Cl-/HCO-3 exchanger involved in Cl- absorption. This is attributed to the upregulation of IL-1α driven by p38 MAPK. This work also describes a potential new mechanism in inflammatory diseases while showing the importance of IL-1α in maintaining DRA levels.
Collapse
Affiliation(s)
- Nitin Challa
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cole B Enns
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brandon A Keith
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Salib AMN, Crane MJ, Jamieson AM, Lipscombe D. Peripheral Ca V2.2 Channels in the Skin Regulate Prolonged Heat Hypersensitivity during Neuroinflammation. eNeuro 2024; 11:ENEURO.0311-24.2024. [PMID: 39433408 PMCID: PMC11599794 DOI: 10.1523/eneuro.0311-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Neuroinflammation can lead to chronic maladaptive pain affecting millions of people worldwide. Neurotransmitters, cytokines, and ion channels are implicated in neuroimmune cell signaling, but their roles in specific behavioral responses are not fully elucidated. Voltage-gated CaV2.2 channel activity in skin controls rapid and transient heat hypersensitivity induced by intradermal (i.d.) capsaicin via IL-1ɑ cytokine signaling. CaV2.2 channels are not, however, involved in mechanical hypersensitivity that developed in the i.d. capsaicin animal model. Here, we show that CaV2.2 channels are also critical for heat hypersensitivity induced by i.d. complete Freund adjuvant (CFA). i.d. CFA, a model of chronic neuroinflammation, involves ongoing cytokine signaling for days leading to pronounced edema and hypersensitivity to sensory stimuli. Peripheral CaV2.2 channel activity in the skin was required for the full development and week-long time course of heat hypersensitivity induced by i.d. CFA, but paw edema and mechanical hypersensitivity were independent of CaV2.2 channel activity. CFA induced increases in several cytokines in hindpaw fluid including IL-6 which was also dependent on CaV2.2 channel activity. Using IL-6-specific neutralizing antibodies in vivo, we show that IL-6 contributes to heat hypersensitivity and that neutralizing both IL-1ɑ and IL-6 was even more effective at reducing the magnitude and duration of CFA-induced heat hypersensitivity. Our findings demonstrate a functional link between CaV2.2 channel activity and the release of IL-6 in the skin and show that CaV2.2 channels have a privileged role in the induction and maintenance of heat hypersensitivity during chronic forms of neuroinflammation in the skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Departments of Neuroscience, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Meredith J Crane
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Amanda M Jamieson
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Diane Lipscombe
- Departments of Neuroscience, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
11
|
Beucher L, Gabillard-Lefort C, Baris OR, Mialet-Perez J. Monoamine oxidases: A missing link between mitochondria and inflammation in chronic diseases ? Redox Biol 2024; 77:103393. [PMID: 39405979 PMCID: PMC11525629 DOI: 10.1016/j.redox.2024.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
The role of mitochondria spans from the regulation of the oxidative phosphorylation, cell metabolism and survival/death pathways to a more recently identified function in chronic inflammation. In stress situations, mitochondria release some pro-inflammatory mediators such as ATP, cardiolipin, reactive oxygen species (ROS) or mitochondrial DNA, that are believed to participate in chronic diseases and aging. These mitochondrial Damage-Associated Molecular Patterns (mito-DAMPs) can modulate specific receptors among which TLR9, NLRP3 and cGAS-STING, triggering immune cells activation and sterile inflammation. In order to counter the development of chronic diseases, a better understanding of the underlying mechanisms of low grade inflammation induced by mito-DAMPs is needed. In this context, monoamine oxidases (MAO), the mitochondrial enzymes that degrade catecholamines and serotonin, have recently emerged as potent regulators of chronic inflammation in obesity-related disorders, cardiac diseases, cancer, rheumatoid arthritis and pulmonary diseases. The role of these enzymes in inflammation embraces their action in both immune and non-immune cells, where they regulate monoamines levels and generate toxic ROS and aldehydes, as by-products of enzymatic reaction. Here, we discuss the more recent advances on the role and mechanisms of action of MAOs in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Lise Beucher
- Univ Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, F-49000, France
| | | | - Olivier R Baris
- Univ Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, F-49000, France
| | - Jeanne Mialet-Perez
- Univ Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, F-49000, France.
| |
Collapse
|
12
|
Ayash TA, Allard MJ, Chevin M, Sébire G. IL-1 Blockade Mitigates Autism and Cerebral Palsy Traits in Offspring In-Utero Exposed to Group B Streptococcus Chorioamnionitis. Int J Mol Sci 2024; 25:11393. [PMID: 39518945 PMCID: PMC11546968 DOI: 10.3390/ijms252111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Group B Streptococcus (GBS) is one of the most common bacteria responsible for placental and neonatal infection and inflammation resulting in lifelong neurobehavioral impairments. In particular, GBS-induced chorioamnionitis is known in preclinical models to upregulate inflammatory pathways, primarily through the activation of the interleukin-1 (IL-1) pathway, leading to brain injury and subsequent neurodevelopmental issues. Previous studies from our laboratory using Lewis rat pups have shown that male offspring exposed in utero to GBS chorioamnionitis develop brain injuries leading to neurobehavioral impairments such as autistic traits. In the present study, we aimed to explore whether blocking the IL-1 pathway could prevent or mitigate these neurodevelopmental impairments in adulthood. Using our established preclinical model, we administered IL-1 receptor antagonist (IL-1Ra) to dams with GBS-induced chorioamnionitis. Here, we show that IL-1Ra administration to dams reversed autistic and cerebral palsy traits in male adult offspring exposed in utero to GBS. Hence, IL-1 blockade could serve as a therapeutic intervention against pathogen-induced neurodevelopmental disorders. This research supports the need for future human randomized controlled trials to assess IL-1 blockade administered during pregnancy or in newborns as a strategy to reduce the long-term neurobehavioral consequences of prenatal infections, such as autism, cerebral palsy, learning disabilities, and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Taghreed A. Ayash
- Department of Molecular Biology and Genetics, Ibnsina National College for Medical Studies, Jeddah 22421, Saudi Arabia;
| | - Marie-Julie Allard
- Department of Pediatrics, Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (M.-J.A.); (M.C.)
| | - Mathilde Chevin
- Department of Pediatrics, Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (M.-J.A.); (M.C.)
| | - Guillaume Sébire
- Department of Pediatrics, Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (M.-J.A.); (M.C.)
| |
Collapse
|
13
|
Jones OY. Single Center-Based Real-World Experience on Anti-IL 1 Biological Response Modifiers: A Case Series and Literature Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1146. [PMID: 39334678 PMCID: PMC11430789 DOI: 10.3390/children11091146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND This communication summarizes our single-center experience with the use of anti-IL-1 biologic response modifiers for treating autoimmune and autoinflammatory conditions in children. METHODS We outline our rationale for the off-label use of anakinra and discuss emerging treatment paradigms that necessitate further research and validation. RESULTS Anakinra has enabled personalized treatment, whether used as a single agent on an as-needed basis, as part of a background treatment regimen, or in combination with colchicine. Our data also highlight the significance of anakinra in treating post-infectious inflammatory diseases, demonstrating its high efficacy in novel applications such as rheumatic fever and post-viral arthritis. Canakinumab, on the other hand, has provided long-term remission. Both medications were well-tolerated, with no serious adverse effects reported. CONCLUSIONS Based on our observations and successful outcomes, we advocate for future collaborative efforts to improve access to anti-IL-1 medications to better manage excessive and harmful inflammation in children.
Collapse
Affiliation(s)
- Olcay Y Jones
- Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Department Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department Rheumatology, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
14
|
李 明, 张 玮, 华 梦. [Bardoxolone methyl alleviates acute liver injury in mice by inhibiting NLRP3 inflammasome activation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1662-1669. [PMID: 39505333 PMCID: PMC11744081 DOI: 10.12122/j.issn.1673-4254.2024.09.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE To investigate the inhibitory effect of bardoxolone methyl (CDDO-Me) on activation of NLRP3 inflammasome and its mechanism for alleviating acute liver injury (ALI). METHODS Mouse bone marrow-derived macrophages (BMDM) and THP-1 cells were pre-treated with CDDO-Me followed by treatment with Nigericin, ATP, MSU, intracellular LPS transfection for activation of NLRP3 inflammasomes, or poly A: T for activation of AIM2 inflammasomes. The levels of caspase-1 and IL-1β in the cell culture supernatant was determined with Western blotting and ELISA to assess the inhibitory effect of CDDO-Me on NLRP3 inflammasomes and its specificity. In the animal experiment, male C57BL/6J mouse models of acetaminophen-induced ALI were treated with low-dose (20 mg/kg) and high-dose (40 mg/kg) CDDO-Me, and the changes in serum levels of IL-1β, TNF- α, AST and ALT were measured by ELISA and liver tissue pathology was observed using HE staining. RESULTS In mouse BMDM and THP-1 cells, CDDO-Me dose-dependently inhibited the activation of NLRP3 inflammasomes without significantly affecting the secretion of non-inflammasome-related inflammatory factors IL-6 and TNF-α or AIM2 inflammasome activation. In the mouse models of ALI, CDDO-Me treatment at both the low and high doses significantly reduced serum levels of IL-1β, AST and ALT, ameliorated histological changes and reduced inflammatory cell infiltration in the liver tissue, and the effects exhibited a distinct dose dependence. CONCLUSION CDDO-Me can specifically inhibit the activation of NLRP3 inflammasomes to alleviate acetaminophen-induced ALI in mice.
Collapse
Affiliation(s)
- 明远 李
- 蚌埠医科大学慢性疾病免疫学基础与临床安徽省重点实验室,安徽 蚌埠 233030Anhui Provincial Key Laboratory of Immunology in Chronic Disease, Bengbu Medical University, Bengbu 233030, China
- 蚌埠医科大学第一附属医院检验科,安徽 蚌埠 233004Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - 玮 张
- 蚌埠医科大学慢性疾病免疫学基础与临床安徽省重点实验室,安徽 蚌埠 233030Anhui Provincial Key Laboratory of Immunology in Chronic Disease, Bengbu Medical University, Bengbu 233030, China
- 蚌埠医科大学第一附属医院检验科,安徽 蚌埠 233004Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - 梦晴 华
- 蚌埠医科大学慢性疾病免疫学基础与临床安徽省重点实验室,安徽 蚌埠 233030Anhui Provincial Key Laboratory of Immunology in Chronic Disease, Bengbu Medical University, Bengbu 233030, China
| |
Collapse
|
15
|
Martí-Carvajal AJ, Gemmato-Valecillos MA, Monge Martín D, Dayer M, Alegría-Barrero E, De Sanctis JB, Parise Vasco JM, Riera Lizardo RJ, Nicola S, Martí-Amarista CE, Correa-Pérez A. Interleukin-receptor antagonist and tumour necrosis factor inhibitors for the primary and secondary prevention of atherosclerotic cardiovascular diseases. Cochrane Database Syst Rev 2024; 9:CD014741. [PMID: 39297531 PMCID: PMC11411914 DOI: 10.1002/14651858.cd014741.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
BACKGROUND Atherosclerotic cardiovascular disease (ACVD) is worsened by chronic inflammatory diseases. Interleukin receptor antagonists (IL-RAs) and tumour necrosis factor-alpha (TNF) inhibitors have been studied to see if they can prevent cardiovascular events. OBJECTIVES The purpose of this study was to assess the clinical benefits and harms of IL-RAs and TNF inhibitors in the primary and secondary prevention of ACVD. SEARCH METHODS The Cochrane Heart Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE (including In-Process & Other Non-Indexed Citations), Ovid Embase, EBSCO CINAHL plus, and clinical trial registries for ongoing and unpublished studies were searched in February 2024. The reference lists of relevant studies, reviews, meta-analyses and health technology reports were searched to identify additional studies. No limitations on language, date of publication or study type were set. SELECTION CRITERIA RCTs that recruited people with and without pre-existing ACVD, comparing IL-RAs or TNF inhibitors versus placebo or usual care, were selected. The primary outcomes considered were all-cause mortality, myocardial infarction, unstable angina, and adverse events. DATA COLLECTION AND ANALYSIS Two or more review authors, working independently at each step, selected studies, extracted data, assessed the risk of bias and used GRADE to judge the certainty of evidence. MAIN RESULTS We included 58 RCTs (22,053 participants; 21,308 analysed), comparing medication efficacy with placebo or usual care. Thirty-four trials focused on primary prevention and 24 on secondary prevention. The interventions included IL-1 RAs (anakinra, canakinumab), IL-6 RA (tocilizumab), TNF-inhibitors (etanercept, infliximab) compared with placebo or usual care. The certainty of evidence was low to very low due to biases and imprecision; all trials had a high risk of bias. Primary prevention: IL-1 RAs The evidence is very uncertain about the effects of the intervention on all-cause mortality(RR 0.33, 95% CI 0.01 to 7.58, 1 trial), myocardial infarction (RR 0.71, 95% CI 0.04 to 12.48, I² = 39%, 2 trials), unstable angina (RR 0.24, 95% CI 0.03 to 2.11, I² = 0%, 2 trials), stroke (RR 2.42, 95% CI 0.12 to 50.15; 1 trial), adverse events (RR 0.85, 95% CI 0.59 to 1.22, I² = 54%, 3 trials), or infection (rate ratio 0.84, 95% 0.55 to 1.29, I² = 0%, 4 trials). Evidence is very uncertain about whether anakinra and cankinumab may reduce heart failure (RR 0.21, 95% CI 0.05 to 0.94, I² = 0%, 3 trials). Peripheral vascular disease (PVD) was not reported as an outcome. IL-6 RAs The evidence is very uncertain about the effects of the intervention on all-cause mortality (RR 0.68, 95% CI 0.12 to 3.74, I² = 30%, 3 trials), myocardial infarction (RR 0.27, 95% CI 0.04 to1.68, I² = 0%, 3 trials), heart failure (RR 1.02, 95% CI 0.11 to 9.63, I² = 0%, 2 trials), PVD (RR 2.94, 95% CI 0.12 to 71.47, 1 trial), stroke (RR 0.34, 95% CI 0.01 to 8.14, 1 trial), or any infection (rate ratio 1.10, 95% CI: 0.88 to 1.37, I2 = 18%, 5 trials). Adverse events may increase (RR 1.13, 95% CI 1.04 to 1.23, I² = 33%, 5 trials). No trial assessed unstable angina. TNF inhibitors The evidence is very uncertain about the effects of the intervention on all-cause mortality (RR 1.78, 95% CI 0.63 to 4.99, I² = 10%, 3 trials), myocardial infarction (RR 2.61, 95% CI 0.11 to 62.26, 1 trial), stroke (RR 0.46, 95% CI 0.08 to 2.80, I² = 0%; 3 trials), heart failure (RR 0.85, 95% CI 0.06 to 12.76, 1 trial). Adverse events may increase (RR 1.13, 95% CI 1.01 to 1.25, I² = 51%, 13 trials). No trial assessed unstable angina or PVD. Secondary prevention: IL-1 RAs The evidence is very uncertain about the effects of the intervention on all-cause mortality (RR 0.94, 95% CI 0.84 to 1.06, I² = 0%, 8 trials), unstable angina (RR 0.88, 95% CI 0.65 to 1.19, I² = 0%, 3 trials), PVD (RR 0.85, 95% CI 0.19 to 3.73, I² = 38%, 3 trials), stroke (RR 0.94, 95% CI 0.74 to 1.2, I² = 0%; 7 trials), heart failure (RR 0.91, 95% 0.5 to 1.65, I² = 0%; 7 trials), or adverse events (RR 0.92, 95% CI 0.78 to 1.09, I² = 3%, 4 trials). There may be little to no difference between the groups in myocardial infarction (RR 0.88, 95% CI 0.0.75 to 1.04, I² = 0%, 6 trials). IL6-RAs The evidence is very uncertain about the effects of the intervention on all-cause mortality (RR 1.09, 95% CI 0.61 to 1.96, I² = 0%, 2 trials), myocardial infarction (RR 0.46, 95% CI 0.07 to 3.04, I² = 45%, 3 trials), unstable angina (RR 0.33, 95% CI 0.01 to 8.02, 1 trial), stroke (RR 1.03, 95% CI 0.07 to 16.25, 1 trial), adverse events (RR 0.89, 95% CI 0.76 to 1.05, I² = 0%, 2 trials), or any infection (rate ratio 0.66, 95% CI 0.32 to 1.36, I² = 0%, 4 trials). No trial assessed PVD or heart failure. TNF inhibitors The evidence is very uncertain about the effect of the intervention on all-cause mortality (RR 1.16, 95% CI 0.69 to 1.95, I² = 47%, 5 trials), heart failure (RR 0.92, 95% 0.75 to 1.14, I² = 0%, 4 trials), or adverse events (RR 1.15, 95% CI 0.84 to 1.56, I² = 32%, 2 trials). No trial assessed myocardial infarction, unstable angina, PVD or stroke. Adverse events may be underestimated and benefits inflated due to inadequate reporting. AUTHORS' CONCLUSIONS This Cochrane review assessed the benefits and harms of using interleukin-receptor antagonists and tumour necrosis factor inhibitors for primary and secondary prevention of atherosclerotic diseases compared with placebo or usual care. However, the evidence for the predetermined outcomes was deemed low or very low certainty, so there is still a need to determine whether these interventions provide clinical benefits or cause harm from this perspective. In summary, the different biases and imprecision in the included studies limit their external validity and represent a limitation to determining the effectiveness of the intervention for both primary and secondary prevention of ACVD.
Collapse
Key Words
- humans
- angina, unstable
- angina, unstable/mortality
- angina, unstable/prevention & control
- antibodies, monoclonal, humanized
- antibodies, monoclonal, humanized/administration & dosage
- antibodies, monoclonal, humanized/adverse effects
- atherosclerosis
- atherosclerosis/mortality
- atherosclerosis/prevention & control
- bias
- cause of death
- myocardial infarction
- myocardial infarction/mortality
- myocardial infarction/prevention & control
- primary prevention
- primary prevention/methods
- randomized controlled trials as topic
- receptors, interleukin-1
- receptors, interleukin-1/antagonists & inhibitors
- secondary prevention
- secondary prevention/methods
- tumor necrosis factor-alpha
- tumor necrosis factor-alpha/antagonists & inhibitors
Collapse
Affiliation(s)
- Arturo J Martí-Carvajal
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro Asociado Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Quito, Ecuador
- Facultad de Medicina (Centro Cochrane Madrid), Universidad Francisco de Vitoria, Madrid, Spain
- Cátedra Rectoral de Medicina Basada en la Evidencia, Universidad de Carabobo, Valencia , Venezuela
| | - Mario A Gemmato-Valecillos
- Icahn School of Medicine at Mount Sinai/ NYCHH Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, New York 11373, USA
| | | | - Mark Dayer
- Cardiovascular Research Institute, Mater Private Network, Dublin, Ireland
- Faculty of Health, University of Plymouth, Plymouth, UK
| | | | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Palacky University, Faculty of Medicine and Dentistry, Olomouc, Czech Republic
| | - Juan Marcos Parise Vasco
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro Asociado Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Quito, Ecuador
| | - Ricardo J Riera Lizardo
- Cátedra Rectoral de Medicina Basada en la Evidencia, Universidad de Carabobo, Valencia, Venezuela
| | - Susana Nicola
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro Asociado Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Quito, Ecuador
| | | | - Andrea Correa-Pérez
- Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
- Hospital Pharmacy and Medical Devices Department, Hospital Central de la Defensa "Gómez Ulla" CSVE, Madrid, Spain
| |
Collapse
|
16
|
Natsi AM, Gavriilidis E, Antoniadou C, Papadimitriou E, Papadopoulos V, Tsironidou V, Palamidas DA, Chatzis L, Sertaridou E, Tsilingiris D, Boumpas DT, Tzioufas AG, Papagoras C, Ritis K, Skendros P. IL-1β/DNA complex elevation distinguishes autoinflammatory disorders from autoimmune and infectious diseases. J Intern Med 2024; 296:298-301. [PMID: 38805484 DOI: 10.1111/joim.13809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Affiliation(s)
- Anastasia-Maria Natsi
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Efstratios Gavriilidis
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Antoniadou
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Evangelos Papadimitriou
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasileios Papadopoulos
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Victoria Tsironidou
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitris Anastasios Palamidas
- Department of Pathophysiology and Research Institute for Systemic Autoimmune Diseases, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Loukas Chatzis
- Department of Pathophysiology and Research Institute for Systemic Autoimmune Diseases, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Eleni Sertaridou
- Intensive Care Unit, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios T Boumpas
- School of Medicine, 4th Department of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Athanasios G Tzioufas
- Department of Pathophysiology and Research Institute for Systemic Autoimmune Diseases, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Charalampos Papagoras
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Ritis
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Panagiotis Skendros
- First Department of Internal Medicine and Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
17
|
Bhol NK, Bhanjadeo MM, Singh AK, Dash UC, Ojha RR, Majhi S, Duttaroy AK, Jena AB. The interplay between cytokines, inflammation, and antioxidants: mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed Pharmacother 2024; 178:117177. [PMID: 39053423 DOI: 10.1016/j.biopha.2024.117177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Cytokines regulate immune responses essential for maintaining immune homeostasis, as deregulated cytokine signaling can lead to detrimental outcomes, including inflammatory disorders. The antioxidants emerge as promising therapeutic agents because they mitigate oxidative stress and modulate inflammatory pathways. Antioxidants can potentially ameliorate inflammation-related disorders by counteracting excessive cytokine-mediated inflammatory responses. A comprehensive understanding of cytokine-mediated inflammatory pathways and the interplay with antioxidants is paramount for developing natural therapeutic agents targeting inflammation-related disorders and helping to improve clinical outcomes and enhance the quality of life for patients. Among these antioxidants, curcumin, vitamin C, vitamin D, propolis, allicin, and cinnamaldehyde have garnered attention for their anti-inflammatory properties and potential therapeutic benefits. This review highlights the interrelationship between cytokines-mediated disorders in various diseases and therapeutic approaches involving antioxidants.
Collapse
Affiliation(s)
- Nitish Kumar Bhol
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | | | - Anup Kumar Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Umesh Chandra Dash
- Environmental Biotechnology Laboratory, KIIT School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Rakesh Ranjan Ojha
- Department of Bioinformatics, BJB (A) College, Bhubaneswar, Odisha-751014, India
| | - Sanatan Majhi
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Atala Bihari Jena
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India.
| |
Collapse
|
18
|
Breinbauer R, Mäling M, Ehnert S, Blumenstock G, Schwarz T, Jazewitsch J, Erne F, Reumann MK, Rollmann MF, Braun BJ, Histing T, Nüssler AK. B7-1 and PlGF-1 are two possible new biomarkers to identify fracture-associated trauma patients at higher risk of developing complications: a cohort study. BMC Musculoskelet Disord 2024; 25:677. [PMID: 39210389 PMCID: PMC11360573 DOI: 10.1186/s12891-024-07789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Around 10% of fractures lead to complications. With increasing fracture incidences in recent years, this poses a serious burden on the healthcare system, with increasing costs for treatment. In the present study, we aimed to identify potential 'new' blood markers to predict the development of post-surgical complications in trauma patients following a fracture. METHODS A total of 292 trauma patients with a complete three-month follow-up were included in this cohort study. Blood samples were obtained from 244 of these patients. Two complication groups were distinguished based on the Clavien-Dindo (CD) classification: CD grade I and CD grade III groups were compared to the controls (CD 0). The Mann-Whitney U test was used to compare the complication groups to the control group. RESULTS Analysis of the patients' data revealed that risk factors are dependent on sex. Both, males and females who developed a CD III complication showed elevated blood levels of B7-1 (p = 0.015 and p = 0.018, respectively) and PlGF-1 (p = 0.009 and p = 0.031, respectively), with B7-1 demonstrating greater sensitivity (B7-1: 0.706 (male) and 0.692 (female), PlGF-1: 0.647 (male) and 0.615 (female)). Further analysis of the questionnaires and medical data revealed the importance of additional risk factors. For males (CD 0: 133; CD I: 12; CD III: 18 patients) alcohol consumption was significantly increased for CD I and CD III compared to control with p = 0.009 and p = 0.007, respectively. For females (CD 0: 107; CD I: 10; CD III: 12 patients) a significantly increased average BMI [kg/m2] from 25.5 to 29.7 with CD III was observed, as well as an elevation from one to three comorbidities (p = 0.003). CONCLUSIONS These two potential new blood markers hold promise for predicting complication development in trauma patients. Nevertheless, further studies are necessary to evaluate the diagnostic utility of B7-1 and PlGF-1 in predicting complications in trauma patients and consider sex differences before their possible use as routine clinical screening tools.
Collapse
Affiliation(s)
- Regina Breinbauer
- Siegfried-Weller-Institute, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Michelle Mäling
- Siegfried-Weller-Institute, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Sabrina Ehnert
- Siegfried-Weller-Institute, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Gunnar Blumenstock
- Department of Clinical Epidemiology and Applied Biometry, Eberhard Karls University Tuebingen, Silcherstrasse 5, 72076, Tuebingen, Germany
| | - Tobias Schwarz
- Siegfried-Weller-Institute, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Johann Jazewitsch
- Siegfried-Weller-Institute, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Felix Erne
- Siegfried-Weller-Institute, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
- Department of Traumatology and Reconstructive Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Schnarrenbergstr. 95, 72076, Tuebingen, Germany
| | - Marie K Reumann
- Siegfried-Weller-Institute, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
- Department of Traumatology and Reconstructive Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Schnarrenbergstr. 95, 72076, Tuebingen, Germany
| | - Mika F Rollmann
- Department of Traumatology and Reconstructive Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Schnarrenbergstr. 95, 72076, Tuebingen, Germany
| | - Benedikt J Braun
- Department of Traumatology and Reconstructive Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Schnarrenbergstr. 95, 72076, Tuebingen, Germany
| | - Tina Histing
- Department of Traumatology and Reconstructive Surgery, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, Schnarrenbergstr. 95, 72076, Tuebingen, Germany
| | - Andreas K Nüssler
- Siegfried-Weller-Institute, BG Unfallklinik Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany.
| |
Collapse
|
19
|
Hermouet S, Hasselbalch HC. Interleukin-1β, JAK2V617F mutation and inflammation in MPNs. Blood Adv 2024; 8:4344-4347. [PMID: 38985205 PMCID: PMC11372809 DOI: 10.1182/bloodadvances.2024013528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/11/2024] Open
Affiliation(s)
- Sylvie Hermouet
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
- Laboratoire d’Hématologie, CHU Nantes, Nantes, France
| | - Hans C. Hasselbalch
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
20
|
Chen S, Huang G, Liu J. Monkeypox virus protein H3L induces injuries in human and mouse. Cell Death Dis 2024; 15:607. [PMID: 39168969 PMCID: PMC11339448 DOI: 10.1038/s41419-024-06990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Monkeypox virus (MPV) is known to inflict injuries and, in some cases, lead to fatalities in humans. However, the underlying mechanisms responsible for its pathogenicity remain poorly understood. We investigated functions of MPV core proteins, H3L, A35R, A29L, and I1L, and discovered that H3L induced transcriptional perturbations and injuries. We substantiated that H3L upregulated IL1A expression. IL1A, in consequence, caused cellular injuries, and this detrimental effect was mitigated when countered with IL1A blockage. We also observed that H3L significantly perturbed the transcriptions of genes in cardiac system. Mechanistically, H3L occupied the promoters of genes governing cellular injury, leading to alterations in the binding patterns of H3K27me3 and H3K4me3 histone marks, ultimately resulting in expression perturbations. In vivo and in vitro models confirmed that H3L induced transcriptional disturbances and cardiac dysfunction, which were ameliorated when IL1A was blocked or repressed. Our study provides valuable insights into comprehensive understanding of MPV pathogenicity, highlights the significant roles of H3L in inducing injuries, and potentially paves the way for the development of therapeutic strategies targeting IL1A.
Collapse
Affiliation(s)
- Shaoxian Chen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guiping Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Juli Liu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
De-Pieri E, Zaccaron RP, Mezzari CG, Cardoso MDM, De Roch Casagrande L, Silveira PCL, Machado-de-Ávila RA. DAP1-2: a synthetic peptide targeting IL-1R1 receptor effectively suppresses IL-1β in vitro. Immunol Res 2024; 72:788-796. [PMID: 38698191 DOI: 10.1007/s12026-024-09485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
The pathological manifestation of the inflammatory process primarily stems from the heightened release of pro-inflammatory cytokines, with IL-1β standing out as a pivotal cytokine. The excessive presence of IL-1β disrupts immune signaling, thereby assuming a pathogenic and exacerbating role in the pathophysiology of numerous inflammatory diseases. Regulating IL-1β levels becomes crucial, and the IL-1Ra molecule serves this purpose by binding to the IL-1R1 receptor, thereby impeding the binding of IL-1β. Several pharmaceuticals have entered the market, aiming to neutralize IL-1β's biological function through diverse mechanisms. However, the existing IL-1β inhibitors are recombinant proteins, characterized by a high production cost and limited stability. Therefore, this study aimed to predict a peptide, named DAP1-2, based on the IL-1Ra molecule. DAP1-2 was designed to attenuate responses triggered by IL-1β by blocking the IL-1R1 receptor. The selection of amino acids from the IL-1Ra molecule (PDB: I1RA) that interact with the three domains of the IL-1R1 receptor was performed using Swiss PDB Viewer. After prediction, chemical synthesis was made using the Fmoc-Synthesis technique. The efficacy of DAP1-2 was assessed using RAW 264.7 cells, which were exposed to LPS (5 μg/mL) for 24 h to induce IL-1β expression and treated with the peptides in different concentrations. IL-1β levels were assessed using ELISA, and the gene expression of IL-1β was measured by RT-qPCR, additionally to the viability test. Results revealed a significant reduction in IL-1β levels and gene expression in cells stimulated by LPS and treated with DAP1-2 in different concentrations. Furthermore, the MTT assay confirmed the nontoxic nature of the peptides on the cell lineage. This alternative approach shows promise as an IL-1 inhibitor, due to the stability, ease of production, and cost-effectiveness provided by the use of synthetic peptides.
Collapse
Affiliation(s)
- Ellen De-Pieri
- Laboratório de Fisiopatologia Experimental, Programa de Pós Graduação Em Ciências da Saúde, Universidade Do Extremo Sul CatarinenseCriciúma, Santa Catarina, Brazil
| | - Rubya Pereira Zaccaron
- Laboratório de Fisiopatologia Experimental, Programa de Pós Graduação Em Ciências da Saúde, Universidade Do Extremo Sul CatarinenseCriciúma, Santa Catarina, Brazil
| | - Camille Generoso Mezzari
- Laboratório de Fisiopatologia Experimental, Programa de Pós Graduação Em Ciências da Saúde, Universidade Do Extremo Sul CatarinenseCriciúma, Santa Catarina, Brazil
| | - Mariana de Melo Cardoso
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia E Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Laura De Roch Casagrande
- Laboratório de Fisiopatologia Experimental, Programa de Pós Graduação Em Ciências da Saúde, Universidade Do Extremo Sul CatarinenseCriciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratório de Fisiopatologia Experimental, Programa de Pós Graduação Em Ciências da Saúde, Universidade Do Extremo Sul CatarinenseCriciúma, Santa Catarina, Brazil.
| | - Ricardo Andrez Machado-de-Ávila
- Laboratório de Fisiopatologia Experimental, Programa de Pós Graduação Em Ciências da Saúde, Universidade Do Extremo Sul CatarinenseCriciúma, Santa Catarina, Brazil
| |
Collapse
|
22
|
Pharande P, Sehgal A, Menahem S. Cardiovascular Sequelae of Bronchopulmonary Dysplasia in Preterm Neonates Born before 32 Weeks of Gestational Age: Impact of Associated Pulmonary and Systemic Hypertension. J Cardiovasc Dev Dis 2024; 11:233. [PMID: 39195141 DOI: 10.3390/jcdd11080233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains the most common respiratory disorder of prematurity for infants born before 32 weeks of gestational age (GA). Early and prolonged exposure to chronic hypoxia and inflammation induces pulmonary hypertension (PH) with the characteristic features of a reduced number and increased muscularisation of the pulmonary arteries resulting in an increase in the pulmonary vascular resistance (PVR) and a fall in their compliance. BPD and BPD-associated pulmonary hypertension (BPD-PH) together with systemic hypertension (sHTN) are chronic cardiopulmonary disorders which result in an increased mortality and long-term problems for these infants. Previous studies have predominantly focused on the pulmonary circulation (right ventricle and its function) and developing management strategies accordingly for BPD-PH. However, recent work has drawn attention to the importance of the left-sided cardiac function and its impact on BPD in a subset of infants arising from a unique pathophysiology termed postcapillary PH. BPD infants may have a mechanistic link arising from chronic inflammation, cytokines, oxidative stress, catecholamines, and renin-angiotensin system activation along with systemic arterial stiffness, all of which contribute to the development of BPD-sHTN. The focus for the treatment of BPD-PH has been improvement of the right heart function through pulmonary vasodilators. BPD-sHTN and a subset of postcapillary PH may benefit from afterload reducing agents such as angiotensin converting enzyme inhibitors. Preterm infants with BPD-PH are at risk of later cardiac and respiratory morbidities as young adults. This paper reviews the current knowledge of the pathophysiology, diagnosis, and treatment of BPD-PH and BPD-sHTN. Current knowledge gaps and emerging new therapies will also be discussed.
Collapse
Affiliation(s)
- Pramod Pharande
- Monash Newborn, Monash Children's Hospital, 246 Clayton Road, Clayton, Melbourne, VIC 3168, Australia
- Department of Pediatrics, Monash University, Melbourne, VIC 3800, Australia
| | - Arvind Sehgal
- Monash Newborn, Monash Children's Hospital, 246 Clayton Road, Clayton, Melbourne, VIC 3168, Australia
- Department of Pediatrics, Monash University, Melbourne, VIC 3800, Australia
| | - Samuel Menahem
- Department of Pediatrics, Monash University, Melbourne, VIC 3800, Australia
- Paediatric and Foetal Cardiac Units, Monash Medical Centre, Melbourne, VIC 3168, Australia
- Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
23
|
Salib AMN, Crane MJ, Jamieson AM, Lipscombe D. Peripheral Ca V2.2 channels in skin regulate prolonged heat hypersensitivity during neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603149. [PMID: 39071304 PMCID: PMC11275762 DOI: 10.1101/2024.07.13.603149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Neuroinflammation can lead to chronic maladaptive pain affecting millions of people worldwide. Neurotransmitters, cytokines, and ion channels are implicated in neuro-immune cell signaling but their roles in specific behavioral responses are not fully elucidated. Voltage-gated CaV2.2 channel activity in skin controls rapid and transient heat hypersensitivity induced by intradermal capsaicin via IL-1α cytokine signaling. CaV2.2 channels are not, however, involved in mechanical hypersensitivity that developed in the same animal model. Here, we show that CaV2.2 channels are also critical for heat hypersensitivity induced by the intradermal (id) Complete Freund's Adjuvant (CFA) model of chronic neuroinflammation that involves ongoing cytokine signaling for days. Ongoing CFA-induced cytokine signaling cascades in skin lead to pronounced edema, and hypersensitivity to sensory stimuli. Peripheral CaV2.2 channel activity in skin is required for the full development and week-long time course of heat hypersensitivity induced by id CFA. CaV2.2 channels, by contrast, are not involved in paw edema and mechanical hypersensitivity. CFA induced increases in cytokines in hind paws including IL-6 which was dependent on CaV2.2 channel activity. Using IL-6 specific neutralizing antibodies, we show that IL-6 contributes to heat hypersensitivity and, neutralizing both IL-1α and IL-6 was even more effective at reducing the magnitude and duration of CFA-induced heat hypersensitivity. Our findings demonstrate a functional link between CaV2.2 channel activity and the release of IL-6 in skin and show that CaV2.2 channels have a privileged role in the induction and maintenance of heat hypersensitivity during chronic forms of neuroinflammation in skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Department of Neuroscience & the Carney Institute for Brain Science Brown University, Providence, RI 02912, USA
| | - Meredith J Crane
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Amanda M Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Diane Lipscombe
- Department of Neuroscience & the Carney Institute for Brain Science Brown University, Providence, RI 02912, USA
| |
Collapse
|
24
|
Hu X, Xie S, Yi X, Ouyang Y, Zhao W, Yang Z, Zhang Z, Wang L, Huang X, Peng M, Yu F. Bidirectional Mendelian Randomization of Causal Relationship between Inflammatory Cytokines and Different Pathological Types of Lung Cancer. J Cancer 2024; 15:4969-4984. [PMID: 39132165 PMCID: PMC11310887 DOI: 10.7150/jca.98301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/07/2024] [Indexed: 08/13/2024] Open
Abstract
Prior research has proposed a potential association between lung cancer and inflammatory cytokines, yet the specific causal relationship remains unclear, especially across various lung cancer pathologies. This study utilized bidirectional Mendelian randomization (MR) to explore these causal connections, unveiling novel insights. Our research revealed distinctive inflammatory cytokine profiles for each subtype of lung cancer and identified potential biomarkers that could refine diagnostic and therapeutic approaches. We applied two-sample Mendelian randomization, leveraging genetic variance data from three extensive genome-wide association studies (GWAS) focusing on different lung cancer types (lung adenocarcinoma: 1590 cases and 314,193 controls of healthy individuals of European descent; lung squamous cell carcinoma: 1510 cases and 314,193 controls of European ancestry; small cell lung cancer: 717 cases and 314,193 controls of European ancestry). A separate GWAS summary on inflammatory cytokines from 8,293 healthy participants was also included. The inverse variance weighting method was utilized to examine causal relationships, with robustness confirmed through multiple sensitivity analyses, including MR-Egger, weighted median, and MR-PRESSO. Our analysis revealed that elevated levels of IL_1RA were associated with an increased risk of lung adenocarcinoma (OR: 1.29, 95% CI: 1.02-1.64, p = 0.031), while higher MCP_1_MCAF levels correlated with a decreased risk of lung squamous cell carcinoma (OR: 0.77, 95% CI: 0.61-0.98, p = 0.031). Furthermore, IL_10, IL_13, and TRAIL levels were positively associated with lung squamous cell carcinoma risk (IL_10: OR: 1.27, 95% CI: 1.06-1.53, p = 0.012; IL_13: OR: 1.15, 95% CI: 1.06-1.53, p = 0.036; TRAIL: OR: 1.15, 95% CI: 1.06-1.53, p = 0.043). No association was found between inflammatory cytokine levels and small cell lung cancer development, whereas SDF_1A and B-NGF were linked to an increased risk of this cancer type (SDF_1A: OR: 1.13, 95% CI: 1.05-1.21, p = 0.001; B-NGF: OR: 1.13, 95% CI: 1.01-1.27, p = 0.029). No significant relationship was observed between the 41 circulating inflammatory cytokines and lung adenocarcinoma or squamous cell carcinoma development. Our findings indicate distinct associations between specific inflammatory cytokines and different types of lung cancer. Elevated IL_1RA levels are a risk marker for lung adenocarcinoma, whereas higher MCP_1_MCAF levels appear protective against lung squamous cell carcinoma. Conversely, elevated levels of IL_10, IL_13, and TRAIL are linked with an increased risk of lung squamous cell carcinoma. The relationships of SDF_1A and B-NGF with small-cell lung cancer highlight the complexity of inflammatory markers in cancer development. This study provides a nuanced understanding of the role of inflammatory cytokines in lung cancer, underscoring their potential in refining diagnosis and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Muyun Peng
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Fenglei Yu
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410000, China
| |
Collapse
|
25
|
Yasmeen F, Pirzada RH, Ahmad B, Choi B, Choi S. Understanding Autoimmunity: Mechanisms, Predisposing Factors, and Cytokine Therapies. Int J Mol Sci 2024; 25:7666. [PMID: 39062908 PMCID: PMC11277571 DOI: 10.3390/ijms25147666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Autoimmunity refers to an organism's immune response against its own healthy cells, tissues, or components, potentially leading to irreversible damage to vital organs. Central and peripheral tolerance mechanisms play crucial roles in preventing autoimmunity by eliminating self-reactive T and B cells. The disruption of immunological tolerance, characterized by the failure of these mechanisms, results in the aberrant activation of autoreactive lymphocytes that target self-tissues, culminating in the pathogenesis of autoimmune disorders. Genetic predispositions, environmental exposures, and immunoregulatory disturbances synergistically contribute to the susceptibility and initiation of autoimmune pathologies. Within the realm of immune therapies for autoimmune diseases, cytokine therapies have emerged as a specialized strategy, targeting cytokine-mediated regulatory pathways to rectify immunological imbalances. Proinflammatory cytokines are key players in inducing and propagating autoimmune inflammation, highlighting the potential of cytokine therapies in managing autoimmune conditions. This review discusses the etiology of autoimmune diseases, current therapeutic approaches, and prospects for future drug design.
Collapse
Affiliation(s)
- Farzana Yasmeen
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Rameez Hassan Pirzada
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Bilal Ahmad
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Bogeum Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| |
Collapse
|
26
|
Navarro MDC, Gálvez I, Hinchado MD, Otero E, Torres-Piles S, Francisco-Morcillo J, de La Fuente M, Martín-Cordero L, Ortega E. Immunoneuroendocrine, Stress, Metabolic, and Behavioural Responses in High-Fat Diet-Induced Obesity. Nutrients 2024; 16:2209. [PMID: 39064652 PMCID: PMC11279988 DOI: 10.3390/nu16142209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity has reached global epidemic proportions, and even though its effects are well-documented, studying the interactions among all influencing factors is crucial for a better understanding of its physiopathology. In a high-fat-diet-induced obesity animal model using C57BL/6J mice, behavioural responses were assessed through a battery of tests, while stress biomarkers and systemic inflammatory cytokines were measured using an Enzyme-Linked ImmunoSorbent Assay and a Bio-Plex Multiplex System. The peritoneal macrophage microbicide capacity was analysed via flow cytometry, and crown-like structures (CLSs) in white adipose tissue (WAT) were evaluated through staining techniques. Results indicated that obese mice exhibited increased body weight, hyperglycaemia, and hyperlipidaemia after 18 weeks on a high-fat diet, as well as worse physical conditions, poorer coordination and balance, and anxiety-like behaviour. Differences in corticosterone and noradrenaline concentrations were also found in obese animals, revealing a stress response and noradrenergic dysregulation, along with a weakened innate immune response characterized by a lower microbicide capacity, and the presence of an underlying inflammation evidenced by more CLSs in WAT. Altogether, these findings indicate that obesity deteriorates the entire stress, inflammatory, metabolic, sensorimotor and anxiety-like behavioural axis. This demonstrates that jointly evaluating all these aspects allows for a deeper and better exploration of this disease and its associated comorbidities, emphasizing the need for individualized and context-specific strategies for its management.
Collapse
Affiliation(s)
- María del Carmen Navarro
- Immunophyisiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (M.d.C.N.); (I.G.); (M.D.H.); (E.O.)
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071 Badajoz, Spain
| | - Isabel Gálvez
- Immunophyisiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (M.d.C.N.); (I.G.); (M.D.H.); (E.O.)
- Immunophysiology Research Group, Nursing Department, Faculty of Medicine and Health Sciences, University of Extremadura, 06071 Badajoz, Spain
| | - María Dolores Hinchado
- Immunophyisiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (M.d.C.N.); (I.G.); (M.D.H.); (E.O.)
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071 Badajoz, Spain
| | - Eduardo Otero
- Immunophyisiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (M.d.C.N.); (I.G.); (M.D.H.); (E.O.)
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071 Badajoz, Spain
| | - Silvia Torres-Piles
- Immunophysiology Research Group, Department of Medical-Surgical Therapy, Faculty of Medicine, University of Extremadura, 06071 Badajoz, Spain;
| | - Javier Francisco-Morcillo
- Anatomy, Cell Biology and Zoology Department, Faculty of Sciences, University of Extremadura, 06071 Badajoz, Spain;
| | - Mónica de La Fuente
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Leticia Martín-Cordero
- Immunophyisiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (M.d.C.N.); (I.G.); (M.D.H.); (E.O.)
- Immunophysiology Research Group, Nursing Department, University Center of Plasencia, University of Extremadura, 10600 Plasencia, Spain
| | - Eduardo Ortega
- Immunophyisiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 06071 Badajoz, Spain; (M.d.C.N.); (I.G.); (M.D.H.); (E.O.)
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
27
|
Muller R, Cauchois R, Lagarde M, Roffino S, Genovesio C, Fernandez S, Hache G, Guillet B, Kara Y, Marlinge M, Lenting P, Poullin P, Dignat-George F, Tellier E, Kaplanski G. Reduction of mortality, cardiac damage, and cerebral damage by IL-1 inhibition in a murine model of TTP. Blood 2024; 143:2791-2803. [PMID: 38598839 DOI: 10.1182/blood.2023021974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/09/2024] [Accepted: 03/09/2024] [Indexed: 04/12/2024] Open
Abstract
ABSTRACT Thrombotic thrombocytopenic purpura (TTP), a rare but fatal disease if untreated, is due to alteration in von Willebrand factor cleavage resulting in capillary microthrombus formation and ischemic organ damage. Interleukin-1 (IL-1) has been shown to drive sterile inflammation after ischemia and could play an essential contribution to postischemic organ damage in TTP. Our objectives were to evaluate IL-1 involvement during TTP and to test the efficacy of the recombinant IL-1 receptor antagonist, anakinra, in a murine TTP model. We retrospectively measured plasma IL-1 concentrations in patients with TTP and controls. Patients with TTP exhibited elevated plasma IL-1α and -1β concentrations, which correlated with disease course and survival. In a mouse model of TTP, we administered anakinra (IL-1 inhibitor) or placebo for 5 days and evaluated the efficacy of this treatment. Anakinra significantly reduced mortality of mice (P < .001). Anakinra significantly decreased TTP-induced cardiac damage as assessed by blood troponin concentrations, evaluation of left ventricular function by echocardiography, [18F]fluorodeoxyglucose positron emission tomography of myocardial glucose metabolism, and cardiac histology. Anakinra also significantly reduced brain TTP-induced damage evaluated through blood PS100b concentrations, nuclear imaging, and histology. We finally showed that IL-1α and -1β trigger endothelial degranulation in vitro, leading to the release of von Willebrand factor. In conclusion, anakinra significantly reduced TTP mortality in a preclinical model of the disease by inhibiting both endothelial degranulation and postischemic inflammation, supporting further evaluations in humans.
Collapse
Affiliation(s)
- Romain Muller
- INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Aix Marseille University, Marseille, France
- Assistance Publique des Hôpitaux de Marseille, Department of Clinical Immunology and Internal Medicine, CHU Conception, Marseille, France
| | - Raphaël Cauchois
- INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Aix Marseille University, Marseille, France
- Assistance Publique des Hôpitaux de Marseille, Department of Clinical Immunology and Internal Medicine, CHU Conception, Marseille, France
- French Reference Center for Thrombotic Microangiopathies, Paris, France
| | - Marie Lagarde
- INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Aix Marseille University, Marseille, France
- French Reference Center for Thrombotic Microangiopathies, Paris, France
| | - Sandrine Roffino
- Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Aix-Marseille University, Marseille, France
| | - Cécile Genovesio
- Faculté de Pharmacie, Aix-Marseille University, Marseille, France
| | - Samantha Fernandez
- Assistance Publique des Hôpitaux de Marseille, INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Centre Européen de Recherche en Imagerie Médicale, CHU Timone, Aix-Marseille University, Marseille, France
| | - Guillaume Hache
- INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Aix Marseille University, Marseille, France
- Biology Department, Assistance Publique des Hôpitaux de Marseille, INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Centre Européen de Recherche en Imagerie Médicale, CHU Timone, Aix-Marseille University, Marseille, France
| | - Benjamin Guillet
- Biology Department, Assistance Publique des Hôpitaux de Marseille, INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Centre Européen de Recherche en Imagerie Médicale, CHU Timone, Aix-Marseille University, Marseille, France
| | - Yéter Kara
- INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Aix Marseille University, Marseille, France
| | - Marion Marlinge
- Biology Department, Assistance Publique des Hôpitaux de Marseille, INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Centre Européen de Recherche en Imagerie Médicale, CHU Timone, Aix-Marseille University, Marseille, France
| | - Peter Lenting
- INSERM, Hémostase Inflammation Thrombose HITh U1176, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Pascale Poullin
- French Reference Center for Thrombotic Microangiopathies, Paris, France
- Assistance Publique des Hôpitaux de Marseille, Service d'Hémaphérése, CHU Conception, Marseille, France
| | - Françoise Dignat-George
- INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Aix Marseille University, Marseille, France
- Department of Hematology and Vascular Biology, Assistance Publique des Hôpitaux de Marseille, INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, CHU Conception, Aix-Marseille University, Marseille, France
| | - Edwige Tellier
- INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Aix Marseille University, Marseille, France
- French Reference Center for Thrombotic Microangiopathies, Paris, France
| | - Gilles Kaplanski
- INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Aix Marseille University, Marseille, France
- Assistance Publique des Hôpitaux de Marseille, Department of Clinical Immunology and Internal Medicine, CHU Conception, Marseille, France
| |
Collapse
|
28
|
张 玮, 邓 蒙, 曾 尧, 刘 辰, 尚 菲, 许 文, 蒋 昊, 王 凤, 杨 燕. [2, 6-dimethoxy-1, 4-benzoquinone alleviates septic shock in mice by inhibiting NLRP3 inflammasome activation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1024-1032. [PMID: 38977331 PMCID: PMC11237302 DOI: 10.12122/j.issn.1673-4254.2024.06.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVE To investigate the mechanism of 2, 6-dimethoxy-1, 4-benzoquinone (DMQ), an active ingredients in fermented wheat germ extract, for inhibiting NLRP3 inflammasome activation and alleviating septic shock in mice. METHODS Cultured murine bone marrow-derived macrophages (BMDM) stimulated with lipopolysaccharide (LPS) were treated with DMQ, followed by treatment with Nigericin, ATP, and MSU for activating the canonical NLRP3 inflammasome; the noncanonical NLRP3 inflammasome was activated by intracellular transfection of LPS, and AIM2 inflammasome was activated using Poly A: T.In human monocytic THP-1 cells, the effect of Nigericin on inflammasome activation products was examined using Western blotting and ELISA.Co-immunoprecipitation was performed to explore the mechanism of DMQ-induced blocking of NLRP3 inflammasome activation.In a male C57BL/6J mouse model of LPS-induced septic shock treated with 20 and 40 mg/kg DMQ, the levels of IL-1β and TNF-α in the serum and peritoneal lavage fluid were determined using ELISA, and the survival time of the mice within 36 h was observed. RESULTS Treatment with DMQ effectively inhibited LPS-induced activation of canonical NLRP3 inflammasome in mouse BMDM and human THP-1 cells and also inhibited non-canonical NLRP3 inflammasome activation in mouse BMDM, but produced no significant effect on AIM2 inflammasome activation.DMQ significantly blocked the binding between ASC and NLRP3.In the mouse models of septic shock, DMQ treatment significantly reduced the levels of IL-1β in the serum and peritoneal fluid and obviously prolonged survival time of the mice. CONCLUSION DMQ can effectively block ASC-NLRP3 interaction to inhibit NLRP3 inflammasome activation and alleviate LPSinduced septic shock in mice.
Collapse
|
29
|
Xin S, Liu X, He C, Gao H, Wang B, Hua R, Gao L, Shang H, Sun F, Xu J. Inflammation accelerating intestinal fibrosis: from mechanism to clinic. Eur J Med Res 2024; 29:335. [PMID: 38890719 PMCID: PMC11184829 DOI: 10.1186/s40001-024-01932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Intestinal fibrosis is a prevalent complication of IBD that that can frequently be triggered by prolonged inflammation. Fibrosis in the gut can cause a number of issues, which continue as an ongoing challenge to healthcare systems worldwide. The primary causes of intestinal fibrosis are soluble molecules, G protein-coupled receptors, epithelial-to-mesenchymal or endothelial-to-mesenchymal transition, and the gut microbiota. Fresh perspectives coming from in vivo and in vitro experimental models demonstrate that fibrogenic pathways might be different, at least to some extent, independent of the ones that influence inflammation. Understanding the distinctive procedures of intestinal fibrogenesis should provide a realistic foundation for targeting and blocking specific fibrogenic pathways, estimating the risk of fibrotic consequences, detecting early fibrotic alterations, and eventually allowing therapy development. Here, we first summarize the inflammatory and non-inflammatory components of fibrosis, and then we elaborate on the underlying mechanism associated with multiple cytokines in fibrosis, providing the framework for future clinical practice. Following that, we discuss the relationship between modernization and disease, as well as the shortcomings of current studies. We outline fibrosis diagnosis and therapy, as well as our recommendations for the future treatment of intestinal fibrosis. We anticipate that the global review will provides a wealth of fresh knowledge and suggestions for future fibrosis clinical practice.
Collapse
Affiliation(s)
- Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Department of Clinical Laboratory, Aerospace Clinical Medical College, Aerospace Central Hospital, Beijing, 100039, China
| | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lei Gao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, 100069, China
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
30
|
Singh S, Desai K, Gillern S. Management of Pilonidal Disease and Hidradenitis Suppurativa. Surg Clin North Am 2024; 104:503-515. [PMID: 38677816 DOI: 10.1016/j.suc.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Pilonidal disease and hidradenitis suppurativa affect healthy young adults, causing discomfort and pain that leads to loss of work productivity and should be approached in a personalized manner. Patients with pilonidal disease should engage in hair removal to the sacrococcygeal region and surgical options considered. Hidradenitis suppurativa can be a morbid and challenging disease process. Medical management with topical agents, antibiotics, and biologics should be used initially but wide local excision should be considered in severe or refractory cases of the disease.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Surgery, Tripler Army Medical Center, 1 Jarrett White Road, TAMC, Honolulu, HI 96859, USA
| | - Kaushal Desai
- Department of Surgery, Tripler Army Medical Center, 1 Jarrett White Road, TAMC, Honolulu, HI 96859, USA
| | - Suzanne Gillern
- Colon & Rectal Surgery, Department of Surgery, Tripler Army Medical Center, 1 Jarrett White Road, TAMC, Honolulu, HI 96859, USA.
| |
Collapse
|
31
|
Cock IE. Terminalia ferdinandiana Exell. extracts reduce pro-inflammatory cytokine and PGE 2 secretion, decrease COX-2 expression and down-regulate cytosolic NF-κB levels. Inflammopharmacology 2024; 32:1839-1853. [PMID: 38581641 PMCID: PMC11136772 DOI: 10.1007/s10787-024-01462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
Based on their high antioxidant capacity and noteworthy phytochemistry, Terminalia ferdinandiana fruit and leaves have attracted considerable recent interest for their therapeutic potential. Whilst those studies have reported a variety of therapeutic properties for the fruit, the anti-inflammatory potential of T. ferdinandiana has been largely neglected and the leaves have been almost completely ignored. This study investigated the immune-modulatory and anti-inflammatory properties of T. ferdinandiana fruit and leaf extracts by evaluating their inhibition of multiple pro- and anti-inflammatory cytokines and chemokines secretion in lipopolysaccharide (LPS)-stimulated and unstimulated RAW 264.7 macrophages using multiplex bead immunoassays and ELISA assays. The methanolic extracts were particularly good immune-modulators, significantly inhibiting the secretion of all the cytokines and chemokines tested. Indeed, the methanolic extracts completely inhibited IL-10, IFN-γ, IL-1β, IL-6, MCP-1, and MIP-2a secretion, and almost completely inhibited the secretion of TNF-α. In addition, the methanolic T. ferdinandiana extracts also significantly inhibited cytosolic COX-2 levels (by 87-95%) and the synthesis of the PGE2 (by ~ 98%). In contrast, the methanolic extracts stimulated LTB4 secretion by ~ 60-90%, whilst the aqueous extracts significantly inhibited LTB4 secretion (by ~ 27% each). Exposure of RAW 264.7 cells to the methanolic T. ferdinandiana extracts also significantly down-regulated the cytosolic levels of NF-κB by 33-44%, indicating that the immune-modulatory and anti-inflammatory properties of the extracts may be regulated via a decrease in NF-κB transcription pathways. Taken together, these results demonstrate potent anti-inflammatory properties for the extracts and provide insights into their anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Ian E Cock
- Centre for Planetary Health and Food Security, Griffith University, Nathan Campus, 170 Kessels Rd, Nathan, QLD, 4111, Australia.
- School of Environment and Science, Griffith University, Nathan Campus, 170 Kessels Rd, Nathan, QLD, 4111, Australia.
| |
Collapse
|
32
|
Khan S, Bilal H, Khan MN, Fang W, Chang W, Yin B, Song NJ, Liu Z, Zhang D, Yao F, Wang X, Wang Q, Cai L, Hou B, Wang J, Mao C, Liu L, Zeng Y. Interleukin inhibitors and the associated risk of candidiasis. Front Immunol 2024; 15:1372693. [PMID: 38605952 PMCID: PMC11007146 DOI: 10.3389/fimmu.2024.1372693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Interleukins (ILs) are vital in regulating the immune system, enabling to combat fungal diseases like candidiasis effectively. Their inhibition may cause enhanced susceptibility to infection. IL inhibitors have been employed to control autoimmune diseases and inhibitors of IL-17 and IL-23, for example, have been associated with an elevated risk of Candida infection. Thus, applying IL inhibitors might impact an individual's susceptibility to Candida infections. Variations in the severity of Candida infections have been observed between individuals with different IL inhibitors, necessitating careful consideration of their specific risk profiles. IL-1 inhibitors (anakinra, canakinumab, and rilonacept), IL-2 inhibitors (daclizumab, and basiliximab), and IL-4 inhibitors (dupilumab) have rarely been associated with Candida infection. In contrast, tocilizumab, an inhibitor of IL-6, has demonstrated an elevated risk in the context of coronavirus disease 2019 (COVID-19) treatment, as evidenced by a 6.9% prevalence of candidemia among patients using the drug. Furthermore, the incidence of Candida infections appeared to be higher in patients exposed to IL-17 inhibitors than in those exposed to IL-23 inhibitors. Therefore, healthcare practitioners must maintain awareness of the risk of candidiasis associated with using of IL inhibitors before prescribing them. Future prospective studies need to exhaustively investigate candidiasis and its associated risk factors in patients receiving IL inhibitors. Implementing enduring surveillance methods is crucial to ensure IL inhibitors safe and efficient utilization of in clinical settings.
Collapse
Affiliation(s)
- Sabir Khan
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hazrat Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Muhammad Nadeem Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Wenjie Fang
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wenqiang Chang
- School of Pharmacy, Shandong University, Qingdao, Shandong, China
| | - Bin Yin
- Department of Dermatovenereology, Chengdu Second People’s Hospital, Chengdu, China
| | - Ning-jing Song
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhongrong Liu
- Department of Dermatology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongxing Zhang
- Department of Dermatology, Meizhou Dongshan Hospital, Meizhou, Guangdong, China
- Department of Dermatology, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Fen Yao
- Department of Pharmacy, Shantou University School Medical College, Shantou, China
| | - Xun Wang
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qian Wang
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lin Cai
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Bing Hou
- Department of Clinical Laboratory, Skin and Venereal Diseases Prevention and Control Hospital of Shantou City, Shantou, Guangdong, China
| | - Jiayue Wang
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyan Mao
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingxi Liu
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuebin Zeng
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Jafri M, Li L, Liang B, Luo M. The Effect of Heparin and Other Exogenous Glycosaminoglycans (GAGs) in Reducing IL-1β-Induced Pro-Inflammatory Cytokine IL-8 and IL-6 mRNA Expression and the Potential Role for Reducing Inflammation. Pharmaceuticals (Basel) 2024; 17:371. [PMID: 38543157 PMCID: PMC10976005 DOI: 10.3390/ph17030371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 11/12/2024] Open
Abstract
Glycosaminoglycans (GAGs) are long linear polysaccharides found in every mammalian tissue. Previously thought only to be involved in cellular structure or hydration, GAGs are now known to be involved in cell signaling and protein modulation in cellular adhesion, growth, proliferation, and anti-coagulation. In this study, we showed that GAGs have an inhibitory effect on the IL-1β-stimulated mRNA expression of IL-6 and IL-8. Exogenous heparin (p < 0.0001), heparan (p < 0.0001), chondroitin (p < 0.049), dermatan (p < 0.0027), and hyaluronan (p < 0.0005) significantly reduced the IL-1β-induced IL-8 mRNA expression in HeLa cells. Exogenous heparin (p < 0.0001), heparan (p < 0.0001), and dermatan (p < 0.0027) also significantly reduced IL-1β-induced IL-6 mRNA expression in HeLa cells, but exogenous chondroitin and hyaluronan had no significant effect. The exogenous GAGs may reduce the transcription of these inflammatory cytokines through binding to TILRR, a co-receptor of IL-1R1, and block/reduce the interactions of TILRR with IL-1R1.
Collapse
Affiliation(s)
- Murtaza Jafri
- Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Lin Li
- National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.L.)
| | - Binhua Liang
- National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.L.)
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ma Luo
- National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.L.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
34
|
Xiang H, Zhao W, Jiang K, He J, Chen L, Cui W, Li Y. Progress in regulating inflammatory biomaterials for intervertebral disc regeneration. Bioact Mater 2024; 33:506-531. [PMID: 38162512 PMCID: PMC10755503 DOI: 10.1016/j.bioactmat.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/04/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is rising worldwide and leading to significant health issues and financial strain for patients. Traditional treatments for IVDD can alleviate pain but do not reverse disease progression, and surgical removal of the damaged disc may be required for advanced disease. The inflammatory microenvironment is a key driver in the development of disc degeneration. Suitable anti-inflammatory substances are critical for controlling inflammation in IVDD. Several treatment options, including glucocorticoids, non-steroidal anti-inflammatory drugs, and biotherapy, are being studied for their potential to reduce inflammation. However, anti-inflammatories often have a short half-life when applied directly and are quickly excreted, thus limiting their therapeutic effects. Biomaterial-based platforms are being explored as anti-inflammation therapeutic strategies for IVDD treatment. This review introduces the pathophysiology of IVDD and discusses anti-inflammatory therapeutics and the components of these unique biomaterial platforms as comprehensive treatment systems. We discuss the strengths, shortcomings, and development prospects for various biomaterials platforms used to modulate the inflammatory microenvironment, thus providing guidance for future breakthroughs in IVDD treatment.
Collapse
Affiliation(s)
- Honglin Xiang
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Weikang Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, PR China
| | - Ke Jiang
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Jiangtao He
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Lu Chen
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yuling Li
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW There has been a rapid increase in silicosis cases, particularly related to artificial stone. The key to management is avoidance of silica exposure. Despite this, many develop progressive disease and there are no routinely recommended treatments. This review provides a summary of the literature pertaining to pharmacological therapies for silicosis and examines the plausibility of success of such treatments given the disease pathogenesis. RECENT FINDINGS In-vitro and in-vivo models demonstrate potential efficacy for drugs, which target inflammasomes, cytokines, effector cells, fibrosis, autophagy, and oxidation. SUMMARY There is some evidence for potential therapeutic targets in silicosis but limited translation into human studies. Treatment of silicosis likely requires a multimodal approach, and there is considerable cross-talk between pathways; agents that modulate both inflammation, fibrosis, autophagy, and ROS production are likely to be most efficacious.
Collapse
Affiliation(s)
- Hayley Barnes
- Monash Centre for Occupational and Environmental Health, Monash University
- Department of Respiratory Medicine, Alfred Health
- Central Clinical School, Monash University, Melbourne
| | - Maggie Lam
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Ryan Hoy
- Monash Centre for Occupational and Environmental Health, Monash University
- Department of Respiratory Medicine, Alfred Health
| |
Collapse
|
36
|
Dusser P, Belot A, Bajolle F, Kevorkian-Verguet C, Meinzer U, Huet F, Tiriau S, Kone-paut I. Subcutaneous anakinra in the management of refractory MIS-C in France. Front Pediatr 2024; 12:1270878. [PMID: 38464895 PMCID: PMC10920278 DOI: 10.3389/fped.2024.1270878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/18/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction Multisystemic inflammatory syndrome in children (MIS-C) is a therapeutic emergency and can lead to myocardial dysfunction (17%-75%) and heart failure (52%-53%). Intravenous immunoglobulins (IVIG) and corticosteroids (CST) have been validated for the management of this condition. Recent reports suggest that an interleukin-1 (IL-1) receptor antagonist, namely anakinra, may be a valuable add-on to the 2019 novel coronavirus disease (COVID-19) treatment for refractory patients. The purpose of this study was to describe the clinico-biological characteristics of patients treated with anakinra as well as the efficacy and safety of subcutaneous anakinra therapy in this condition. Methods The prospective multicentre study of children hospitalized for MIS-C between March 2020 and September 2022, including 23 international paediatric centres, followed for a mean duration of 3.072 ± 3.508 months. The patient data were extracted from the Juvenile Inflammatory Rheumatism (JIR) cohort. The clinico-pathological characteristics, cardiac ultrasound data, and adverse events were reported in patients receiving anakinra. Results Of the 470 children admitted with MIS-C, 18 French patients (50% girls) with a mean age of 10.06 ± 3.9 years were treated with subcutaneous anakinra. Anakinra was used in two situations, macrophage activation syndrome (MAS) (4 patients) and heart failure (14 patients) with a median left ventricular ejection fraction (LVEF) of 39.5% (30%-45%). The average dose of anakinra received was 2.53 ± 1.3 mg/kg/day for a median duration of 3 days. Prior to introduction, 78% (n = 14/18) of the patients had received CST and 56% (n = 10/18) had received IVIG. Only two patients received IVIG alone and six received CST alone plus anakinra. In 10% of cases, IVIG was poorly tolerated from a cardiovascular point of view and was discontinued. Transient elevations in serum transaminases were noted in four patients on anakinra without the need for treatment or dose modification. In all patients, rapid (48 h) improvement in myocardial function was observed (LVEF > 55%) with a concomitant significant decrease in myocardial enzymes (p < 0.05). All patients survived with complete recovery of cardiac function without sequelae. Conclusions Subcutaneous anakinra appears to be a safe and effective treatment for the management of heart failure or MAS in MIS-C patients. The value of IVIG in these two situations remains to be reviewed.
Collapse
Affiliation(s)
- Perrine Dusser
- CEREMAIA, Pediatric Rheumatology, Bicêtre University Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Saclay, Le Kremlin Bicêtre, France
| | - Alexandre Belot
- Pediatric Nephrology, Rheumatology, Dermatology, Reference Centre of Inflammatory Rheumatism and Rare Autoimmune Diseases in Children (RAISE), Hôpital Femme Mère-Enfant, Hospices Civils de Lyon, Bron, France
| | - Fanny Bajolle
- Assistance Publique-Hôpitaux de Paris, M3C Department, Necker-Enfants Malades University Hospital, Université de Paris, Paris, France
| | | | - Ulrich Meinzer
- Department of General Pediatrics, Pediatric Internal Medicine, Rheumatology and Infectious Diseases, National Reference Centre for Rare Pediatric Inflammatory Rheumatisms and Systemic Autoimmune Diseases (RAISE), Robert-Debré University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, INSERM, Centre de Recherche sur l'inflammation UMR 1149, Paris, France
| | - Frédéric Huet
- Pediatric Department, University Hospital of Dijon, Dijon, France
| | - Soizic Tiriau
- Department of Pediatrics, Hôpital Mère-Enfants, Nantes, France
| | - Isabelle Kone-paut
- CEREMAIA, Pediatric Rheumatology, Bicêtre University Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Saclay, Le Kremlin Bicêtre, France
| |
Collapse
|
37
|
Aggeletopoulou I, Kalafateli M, Tsounis EP, Triantos C. Exploring the role of IL-1β in inflammatory bowel disease pathogenesis. Front Med (Lausanne) 2024; 11:1307394. [PMID: 38323035 PMCID: PMC10845338 DOI: 10.3389/fmed.2024.1307394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Interleukin 1β (IL-1β) is a significant mediator of inflammation and tissue damage in IBD. The balance between IL-1β and its endogenous inhibitor-IL-1Ra-, plays a critical role in both initiation and regulation of inflammation. However, the precise role of IL-1β as a causative factor in IBD or simply a consequence of inflammation remains unclear. This review summarizes current knowledge on the molecular and cellular characteristics of IL-1β, describes the existing evidence on the role of this cytokine as a modulator of intestinal homeostasis and an activator of inflammatory responses, and also discusses the role of microRNAs in the regulation of IL-1β-related inflammatory responses in IBD. Current evidence indicates that IL-1β is involved in several aspects during IBD as it greatly contributes to the induction of pro-inflammatory responses through the recruitment and activation of immune cells to the gut mucosa. In parallel, IL-1β is involved in the intestinal barrier disruption and modulates the differentiation and function of T helper (Th) cells by activating the Th17 cell differentiation, known to be involved in the pathogenesis of IBD. Dysbiosis in the gut can also stimulate immune cells to release IL-1β, which, in turn, promotes inflammation. Lastly, increasing evidence pinpoints the central role of miRNAs involvement in IL-1β-related signaling during IBD, particularly in the maintenance of homeostasis within the intestinal epithelium. In conclusion, given the crucial role of IL-1β in the promotion of inflammation and immune responses in IBD, the targeting of this cytokine or its receptors represents a promising therapeutic approach. Further research into the IL-1β-associated post-transcriptional modifications may elucidate the intricate role of this cytokine in immunomodulation.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, Patras, Greece
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
38
|
Stanilov N, Velikova T, Stanilova S. Navigating the Cytokine Seas: Targeting Cytokine Signaling Pathways in Cancer Therapy. Int J Mol Sci 2024; 25:1009. [PMID: 38256080 PMCID: PMC10815616 DOI: 10.3390/ijms25021009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer remains one of the leading causes of morbidity and mortality worldwide, necessitating continuous efforts to develop effective therapeutic strategies. Over the years, advancements in our understanding of the complex interplay between the immune system and cancer cells have led to the development of immunotherapies that revolutionize cancer treatment. Cytokines, as key regulators of the immune response, are involved in both the initiation and progression of cancer by affecting inflammation and manipulating multiple intracellular signaling pathways that regulate cell growth, proliferation, and migration. Cytokines, as key regulators of inflammation, have emerged as promising candidates for cancer therapy. This review article aims to provide an overview of the significance of cytokines in cancer development and therapy by highlighting the importance of targeting cytokine signaling pathways as a potential therapeutic approach.
Collapse
Affiliation(s)
- Noyko Stanilov
- Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Spaska Stanilova
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
39
|
Zhao Y, Wang H, Jin L, Zhang Z, Liu L, Zhou M, Zhang X, Zhang L. Targeting fusion proteins of the interleukin family: A promising new strategy for the treatment of autoinflammatory diseases. Eur J Pharm Sci 2024; 192:106647. [PMID: 37984595 DOI: 10.1016/j.ejps.2023.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
As a means of communication between immune cells and non-immune cells, Interleukins (ILs) has the main functions of stimulating the proliferation and activation of inflammatory immune cells such as dendritic cells and lymphocytes, promote the development of blood cells and so on. However, dysregulation of ILs expression is a major feature of autoinflammatory diseases. The drugs targeting ILs or IL-like biologics have played an important role in the clinical treatment of autoinflammatory diseases. Nevertheless, the widespread use of IL products may result in significant off-target adverse reactions. Thus, there is a clear need to develop next-generation ILs products in the biomedical field. Fusion proteins are proteins created through the joining of two or more genes that originally coded for separate proteins. Over the last 30 years, there has been increasing interest in the use of fusion protein technology for developing anti-inflammatory drugs. In comparison to single-target drugs, fusion proteins, as multiple targets drugs, have the ability to enhance the cytokine therapeutic index, resulting in improved efficacy over classical drugs. The strategy of preparing ILs or their receptors as fusion proteins is increasingly used in the treatment of autoimmune and chronic inflammation. This review focuses on the efficacy of several fusion protein drugs developed with ILs or their receptors in the treatment of autoinflammatory diseases, in order to illustrate the prospects of this new technology as an anti-inflammatory drug development protocol in the future.
Collapse
Affiliation(s)
- Yuchen Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China.
| |
Collapse
|
40
|
Amin A, Khazir ZU, Ji A, Bhat BA, Murtaza D, Hurrah AA, Bhat IA, Parveen S, Nisar S, Sharma PK. Anti-lung Cancer Activity of Synthesized Substituted 1,4-Benzothiazines: An Insight from Molecular Docking and Experimental Studies. Anticancer Agents Med Chem 2024; 24:358-371. [PMID: 37957911 DOI: 10.2174/0118715206276737231103114924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Thiazine, a 6-membered distinctive heterocyclic motif with sulfur and nitrogen atoms, is one of the heterocyclic compounds that functions as a core scaffold in a number of medicinally significant molecules. Small thiazine-based compounds may operate simultaneously on numerous therapeutic targets and by employing a variety of methods to halt the development, proliferation, and vasculature of cancer cells. We have, herein, reported a series of substituted 1,4 benzothiazines as potential anticancer agents for the treatment of lung cancer. METHODS In order to synthesize 2,3-disubstituted-1,4 benzothiazines in good yield, a facile green approach for the oxidative cycloaddition of 2-amino benzenethiol and 1,3-dicarbonyls employing a catalytic amount of ceric ammonium nitrate has been devised. All the molecules have been characterized by spectral analysis and tested for anticancer activity against the A-549 lung cancer cell line using various functional assays. Further in silico screening of compound 3c against six crucial inflammatory molecular targets, such as Il1-α (PDB ID: 5UC6), Il1- β (PDB ID: 6Y8I), Il6 (PDB ID: 1P9M), vimentin (PDB ID: 3TRT), COX-2 (PDB ID: 5KIR), Il8 (PDB ID: 5D14), and TNF-α (PDB ID: 2AZ5), was done using AutoDock tool. RESULTS Among the synthesized compounds, propyl 3-methyl-3,4-dihydro-2H-benzo[b][1,4]thiazine-2- carboxylate (3c) was found to be most active based on cell viability assays using A-549 lung cancer cell line and was found to effectively downregulate various pro-inflammatory genes, like Il1-α, Il1-β, Il6, vimentin, COX-2, Il8, and TNF-α in vitro. The ability of the molecule to effectively suppress the proliferation and migration of lung cancer cells in vitro has been further demonstrated by the colony formation unit assay and wound healing assay. Molecular docking analysis showed the maximal binding affinity (- 7.54 kcal/mol) to be exhibited by compound 3c against IL8. CONCLUSION A green unconventional route for the synthesis of 2,3-disubstituted-1,4 benzothiazines has been developed. All the molecules were screened for their activity against lung cancer and the data suggested that the presence of an additional unbranched alkyl group attached to the thiazine ring increased their activity. Also, in vitro and in silico modeling confirmed the anti-cancer efficiency of compound 3c, encouraging the exploration of such small molecules against cancer.
Collapse
Affiliation(s)
- Andleeb Amin
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Transcriptomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Zubaid-Ul- Khazir
- Transcriptomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Srinagar, J&K, 190025, India
- Department of Chemistry, National Institute of Technology, Hazratbal, Srinagar, J&K, 190006, India
| | - Arfa Ji
- Transcriptomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Srinagar, J&K, 190025, India
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, J&K, 190006, India
| | - Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, J&K, 190006, India
| | - Dar Murtaza
- Transcriptomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Aaqib A Hurrah
- Transcriptomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Srinagar, J&K, 190025, India
| | - Imtiyaz A Bhat
- Department of Endocrinology, Sher-e-Kashmir Institute of Medical Sciences, Soura, Srinagar, J&K, 190011, India
| | - Shaheena Parveen
- Department of Gastroenterology, Sher-e-Kashmir Institute of Medical Sciences, Soura, Srinagar, J&K, 190011, India
| | - Syed Nisar
- Department of Medical Oncology, Sher-e-Kashmir Institute of Medical Sciences, Soura, Srinagar, J&K, 190011, India
| | - Praveen Kumar Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
41
|
Cheng Z, Wang Y, Jiang X, Ren W, Lei S, Deng F, Wu L. High sensitivity C-reactive protein and prediabetes progression and regression in middle-aged and older adults: A prospective cohort study. J Diabetes Investig 2024; 15:78-86. [PMID: 37803908 PMCID: PMC10759715 DOI: 10.1111/jdi.14090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/27/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND This study aimed to investigate the effect of systemic inflammation, assessed by high sensitivity C-reactive protein (hs-CRP) levels, on prediabetes progression and regression in middle-aged and older adults based on the China Health and Retirement Longitudinal Study (CHARLS). METHODS Participants with prediabetes from CHARLS were followed up 4 years later with blood samples collected for measuring fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c). The level of hs-CRP was assessed at baseline and categorized into tertiles (low, middle, and high groups). Prediabetes at baseline and follow-up was defined primarily according to the American Diabetes Association (ADA) criteria. Logistic regression models were used to estimate the odds ratios (ORs) and confidence intervals (CIs). We also performed stratified analyses according to age, gender, BMI, the presence of hypertension, and the disease history of heart disease and dyslipidemia and sensitivity analyses excluding a subset of participants with incomplete data. RESULTS Of the 2,874 prediabetes included at baseline, 834 participants remained as having prediabetes, 146 progressed to diabetes, and 1,894 regressed to normoglycemia based on ADA criteria with a 4 year follow-up. After multivariate logistics regression analysis, prediabetes with middle (0.67-1.62 mg/L) and high (>1.62 mg/L) hs-CRP levels had an increased incidence of progressing to diabetes compared with prediabetes with low hs-CRP levels (<0.67 mg/L; OR = 1.846, 95%CI: 1.129-3.018; and OR = 1.632, 95%CI: 0.985-2.703, respectively), and the incidence of regressing to normoglycemia decreased (OR = 0.793, 95%CI: 0.645-0.975; and OR = 0.769, 95%CI: 0.623-0.978, respectively). Stratified analyses and sensitivity analyses showed consistent results. CONCLUSIONS Low levels of hs-CRP are associated with a high incidence of regression from prediabetes to normoglycemia and reduced odds of progression to diabetes.
Collapse
Affiliation(s)
- Zi‐Jian Cheng
- Center for Genetic Epidemiology and GenomicsSchool of Public Health, Medical College of Soochow UniversitySuzhouJiangsuChina
| | - Yan‐Fei Wang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSoochow UniversitySuzhouJiangsuChina
| | - Xi‐Yuan Jiang
- Center of OsteoporosisKunshan Hospital of Traditional Chinese MedicineKunshanJiangsuChina
| | - Wen‐Yan Ren
- Cambridge‐Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric DiseasesMedical College of Soochow UniversitySuzhouJiangsuChina
| | - Shu‐Feng Lei
- Center for Genetic Epidemiology and GenomicsSchool of Public Health, Medical College of Soochow UniversitySuzhouJiangsuChina
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSoochow UniversitySuzhouJiangsuChina
| | - Fei‐Yan Deng
- Center for Genetic Epidemiology and GenomicsSchool of Public Health, Medical College of Soochow UniversitySuzhouJiangsuChina
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSoochow UniversitySuzhouJiangsuChina
| | - Long‐Fei Wu
- Center for Genetic Epidemiology and GenomicsSchool of Public Health, Medical College of Soochow UniversitySuzhouJiangsuChina
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSoochow UniversitySuzhouJiangsuChina
| |
Collapse
|
42
|
Ozdemir Isik O, Karadag DT, Tekeoglu S, Yazici A, Cefle K, Cefle A. Long-term efficacy of canakinumab in hyperimmunoglobulin D syndrome. Int J Rheum Dis 2024; 27:e14857. [PMID: 37578023 DOI: 10.1111/1756-185x.14857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/15/2023]
Abstract
Hyperimmunoglobulin D syndrome (HIDS) is a rare autoinflammatory disorder with autosomal recessive inheritance. It is caused by specific mutations in the mevalonate kinase gene (MVK). No treatment specific to HIDS has been approved to date; however, nonsteroidal anti-inflammatory drugs, steroids, colchicine, tumor necrosis factor-α inhibitors, and anti-interleukin-1 treatments are used, based on case reports and observational studies. Herein, we report a case with recurrent fever and arthritis attacks who did not respond to anakinra and was successfully treated with canakinumab. Long-term remission was achieved without any side effects with 300 mg canakinumab treatment every 4 weeks for 5 years.
Collapse
Affiliation(s)
- Ozlem Ozdemir Isik
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Duygu Temiz Karadag
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Senem Tekeoglu
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Ayten Yazici
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Kıvanc Cefle
- Division of Medical Genetics, Department of Internal Medicine, School of Medicine, Istanbul University, Istanbul, Turkey
| | - Ayse Cefle
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
43
|
Weitgasser L, Ferstl F, O'Sullivan A, Rösch S. Autoimmune inner ear disease in a young patient – an unsolvable challenge? ACTA OTO-LARYNGOLOGICA CASE REPORTS 2023. [DOI: 10.1080/23772484.2023.2176309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Affiliation(s)
- Lennart Weitgasser
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University Salzburg, Austria
| | - Florentina Ferstl
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University Salzburg, Austria
| | - Anna O'Sullivan
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University Salzburg, Austria
- Institute of Pathology, Paracelsus Medical University Salzburg, Austria
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
| | - Sebastian Rösch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University Salzburg, Austria
| |
Collapse
|
44
|
Zheng S, Que X, Wang S, Zhou Q, Xing X, Chen L, Hou C, Ma J, An P, Peng Y, Yao Y, Song Q, Li J, Zhang P, Pei H. ZDHHC5-mediated NLRP3 palmitoylation promotes NLRP3-NEK7 interaction and inflammasome activation. Mol Cell 2023; 83:4570-4585.e7. [PMID: 38092000 DOI: 10.1016/j.molcel.2023.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 08/04/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
The nucleotide-binding domain (NBD), leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a critical mediator of the innate immune response. How NLRP3 responds to stimuli and initiates the assembly of the NLRP3 inflammasome is not fully understood. Here, we found that a cellular metabolite, palmitate, facilitates NLRP3 activation by enhancing its S-palmitoylation, in synergy with lipopolysaccharide stimulation. NLRP3 is post-translationally palmitoylated by zinc-finger and aspartate-histidine-histidine-cysteine 5 (ZDHHC5) at the LRR domain, which promotes NLRP3 inflammasome assembly and activation. Silencing ZDHHC5 blocks NLRP3 oligomerization, NLRP3-NEK7 interaction, and formation of large intracellular ASC aggregates, leading to abrogation of caspase-1 activation, IL-1β/18 release, and GSDMD cleavage, both in human cells and in mice. ABHD17A depalmitoylates NLRP3, and one human-heritable disease-associated mutation in NLRP3 was found to be associated with defective ABHD17A binding and hyper-palmitoylation. Furthermore, Zdhhc5-/- mice showed defective NLRP3 inflammasome activation in vivo. Taken together, our data reveal an endogenous mechanism of inflammasome assembly and activation and suggest NLRP3 palmitoylation as a potential target for the treatment of NLRP3 inflammasome-driven diseases.
Collapse
Affiliation(s)
- Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangyong Que
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi Zhou
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liang Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunyan Hou
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Junfeng Ma
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Ping An
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yihan Peng
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
45
|
Hosseini A, Barlow GM, Leite G, Rashid M, Parodi G, Wang J, Morales W, Weitsman S, Rezaie A, Pimentel M, Mathur R. Consuming artificial sweeteners may alter the structure and function of duodenal microbial communities. iScience 2023; 26:108530. [PMID: 38125028 PMCID: PMC10730370 DOI: 10.1016/j.isci.2023.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Studies using stool samples suggest that non-sugar sweetener (NSS) consumption affects gut microbiome composition. However, stool does not represent the entire gut. We analyzed the duodenal luminal microbiome in subjects consuming non-aspartame non-sugar sweeteners (NANS, N = 35), aspartame only (ASP, N = 9), and controls (CON, N = 55) and the stool microbiome in a subset (N = 40). Duodenal alpha diversity was decreased in NANS vs. CON. Duodenal relative abundance (RA) of Escherichia, Klebsiella, and Salmonella (all phylum Proteobacteria) was lower in both NANS and ASP vs. CON, whereas stool RA of Escherichia, Klebsiella, and Salmonella was increased in both NANS and ASP vs. CON. Predicted duodenal microbial metabolic pathways altered in NANS vs. CON included polysaccharides biosynthesis and D-galactose degradation, whereas cylindrospermopsin biosynthesis was significantly enriched in ASP vs. CON. These findings suggest that consuming non-sugar sweeteners may significantly alter microbiome composition and function in the metabolically active small bowel, with different alterations seen in stool.
Collapse
Affiliation(s)
- Ava Hosseini
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gillian M. Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Mohamad Rashid
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gonzalo Parodi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Jiajing Wang
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Walter Morales
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Stacy Weitsman
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| |
Collapse
|
46
|
Noor S, Sun MS, Pasmay AA, Pritha AN, Ruffaner-Hanson CD, Nysus MV, Jimenez DC, Murphy M, Savage DD, Valenzuela CF, Milligan ED. Prenatal alcohol exposure promotes NLRP3 inflammasome-dependent immune actions following morphine treatment and paradoxically prolongs nerve injury-induced pathological pain in female mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:2262-2277. [PMID: 38151779 PMCID: PMC10764094 DOI: 10.1111/acer.15214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/23/2023] [Accepted: 10/18/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Neuroimmune dysregulation from prenatal alcohol exposure (PAE) may contribute to neurological deficits associated with fetal alcohol spectrum disorders (FASD). PAE is a risk factor for developing peripheral immune and spinal glial sensitization and release of the proinflammatory cytokine IL-1β, which lead to neuropathic pain (allodynia) from minor nerve injury. Although morphine acts on μ-opioid receptors, it also activates immune receptors, TLR4, and the NLRP3 inflammasome that induces IL-1β. We hypothesized that PAE induces NLRP3 sensitization by morphine following nerve injury in adult mice. METHODS We used an established moderate PAE paradigm, in which adult PAE and non-PAE control female mice were exposed to a minor sciatic nerve injury, and subsequent allodynia was measured using the von Frey fiber test. In control mice with standard sciatic damage or PAE mice with minor sciatic damage, the effects of the NLRP3 inhibitor, MCC950, were examined during chronic allodynia. Additionally, minor nerve-injured mice were treated with morphine, with or without MCC950. In vitro studies examined the TLR4-NLRP3-dependent proinflammatory response of peripheral macrophages to morphine and/or lipopolysaccharide, with or without MCC950. RESULTS Mice with standard sciatic damage or PAE mice with minor sciatic damage developed robust allodynia. Blocking NLRP3 activation fully reversed allodynia in both control and PAE mice. Morphine paradoxically prolonged allodynia in PAE mice, while control mice with minor nerve injury remained stably non-allodynic. Allodynia resolved sooner in nerve-injured PAE mice without morphine treatment than in morphine-treated mice. MCC950 treatment significantly shortened allodynia in morphine-treated PAE mice. Morphine potentiated IL-1β release from TLR4-activated PAE immune cells, while MCC950 treatment greatly reduced it. CONCLUSIONS In female mice, PAE prolongs allodynia following morphine treatment through NLRP3 activation. TLR4-activated PAE immune cells showed enhanced IL-1β release with morphine via NLRP3 actions. Similar studies are needed to examine the adverse impact of morphine in males with PAE. These results are predictive of adverse responses to opioid pain therapeutics in individuals with FASD.
Collapse
Affiliation(s)
- Shahani Noor
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Melody S Sun
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Andrea A Pasmay
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Ariana N Pritha
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Monique V Nysus
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Diane C Jimenez
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Minerva Murphy
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Daniel D Savage
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Erin D Milligan
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
47
|
Blicharz L, Czuwara J, Rudnicka L, Torrelo A. Autoinflammatory Keratinization Diseases-The Concept, Pathophysiology, and Clinical Implications. Clin Rev Allergy Immunol 2023; 65:377-402. [PMID: 38103162 PMCID: PMC10847199 DOI: 10.1007/s12016-023-08971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 12/17/2023]
Abstract
Recent advances in medical genetics elucidated the background of diseases characterized by superficial dermal and epidermal inflammation with resultant aberrant keratosis. This led to introducing the term autoinflammatory keratinization diseases encompassing entities in which monogenic mutations cause spontaneous activation of the innate immunity and subsequent disruption of the keratinization process. Originally, autoinflammatory keratinization diseases were attributed to pathogenic variants of CARD14 (generalized pustular psoriasis with concomitant psoriasis vulgaris, palmoplantar pustulosis, type V pityriasis rubra pilaris), IL36RN (generalized pustular psoriasis without concomitant psoriasis vulgaris, impetigo herpetiformis, acrodermatitis continua of Hallopeau), NLRP1 (familial forms of keratosis lichenoides chronica), and genes of the mevalonate pathway, i.e., MVK, PMVK, MVD, and FDPS (porokeratosis). Since then, endotypes underlying novel entities matching the concept of autoinflammatory keratinization diseases have been discovered (mutations of JAK1, POMP, and EGFR). This review describes the concept and pathophysiology of autoinflammatory keratinization diseases and outlines the characteristic clinical features of the associated entities. Furthermore, a novel term for NLRP1-associated autoinflammatory disease with epithelial dyskeratosis (NADED) describing the spectrum of autoinflammatory keratinization diseases secondary to NLRP1 mutations is proposed.
Collapse
Affiliation(s)
- Leszek Blicharz
- Department of Dermatology, Medical University of Warsaw, 02-008, Warsaw, Poland
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, 02-008, Warsaw, Poland.
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, 02-008, Warsaw, Poland
| | - Antonio Torrelo
- Department of Dermatology, University Children's Hospital Niño Jesús, 28009, Madrid, Spain.
| |
Collapse
|
48
|
Ma ZY, Jiang C, Xu LL. Protein-protein interactions and related inhibitors involved in the NLRP3 inflammasome pathway. Cytokine Growth Factor Rev 2023; 74:14-28. [PMID: 37758629 DOI: 10.1016/j.cytogfr.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) receptor serves as the central node of immune sensing in the innate immune system, and plays an important role in the initiation and progression of chronic diseases. Cryo-electron microscopy (cryo-EM) has provided insights into the conformation of various oligomers within the NLRP3 activation pathway, significantly advancing our understanding of the mechanisms underlying NLRP3 inflammasome activation. Despite the extensive network of protein-protein interactions (PPIs) involved in the assembly and activation of NLRP3 inflammasome, the utilization of protein-protein interactions has been relatively overlooked in the development of NLRP3 inhibitors. This review focuses on summarizing PPIs within the NLRP3 inflammasome activation pathway and small molecule inhibitors capable of interfering with PPIs to counteract the NLRP3 overactivation. Small molecule NLRP3 inhibitors have been gained significant attention owing to their remarkable efficacy, excellent safety profiles, and unique mechanisms of action.
Collapse
Affiliation(s)
- Zhen-Yu Ma
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
49
|
Zeng X, Liu Y, Fan Y, Wu D, Meng Y, Qin M. Agents for the Treatment of Gout: Current Advances and Future Perspectives. J Med Chem 2023; 66:14474-14493. [PMID: 37908076 DOI: 10.1021/acs.jmedchem.3c01710] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Gout is characterized by hyperuricemia and the deposition of monosodium urate (MSU) crystals around joints. Despite the availability of several drugs on the market, its treatment remains challenging owing to the notable side effects, such as hepatorenal toxicity and cardiovascular complications, that are associated with most existing agents. This perspective aims to summarize the current research progress in the development of antigout agents, particularly focusing on xanthine oxidase (XO) and urate anion transporter 1 (URAT1) inhibitors from a medicinal chemistry viewpoint and their preliminary structure-activity relationships (SARs). This perspective provides valuable insights and theoretical guidance to medicinal chemists for the discovery of antigout agents with novel chemical structures, better efficiency, and lower toxicity.
Collapse
Affiliation(s)
- Xiaoyi Zeng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yajing Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yuxin Fan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Di Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yangyang Meng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Mingze Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| |
Collapse
|
50
|
Li M, Gao X, Miao T, Sun H. Identification of biomarkers of acne based on transcriptome analysis and combined with network pharmacology to explore the therapeutic mechanism of Jinhuang ointment. Medicine (Baltimore) 2023; 102:e35642. [PMID: 37933032 PMCID: PMC10627606 DOI: 10.1097/md.0000000000035642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/22/2023] [Indexed: 11/08/2023] Open
Abstract
The incidence of acne is on the rise due to unhealthy diet and living habits. Jinhuang ointment (JHO) is a classic prescription composed of 10 kinds of commonly used Chinese herbal medicine, which has been widely used in clinical prevention and treatment of skin inflammatory diseases since ancient times. However, the pharmacological mechanism and target of JHO are not clear. The acne microarray dataset was downloaded from gene expression omnibus database to identify differentially expressed genes (DEG). Immune infiltration was analyzed by CiberSort algorithm. HUB gene was identified by protein-protein interaction network. The gene expression omnibus dataset validates the biomarkers of acne with high diagnostic value. The potential active components and targets of JHO were obtained through Traditional Chinese Medicine Systems Pharmacology database, and the therapeutic targets were obtained by crossing with disease targets. R-packet is used for enrichment analysis. Molecular docking using Auto Dock Tools. A total of 202 DEGs were identified from 12 skin samples in the GSE6475. Immune infiltration analysis showed that there were a large number of macrophages and mast cells in acne skin. Gene set enrichment analysis analysis showed that DEGS was mainly involved in bacterial reaction, inflammatory reaction and so on. Six central genes and gene cluster modules were identified by Cytoscape software. A total of 185 JHO active components and 220 targets were obtained, of which 10 targets were potential targets for JHO in the treatment of acne. Kyoto encyclopedia of genes and genomes enrichment analysis showed that JHO treatment of acne was mainly related to Toll-like receptors, IL-17 and other signal pathways. The results of molecular docking showed that 5 active compounds in JHO had strong binding activity to the core protein receptor. IL-1 β, CXCL8, toll-like receptor 2, CXCL2, LCN2, and secretory phosphoprotein 1 may be potential biomarkers for early diagnosis of acne. JHO active components may regulate skin cell metabolism and inflammatory response and improve cellular immune microenvironment by acting on core targets (CXCL8, ESR1, IL-1 β, MMP1, MMP3, secretory phosphoprotein 1), thus achieving the purpose of treating acne. This is the result of the joint action of multiple targets and multiple pathways. It provides an idea for the development of a new combination of drugs for the treatment of acne.
Collapse
Affiliation(s)
- Minghui Li
- Shandong Women’s University, Jinan City, Shandong Province, China
| | - Xue Gao
- Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| | - Tianai Miao
- Shandong Women’s University, Jinan City, Shandong Province, China
| | - Hongfeng Sun
- Shandong Women’s University, Jinan City, Shandong Province, China
| |
Collapse
|