1
|
Tan SYT, Lee YQ, Syn G, Tseng FS, Chua JKL, Tan HC, Ho ETL, Kovalik JP, Lim CH, Eng AKH, Chan WH, Lim EKW, Tan JTH, Foo AX, Goh OQM, Lee PC. Greater durability of weight loss at ten years with gastric bypass compared to sleeve gastrectomy. Int J Obes (Lond) 2025:10.1038/s41366-025-01760-2. [PMID: 40148563 DOI: 10.1038/s41366-025-01760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
INTRODUCTION Sleeve gastrectomy (SG) and gastric bypass (GB) are the most commonly performed bariatric surgeries. However, there is insufficient data on which leads to greater long-term (10 year) weight loss. METHODS Subjects who underwent SG and GB from 2008-2013 were followed up at 2, 5, and 10 years post-operatively for weight and diabetes (DM) outcomes. Percentage total weight loss (%TWL), weight regain ( ≥ 20% from nadir) and DM remission rates were compared. RESULTS Subjects (n = 253) who underwent SG (60.9%) and GB (39.1%) were included. The mean age was 41.4 ± 10.6 y, 39.1% were male, and the mean body mass index was 42.1 ± 9.3 kg/m2 with no significant difference between groups. The GB group had a greater proportion of subjects with DM (83.8% vs 19.5%, p < 0.001). At 2 y, %TWL was comparable (GB: 22.3 ± 9.6%, SG: 22.6 ± 10.5%, p = 0.824). However, those who underwent GB had significantly higher %TWL at 5 y (GB: 21.5 ± 8.9%, SG 18.0 ± 11.3%, p = 0.029) and 10 y (GB: 21.0 ± 9.0%, SG: 15.4 ± 12.1%, p = 0.001). The rate of significant weight regain was higher amongst the SG group at both 5 y (SG: 14.7%, GB: 3.8%, p = 0.018) and 10 y (SG: 27.9%, GB: 13.7%, p = 0.037) post-operatively. On multiple linear regression, GB remained significantly associated with greater %TWL at 10 y compared to SG (b = 5.51; adjusted p-value = 0.013), after adjusting for age, sex, pre-operative BMI, pre-operative glycemic status, and surgery year. There was no difference in DM remission rates at 10 y (SG: 26.7%, GB: 19.1%, p = 0.385). CONCLUSION GB was able to produce greater %TWL and less weight regain than SG at 5 and 10 years post-operatively. There was no difference in long-term DM remission rates between the two surgeries.
Collapse
Affiliation(s)
- Sarah Ying Tse Tan
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore.
| | - Yong Qin Lee
- Department of Internal Medicine, Singapore General Hospital, Singapore, Singapore
| | - Gwyneth Syn
- SingHealth Polyclinics, Singapore, Singapore
| | - Fan Shuen Tseng
- Department of Internal Medicine, Singapore General Hospital, Singapore, Singapore
| | | | - Hong Chang Tan
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Emily Tse Lin Ho
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Jean Paul Kovalik
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Chin Hong Lim
- Department of Upper Gastrointestinal & Bariatric Surgery, Singapore General Hospital, Singapore, Singapore
| | - Alvin Kim Hock Eng
- Department of Upper Gastrointestinal & Bariatric Surgery, Singapore General Hospital, Singapore, Singapore
| | - Weng Hoong Chan
- Department of Upper Gastrointestinal & Bariatric Surgery, Singapore General Hospital, Singapore, Singapore
| | - Eugene Kee Wee Lim
- Department of Upper Gastrointestinal & Bariatric Surgery, Singapore General Hospital, Singapore, Singapore
| | | | | | - Orlanda Qi Mei Goh
- Department of Internal Medicine, Singapore General Hospital, Singapore, Singapore
| | - Phong Ching Lee
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
2
|
Bettadapura S, Dowling K, Jablon K, Al-Humadi AW, le Roux CW. Changes in food preferences and ingestive behaviors after glucagon-like peptide-1 analog treatment: techniques and opportunities. Int J Obes (Lond) 2025; 49:418-426. [PMID: 38454010 PMCID: PMC11971042 DOI: 10.1038/s41366-024-01500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) analogs are approved for the treatment of obesity in adults and adolescents. Reports have emerged that the weight loss effect of these medications may be related to changes in food preferences and ingestive behaviors following the treatment. Understanding the mechanisms which impact ingestive behavior could expand opportunities to develop more refined and personalized treatment options for obesity. METHODS Recent studies investigating the relationship between GLP-1 analogs and ingestive behaviors were retrieved from PubMed using the search terms: "obesity," "food preference," "taste," "ingestive behavior," "weight loss medication," "anti-obesity medication," "GLP-1 analog," "tirzepatide," "liraglutide," "semaglutide." Measurement tools were studied to compare variables used to assess food intake behavior. The main outcomes from each study were analyzed to evaluate the current standing and future directions of appetitive, ingestive, and consummatory behaviors and their association with GLP-1 analogs. RESULTS Thus far, studies have primarily explored the weight loss phase and report decreased short-term appetite and food intake upon treatment. However, research during the weight maintenance phase and objective measurements of food intake are notably sparse. Additionally, verbal reports have been primarily used to examine food intake, which can be susceptible to subjectivity. CONCLUSIONS Elucidating the relationship between GLP-1 analogs and ingestive behavior could reveal additional parameters which contribute to their anti-obesity effects. To better understand these mechanisms, it is imperative to consider objective measurements of food intake in future studies. Several measurement tools have been adapted to measure variables of food behavior in humans, and each must be carefully considered with their strengths and limitations to develop optimal investigations.
Collapse
Affiliation(s)
- Sahana Bettadapura
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Kelli Jablon
- Renaissance School of Medicine, Stonybrook University, Stonybrook, NY, USA
| | - Ahmed W Al-Humadi
- Diabetes Complications Research Centre, University College Dublin, Belfield, Ireland
| | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Belfield, Ireland.
- Diabetes Research Centre, Ulster University, Belfast, UK.
| |
Collapse
|
3
|
Krieger JP, Daniels D, Lee S, Mastitskaya S, Langhans W. Glucagon-Like Peptide-1 Links Ingestion, Homeostasis, and the Heart. Compr Physiol 2025; 15:e7. [PMID: 39887844 PMCID: PMC11790259 DOI: 10.1002/cph4.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 02/01/2025]
Abstract
Glucagon-like peptide-1 (GLP-1), a hormone released from enteroendocrine cells in the distal small and large intestines in response to nutrients and other stimuli, not only controls eating and insulin release, but is also involved in drinking control as well as renal and cardiovascular functions. Moreover, GLP-1 functions as a central nervous system peptide transmitter, produced by preproglucagon (PPG) neurons in the hindbrain. Intestinal GLP-1 inhibits eating by activating vagal sensory neurons directly, via GLP-1 receptors (GLP-1Rs), but presumably also indirectly, by triggering the release of serotonin from enterochromaffin cells. GLP-1 enhances glucose-dependent insulin release via a vago-vagal reflex and by direct action on beta cells. Finally, intestinal GLP-1 acts on the kidneys to modulate electrolyte and water movements, and on the heart, where it provides numerous benefits, including anti-inflammatory, antiatherogenic, and vasodilatory effects, as well as protection against ischemia/reperfusion injury and arrhythmias. Hindbrain PPG neurons receive multiple inputs and project to many GLP-1R-expressing brain areas involved in reward, autonomic functions, and stress. PPG neuron-derived GLP-1 is involved in the termination of large meals and is implicated in the inhibition of water intake. This review details GLP-1's roles in these interconnected systems, highlighting recent findings and unresolved issues, and integrating them to discuss the physiological and pathological relevance of endogenous GLP-1 in coordinating these functions. As eating poses significant threats to metabolic, fluid, and immune homeostasis, the body needs mechanisms to mitigate these challenges while sustaining essential nutrient intake. Endogenous GLP-1 plays a crucial role in this "ingestive homeostasis."
Collapse
Affiliation(s)
- Jean-Philippe Krieger
- Jean-Philippe Krieger, Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057 Zurich
| | - Derek Daniels
- Department of Biological Sciences and the Center for Ingestive Behavior Research, University at Buffalo, the State University of New York, Buffalo NY 14260 USA
| | - Shin Lee
- Shin J. Lee, Neurimmune AG, Wagistrasse 18, 8952 Schlieren, Switzerland
| | - Svetlana Mastitskaya
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Dept. of Health Sciences and Technology, ETH Zurich, 8603 Schwerzenbach, Switzerland
| |
Collapse
|
4
|
Holliday A, Horner K, Johnson KO, Dagbasi A, Crabtree DR. Appetite-related Gut Hormone Responses to Feeding Across the Life Course. J Endocr Soc 2025; 9:bvae223. [PMID: 39777204 PMCID: PMC11702868 DOI: 10.1210/jendso/bvae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Indexed: 01/11/2025] Open
Abstract
Appetite-related hormones are secreted from the gut, signaling the presence of nutrients. Such signaling allows for cross-talk between the gut and the appetite-control regions of the brain, influencing appetite and food intake. As nutritional requirements change throughout the life course, it is perhaps unsurprising that appetite and eating behavior are not constant. Changes in appetite-related gut hormones may underpin these alterations in appetite and eating. In this article, we review evidence of how the release of appetite-related gut hormones changes throughout the life course and how this impacts appetite and eating behaviour. We focus on hormones for which there is the strongest evidence of impact on appetite, food intake, and body weight: the anorexigenic glucagon like peptide-1, peptide tyrosine tyrosine, and cholecystokinin, and the orexigenic ghrelin. We consider hormone concentrations, particularly in response to feeding, from the very early days of life, through childhood and adolescence, where responses may reflect energy requirements to support growth and development. We discuss the period of adulthood and midlife, with a particular focus on sex differences and the effect of menstruation, pregnancy, and menopause, as well as the potential influence of appetite-related gut hormones on body composition and weight status. We then discuss recent advancements in our understanding of how unfavorable changes in appetite-related gut hormone responses to feeding in later life may contribute to undernutrition and a detrimental aging trajectory. Finally, we briefly highlight priorities for future research.
Collapse
Affiliation(s)
- Adrian Holliday
- School of Biomedical, Nutritional, and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Katy Horner
- Institute of Sport and Health, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Kelsie O Johnson
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5RF, UK
| | - Aygul Dagbasi
- Section of Nutrition, Department of Metabolism Digestion and Reproduction, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Daniel R Crabtree
- The Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
5
|
Dagbasi A, Fuller A, Hanyaloglu AC, Carroll B, McLaughlin J, Frost G, Holliday A. The role of nutrient sensing dysregulation in anorexia of ageing: The little we know and the much we don't. Appetite 2024; 203:107718. [PMID: 39423861 DOI: 10.1016/j.appet.2024.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The age-related decline in appetite and food intake - termed "anorexia of ageing" - is implicated in undernutrition in later life and hence provides a public health challenge for our ageing population. Eating behaviour is controlled, in part, by homeostatic mechanisms which sense nutrient status and provide feedback to appetite control regions of the brain. Such feedback signals, propagated by episodic gut hormones, are dysregulated in some older adults. The secretory responses of appetite-related gut hormones to feeding are amplified, inducing a more anorexigenic signal which is associated with reduced appetite and food intake. Such an augmented response would indicate an increase in gut sensitivity to nutrients. Consequently, this review explores the role of gastrointestinal tract nutrient sensing in age-related appetite dysregulation. We review and synthesise evidence for age-related alterations in nutrient sensing which may explain the observed hormonal dysregulation. Drawing on what is known regarding elements of nutrient sensing pathways in animal models, in other tissues of the body, and in certain models of disease, we identify potential causal mechanisms including alterations in enteroendocrine cell number and distribution, dysregulation of cell signalling pathways, and changes in the gut milieu. From identified gaps in evidence, we highlight interesting and important avenues for future research.
Collapse
Affiliation(s)
- Aygul Dagbasi
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, London, W12 0NN, UK
| | - Amy Fuller
- Research Centre for Health and Life Sciences, Institute of Health and Wellbeing, Faculty of Health and Life Science, Coventry University, Coventry, CV1 5FB, UK
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology (IRDB), Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Bernadette Carroll
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS1 8TD, UK
| | - John McLaughlin
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK
| | - Gary Frost
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, London, W12 0NN, UK
| | - Adrian Holliday
- School of Biomedical, Nutritional, and Sport Science, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK; Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
6
|
Valdecantos MP, Ruiz L, Folgueira C, Rada P, Gomez-Santos B, Solas M, Hitos AB, Field J, Francisco V, Escalona-Garrido C, Zagmutt S, Calderon-Dominguez M, Mera P, Garcia-Martinez I, Maymó-Masip E, Grajales D, Alen R, Mora A, Sáinz N, Vides-Urrestarazu I, Vilarrasa N, Arbones-Mainar JM, Zaragoza C, Moreno-Aliaga MJ, Aspichueta P, Fernández-Veledo S, Vendrell J, Serra D, Herrero L, Schreiber R, Zechner R, Sabio G, Hornigold D, Rondinone CM, Jermutus L, Grimsby J, Valverde ÁM. The dual GLP-1/glucagon receptor agonist G49 mimics bariatric surgery effects by inducing metabolic rewiring and inter-organ crosstalk. Nat Commun 2024; 15:10342. [PMID: 39609390 PMCID: PMC11605122 DOI: 10.1038/s41467-024-54080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Bariatric surgery is effective for the treatment and remission of obesity and type 2 diabetes, but pharmacological approaches which exert similar metabolic adaptations are needed to avoid post-surgical complications. Here we show how G49, an oxyntomodulin (OXM) analog and dual glucagon/glucagon-like peptide-1 receptor (GCGR/GLP-1R) agonist, triggers an inter-organ crosstalk between adipose tissue, pancreas, and liver which is initiated by a rapid release of free fatty acids (FFAs) by white adipose tissue (WAT) in a GCGR-dependent manner. This interactome leads to elevations in adiponectin and fibroblast growth factor 21 (FGF21), causing WAT beiging, brown adipose tissue (BAT) activation, increased energy expenditure (EE) and weight loss. Elevation of OXM, under basal and postprandial conditions, and similar metabolic adaptations after G49 treatment were found in plasma from patients with obesity early after metabolic bariatric surgery. These results identify G49 as a potential pharmacological alternative sharing with bariatric surgery hormonal and metabolic pathways.
Collapse
Affiliation(s)
- M Pilar Valdecantos
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.
- Faculty of Experimental Science, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain.
| | - Laura Ruiz
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Instituto de Salud Carlos III, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Gomez-Santos
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Maite Solas
- Department of Pharmaceutical Sciences, Division of Pharmacology, University of Navarra, Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Ana B Hitos
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Joss Field
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Vera Francisco
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Escalona-Garrido
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - María Calderon-Dominguez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Irma Garcia-Martinez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Elsa Maymó-Masip
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Diana Grajales
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Alen
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Instituto de Salud Carlos III, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Neira Sáinz
- University of Navarra, Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, 31008, Pamplona, Spain
| | - Irene Vides-Urrestarazu
- University of Navarra, Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, 31008, Pamplona, Spain
| | - Nuria Vilarrasa
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Obesity Unit and Endocrinology and Nutrition Departments, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - José M Arbones-Mainar
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Carlos Zaragoza
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERcv), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Investigación Cardiovascular, Universidad Francisco de Vitoria/Servicio de Cardiología, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - María J Moreno-Aliaga
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain
- University of Navarra, Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, 31008, Pamplona, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- BioBizkaia Health Research Institute, Barakaldo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Sonia Fernández-Veledo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Rovira I Virgili University (URV), Tarragona, Spain
| | - Joan Vendrell
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Rovira I Virgili University (URV), Tarragona, Spain
| | - Dolors Serra
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Laura Herrero
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Instituto de Salud Carlos III, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - David Hornigold
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Cristina M Rondinone
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca Ltd, Gaithersburg, MD, USA
- Pep2Tango Therapeutics Inc., Potomac, MD, USA
| | - Lutz Jermutus
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Joseph Grimsby
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca Ltd, Gaithersburg, MD, USA
- Regeneron Pharmaceuticals, Inc., Internal Medicine, Tarrytown, NY, USA
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Jalleh RJ, Jones KL, Islam MS, Cai L, Horowitz M. Surgical or medical treatment of obesity-associated type 2 diabetes-an increasing clinical conundrum. World J Diabetes 2024; 15:2036-2040. [PMID: 39493561 PMCID: PMC11525724 DOI: 10.4239/wjd.v15.i10.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024] Open
Abstract
In this editorial, we comment on the article by He et al, specifically in relation to the efficacy of bariatric surgery vs glucagon-like peptide-1 receptor agonist (GLP-1RA) therapy in the management of type 2 diabetes (T2D) associated with obesity. Bariatric surgery has now also been shown to be safe and effective in pre-teens and teenagers with obesity and T2D, but information on newer GLP-1RAs in these groups is predictably limited. In older individuals (age > 65 years), both bariatric surgery and GLP-1RA therapy improve cardiovascular outcomes. Bariatric surgery is not infrequently associated with post-operative postprandial hypoglycemia, which is not the case with GLP-1RAs and, paradoxically, there is evidence that GLP-1RAs may reduce both the frequency and severity of postprandial hypoglycemia. Comparative trials of the long-term efficacy of bariatric surgery and GLP-1RAs are indicated.
Collapse
Affiliation(s)
- Ryan J Jalleh
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide; and Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, South Australia, Australia
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide; and Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, South Australia, Australia
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban 4000, KwaZulu-Natal, South Africa
| | - Lu Cai
- Pediatric Research Institute, Departments of Pediatrics, Radiation Oncology, Phar-macology and Toxicology, University of Louisville, Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY 40202, United States
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide; and Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, South Australia, Australia
| |
Collapse
|
8
|
Hengist A, Sciarrillo CM, Guo J, Walter M, Hall KD. Gut-derived appetite hormones do not explain energy intake differences in humans following low-carbohydrate versus low-fat diets. Obesity (Silver Spring) 2024; 32:1689-1698. [PMID: 39113385 PMCID: PMC11357890 DOI: 10.1002/oby.24104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE The objective of this study was to explore how dietary macronutrient composition influences postprandial appetite hormone responses and subsequent energy intake. METHODS A total of 20 adults (mean [SEM], age 30 [1] years, BMI 27.8 [1.3] kg/m2, n = 8 with normal weight, n = 6 with overweight, n = 6 with obesity) consumed a low-fat (LF) diet (10% fat, 75% carbohydrate) and a low-carbohydrate (LC) diet (10% carbohydrate, 75% fat) for 2 weeks each in an inpatient randomized crossover design. At the end of each diet, participants consumed isocaloric macronutrient-representative breakfast test meals, and 6-h postprandial responses were measured. Ad libitum energy intake was measured for the rest of the day. RESULTS The LC meal resulted in greater mean postprandial plasma active glucagon-like peptide-1 (GLP-1; LC: 6.44 [0.78] pg/mL, LF: 2.46 [0.26] pg/mL; p < 0.0001), total glucose-dependent insulinotropic polypeptide (GIP; LC: 578 [60] pg/mL, LF: 319 [37] pg/mL; p = 0.0004), and peptide YY (PYY; LC: 65.6 [5.6] pg/mL, LF: 50.7 [3.8] pg/mL; p = 0.02), whereas total ghrelin (LC: 184 [25] pg/mL, LF: 261 [47] pg/mL; p = 0.0009), active ghrelin (LC: 91 [9] pg/mL, LF: 232 [28] pg/mL; p < 0.0001), and leptin (LC: 26.9 [6.5] ng/mL, LF: 35.2 [7.5] ng/mL; p = 0.01) were lower compared with LF. Participants ate more during LC at lunch (244 [85] kcal; p = 0.01) and dinner (193 [86] kcal; p = 0.04), increasing total subsequent energy intake for the day compared with LF (551 [103] kcal; p < 0.0001). CONCLUSIONS In the short term, endogenous gut-derived appetite hormones do not necessarily determine ad libitum energy intake.
Collapse
Affiliation(s)
- Aaron Hengist
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda MD, 20892, USA
| | - Christina M. Sciarrillo
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda MD, 20892, USA
| | - Juen Guo
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda MD, 20892, USA
| | - Mary Walter
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda MD, 20892, USA
| | - Kevin D. Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda MD, 20892, USA
| |
Collapse
|
9
|
Ataya K, Patel N, Aljaafreh A, Melebari SS, Yang W, Guillen C, Bourji HE, Al-Sharif L. Outcomes of Single Anastomosis Sleeve Ileal (SASI) Bypass as an Alternative Procedure in Treating Obesity: An Updated Systematic Review and Meta-Analysis. Obes Surg 2024; 34:3285-3297. [PMID: 39060638 DOI: 10.1007/s11695-024-07366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE The Single Anastomosis Sleeve Ileal (SASI) bypass is a novel bariatric procedure that simplifies Santoro's procedure, balancing functional restriction and neuroendocrine modulation while preserving anatomy. We aim to conduct a single-arm meta-analysis of the SASI bypass to explore its moderate-term efficacy, as this might expand the available choices for surgeons to choose the best bariatric surgery that suits the patient's condition. MATERIALS AND METHODS We conducted a comprehensive search on PubMed, Scopus, EMBASE, and Cochrane to identify studies for the SASI bypass surgery focusing on outcomes such as %EWL, %TWL, remission rate of comorbidities, and complications. The statistical analysis was carried out using RStudio version 4.3.2. Heterogeneity was assessed using the Cochrane Q test and I2 statistics. RESULTS Our findings illuminate SASI's potency by undertaking a single-arm meta-analysis involving 1873 patients across 26 studies. At 12 months, we report a noteworthy % Excess Weight Loss (%EWL) (Mean 84.13; 95% CI 78.41-89.85; I2 = 95%), and % Total Weight Loss (%TWL) (Mean 35.17; 95% CI 32.30-38.04; I2 = 97%), highlighting SASI's efficacy on weight loss. Cumulative meta-analyses supported these findings. More weight loss was observed with a 250 cm common limb and a greater than 3 cm anastomosis. An 88.28% remission rate in type 2 diabetes mellitus (95% CI 79.74-95.03; I2 = 84%) at 12 months was observed. Beyond weight outcomes, SASI impacts comorbidities with a good safety profile. CONCLUSION Our study positions the SASI bypass as a good alternative option. However, long-term efficacy is yet to be explored in the future.
Collapse
Affiliation(s)
- Karim Ataya
- Department of Bariatric Surgery, University of Montreal, Montreal, H3C 3J7, Canada
| | - Neha Patel
- General Surgery, Government Medical College Surat, Surat, 395001, India
| | - Almoutuz Aljaafreh
- Department of Bariatric Surgery, St Georges University Hospitals NHS Foundation Trust, London, SW17 0QT, England
| | - Samah Sofyan Melebari
- Department of Bariatric Surgery, King Abdullah Medical City, Makkah, 24246, Saudi Arabia
| | - Wah Yang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Camilo Guillen
- MS4, PUCMM (Pontificia Universidad Católica Madre y Maestra), Santiago de los Caballeros, 510000, Dominican Republic
| | - Hussein El Bourji
- Department of Surgery, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Lubna Al-Sharif
- Department of Pharmacology, University of Jordan, Amman, 11183, Jordan
| |
Collapse
|
10
|
Qanaq D, O'Keeffe M, Cremona S, Bernardo WM, McIntyre RD, Papada E, Benkalkar S, Rubino F. The Role of Dietary Intake in the Weight Loss Outcomes of Roux-en-Y Gastric Bypass and Sleeve Gastrectomy: A Systematic Review and Meta-analysis. Obes Surg 2024; 34:3021-3037. [PMID: 38907132 PMCID: PMC11289176 DOI: 10.1007/s11695-024-07183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 06/23/2024]
Abstract
The relationship between postoperative dietary intake and weight loss after bariatric surgery remains unclear. We performed a systematic review and meta-analysis of studies published between January 2000 and May 2023, reporting weight loss outcomes, and dietary intake before and after Roux-en-Y gastric bypass and sleeve gastrectomy. A total of 42 studies were included. There was no detectable difference in dietary intake between the two procedures. Roux-en-Y gastric bypass induced an average decrease in energy intake of 886 kcal/day at 12-month post-surgery; however, there was no correlation between daily energy intake and weight loss. These findings show a substantial reduction of energy intake in the first year after bariatric surgery but do not support a link between lower energy intake and greater weight loss.
Collapse
Affiliation(s)
- Dalal Qanaq
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, James Black Centre, Denmark Hill Campus, 125 Coldharbour Road, London, SE5 9RJ, UK
- College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, 11481, Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Centre, 11481, Riyadh, Kingdom of Saudi Arabia
- Department of Nutritional Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Majella O'Keeffe
- Department of Nutritional Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
- School of Food and Nutritional Sciences, University College Cork, College Road, Cork, Ireland
| | - Simone Cremona
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, James Black Centre, Denmark Hill Campus, 125 Coldharbour Road, London, SE5 9RJ, UK
- General and Digestive Surgery Department of Hospital Del Mar de, 08003, Barcelona, Spain
| | | | - Robert D McIntyre
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, James Black Centre, Denmark Hill Campus, 125 Coldharbour Road, London, SE5 9RJ, UK
- School of Sport, Exercise and Applied Science, St Mary's University, Twickenham, London, TW1 4SX, UK
| | - Efstathia Papada
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, James Black Centre, Denmark Hill Campus, 125 Coldharbour Road, London, SE5 9RJ, UK
- Division of Medicine, University College London, London, WC1E 6JF, UK
| | - Saumit Benkalkar
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, James Black Centre, Denmark Hill Campus, 125 Coldharbour Road, London, SE5 9RJ, UK
| | - Francesco Rubino
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, James Black Centre, Denmark Hill Campus, 125 Coldharbour Road, London, SE5 9RJ, UK.
- Bariatric and Metabolic Surgery, King's College Hospital, London, SE5 9RS, UK.
| |
Collapse
|
11
|
Ram Sohan P, Mahakalkar C, Kshirsagar S, Bikkumalla S, Reddy S, Hatewar A, Dixit S. Long-Term Effectiveness and Outcomes of Bariatric Surgery: A Comprehensive Review of Current Evidence and Emerging Trends. Cureus 2024; 16:e66500. [PMID: 39247032 PMCID: PMC11381104 DOI: 10.7759/cureus.66500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Obesity is a global epidemic associated with an increased risk of severe health conditions such as type 2 diabetes, cardiovascular diseases, and certain cancers. Bariatric surgery has become a pivotal treatment for severe obesity, offering significant improvements in weight loss and comorbidity resolution. This comprehensive review aims to assess the long-term effectiveness and outcomes of various bariatric surgical procedures, highlighting current evidence and emerging trends in the field. We extensively reviewed the literature, including randomized controlled trials, cohort studies, and meta-analyses, to evaluate long-term weight loss, resolution of obesity-related comorbidities, quality of life (QoL), and complications associated with different bariatric procedures. Bariatric surgery has demonstrated substantial and sustained weight loss over the long term, with varying degrees of effectiveness among different procedures. Gastric bypass and sleeve gastrectomy are associated with significant improvements in comorbidities such as type 2 diabetes and hypertension. QoL outcomes are generally positive, improving physical health, mental well-being, and social functioning. However, long-term complications, including nutritional deficiencies and the need for reoperations, remain challenges. Emerging trends such as minimally invasive techniques and nonsurgical interventions show promise in enhancing patient outcomes. Bariatric surgery remains a highly effective intervention for managing severe obesity and its related health issues. While long-term outcomes are generally favorable, continued advancements in surgical techniques and postoperative care are crucial for optimizing results and minimizing complications. Future research should focus on personalized approaches to patient management and the development of novel treatment modalities to further improve outcomes in the long term.
Collapse
Affiliation(s)
- Poosarla Ram Sohan
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Chandrashekhar Mahakalkar
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Shivani Kshirsagar
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Shruthi Bikkumalla
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Srinivasa Reddy
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Akansha Hatewar
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sparsh Dixit
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
12
|
Mi W, Hu Z, Zhao S, Wang W, Lian W, Lu P, Shi T. Purple sweet potato anthocyanins normalize the blood glucose concentration and restore the gut microbiota in mice with type 2 diabetes mellitus. Heliyon 2024; 10:e31784. [PMID: 38845993 PMCID: PMC11153189 DOI: 10.1016/j.heliyon.2024.e31784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Background This study investigated the effects of purple sweet potato anthocyanins (PSPA) in a type 2 diabetes mellitus (T2DM) mouse model. Methods Sixty-five male mice were randomly divided into one control group and four experimental groups, which were fed with a high-fat diet and intraperitoneally injected with streptozotocin (STZ) to induce T2DM. The model mice were treated with 0 (M), 227.5 (LP), 455 (MP), or 910 (HP) mg/kg PSPA for ten days. ELISA, 16S rRNA sequencing, and hematoxylin and eosin staining were used to assess blood biochemical parameters, gut microbial composition, and liver tissue structure, respectively. Results The FBG concentration was significantly decreased in the LP (6.32 ± 1.05 mmol/L), MP (6.32 ± 1.05 mmol/L), and HP (5.65 ± 0.83 mmol/L) groups; the glycosylated hemoglobin levels were significantly decreased in the HP group (14.43 ± 7.12 pg/mL) compared with that in the M group (8.08 ± 1.04 mmol/L; 27.20 ± 7.72 pg/mL; P < 0.05). The PSPA treated groups also increased blood glutathione levels compared with M. PSPA significantly affected gut microbial diversity. The Firmicutes/Bacteroidetes ratio decreased by 38.9 %, 49.2 %, and 15.9 % in the LP, MP, and HP groups compared with that in the M group (0.62). The PSPAs treated groups showed an increased relative abundance of Lachnospiraceae_Clostridium, Butyricimonas, and Akkermansia and decreased abundance of nine bacterial genera, including Staphylococcus. Conclusion PSPA reduced blood glucose levels, increased serum antioxidant enzymes, and optimized the diversity and structure of the gut microbiota in mice with T2DM.
Collapse
Affiliation(s)
| | | | - Shuying Zhao
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Wei Wang
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Wu Lian
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Peng Lu
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Tala Shi
- School of Public Health, Binzhou Medical University, Yantai, China
| |
Collapse
|
13
|
Al-Fagih OS, Zuberi S, Niaz O, Jambulingam P, Whitelaw D, Rashid F, Adil MT, Jain V, Al-Taan O, Munasinghe A, Askari A, Iqbal FM. Impact of Gastrojejunostomy Anastomosis Diameter on Weight Loss Following Laparoscopic Gastric Bypass: A Systematic Review. Obes Surg 2024; 34:2227-2236. [PMID: 38652437 DOI: 10.1007/s11695-024-07237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Laparoscopic Roux-en-Y gastric bypass (RYGB) is crucial for significant weight reduction and treating obesity-related issues. However, the impact of gastrojejunostomy (GJ) anastomosis diameter on weight loss remains unclear. We investigate this influence on post-RYGB weight loss outcomes. A systematic search was conducted. Six studies met the inclusion criteria, showing varied GJ diameters and follow-up durations (1-5 years). Smaller GJ diameters generally correlated with greater short-to-medium-term weight loss, with a threshold beyond which complications like stenosis increased. Studies had moderate-to-low bias risk, emphasizing the need for precise GJ area quantification post-operation. This review highlights a negative association between smaller GJ diameters and post-RYGB weight loss, advocating for standardized measurement techniques. Future research should explore intra-operative and AI-driven methods for optimizing GJ diameter determination.
Collapse
Affiliation(s)
- Othman S Al-Fagih
- Department of General Surgery, Luton & Dunstable University Hospital, Bedfordshire Hospitals NHS Foundation Trust, Lewsey Road, Luton, LU4 0DZ, UK.
| | - Sharukh Zuberi
- Department of General Surgery, Luton & Dunstable University Hospital, Bedfordshire Hospitals NHS Foundation Trust, Lewsey Road, Luton, LU4 0DZ, UK
| | - Osamah Niaz
- Department of General Surgery, Luton & Dunstable University Hospital, Bedfordshire Hospitals NHS Foundation Trust, Lewsey Road, Luton, LU4 0DZ, UK
| | - Periyathambi Jambulingam
- Department of General Surgery, Luton & Dunstable University Hospital, Bedfordshire Hospitals NHS Foundation Trust, Lewsey Road, Luton, LU4 0DZ, UK
| | - Douglas Whitelaw
- Department of General Surgery, Luton & Dunstable University Hospital, Bedfordshire Hospitals NHS Foundation Trust, Lewsey Road, Luton, LU4 0DZ, UK
| | - Farhan Rashid
- Department of General Surgery, Luton & Dunstable University Hospital, Bedfordshire Hospitals NHS Foundation Trust, Lewsey Road, Luton, LU4 0DZ, UK
| | - Md Tanveer Adil
- Department of General Surgery, Luton & Dunstable University Hospital, Bedfordshire Hospitals NHS Foundation Trust, Lewsey Road, Luton, LU4 0DZ, UK
| | - Vigyan Jain
- Department of General Surgery, Luton & Dunstable University Hospital, Bedfordshire Hospitals NHS Foundation Trust, Lewsey Road, Luton, LU4 0DZ, UK
| | - Omer Al-Taan
- Department of General Surgery, Luton & Dunstable University Hospital, Bedfordshire Hospitals NHS Foundation Trust, Lewsey Road, Luton, LU4 0DZ, UK
| | - Aruna Munasinghe
- Department of General Surgery, Luton & Dunstable University Hospital, Bedfordshire Hospitals NHS Foundation Trust, Lewsey Road, Luton, LU4 0DZ, UK
| | - Alan Askari
- Department of General Surgery, Luton & Dunstable University Hospital, Bedfordshire Hospitals NHS Foundation Trust, Lewsey Road, Luton, LU4 0DZ, UK
- Department of Surgery and Cancer, Imperial College London, St Mary's Hospital, London, W2 1NY, UK
| | - Fahad M Iqbal
- Department of Surgery and Cancer, Imperial College London, St Mary's Hospital, London, W2 1NY, UK
| |
Collapse
|
14
|
Machado Carvalhais R, Siochi C, Harutyunyan G, Segura Torres D, Shahmoradi V, Sobieraj P, Canuto Miller A, Jesmajian S. Differences in the Impact of Obesity and Bariatric Surgery on Patients Hospitalized for Atrial Flutter and Atrial Fibrillation: A Nationwide Analysis, 2016-2020. Cureus 2024; 16:e62284. [PMID: 39006678 PMCID: PMC11245680 DOI: 10.7759/cureus.62284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND The "obesity paradox" claims that although obesity is a risk factor for atrial fibrillation, obese patients have lower inpatient mortality when admitted due to atrial fibrillation. This study aims to analyze if the obesity paradox still holds true after weight loss from bariatric surgery. Methods: This study analyzed discharge data from the National Inpatient Sample, 2016-2020. Patients admitted due to atrial fibrillation or atrial flutter, with or without obesity, and with or without a past medical history of bariatric surgery were identified using ICD-10-CM and ICD-10-PCS codes. The primary outcome was mortality. Secondary outcomes included length of stay, resource utilization, necessity for endotracheal intubation, and necessity for cardioversion. STATA v.13 was used for univariate and multivariate analysis (StataCorp LLC, Texas, USA). RESULTS Among 2,292,194 patients who had a primary diagnosis of atrial fibrillation or atrial flutter, 494,830 were obese and 25,940 had bariatric surgery. Mortality was not significantly different in post-bariatric surgery patients when compared to the general population (OR 0.76; 95% [CI 0.482-1.2; p=0.24]). Mortality was significantly lower in obese patients when compared to the general population (OR 0.646; 95% [CI 0.583-0.717; p<0.001]). Therefore, post-bariatric surgery patients had a higher mortality than obese patients when compared to the general population. Obese patients spent more days in the hospital (regression 0.219; 95% [CI 0.19-0.248, p<0.001]), had higher resource utilization (regression 3491.995; 95% [CI 2870.085-4113.905, p<0.001]), more cardioversions (OR 1.434; 95% [CI 1.404-1.465; p<0.001]), and no difference in endotracheal intubation rate (OR 1.02; 95% [CI 0.92-1.127; p=0.724]) when compared to the general population. Post-bariatric patients had no difference in length of stay (regression -0.053; 95% [CI -0.137-0.031; p=0.218]) and resource utilization (regression 577.297; 95% [CI -1069.801-2224.396; p=0.492]), fewer endotracheal intubations (OR 0.583; 95% [CI 0.343-0.99; p=0.046]), and more cardioversions (OR 1.223; 95% [CI 1.134-1.32; p<0.001]) when compared to the general population. CONCLUSION Compared to the general population, post-bariatric patients had higher inpatient mortality than obese patients when admitted due to atrial fibrillation or atrial flutter. This research reinforces the presence of the obesity paradox following bariatric surgery with respect to mortality.
Collapse
Affiliation(s)
- Ricardo Machado Carvalhais
- Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New Rochelle, USA
| | - Christian Siochi
- Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New Rochelle, USA
| | - Gohar Harutyunyan
- Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New Rochelle, USA
| | - Danny Segura Torres
- Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New Rochelle, USA
| | - Vahe Shahmoradi
- Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New Rochelle, USA
| | - Peter Sobieraj
- Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New Rochelle, USA
| | - Aressa Canuto Miller
- Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New Rochelle, USA
| | - Stephen Jesmajian
- Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New Rochelle, USA
| |
Collapse
|
15
|
Simoneau M, McKay B, Brooks E, Doucet É, Baillot A. Gut peptides before and following Roux-En-Y gastric bypass: A systematic review and meta-analysis. Obes Rev 2024; 25:e13702. [PMID: 38327045 DOI: 10.1111/obr.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024]
Abstract
A systematic search was conducted in Medline Ovid, Embase, Scopus, and Cochrane Central Register of Controlled Trials up until March 2021 following PRISMA guidelines. Studies included evaluated ghrelin, GLP-1, PYY or appetite sensation via visual analogue scales (VASs) before and after Roux-en-Y gastric bypass (RYGB) in adults. A multilevel model with random effects for study and follow-up time points nested in study was fit to the data. The model included kcal consumption as a covariate and time points as moderators. Among the 2559 articles identified, k = 47 were included, among which k = 19 evaluated ghrelin, k = 40 GLP-1, k = 22 PYY, and k = 8 appetite sensation. Our results indicate that fasting ghrelin levels are decreased 2 weeks post-RYGB (p = 0.005) but do not differ from baseline from 6 weeks to 1-year post-RYGB. Postprandial ghrelin and fasting GLP-1 levels were not different from pre-surgical values. Postprandial levels of GLP-1 increased significantly from 1 week (p < 0.001) to 2 years post-RYGB (p < 0.01) compared with pre-RYGB. Fasting PYY increased at 6 months (p = 0.034) and 1 year (p = 0.029) post-surgery; also, postprandial levels increased up to 1 year (p < 0.01). Insufficient data on appetite sensation were available to be meta-analyzed.
Collapse
Affiliation(s)
- Mylène Simoneau
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Brad McKay
- Department of kinesiology, University of McMaster, Hamilton, Ontario, Canada
| | - Emma Brooks
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Éric Doucet
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Aurélie Baillot
- Department of nursing, University of Québec en Outaouais, Gatineau, Quebec, Canada
| |
Collapse
|
16
|
Guo Y, Zhang L, Li M, Lin L, Xue F, Gao W, Xu X, Huang H. Metabolomics of Mice with Type 2 Diabetes and Nonalcoholic Fatty Liver Treated by Acupuncture. Int J Endocrinol 2024; 2024:5568337. [PMID: 38633528 PMCID: PMC11023731 DOI: 10.1155/2024/5568337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/09/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction To investigate the effects of acupuncture on endogenous metabolites in the liver of type 2 diabetes mellitus (T2DM) with nonalcoholic fatty liver disease (NAFLD) mice-based metabolomics. Methods Proton nuclear magnetic resonance (1H-NMR) metabolomics combined with multivariate statistical analysis and univariate analysis were used to analyze the changes of endogenous metabolites in the liver of mice in each group and to provide new clinical ideas for acupuncture in the treatment of glycolipid metabolism disorders caused by T2DM and NAFLD. Results After 4 weeks of continuous treatment, fasting blood glucose (FBG), insulin (INS), total cholesterol (TC), and triglyceride (TG) decreased significantly in mice in the acupuncture treatment group (ATG), and the content of liver glycogen increased significantly. Based on 1H-NMR metabolomic analysis, a total of 47 metabolites were identified in the liver of T2DM with NAFLD mice, of which eight metabolites: UDP-N-acetylglucosamine, adenosine, glutamate, isoleucine, ATP, 3-hydroxybutyric acid, NADP+, and leucine were significantly altered by acupuncture treatment. Through the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, it is found that acupuncture has an intervention effect on five metabolic pathways, mainly involving amino acid metabolism, energy metabolism, and oxidative stress. Conclusion Our study shows that acupuncture can regulate the liver metabolism mode of T2DM in NAFLD mice. It can reduce blood glucose and lipid accumulation in the liver, and these findings provide a new idea and theoretical basis for acupuncture in the treatment of diseases related to glucose and lipid metabolism.
Collapse
Affiliation(s)
- Yihui Guo
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Liying Zhang
- Imaging Center, The First Affiliated Clinical Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Mengyuan Li
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Linan Lin
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Fuyu Xue
- Acupuncture and Massage Treatment Center, The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Wanning Gao
- Encephalopathy Center, The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Xiaoru Xu
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Haipeng Huang
- Institute of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| |
Collapse
|
17
|
Tsilingiris D, Kokkinos A. Advances in obesity pharmacotherapy; learning from metabolic surgery and beyond. Metabolism 2024; 151:155741. [PMID: 37995806 DOI: 10.1016/j.metabol.2023.155741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Currently, metabolic surgery (MS) constitutes the most effective means for durable weight loss of clinically meaningful magnitude, type 2 diabetes remission and resolution of non-alcoholic steatohepatitis, as well as other obesity-related comorbidities. Accumulating evidence on the mechanisms through which MS exerts its actions has highlighted the altered secretion of hormonally active peptides of intestinal origin with biological actions crucial to energy metabolism as key drivers of MS clinical effects. The initial success of glucagon-like peptide-1 (GLP-1) receptor agonists regarding weight loss and metabolic amelioration have been followed by the development of unimolecular dual and triple polyagonists, additionally exploiting the effects of glucagon and/or glucose-dependent insulinotropic polypeptide (GIP) which achieves a magnitude of weight loss approximating that of common MS operations. Through the implementation of such therapies, the feasibility of a "medical bypass", namely the replication of the clinical effects of MS through non-surgical interventions may be foreseeable in the near future. Apart from weight loss, this approach ought to be put to the test also regarding other clinical outcomes, such as liver steatosis and steatohepatitis, cardiovascular disease, and overall prognosis, on which MS has a robustly demonstrated impact. Besides, a medical bypass as an alternative, salvage, or combination strategy to MS may promote precision medicine in obesity therapeutics.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Alexander Kokkinos
- 1st Department of Propaedeutic Internal Medicine, Athens University Medical School, Laiko Hospital, Athens, Greece.
| |
Collapse
|
18
|
Koball AM, Ames GE, Fitzsimmons AJ, Kallies KJ, Bennie BA. Food cravings after bariatric surgery: comparing laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass. Eat Weight Disord 2024; 29:7. [PMID: 38214807 PMCID: PMC10786997 DOI: 10.1007/s40519-023-01636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Research suggests that food choices, preferences, and tastes change after bariatric surgery, but evidence regarding changes in food cravings is mixed. OBJECTIVES The primary aim of this cohort study was to compare food cravings during the first year following bariatric surgery in patients who had undergone sleeve gastrectomy (SG) versus Roux-en-Y gastric bypass (RYGB). SETTING Integrated multispecialty health system, United States. METHODS Patients aged ≥ 18 years seen between May 2017 and July 2019, provided informed consent, completed the Food Craving Inventory (FCI), and had ≥ 1 year of follow-up after undergoing primary SG or RYGB were included in the study. Secondary data captured included psychological and behavioral measures. Preoperative and postoperative (3, 6, 9, and 12 months) FCI scores of patients who underwent SG and RYGB were compared. RESULTS Some attrition occurred postoperatively (N = 187 at baseline, 141 at 3 months, 108 at 6 months, 89 at 9 months, and 84 at 12 months). No significant relationship between pre- or postoperative food cravings and surgery type was found except on the carbohydrate subscale. Patients with higher preoperative food addiction symptoms were not more likely to experience an earlier reoccurrence of food cravings during the first 12 months after surgery. Likewise, patients with higher levels of preoperative depression and anxiety were not more likely to have early reoccurrence of food cravings during the first 12 months after surgery; however, those with higher PHQ9 scores at baseline had uniformly higher food craving scores at all timepoints (pre-surgery, 3 m, 6 m, 9 m, and 12 m). CONCLUSIONS Results suggest that food cravings in the year after bariatric surgery are equivalent by surgery type and do not appear to be related to preoperative psychological factors or eating behaviors. LEVEL OF EVIDENCE Level III: Evidence obtained from well-designed cohort.
Collapse
Affiliation(s)
- Afton M Koball
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA.
| | - Gretchen E Ames
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Alec J Fitzsimmons
- Department of Medical Research, Gundersen Health System, La Crosse, WI, USA
| | - Kara J Kallies
- Public & Community Health, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Barb A Bennie
- Department of Medical Research, Gundersen Health System, La Crosse, WI, USA
| |
Collapse
|
19
|
Jalleh RJ, Umapathysivam MM, Plummer MP, Deane A, Jones KL, Horowitz M. Postprandial plasma GLP-1 levels are elevated in individuals with postprandial hypoglycaemia following Roux-en-Y gastric bypass - a systematic review. Rev Endocr Metab Disord 2023; 24:1075-1088. [PMID: 37439960 PMCID: PMC10697890 DOI: 10.1007/s11154-023-09823-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND AND AIMS Bariatric surgery is the most effective treatment in individuals with obesity to achieve remission of type 2 diabetes. Post-bariatric surgery hypoglycaemia occurs frequently, and management remains suboptimal, because of a poor understanding of the underlying pathophysiology. The glucoregulatory hormone responses to nutrients in individuals with and without post-bariatric surgery hypoglycaemia have not been systematically examined. MATERIALS AND METHODS The study protocol was prospectively registered with PROSPERO. PubMed, EMBASE, Web of Science and the Cochrane databases were searched for publications between January 1990 and November 2021 using MeSH terms related to post-bariatric surgery hypoglycaemia. Studies were included if they evaluated individuals with post-bariatric surgery hypoglycaemia and included measurements of plasma glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), insulin, C-peptide and/or glucagon concentrations following an ingested nutrient load. Glycated haemoglobin (HbA1c) was also evaluated. A random-effects meta-analysis was performed, and Hedges' g (standardised mean difference) and 95% confidence intervals were reported for all outcomes where sufficient studies were available. The τ2 estimate and I2 statistic were used as tests for heterogeneity and a funnel plot with the Egger regression-based test was used to evaluate for publication bias. RESULTS From 377 identified publications, 12 were included in the analysis. In all 12 studies, the type of bariatric surgery was Roux-en-Y gastric bypass (RYGB). Comparing individuals with and without post-bariatric surgery hypoglycaemia following an ingested nutrient load, the standardised mean difference in peak GLP-1 was 0.57 (95% CI, 0.32, 0.82), peak GIP 0.05 (-0.26, 0.36), peak insulin 0.84 (0.44, 1.23), peak C-peptide 0.69 (0.28, 1.1) and peak glucagon 0.05 (-0.26, 0.36). HbA1c was less in individuals with hypoglycaemia - 0.40 (-0.67, -0.12). There was no evidence of substantial heterogeneity in any outcome except for peak insulin: τ2 = 0.2, I2 = 54.3. No publication bias was evident. CONCLUSION Following RYGB, postprandial peak plasma GLP-1, insulin and C-peptide concentrations are greater in individuals with post-bariatric surgery hypoglycaemia, while HbA1c is less. These observations support the concept that antagonism of GLP-1 would prove beneficial in the management of individuals with hypoglycaemia following RYGB.PROSPERO Registration Number: CRD42021287515.
Collapse
Affiliation(s)
- Ryan Joseph Jalleh
- Adelaide Medical School, The University of Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, South Australia, Australia
- Diabetes and Endocrine Services, Northern Adelaide Local Health Network, South Australia, Australia
| | - Mahesh Michael Umapathysivam
- Adelaide Medical School, The University of Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, South Australia, Australia
| | - Mark Philip Plummer
- Adelaide Medical School, The University of Adelaide, South Australia, Australia
| | - Adam Deane
- Intensive Care Unit, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Karen Louise Jones
- Adelaide Medical School, The University of Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, South Australia, Australia
| | - Michael Horowitz
- Adelaide Medical School, The University of Adelaide, South Australia, Australia.
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, South Australia, Australia.
| |
Collapse
|
20
|
Kokkorakis M, Katsarou A, Katsiki N, Mantzoros CS. Milestones in the journey towards addressing obesity; Past trials and triumphs, recent breakthroughs, and an exciting future in the era of emerging effective medical therapies and integration of effective medical therapies with metabolic surgery. Metabolism 2023; 148:155689. [PMID: 37689110 DOI: 10.1016/j.metabol.2023.155689] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
The 21st century is characterized by an increasing incidence and prevalence of obesity and the burden of its associated comorbidities, especially cardiometabolic diseases, which are reaching pandemic proportions. In the late '90s, the "black box" of adipose tissue and energy homeostasis was opened with the discovery of leptin, transforming the adipose tissue from an "inert fat-storage organ" to the largest human endocrine organ and creating the basis on which more intensified research efforts to elucidate the pathogenesis of obesity and develop novel treatments were based upon. Even though leptin was eventually not proven to be the "standalone magic bullet" for the treatment of common/polygenic obesity, it has been successful in the treatment of monogenic obesity syndromes. Additionally, it shifted the paradigm of treating obesity from a condition due to "lack of willpower" to a disease due to distinct underlying biological mechanisms for which specific pharmacotherapies would be needed in addition to lifestyle modification. Subsequently, the melanocortin pathway proved to be an equally valuable pathway for the pharmacotherapy of obesity. Melanocortin receptor agonists have recently been approved for treating certain types of syndromic obesity. Other molecules- such as incretins, implicated in energy and glucose homeostasis- are secreted by the gastrointestinal tract. Glucagon-like peptide 1 (GLP-1) is the most prominent one, with GLP-1 analogs approved for common/polygenic obesity. Unimolecular combinations with other incretins, e.g., GLP-1 with gastric inhibitory polypeptide and/or glucagon, are expected to be approved soon as more effective pharmacotherapies for obesity and its comorbidities. Unimolecular combinations with other compounds and small molecules activating the receptors of these molecules are currently under investigation as promising future pharmacotherapies. Moreover, metabolic and bariatric surgery has also demonstrated impressive results, especially in the case of morbid obesity. Consequently, this broadening therapeutic armamentarium calls for a well-thought-after and well-coordinated multidisciplinary approach, for instance, through cardiometabolic expertise centers, that would ideally address effectively and cost-effectively obesity and its comorbidities, providing tangible benefits to large segments of the population.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Angeliki Katsarou
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Hengist A, Sciarrillo CM, Guo J, Walter M, Hall KD. Discordance between gut-derived appetite hormones and energy intake in humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.10.23289718. [PMID: 37425848 PMCID: PMC10327278 DOI: 10.1101/2023.05.10.23289718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Gut-derived hormones affect appetite and are thought to play an important role in body weight regulation. Dietary macronutrient composition can influence gut-derived appetite hormone concentrations, thereby providing theoretical basis for why some diets might facilitate weight loss better than others. We investigated postprandial gut-derived appetite hormones in 20 inpatient adults after 2 weeks of eating either a low carbohydrate (LC) or a low fat (LF) diet followed by the alternate diet in random order. A LC meal resulted in significantly greater postprandial GLP-1, GIP, and PYY but lower ghrelin compared to an isocaloric LF meal (all p≤0.02). However, differences in gut-derived appetite hormones were incommensurate with subsequent ad libitum energy intake over the rest of the day, which was 551±103 kcal (p<0.0001) greater with the LC as compared to the LF diet. The effects of gut-derived appetite hormones on ad libitum energy intake can be dominated by other diet-related factors, at least in the short-term.
Collapse
Affiliation(s)
- Aaron Hengist
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda MD, 20892, USA
| | - Christina M. Sciarrillo
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda MD, 20892, USA
| | - Juen Guo
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda MD, 20892, USA
| | - Mary Walter
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda MD, 20892, USA
| | - Kevin D. Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda MD, 20892, USA
| |
Collapse
|
22
|
Ravetta P, Kebbou T, Poras M. Bariatric Artery Embolization for Obese Patients. An Up-to-Date Review. J Belg Soc Radiol 2023; 107:76. [PMID: 37781479 PMCID: PMC10541231 DOI: 10.5334/jbsr.3170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/08/2023] [Indexed: 10/03/2023] Open
Abstract
Overweight and obesity are one of public health's major problems in the world. Conservative treatment with exercise, diet and pharmacotherapy is often ineffective, especially in the long term. Bariatric surgery is the gold standard method for a sustained long-term weight loss. Recently the endovascular technique of bariatric artery embolization (BAE) has been studied as an obesity and overweight treatment, with promising results. The goal of this article is to analyze the rationale behind BAE and to provide an up-to-date analysis of its strengths and limitation in comparison with bariatric surgery as a treatment for obesity.
Collapse
Affiliation(s)
- Paolo Ravetta
- Department of Radiology, University Hospital Brugmann, Brussels, BE
- ULB, BE
| | - Touda Kebbou
- Department of Radiology, University Hospital Ibn Rochd, Casablanca, MA
| | - Mathilde Poras
- Department of Digestive Surgery, Saint-Pierre University Hospital, Brussels, BE
| |
Collapse
|
23
|
Al-Sabah S, Jamal MH, Al-Khaledi G, Dsouza C, AlOtaibi F, Al-Ali W, Cherian P, Al-Khairi I, Ali H, Abu-Farha M, Abubaker J, Al-Mulla F. Increased Glucagon Immunoreactivity in a Rat Model of Diet-induced Obesity following Sleeve Gastrectomy. Med Princ Pract 2023; 32:000533746. [PMID: 37634505 PMCID: PMC10659591 DOI: 10.1159/000533746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVE Bariatric surgery is currently the most effective treatment for obesity, and procedures such as Roux-en Y gastric bypass and sleeve gastrectomy (SG) also result in rapid improvements in insulin sensitivity and glucose tolerance. In addition, these procedures cause changes in the secretion of various gut-derived hormones. The role these hormones play in the mechanism of the beneficial effects of bariatric surgery is still debated, but nonetheless, their importance provides inspiration for novel obesity-targeted pharmacotherapies. METHODS Male Sprague Dawley rats were fed either regular chow or a cafeteria diet to induce obesity. A sub-group of the obese animals then underwent either sham surgery or SG. RESULTS Following a 4-week recovery period, SG rats weighed significantly less than obese or sham-operated rats. Improvements in glucose tolerance and insulin sensitivity also occurred in the SG group, but these were not always statistically significant. We measured the intracellular lipid content of liver samples and found that obese rats showed signs of non-alcoholic fatty liver disease, which were significantly ameliorated by SG. There were significantly higher glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) responses to a standard mixed meal in the SG group, as well as paradoxically higher glucagon secretion. CONCLUSION These data highlight the need for more specific anti-glucagon antibodies to characterize the changes in proglucagon-derived peptide concentrations that occur following SG. Further studies are required to determine whether these peptides contribute to the therapeutic effects of SG.
Collapse
Affiliation(s)
- Suleiman Al-Sabah
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Mohammad H. Jamal
- Department of Surgery, College of Medicine, Kuwait University, Kuwait City, Kuwait
- Department of Organ Transplant, College of Medicine, Kuwait City, Kuwait
| | - Ghanim Al-Khaledi
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Carol Dsouza
- Department of Surgery, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Fatemah AlOtaibi
- Department of Surgery, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Waleed Al-Ali
- Department of Pathology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Hamad Ali
- Department of Medical Laboratory Sciences, College of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
24
|
Rodriguez-Murguia N, Malacara JM, Kusnir D, Siniego A, Melendez-Rios D, Raubenheimer D, Simpson S, Martinez-Cordero C. Testing for Protein Leverage in Patients with Gastric Bypass: A Pilot Study. ANNALS OF NUTRITION & METABOLISM 2023; 79:355-360. [PMID: 37536296 PMCID: PMC10614273 DOI: 10.1159/000532125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/01/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Protein leverage (PL) is the phenomenon whereby a dominant appetite for protein drives overconsumption of energy with a decline in the ratio of protein to fat and carbohydrate in the diet. PL has been independently verified in several randomized control trials, and its predictions are supported by diet surveillance data. Our aim in the present study was to test whether surgical intervention through gastric bypass will ameliorate the PL effect. METHODS Ten patients with gastric bypass (2-5 years postsurgical time) were given ad libitum access to study food comprising 10%, 15%, or 25% protein and no access to other foods for 3 days while controlling food palatability and variety. Food intake was measured, and energy and nutrient intakes were calculated. Body weight, blood chemistry, lipid profile, hormones (insulin, leptin, and ghrelin), and creatinine were determined before and after each experimental period. RESULTS The gastric bypass patients in our study did not show evidence for protein intake regulation as predicted under PL but ate to constant total energy intake on the 10%, 15%, and 25% protein diets with protein intake varying significantly. Patients lost weight in the three study periods, but significant weight loss was observed only on the 15% protein diet. CONCLUSION Our results suggest that gastric bypass might disengage the PL mechanism, thus ameliorating an appetite-specific mechanism that drives energy overconsumption in modern food environments.
Collapse
Affiliation(s)
| | | | | | | | | | - David Raubenheimer
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Stephen Simpson
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | | |
Collapse
|
25
|
Chen YK, Liu TT, Teia FKF, Xie MZ. Exploring the underlying mechanisms of obesity and diabetes and the potential of Traditional Chinese Medicine: an overview of the literature. Front Endocrinol (Lausanne) 2023; 14:1218880. [PMID: 37600709 PMCID: PMC10433171 DOI: 10.3389/fendo.2023.1218880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Obesity and diabetes are closely related metabolic disorders that have become major public health concerns worldwide. Over the past few decades, numerous studies have explored the underlying mechanisms of these disorders and identified various risk factors, including genetics, lifestyle, and dietary habits. Traditional Chinese Medicine (TCM) has been increasingly recognized for its potential to manage obesity and diabetes. Weight loss is difficult to sustain, and several diabetic therapies, such as sulfonylureas, thiazolidinediones, and insulin, might make it harder to lose weight. While lifestyle changes should be the primary approach for people interested in lowering weight, drugs are also worth investigating. Since some of the newer glucose-lowering medications that cause weight loss, such as glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium-glucose cotransporter 2 inhibitors (SGLT2i), are additionally utilized or are under consideration for use as anti-obesity drugs, the frontier between glucose-lowering medication and weight loss drugs appears to be shifting. This review provides an overview of the literature on the underlying mechanisms of obesity and diabetes and the prospect of TCM in their management. We discuss the various TCM interventions, including acupuncture, herbal medicine, and dietary therapy, and their effects on metabolic health. We also highlight the potential of TCM in regulating gut microbiota, reducing inflammation, and improving insulin sensitivity. The findings suggest that TCM may provide a promising approach to preventing and managing obesity and diabetes. However, further well-designed studies are needed to confirm the efficacy and safety of TCM interventions and to elucidate their underlying mechanisms of action.
Collapse
Affiliation(s)
- Yan-kun Chen
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| | - Ting-ting Liu
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| | - Farah Khameis Farag Teia
- Department of Agro-technology, Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Centre for Research, Khartoum, Sudan
| | - Meng-zhou Xie
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
26
|
Forney KJ, Rogers ML, Grillot CL, Pucci G, Joiner TE, Keel PK. Testing replicability of the relationship between weight suppression and binge eating in three non-clinical samples varying in lifetime weight history. Eat Behav 2023; 50:101784. [PMID: 37515999 DOI: 10.1016/j.eatbeh.2023.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
OBJECTIVE Increased weight suppression, the difference between an individual's highest and current weight at present height, predicts binge eating among eating disorder samples. Less is known about this relationship in non-clinical samples of individuals with a history of higher weight. METHODS Lifetime highest BMI was tested as a moderator of the relationship between weight suppression and binge eating in three independent samples (N = 1740). RESULTS At the bivariate level, weight suppression was not associated with binge eating in any sample (p's ≥ 0.20). Lifetime highest BMI moderated the relationship between weight suppression and binge eating in Sample 1 (p = .04), such that greater weight suppression was associated with lower binge eating among those with a history of higher weight (i.e., BMI = 40 kg/m2). In Samples 2 and 3, the lifetime highest BMI by weight suppression interaction term was not significant and dropped from the model (p's = 0.10-0.12). Accounting for age, gender, and lifetime highest BMI, greater weight suppression was associated with lower binge eating scores (p's < 0.04). A meta-analysis combining results revealed a small but significant interaction effect (r = 0.07, p = .02). CONCLUSIONS Findings highlight the importance of investigating the generalizability of eating disorder risk and maintenance theories across the weight spectrum. Weight loss may not increase risk for binge eating among those with a history of higher weight. Future work should replicate and extend this finding using longitudinal designs. More research is needed to elucidate which weight loss motivations and/or behaviors are most closely linked to binge eating.
Collapse
Affiliation(s)
- K Jean Forney
- Department of Psychology, Ohio University, Athens, OH, USA.
| | - Megan L Rogers
- Department of Psychology, Texas State University, San Marcos, TX, USA
| | | | | | - Thomas E Joiner
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Pamela K Keel
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
27
|
Kim ER, Yun JH, Kim HJ, Park HY, Heo Y, Park YS, Park DJ, Koo SK. Evaluation of hormonal and circulating inflammatory biomarker profiles in the year following bariatric surgery. Front Endocrinol (Lausanne) 2023; 14:1171675. [PMID: 37564975 PMCID: PMC10411526 DOI: 10.3389/fendo.2023.1171675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Background Bariatric surgery (BS) has a superior effect on reducing body weight and fat in patients with morbid obesity. As a result, BS mitigates obesity-related complications such as type 2 diabetes (T2D). However, few studies have shown the mechanism underlying diabetes remission after surgery. This study aimed to investigate the differences in serum hormone and inflammatory cytokine levels related to diabetes before surgery and during 12 months of follow-up in Korean patients with obesity. Methods The study participants were patients with morbid obesity (n=63) who underwent sleeve gastrectomy (SG) or Roux-en-Y gastric bypass (RYGB) between 2016 - 2017 at seven tertiary hospitals in Korea. The patients were followed for 1 year after surgery. Results Sixty-three patients had significant weight loss after surgery and showed improvements in clinical parameters and hormonal and inflammatory profiles. Among them, 23 patients who were diabetic preoperatively showed different remission after surgery. The levels of inflammation-related clinical parameters changed significantly in the remission group, and serum inflammatory cytokine and hormones significantly decreased at certain points and showed an overall decreasing trend. Conclusions Our study found postoperative changes of factors in blood samples, and the changes in hormones secreted from the three major metabolic tissue (pancreas, adipose, and gut) along with the differences in multi-origin inflammatory cytokines between remission and non-remission groups provide a path for understanding how the effect of BS in improving glucose metabolism is mediated.
Collapse
Affiliation(s)
- Eun Ran Kim
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence, Korea National Institute of Health, Cheongju-si, Chungbuk, Republic of Korea
| | - Ji Ho Yun
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence, Korea National Institute of Health, Cheongju-si, Chungbuk, Republic of Korea
| | - Hyo-Jin Kim
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence, Korea National Institute of Health, Cheongju-si, Chungbuk, Republic of Korea
| | - Hyeon Young Park
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence, Korea National Institute of Health, Cheongju-si, Chungbuk, Republic of Korea
| | - Yoonseok Heo
- Department of Surgery, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Young Suk Park
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo Kyung Koo
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence, Korea National Institute of Health, Cheongju-si, Chungbuk, Republic of Korea
| |
Collapse
|
28
|
Abstract
Obesity is a chronic disease associated with increased morbidity and mortality. Bariatric surgery can lead to sustained long-term weight loss (WL) and improvement in multiple obesity-related complications, but it is not scalable at the population level. Over the past few years, gut hormone-based pharmacotherapies for obesity and type 2 diabetes mellitus (T2DM) have rapidly evolved, and combinations of glucagon-like peptide 1 (GLP1) with other gut hormones (glucose-dependent insulinotropic polypeptide (GIP), glucagon, and amylin) as dual or triple agonists are under investigation to enhance and complement the effects of GLP1 on WL and obesity-related complications. Tirzepatide, a dual agonist of GLP1 and GIP receptors, marks a new era in obesity pharmacotherapy in which a combination of gut hormones could approach the WL achieved with bariatric surgery. In this review, we discuss emerging obesity treatments with a focus on gut hormone combinations and the concept of a multimodal approach for obesity management.
Collapse
Affiliation(s)
- Eka Melson
- Diabetes Research Centre, Leicester General Hospital, University of Leicester, Leicester, UK
| | | | - Dimitris Papamargaritis
- Diabetes Research Centre, Leicester General Hospital, University of Leicester, Leicester, UK; Kettering General Hospital NHS Foundation Trust, Kettering, UK.
| |
Collapse
|
29
|
Li Y, Yang Z, Ren S, Shen B, Zhang Y, Zong H, Li Y. Association between GLP-1R gene polymorphism and dyslipidemia in Chinese patients with type 2 diabetes mellitus: a case-control study. Gene 2023; 878:147589. [PMID: 37364698 DOI: 10.1016/j.gene.2023.147589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVE To evaluate the relationship between GLP-1R gene polymorphisms and type 2 diabetes mellitus with dyslipidemia and without dyslipidemia in China. METHODS A total of 200 patients with Type 2 Diabetes Mellitus (T2DM) were included in this study, including 115 with dyslipidemia and 85 without dyslipidemia. We used Sanger double deoxygenation terminal assay and PCR-RFLP to detect genotype of the GLP-1R rs10305420 and rs3765467 loci. T-test was used to analyze the association between gene polymorphisms and lipid indicators. SHEsis online analysis software was used to analyze the linkage balance effect of loci, and SPSS 26 was used to calculate the gene interaction by dominant model. RESULTS The genotype distribution of the two loci in the sample of this study was in accordance with Hardy-weinberg equilibrium. There were significant differences in the genotype distribution and allele frequency of rs3765467 between T2DM patients with and without dyslipidemia (GG 52.9%, GA+AA 47.1% vs. GG 69.6%, GA+AA 30.4%; P = 0.017). Under the dominant model, the effects of rs3765467 A allele and rs10305420 T allele on dyslipidemia had multiplicative interactions (P = 0.016) and additive interactions (RERI = 0.403, 95% CI [-2.708 to 3.514]; AP = 0.376, 95% CI [-2.041, 2.793]). Meanwhile, HbA1c levels in rs3765467 A allele carriers (GA+AA) were found to be significantly lower than those in patients with GG genotype (P = 0.006). CONCLUSION The rs3765467 (G/A) variant is associated with the incidence of dyslipidemia, and G allele may be a risk factor for dyslipidemia.
Collapse
Affiliation(s)
- Yue Li
- Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.
| | - Zhiyan Yang
- Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Shuyu Ren
- Jinan Xinhang Experimental Foreign Language School, Jinan, Shandong, China
| | - Bowen Shen
- Department of Pharmacy, Shandong First Medical University, Taian, Shandong, China
| | - Yundi Zhang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huiying Zong
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yan Li
- Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
30
|
Lammert M, Medawar E, Hartmann H, Grasser L, Dietrich A, Fenske W, Horstmann A. Distinct adaptations of endocrine and cognitive functions may contribute to high variability in long-term weight loss outcome after bariatric surgery. Physiol Behav 2023:114279. [PMID: 37356514 DOI: 10.1016/j.physbeh.2023.114279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Bariatric surgery has been widely recognized as the most efficient long-term treatment method in severe obesity, yet therapy success shows considerable interindividual variability. Postoperative metabolic adaptations, including improved gut hormone secretion (GLP-1, PYY and ghrelin), and restored executive function may play an explanatory role in weight loss, yet causes for poor success in individual patients remain unknown. This study investigates gut-hormonal and cognitive characteristics in extreme weight loss responders to bariatric surgery. METHODS Patients (n=47) with high or low excessive weight loss (EWL) at least 2 years after Roux-en-Y-gastric bypass or sleeve gastrectomy were allocated into good responders (GR, EWL 82.4 ± 11.6%) and poor responders (PR, EWL 24.0 ± SD 12.8%) to study differences in postprandial secretion of GLP-1, PYY, ghrelin and in working memory (WM). RESULTS Mean BMI was 47.1 ± 6.2 kg/m² in PR (n=21) and 28.9 ± 3.1 kg/m² in GR (n=26, p < 0.001). Fasted GLP-1 and PYY were comparable for GR and PR (p > 0.2) and increased strongly after a standardized test meal (300 kcal liquid meal) with a peak at 15 to 30 minutes. The increase was stronger in GR compared to PR (GLP-1, PYY: Time x Group p < 0.05). Plasma ghrelin levels already differed between groups at fasted state, showing significantly higher levels for GR (p < 0.05). Postprandially, ghrelin secretion was suppressed in both groups, but suppression was higher in GR (Time x Group p < 0.05). GR showed significantly higher WM scores than PR (p < 0.05). Postprandial ghrelin (iAUC), but not GLP-1 or PYY plasma levels, significantly mediated the relationship between EWL and a WM subscore (IS score, CI = 0.07 - 1.68), but not WM main score (MIS score, CI = -0.07 - 1.54), in mediation analyses. CONCLUSION Excess weight loss success after bariatric surgical procedures is associated with distinct profiles of gut-hormones at fasted and postprandial state, and differences in working memory. Better working memory performance in GR might be mediated by higher postprandial reduction in ghrelin plasma levels. Future studies need to integrate longitudinal data, larger samples and more sensitive cognitive tests.
Collapse
Affiliation(s)
- Mathis Lammert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Leipzig University Medical Centre, IFB Adiposity Diseases, 04103 Leipzig, Germany; Leipzig University Medical Centre, Collaborative Research Centre 1052-A5, 04103 Leipzig, Germany.
| | - Evelyn Medawar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
| | - Hendrik Hartmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Leipzig University Medical Centre, Collaborative Research Centre 1052-A5, 04103 Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Linda Grasser
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Leipzig University Medical Centre, IFB Adiposity Diseases, 04103 Leipzig, Germany.
| | - Arne Dietrich
- Department of Obesity, Metabolic and Endocrine Surgery, University Hospital Leipzig, Liebigstraße 18, 04103 Leipzig, Germany.
| | - Wiebke Fenske
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Annette Horstmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Leipzig University Medical Centre, IFB Adiposity Diseases, 04103 Leipzig, Germany; Leipzig University Medical Centre, Collaborative Research Centre 1052-A5, 04103 Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| |
Collapse
|
31
|
Moser C, Gosselé KA, Balaz M, Balazova L, Horvath C, Künzle P, Okreglicka KM, Li F, Blüher M, Stierstorfer B, Hess E, Lamla T, Hamilton B, Klein H, Neubauer H, Wolfrum C, Wolfrum S. FAM3D: A gut secreted protein and its potential in the regulation of glucose metabolism. Peptides 2023:171047. [PMID: 37328068 DOI: 10.1016/j.peptides.2023.171047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
The number of diabetic patients is rising globally and concomitantly so do the diabetes associated complications. The gut secretes a variety of proteins to control blood glucose levels and/or food intake. As the drug class of GLP-1 agonists is based on a gut secreted peptide and the positive metabolic effects of bariatric surgery are at least partially mediated by gut peptides, we were interested in other gut secreted proteins which have yet to be explored. In this respect we identified the gut secreted protein FAM3D by analyzing sequencing data from L- and epithelial cells of VSG and sham operated as well as chow and HFD fed mice. FAM3D was overexpressed in diet induced obese mice via an adeno-associated virus (AAV), which resulted in a significant improvement of fasting blood glucose levels, glucose tolerance and insulin sensitivity. The liver lipid deposition was reduced, and the steatosis morphology was improved. Hyperinsulinemic clamps indicated that FAM3D is a global insulin sensitizer and increases glucose uptake into various tissues. In conclusion, the current study demonstrated that FAM3D controls blood glucose levels by acting as an insulin sensitizing protein and improves hepatic lipid deposition.
Collapse
Affiliation(s)
- Caroline Moser
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland
| | - Katherine A Gosselé
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland
| | - Miroslav Balaz
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland
| | - Lucia Balazova
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland
| | - Carla Horvath
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland
| | - Patricia Künzle
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland
| | - Katarzyna Maria Okreglicka
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Fengqi Li
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Matthias Blüher
- Medical Department III (Endocrinology, Nephrology and Rheumatology), University of Leipzig, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Birgit Stierstorfer
- Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach/Riss, Germany
| | - Eva Hess
- Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach/Riss, Germany
| | - Thorsten Lamla
- Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach/Riss, Germany
| | - Bradford Hamilton
- Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach/Riss, Germany
| | - Holger Klein
- Global Computational Biology and Digital Sciences Department, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach/Riss, Germany
| | - Heike Neubauer
- Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach/Riss, Germany
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland.
| | - Susanne Wolfrum
- Laboratory of Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
32
|
Lim JJ, Liu Y, Lu LW, Sequeira IR, Poppitt SD. No Evidence That Circulating GLP-1 or PYY Are Associated with Increased Satiety during Low Energy Diet-Induced Weight Loss: Modelling Biomarkers of Appetite. Nutrients 2023; 15:nu15102399. [PMID: 37242282 DOI: 10.3390/nu15102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Bariatric surgery and pharmacology treatments increase circulating glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), in turn promoting satiety and body weight (BW) loss. However, the utility of GLP-1 and PYY in predicting appetite response during dietary interventions remains unsubstantiated. This study investigated whether the decrease in hunger observed following low energy diet (LED)-induced weight loss was associated with increased circulating 'satiety peptides', and/or associated changes in glucose, glucoregulatory peptides or amino acids (AAs). In total, 121 women with obesity underwent an 8-week LED intervention, of which 32 completed an appetite assessment via a preload challenge at both Week 0 and Week 8, and are reported here. Visual analogue scales (VAS) were administered to assess appetite-related responses, and blood samples were collected over 210 min post-preload. The area under the curve (AUC0-210), incremental AUC (iAUC0-210), and change from Week 0 to Week 8 (∆) were calculated. Multiple linear regression was used to test the association between VAS-appetite responses and blood biomarkers. Mean (±SEM) BW loss was 8.4 ± 0.5 kg (-8%). Unexpectedly, the decrease in ∆AUC0-210 hunger was best associated with decreased ∆AUC0-210 GLP-1, GIP, and valine (p < 0.05, all), and increased ∆AUC0-210 glycine and proline (p < 0.05, both). The majority of associations remained significant after adjusting for BW and fat-free mass loss. There was no evidence that changes in circulating GLP-1 or PYY were predictive of changes in appetite-related responses. The modelling suggested that other putative blood biomarkers of appetite, such as AAs, should be further investigated in future larger longitudinal dietary studies.
Collapse
Affiliation(s)
- Jia Jiet Lim
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
| | - Yutong Liu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
| | - Louise W Lu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| | - Ivana R Sequeira
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| |
Collapse
|
33
|
Goutchtat R, Quenon A, Clarisse M, Delalleau N, Coddeville A, Gobert M, Gmyr V, Kerr-Conte J, Pattou F, Hubert T. Effects of subtotal pancreatectomy and long-term glucose and lipid overload on insulin secretion and glucose homeostasis in minipigs. Endocrinol Diabetes Metab 2023:e425. [PMID: 37144278 DOI: 10.1002/edm2.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
INTRODUCTION Nowadays, there are no strong diabetic pig models, yet they are required for various types of diabetes research. Using cutting-edge techniques, we attempted to develop a type 2 diabetic minipig model in this study by combining a partial pancreatectomy (Px) with an energetic overload administered either orally or parenterally. METHODS Different groups of minipigs, including Göttingen-like (GL, n = 17) and Ossabaw (O, n = 4), were developed. Prior to and following each intervention, metabolic assessments were conducted. First, the metabolic responses of the Göttingen-like (n = 3) and Ossabaw (n = 4) strains to a 2-month High-Fat, High-Sucrose diet (HFHSD) were compared. Then, other groups of GL minipigs were established: with a single Px (n = 10), a Px combined with a 2-month HFHSD (n = 6), and long-term intraportal glucose and lipid infusions that were either preceded by a Px (n = 4) or not (n = 4). RESULTS After the 2-month HFHSD, there was no discernible change between the GL and O minipigs. The pancreatectomized group in GL minipigs showed a significantly lower Acute Insulin Response (AIR) (18.3 ± 10.0 IU/mL after Px vs. 34.9 ± 13.7 IU/mL before, p < .0005). In both long-term intraportal infusion groups, an increase in the Insulinogenic (IGI) and Hepatic Insulin Resistance Indexes (HIRI) was found with a decrease in the AIR, especially in the pancreatectomized group (IGI: 4.2 ± 1.9 after vs. 1.5 ± 0.8 before, p < .05; HIRI (×10-5 ): 12.6 ± 7.9 after vs. 3.8 ± 4.3 before, p < .05; AIR: 24.4 ± 13.7 µIU/mL after vs. 43.9 ± 14.5 µIU/mL before, p < .005). Regardless of the group, there was no fasting hyperglycemia. CONCLUSIONS In this study, we used pancreatectomy followed by long-term intraportal glucose and lipid infusions to develop an original minipig model with metabolic syndrome and early signs of glucose intolerance. We reaffirm the pig's usefulness as a preclinical model for the metabolic syndrome but without the fasting hyperglycemia that characterizes diabetes mellitus.
Collapse
Affiliation(s)
- Rébecca Goutchtat
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Audrey Quenon
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
- Univ. Lille, CHU Lille, UFR3S, Département Hospitalo-Universitaire de Recherche et d'Enseignement (Dhure), Lille, France
| | | | - Nathalie Delalleau
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Anaïs Coddeville
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Mathilde Gobert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Valéry Gmyr
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Julie Kerr-Conte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - François Pattou
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
| | - Thomas Hubert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, UFR3S, U1190 - Egid, Lille, France
- Univ. Lille, CHU Lille, UFR3S, Département Hospitalo-Universitaire de Recherche et d'Enseignement (Dhure), Lille, France
| |
Collapse
|
34
|
Xu TQ, Kindel TL. The role of weight control in the management of type 2 diabetes mellitus: Bariatric surgery. Diabetes Res Clin Pract 2023; 199:110667. [PMID: 37037264 PMCID: PMC10192054 DOI: 10.1016/j.diabres.2023.110667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Diabetes mellitus is one of the major epidemics in the United States. It is heavily associated with obesity and multiple metabolic derangements that lead to long term morbidity, mortality as well as financial burden. Although medical therapy has been the mainstay in the management of diabetes mellitus, there remains a large portion of this patient population which struggles to obtain adequate glycemic control and long-term weight control with medical management alone. Bariatric surgery is a powerful tool in combating diabetes mellitus and affects glucose homeostasis through a variety of pathways. While it does provide a durable pathway for weight loss, improvement in glucose homeostasis is not only affected by the weight loss seen after bariatric surgery. Changes in gut hormone secretion, insulin regulation, and gut microbial composition also affect how these operations improve glucose homeostasis. Through improvement in the management of diabetes mellitus, comorbidities including cardiovascular disease, in turn demonstrate improvement. In this article, we will discuss the role of bariatric (metabolic) surgery as it relates to long term weight loss and the impact that weight loss has on improvement in diabetes mellitus.
Collapse
Affiliation(s)
- Thomas Q Xu
- Division of Minimally Invasive and Gastrointestinal Surgery, The Medical College of Wisconsin, United States
| | - Tammy Lyn Kindel
- Division of Minimally Invasive and Gastrointestinal Surgery, The Medical College of Wisconsin, United States.
| |
Collapse
|
35
|
Kim CH. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell Mol Immunol 2023; 20:341-350. [PMID: 36854801 PMCID: PMC10066346 DOI: 10.1038/s41423-023-00987-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Immune tolerance deletes or suppresses autoreactive lymphocytes and is established at multiple levels during the development, activation and effector phases of T and B cells. These mechanisms are cell-intrinsically programmed and critical in preventing autoimmune diseases. We have witnessed the existence of another type of immune tolerance mechanism that is shaped by lifestyle choices, such as diet, microbiome and microbial metabolites. Short-chain fatty acids (SCFAs) are the most abundant microbial metabolites in the colonic lumen and are mainly produced by the microbial fermentation of prebiotics, such as dietary fiber. This review focuses on the preventive and immunomodulatory effects of SCFAs on autoimmunity. The tissue- and disease-specific effects of dietary fiber, SCFAs and SCFA-producing microbes on major types of autoimmune diseases, including type I diabetes, multiple sclerosis, rheumatoid arthritis and lupus, are discussed. Additionally, their key regulatory mechanisms for lymphocyte development, tissue barrier function, host metabolism, immunity, autoantibody production, and inflammatory effector and regulatory lymphocytes are discussed. The shared and differential effects of SCFAs on different types and stages of autoimmune diseases are discussed.
Collapse
Affiliation(s)
- Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
- Mary H. Weiser Food Allergy Center, Center for Gastrointestinal Research, and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
36
|
Thomas JG, Schumacher LM, Vithiananthan S, Jones DB, Smith KE, Chou T, Papasavas PK, Bond DS. Ecological momentary assessment of changes in eating behaviors, appetite, and other aspects of eating regulation in Roux-en-Y gastric bypass and sleeve gastrectomy patients. Appetite 2023; 183:106465. [PMID: 36701847 PMCID: PMC9975010 DOI: 10.1016/j.appet.2023.106465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
Bariatric surgery can have profound impacts on eating behaviors and experiences, yet most prior research studying these changes has relied on retrospective self-report measures with limited precision and susceptibility to bias. This study used smartphone-based ecological momentary assessment (EMA) to evaluate the trajectory of change in eating behaviors, appetite, and other aspects of eating regulation in 71 Roux-en-Y gastric bypass and sleeve gastrectomy patients assessed preoperatively and at 3, 6, and 12-months postoperative. For some outcomes, results showed a consistent and similar pattern for SG and RYGB where consumption of sweet and high-fat foods and hunger, desire to eat, ability to eat right now, and satisfaction with amount eaten all improved from pre-to 6-months post-surgery with some degree of deterioration at 12-months post-surgery. By contrast, other variables, largely related to hedonic hunger and craving and desire for specific foods, showed less consistent patterns that differed by surgery type. While the findings suggest an overall pattern of improvement in eating patterns following bariatric surgery, they also highlight how a return to preoperative habits may begin as early as 6 months after surgery. Additional research is needed to understand mechanisms that promote changes in eating behavior after surgery, and how best to intervene to preserve beneficial effects.
Collapse
Affiliation(s)
- J Graham Thomas
- Department of Psychiatry and Human Behavior, Weight Control and Diabetes Research Center, The Miriam Hospital/Brown Alpert Medical School, Providence, RI196 Richmond St., Providence, RI, 02916, USA.
| | - Leah M Schumacher
- Department of Psychiatry and Human Behavior, Weight Control and Diabetes Research Center, The Miriam Hospital/Brown Alpert Medical School, Providence, RI196 Richmond St., Providence, RI, 02916, USA
| | - Sivamainthan Vithiananthan
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA110 Francis St., Boston, MA, 02215, USA
| | - Daniel B Jones
- Department of Surgery, Rutgers Health, Newark, NJ185 South Orange Avenue, Medical Sciences Building G-506, Newark, NJ, 07103, USA
| | - Kathryn E Smith
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA1975 Zonal Ave., Los Angeles, CA, 90033, USA
| | - Tommy Chou
- Department of Psychiatry and Human Behavior, Weight Control and Diabetes Research Center, The Miriam Hospital/Brown Alpert Medical School, Providence, RI196 Richmond St., Providence, RI, 02916, USA
| | - Pavlos K Papasavas
- Departments of Surgery and Research, Hartford Hospital/Hartford HealthCare, Hartford, CT80 Seymour St., Hartford, CT, 06106, USA
| | - Dale S Bond
- Departments of Surgery and Research, Hartford Hospital/Hartford HealthCare, Hartford, CT80 Seymour St., Hartford, CT, 06106, USA
| |
Collapse
|
37
|
Shah H, Kramer A, Mullins CA, Mattern M, Gannaban RB, Townsend RL, Campagna SR, Morrison CD, Berthoud HR, Shin AC. Reduction of Plasma BCAAs following Roux-en-Y Gastric Bypass Surgery Is Primarily Mediated by FGF21. Nutrients 2023; 15:1713. [PMID: 37049555 PMCID: PMC10096671 DOI: 10.3390/nu15071713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Type 2 diabetes (T2D) is a challenging health concern worldwide. A lifestyle intervention to treat T2D is difficult to adhere, and the effectiveness of approved medications such as metformin, thiazolidinediones (TZDs), and sulfonylureas are suboptimal. On the other hand, bariatric procedures such as Roux-en-Y gastric bypass (RYGB) are being recognized for their remarkable ability to achieve diabetes remission, although the underlying mechanism is not clear. Recent evidence points to branched-chain amino acids (BCAAs) as a potential contributor to glucose impairment and insulin resistance. RYGB has been shown to effectively lower plasma BCAAs in insulin-resistant or T2D patients that may help improve glycemic control, but the underlying mechanism for BCAA reduction is not understood. Hence, we attempted to explore the mechanism by which RYGB reduces BCAAs. To this end, we randomized diet-induced obese (DIO) mice into three groups that underwent either sham or RYGB surgery or food restriction to match the weight of RYGB mice. We also included regular chow-diet-fed healthy mice as an additional control group. Here, we show that compared to sham surgery, RYGB in DIO mice markedly lowered serum BCAAs most likely by rescuing BCAA breakdown in both liver and white adipose tissues. Importantly, the restored BCAA metabolism following RYGB was independent of caloric intake. Fasting insulin and HOMA-IR were decreased as expected, and serum valine was strongly associated with insulin resistance. While gut hormones such as glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are postulated to mediate various surgery-induced metabolic benefits, mice lacking these hormonal signals (GLP-1R/Y2R double KO) were still able to effectively lower plasma BCAAs and improve glucose tolerance, similar to mice with intact GLP-1 and PYY signaling. On the other hand, mice deficient in fibroblast growth factor 21 (FGF21), another candidate hormone implicated in enhanced glucoregulatory action following RYGB, failed to decrease plasma BCAAs and normalize hepatic BCAA degradation following surgery. This is the first study using an animal model to successfully recapitulate the RYGB-led reduction of circulating BCAAs observed in humans. Our findings unmasked a critical role of FGF21 in mediating the rescue of BCAA metabolism following surgery. It would be interesting to explore the possibility of whether RYGB-induced improvement in glucose homeostasis is partly through decreased BCAAs.
Collapse
Affiliation(s)
- Harsh Shah
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Alyssa Kramer
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Caitlyn A. Mullins
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Marie Mattern
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Ritchel B. Gannaban
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - R. Leigh Townsend
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Christopher D. Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Andrew C. Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
38
|
Brethvad AO, Zakariassen HL, Holt J, Lundgren JR, Jakobsen A, Hartmann B, Lehmann EW, Kissow H, Holst JJ, Madsbad S, Torekov SS, Holst B. Increased meal-induced neurotensin response predicts successful maintenance of weight loss - Data from a randomized controlled trial. Metabolism 2023; 143:155534. [PMID: 36933790 DOI: 10.1016/j.metabol.2023.155534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND The gut derived anorexigenic hormone neurotensin (NT) is upregulated after bariatric surgery which may contribute to the sustained weight loss. In contrast, diet-induced weight loss is most often followed by weight regain. We therefore investigated whether diet-induced weight loss impacts levels of circulating NT in mice and humans and whether NT levels predicts body weight change after weight loss in humans. METHODS In vivo mice study: Obese mice were fed ad-libitum or a restricted diet (40-60 % of average food intake) for 9 days to obtain similar weight loss as observed in the human study. At termination, intestinal segments, the hypothalamus and plasma were collected for histological, real time PCR, and radioimmunoassay (RIA) analysis. CLINICAL TRIAL Plasma samples from 42 participants with obesity, completing an 8-week low-calorie diet in a randomized controlled trial, were analyzed. Plasma NT was measured by RIA at fasting and during a meal test before and after diet-induced weight loss and after one year of intended weight maintenance. RESULTS In obese mice, food restriction-induced body weight loss of 14 % was associated with a 64 % reduction in fasting plasma NT (p < 0.0001). In the mouse duodenum (p = 0.07) and jejunum (p < 0.05), NT tissue concentration was decreased without tissue atrophy indicative of a physiological downregulation. In the mouse hypothalamus a downregulation of Pomc (p < 0.01) along with upregulation of Npy (p < 0.001) and Agrp (p < 0.0001) expression was found after restricted feeding in support of increased hunger after diet-induced weight loss. Therefore, we investigated the NT response in humans undergoing weight loss maintenance. In humans, similar to the mice, the low-calorie diet induced weight loss of 13 % body weight was associated with 40 % reduction in fasting plasma NT levels (p < 0.001). Meal-induced NT peak responses were greater in humans who lost additional weight during the 1 year maintenance phase compared to participants who regained weight (p < 0.05). CONCLUSION Diet-induced weight loss decreased fasting plasma NT levels in both humans and mice with obesity, and regulated hunger-associated hypothalamic gene expression in mice. Meal-induced NT responses were greater in humans who lost additional weight during the 1 year maintenance phase compared to participants who regained weight. This indicates that increased peak secretion of NT after weight loss may contribute to successful maintenance of weight loss. CLINICAL TRIAL REGISTRATION NUMBER NCT02094183.
Collapse
Affiliation(s)
| | - Hannah Louise Zakariassen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 12.4., 2200 Copenhagen, Denmark.
| | - Joachim Holt
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 12.4., 2200 Copenhagen, Denmark
| | - Julie Rehné Lundgren
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 12.4., 2200 Copenhagen, Denmark
| | - Alexander Jakobsen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 12.4., 2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 12.4., 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva Winning Lehmann
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 12.4., 2200 Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 12.4., 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 12.4., 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Signe Sørensen Torekov
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 12.4., 2200 Copenhagen, Denmark.
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 12.4., 2200 Copenhagen, Denmark
| |
Collapse
|
39
|
Hindsø M, Hedbäck N, Svane MS, Møller A, Martinussen C, Jørgensen NB, Dirksen C, Gasbjerg LS, Kristiansen VB, Hartmann B, Rosenkilde MM, Holst JJ, Madsbad S, Bojsen-Møller KN. The Importance of Endogenously Secreted GLP-1 and GIP for Postprandial Glucose Tolerance and β-Cell Function After Roux-en-Y Gastric Bypass and Sleeve Gastrectomy Surgery. Diabetes 2023; 72:336-347. [PMID: 36478039 DOI: 10.2337/db22-0568] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Enhanced secretion of glucagon-like peptide 1 (GLP-1) seems to be essential for improved postprandial β-cell function after Roux-en-Y gastric bypass (RYGB) but is less studied after sleeve gastrectomy (SG). Moreover, the role of the other major incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), is relatively unexplored after bariatric surgery. We studied the effects of separate and combined GLP-1 receptor (GLP-1R) and GIP receptor (GIPR) blockade during mixed-meal tests in unoperated (CON), SG-operated, and RYGB-operated people with no history of diabetes. Postprandial GLP-1 concentrations were highest after RYGB but also higher after SG compared with CON. In contrast, postprandial GIP concentrations were lowest after RYGB. The effect of GLP-1R versus GIPR blockade differed between groups. GLP-1R blockade reduced β-cell glucose sensitivity and increased or tended to increase postprandial glucose responses in the surgical groups but had no effect in CON. GIPR blockade reduced β-cell glucose sensitivity and increased or tended to increase postprandial glucose responses in the CON and SG groups but had no effect in the RYGB group. Our results support that GIP is the most important incretin hormone in unoperated people, whereas GLP-1 and GIP are equally important after SG, and GLP-1 is the most important incretin hormone after RYGB.
Collapse
Affiliation(s)
- Morten Hindsø
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Nora Hedbäck
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Maria S Svane
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Andreas Møller
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Nils B Jørgensen
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Carsten Dirksen
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viggo B Kristiansen
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | | |
Collapse
|
40
|
Rezaei MT, Sheikhbahaei E, Zefreh H, Allami M, Sayadi Shahraki M, Shahabi S. Single-anastomosis Sleeve Jejunal: a Mid-term Follow-up Report of a New Surgical Technique. Obes Surg 2023; 33:1245-1252. [PMID: 36847922 DOI: 10.1007/s11695-023-06520-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
INTRODUCTION Single anastomosis sleeve ileal bypass (SASI) is a combined bariatric metabolic technique, in which few studies have shown its outcomes efficacy. However, this technique has a high risk of malnutrition due to long biliopancreatic limb. Single anastomosis sleeve jejunal bypass (SASJ) has a shorter limb. Therefore, it seems to have a lower risk of nutrient deficiency. Furthermore, this technique is relatively new, and little is known about the efficacy and safety of SASJ. We aim to report our mid-term follow-up of SASJ from a high-volume center for bariatric metabolic surgery in the Middle East region. METHODS For the current study, the 18-month follow-up data of 43 patients with severe obesity who underwent SASJ was collected. The primary outcome measures were demographic data, weight change variables according to ideal body mass index (BMI) of 25 kg/m2 at 6, 12, and 18 months, laboratory assessments, remission of obesity-associated medical problems, and other potential bariatric metabolic complications after the surgery. RESULTS No patient was lost due to follow-up. After 18 months, patients lost 43.4 ± 11 kg of their weight and 68 ± 14% of their excess weight, and their BMI decreased from 44.9 ± 4.7 to 28.6 ± 3.8 kg/m2 (p < 0.001). The percentage of total weight loss till 18 months was 36.3%. The T2D remission rate at 18 months was 100%. Patients neither faced deficiency in significant markers for nutrition state nor represented major bariatric metabolic surgery complications. CONCLUSION SASJ bypass achieved satisfactory weight loss and remissions in obesity-associated medical problems within 18 months after surgery without major complications and malnutrition.
Collapse
Affiliation(s)
- Mohammad Taghi Rezaei
- Department of Surgery, Division of Minimally Invasive and Bariatric Operations, Mehrad Hospital, Tehran, Iran
| | - Erfan Sheikhbahaei
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Minimally Invasive Surgery and Obesity Research Center, Alzahra University Hospital, Isfahan University of Medical Sciences, Sofe Blvd, Isfahan, Iran
| | - Hamidreza Zefreh
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Minimally Invasive Surgery and Obesity Research Center, Alzahra University Hospital, Isfahan University of Medical Sciences, Sofe Blvd, Isfahan, Iran
| | - Mostafa Allami
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Sayadi Shahraki
- Isfahan Minimally Invasive Surgery and Obesity Research Center, Alzahra University Hospital, Isfahan University of Medical Sciences, Sofe Blvd, Isfahan, Iran.
| | - Shahab Shahabi
- Minimally Invasive Surgery Research Center, Rasool-E Akram University Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Xie W, Johnston SS, Waggoner JR, Doshi ID, Stokes AC. Bariatric surgery and weight loss in the short- and long-term: Evidence from NHANES 2015-2018. Clin Obes 2023; 13:e12563. [PMID: 36444393 PMCID: PMC10078337 DOI: 10.1111/cob.12563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022]
Abstract
The present study aimed to examine short- and long-term weight change in a nationally representative sample of US adults who reportedly underwent bariatric surgery. Individuals aged 20-64 at survey from the US National Health and Nutrition Examination Survey 2015-2018 were included in the analyses (n = 6776). The primary comparison groups include 62 participants who underwent bariatric surgery, 1531 eligible but did not receive surgery, and 5183 not eligible for bariatric surgery. After adjusting for demographic characteristics and comorbidity, adults who reported receiving bariatric surgery were 5.0 times (4.0-6.0) more likely to achieve at least 20% weight loss from maximum weight relative to those who were eligible but reported no surgery. The likelihood appeared to be higher when surgery was performed within 10 years (short-term, PR 5.5, 95% CI: 4.0, 7.0) relative to surgeries that were performed for 10 or more years (long-term, PR 3.6, 95% CI: 2.0, 5.3). In this nationally representative sample of US adults, respondents who received bariatric surgery achieved substantial and significant weight loss compared with those who were eligible and did not receive bariatric surgery. Weight loss appeared to be most apparent in the short term and persisted over the long term.
Collapse
Affiliation(s)
- Wubin Xie
- School of Public HealthBoston UniversityBostonMassachusettsUSA
| | | | | | | | | |
Collapse
|
42
|
Fang Z, Fan M, Yuan D, Jin L, Wang Y, Ding L, Xu S, Tu J, Zhang E, Wu X, Chen ZB, Huang W. Downregulation of hepatic lncRNA Gm19619 improves gluconeogenesis and lipogenesis following vertical sleeve gastrectomy in mice. Commun Biol 2023; 6:105. [PMID: 36707678 PMCID: PMC9883214 DOI: 10.1038/s42003-023-04483-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging important epigenetic regulators in metabolic processes. Whether they contribute to the metabolic effects of vertical sleeve gastrectomy (VSG), one of the most effective treatments for sustainable weight loss and metabolic improvement, is unknown. Herein, we identify a hepatic lncRNA Gm19619, which is strongly repressed by VSG but highly up-regulated by diet-induced obesity and overnight-fasting in mice. Forced transcription of Gm19619 in the mouse liver significantly promotes hepatic gluconeogenesis with the elevated expression of G6pc and Pck1. In contrast, AAV-CasRx mediated knockdown of Gm19619 in high-fat diet-fed mice significantly improves hepatic glucose and lipid metabolism. Mechanistically, Gm19619 is enriched along genomic regions encoding leptin receptor (Lepr) and transcription factor Foxo1, as revealed in chromatin isolation by RNA purification (ChIRP) assay and is confirmed to modulate their transcription in the mouse liver. In conclusion, Gm19619 may enhance gluconeogenesis and lipid accumulation in the liver.
Collapse
Affiliation(s)
- Zhipeng Fang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Mingjie Fan
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Pediatric, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Dongqiang Yuan
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yangmeng Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lili Ding
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Senlin Xu
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Jui Tu
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Eryun Zhang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Xiwei Wu
- Integrated Genomic Core, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs-Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
43
|
Valadez LZM, Frigolet ME, Dominguez RM, Pescarus R, Zerrweck C, Boudreau V, Doumouras A, Cookson T, Anvari M. Metabolic and Bariatric Surgery in Diabetes Management. THE DIABETES TEXTBOOK 2023:673-690. [DOI: 10.1007/978-3-031-25519-9_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Zhang C, Jia J, Zhang P, Zheng W, Guo X, Ai C, Song S. Fucoidan from Laminaria japonica Ameliorates Type 2 Diabetes Mellitus in Association with Modulation of Gut Microbiota and Metabolites in Streptozocin-Treated Mice. Foods 2022; 12:33. [PMID: 36613249 PMCID: PMC9818518 DOI: 10.3390/foods12010033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic diseases have been a leading cause of death worldwide, and polysaccharide supplementation is an effective therapeutic strategy for chronic diseases without adverse effects. In this study, the beneficial effect of Laminaria japonica fucoidan (LJF) on type 2 diabetes mellitus (T2DM) was evaluated in streptozocin-treated mice. LJF ameliorated the symptoms of T2DM in a dose-dependent manner, involving reduction in weight loss, water intake, triglyceride, blood glucose, cholesterol and free fatty acids, and increases in high-density lipoprotein cholesterol, catalase, glucagon-like peptide-1, and superoxide dismutase. In addition, LJF regulated the balance between insulin resistance and insulin sensitivity, reduced islet necrosis and β-cell damage, and inhibited fat accumulation in T2DM mice. The protective effect of LJF on T2DM can be associated with modulation of the gut microbiota and metabolites, e.g., increases in Lactobacillus and Allobaculum. Untargeted and targeted metabolomics analysis showed that the microbiota metabolite profile was changed with LJF-induced microbiota alterations, mainly involving amino acids, glutathione, and glyoxylate and dicarboxylate metabolism pathways. This study indicates that LJF can be used as a prebiotic agent for the prevention and treatment of diabetes and microbiota-related diseases.
Collapse
Affiliation(s)
- Chenxi Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Jinhui Jia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Panpan Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Weiyun Zheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
45
|
Alamro N, Azhri AS, Almuqati A, Azzeh F, Azhar W, Qadhi A, Almohmadi NH, Abusudah WF, Ghafouri K. Effect of Bariatric Surgery on Metabolic Syndrome, Framingham Risk Scores and Thyroid Function during One-Year Follow-Up: A Saudi Retrospective Study. Healthcare (Basel) 2022; 10:healthcare10122530. [PMID: 36554054 PMCID: PMC9778226 DOI: 10.3390/healthcare10122530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022] Open
Abstract
Bariatric surgery (BS) has been demonstrated to achieve sustained weight loss with significant metabolic improvement, including a reduction in cardiovascular disease and diabetes. The aim of this retrospective study is to measure the effect of BS on the Framingham risk score (FRS) and metabolic syndrome (MetS) among patients who underwent bariatric surgery. Additionally, we determine the effect of BS on thyroid-stimulating hormone (TSH) among euthyroid obese patients. A retrospective follow-up study was conducted at King Abdullah Medical City, Makkah, Saudi Arabia. A total of 160 patients underwent BS and completed one-year follow-up visits. Medical history, anthropometric, biochemical, and hormonal parameters were evaluated at baseline and 3−12 months after BS. The International Diabetes Federation (IDF) criteria were used to diagnose MetS. There was a significant decrease in systolic blood pressure (SBP), diastolic blood pressure (DBP), glycated hemoglobin (Hba1c), TSH, low-density lipoprotein (LDL), triglycerides, and total cholesterol (p < 0.001). A significant decrease was seen in MetS, BMI, FRS, SBP, DBP, Hba1c, LDL, triglycerides, cholesterol, and liver enzymes, with a significant increase in high-density lipoprotein levels 12 months postoperatively (p < 0.001). At 12 months, the prevalence of MetS, DM, and HTN and the FRS significantly decreased from 72.5%, 43.1%, 78.1%, and 11.4 to 16.3%, 9.4%, 22.5%, and 5.4, respectively. In addition to achieving substantial weight loss, BS improves MetS prevalence and cardiovascular risk profiles.
Collapse
Affiliation(s)
- Nuha Alamro
- Clinical Nutrition Administration, King Abdullah Medical City, P.O.Box 24246, Makkah 21955, Saudi Arabia
| | - Afnan S. Azhri
- Clinical Nutrition Administration, King Abdullah Medical City, P.O.Box 24246, Makkah 21955, Saudi Arabia
| | - Asma Almuqati
- Clinical Nutrition Administration, King Abdullah Medical City, P.O.Box 24246, Makkah 21955, Saudi Arabia
| | - Firas Azzeh
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O Box 715, Makkah 21955, Saudi Arabia
| | - Wedad Azhar
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O Box 715, Makkah 21955, Saudi Arabia
| | - Alaa Qadhi
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O Box 715, Makkah 21955, Saudi Arabia
| | - Najlaa H. Almohmadi
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O Box 715, Makkah 21955, Saudi Arabia
| | - Wafaa F. Abusudah
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O Box 715, Makkah 21955, Saudi Arabia
| | - Khloud Ghafouri
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O Box 715, Makkah 21955, Saudi Arabia
- Correspondence: ; Tel.: +966-125-270-000
| |
Collapse
|
46
|
Vasdeki D, Koufakis T, Tsamos G, Busetto L, Zebekakis P, Kotsa K. Remission as an Emerging Therapeutic Target in Type 2 Diabetes in the Era of New Glucose-Lowering Agents: Benefits, Challenges, and Treatment Approaches. Nutrients 2022; 14:4801. [PMID: 36432488 PMCID: PMC9695991 DOI: 10.3390/nu14224801] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a progressive disease with a growing prevalence, associated with an increased risk of complications. The introduction of new classes of antidiabetic drugs into clinical practice has dramatically changed the landscape of diabetes therapy. However, despite the progress made in the pharmacotherapy of T2DM, mitigating the burden of the disease on individuals, societies and health care systems remains a challenge. Remission has recently emerged as a therapeutic target in T2DM, achievable through a wide range of interventions. Recent studies have shown that extensive lifestyle changes, such as weight reduction, bariatric surgery, and intensive glucose lowering therapy, can prompt the remission of diabetes, but some unanswered questions remain regarding its long-term effects on diabetic complications. Metabolic surgery and novel classes of glucose-lowering medications are currently the most effective interventions to induce weight loss and by extension remission in patients with diabetes; however, the ideal strategy to achieve the long-term maintenance of remission remains doubtful. In this narrative review, we discuss the available therapeutic approaches to target the remission of diabetes through personalized multimodal care, based on the latest evidence.
Collapse
Affiliation(s)
- Dimitra Vasdeki
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Georgios Tsamos
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Luca Busetto
- Department of Medicine, University of Padova, 35121 Padova, Italy
| | - Pantelis Zebekakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| |
Collapse
|
47
|
Bennett BL, Lawson JL, Funaro MC, Ivezaj V. Examining weight bias before and/or after bariatric surgery: A systematic review. Obes Rev 2022; 23:e13500. [PMID: 36053042 DOI: 10.1111/obr.13500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Accepted: 07/24/2022] [Indexed: 11/29/2022]
Abstract
Research examining weight bias in the bariatric population, who may be at greater risk of weight stigma, is scarce. The present study aimed to systematically review the literature for quantitative evidence that explores the medical, psychosocial, and behavioral sequelae associated with experienced, internalized, and/or externalized weight bias in patients seeking or who have undergone bariatric surgery. Five databases were systematically searched for English peer-reviewed quantitative studies, which examined weight bias in a sample of individuals seeking or who had undergone bariatric surgery. Risk of bias was assessed. Twenty-nine studies were included, of which 13 examined internalized weight bias, 12 examined experienced weight bias, 4 examined both, and 0 examined externalized weight bias. Most studies were cross-sectional, and the results showed high risk of bias. The results suggested that both experienced and internalized weight bias were associated with a host of negative psychosocial, behavioral, and medical sequelae. The findings of this review underscore the need for more rigorous research to better understand the relationship between weight bias and bariatric surgery, particularly longitudinally. Future patients may benefit from research developing interventions for reducing weight bias prior to and following bariatric surgery in order to reduce the associated negative correlates and improve outcomes.
Collapse
Affiliation(s)
- Brooke L Bennett
- Rudd Center for Food Policy and Health, University of Connecticut, Hartford, Connecticut, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jessica L Lawson
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA.,VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Melissa C Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut, USA
| | - Valentina Ivezaj
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
48
|
Shah A, Prasad M, Mark V, Holst JJ, Laferrère B. Glucagon-like peptide-1 effect on β-cell function varies according to diabetes remission status after Roux-en-Y gastric bypass. Diabetes Obes Metab 2022; 24:2081-2089. [PMID: 35676799 PMCID: PMC9595602 DOI: 10.1111/dom.14793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
AIMS The contribution of endogenous glucagon-like peptide (GLP)-1 to β-cell function after Roux-en-Y gastric bypass surgery (RYGB) is well established in normoglycaemic individuals, but not in those with postoperative hyperglycaemia. We, therefore, studied the effect of GLP-1 on β-cell function in individuals with varying degrees of type 2 diabetes mellitus (T2D) control after RYGB. MATERIALS AND METHODS Glucose, insulin secretion rates, β-cell glucose sensitivity and glucagon were measured during an oral glucose tolerance test before (saline only) and at 3, 12 and 24 months after RYGB with and without infusion of the GLP-1 receptor blocker exendin9-39 (EX9). The cohort was retrospectively classified based on T2D remission (REM) status at the latest study time point: REM (n = 5), persistent T2D (n = 8), or impaired glucose tolerance (n = 16). RESULTS EX9 blunted the increase in β-cell glucose sensitivity at 3 months (-44.1%, p < .001) and 12 months (-43.3%, p < .001), but not at 24 months (-12.4%, p = .243). EX9 enhanced postprandial glucagon concentrations by 62.0% at 3 months (p = .008), 46.5% at 12 months (p = .055), and 30.4% at 24 months (p = .017). EX9 counterintuitively decreased glucose concentrations at 3 months in the entire cohort (p < .001) but had no effect on glycaemia at 12 and 24 months in persistent T2D and impaired glucose tolerance; it minimally worsened glycaemia in REM at 12 months. CONCLUSIONS GLP-1 blockade reversed the improvement in β-cell function observed after RYGB, but this effect varied temporally and by REM status. GLP-1 blockade transiently and minimally worsened glycaemia only in REM, and lowered postprandial glucose values at 3 months, regardless of REM status.
Collapse
Affiliation(s)
- Ankit Shah
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Malini Prasad
- New York Obesity Nutrition Research Center, Division of Endocrinology. Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Victoria Mark
- New York Obesity Nutrition Research Center, Division of Endocrinology. Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blandine Laferrère
- Division of Endocrinology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
49
|
Sridhar A, Khan D, Abdelaal M, Elliott JA, Naughton V, Flatt PR, Le Roux CW, Docherty NG, Moffett CR. Differential effects of RYGB surgery and best medical treatment for obesity-diabetes on intestinal and islet adaptations in obese-diabetic ZDSD rats. PLoS One 2022; 17:e0274788. [PMID: 36137097 PMCID: PMC9499270 DOI: 10.1371/journal.pone.0274788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Modification of gut-islet secretions after Roux-En-Y gastric bypass (RYBG) surgery contributes to its metabolic and anti-diabetic benefits. However, there is limited knowledge on tissue-specific hormone distribution post-RYGB surgery and how this compares with best medical treatment (BMT). In the present study, pancreatic and ileal tissues were excised from male Zucker-Diabetic Sprague Dawley (ZDSD) rats 8-weeks after RYGB, BMT (daily oral dosing with metformin 300mg/kg, fenofibrate 100mg/kg, ramipril 1mg/kg, rosuvastatin 10mg/kg and subcutaneous liraglutide 0.2mg/kg) or sham operation (laparotomy). Insulin, glucagon, somatostatin, PYY, GLP-1 and GIP expression patterns were assessed using immunocytochemistry and analyzed using ImageJ. After RYGB and BMT, body weight and plasma glucose were decreased. Intestinal morphometry was unaltered by RYGB, but crypt depth was decreased by BMT. Intestinal PYY cells were increased by both interventions. GLP-1- and GIP-cell counts were unchanged by RYGB but BMT increased ileal GLP-1-cells and decreased those expressing GIP. The intestinal contents of PYY and GLP-1 were significantly enhanced by RYGB, whereas BMT decreased ileal GLP-1. No changes of islet and beta-cell area or proliferation were observed, but the extent of beta-cell apoptosis and islet integrity calculated using circularity index were improved by both treatments. Significantly decreased islet alpha-cell areas were observed in both groups, while beta- and PYY-cell areas were unchanged. RYGB also induced a decrease in islet delta-cell area. PYY and GLP-1 colocalization with glucagon in islets was significantly decreased in both groups, while co-staining of PYY with glucagon was decreased and that with somatostatin increased. These data characterize significant cellular islet and intestinal adaptations following RYGB and BMT associated with amelioration of obesity-diabetes in ZDSD rats. The differential responses observed and particularly those within islets, may provide important clues to the unique ability of RYGB to cause diabetes remission.
Collapse
Affiliation(s)
- Ananyaa Sridhar
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
- * E-mail:
| | - Mahmoud Abdelaal
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Jessie A. Elliott
- Department of Surgery, Trinity Centre for Health Sciences and St. James’s Hospital, Dublin, Ireland
| | - Violetta Naughton
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Peter R. Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Carel W. Le Roux
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Neil G. Docherty
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Charlotte R. Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| |
Collapse
|
50
|
Hosseini SV, Moeinvaziri N, Medhati P, Salem SA, Hosseini E, Clark CCT, Haghighat N. The Effect of Single-Anastomosis Sleeve Ileal (SASI) Bypass on Patients with Severe Obesity in Three Consecutive Years. World J Surg 2022; 46:2744-2750. [DOI: 10.1007/s00268-022-06706-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2022] [Indexed: 01/18/2023]
|