1
|
Zhong H, Zhang R, Li G, Huang P, Zhang Y, Zhu J, Kuang J, Hutchins AP, Qin D, Zhu P, Pei D, Li D. c-JUN is a barrier in hESC to cardiomyocyte transition. Life Sci Alliance 2023; 6:e202302121. [PMID: 37604584 PMCID: PMC10442936 DOI: 10.26508/lsa.202302121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
Loss of c-JUN leads to early mouse embryonic death, possibly because of a failure to develop a normal cardiac system. How c-JUN regulates human cardiomyocyte cell fate remains unknown. Here, we used the in vitro differentiation of human pluripotent stem cells into cardiomyocytes to study the role of c-JUN. Surprisingly, the knockout of c-JUN improved cardiomyocyte generation, as determined by the number of TNNT2+ cells. ATAC-seq data showed that the c-JUN defect led to increased chromatin accessibility on critical regulatory elements related to cardiomyocyte development. ChIP-seq data showed that the knockout c-JUN increased RBBP5 and SETD1B expression, leading to improved H3K4me3 deposition on key genes that regulate cardiogenesis. The c-JUN KO phenotype could be copied using the histone demethylase inhibitor CPI-455, which also up-regulated H3K4me3 levels and increased cardiomyocyte generation. Single-cell RNA-seq data defined three cell branches, and knockout c-JUN activated more regulons that are related to cardiogenesis. In summary, our data demonstrated that c-JUN could regulate cardiomyocyte cell fate by modulating H3K4me3 modification and chromatin accessibility and shed light on how c-JUN regulates heart development in humans.
Collapse
Affiliation(s)
- Hui Zhong
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ran Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Guihuan Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ping Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Yudan Zhang
- Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jieying Zhu
- CAS Key Laboratory of Regenerative Biology, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences; Hong Kong, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease and Guangzhou Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Dongwei Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Jiang CL, Goyal Y, Jain N, Wang Q, Truitt RE, Coté AJ, Emert B, Mellis IA, Kiani K, Yang W, Jain R, Raj A. Cell type determination for cardiac differentiation occurs soon after seeding of human-induced pluripotent stem cells. Genome Biol 2022; 23:90. [PMID: 35382863 PMCID: PMC8985385 DOI: 10.1186/s13059-022-02654-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/16/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cardiac differentiation of human-induced pluripotent stem (hiPS) cells consistently produces a mixed population of cardiomyocytes and non-cardiac cell types, even when using well-characterized protocols. We sought to determine whether different cell types might result from intrinsic differences in hiPS cells prior to the onset of differentiation. RESULTS By associating individual differentiated cells that share a common hiPS cell precursor, we tested whether expression variability is predetermined from the hiPS cell state. In a single experiment, cells that shared a progenitor were more transcriptionally similar to each other than to other cells in the differentiated population. However, when the same hiPS cells were differentiated in parallel, we did not observe high transcriptional similarity across differentiations. Additionally, we found that substantial cell death occurs during differentiation in a manner that suggested all cells were equally likely to survive or die, suggesting that there is no intrinsic selection bias for cells descended from particular hiPS cell progenitors. We thus wondered how cells grow spatially during differentiation, so we labeled cells by expression of marker genes and found that cells expressing the same marker tended to occur in patches. Our results suggest that cell type determination across multiple cell types, once initiated, is maintained in a cell-autonomous manner for multiple divisions. CONCLUSIONS Altogether, our results show that while substantial heterogeneity exists in the initial hiPS cell population, it is not responsible for the variability observed in differentiated outcomes; instead, factors specifying the various cell types likely act during a window that begins shortly after the seeding of hiPS cells for differentiation.
Collapse
Affiliation(s)
- Connie L Jiang
- Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Naveen Jain
- Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qiaohong Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel E Truitt
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allison J Coté
- Cell Biology, Physiology, and Metabolism, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Emert
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Mellis
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karun Kiani
- Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenli Yang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rajan Jain
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Zhao W, Qiao L, Yan S, Nie Q, Zhang L. Mathematical modeling of histone modifications reveals the formation mechanism and function of bivalent chromatin. iScience 2021; 24:102732. [PMID: 34278251 PMCID: PMC8261666 DOI: 10.1016/j.isci.2021.102732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023] Open
Abstract
Bivalent chromatin is characterized by occupation of both activating and repressive histone modifications. Here, we develop a mathematical model that involves antagonistic histone modifications H3K4me3 and H3K27me3 to capture the key features of bivalent chromatin. Three necessary conditions for the emergence of bivalent chromatin are identified, including advantageous methylating activity over demethylating activity, frequent noise conversions of modifications, and sufficient nonlinearity. The first condition is further confirmed by analyzing the existing experimental data. Investigation of the composition of bivalent chromatin reveals that bivalent nucleosomes carrying both H3K4me3 and H3K27me3 account for no more than half of nucleosomes at the bivalent chromatin domain. We identify that bivalent chromatin not only allows transitions to multiple states but also serves as a stepping stone to facilitate a stepwise transition between repressive chromatin state and activating chromatin state and thus elucidate crucial roles of bivalent chromatin in mediating phenotypical plasticity during cell fate determination. Emergence of bivalency needs advantageous writing activity over erasing activity Emergence of bivalency is facilitated by noise and nonlinearity The proportion of bivalent nucleosomes at bivalent chromatin is no more than 50% Bivalent chromatin facilitates chromatin state transitions
Collapse
Affiliation(s)
- Wei Zhao
- Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Lingxia Qiao
- Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China
| | - Shiyu Yan
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Qing Nie
- Department of Mathematics and Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Lei Zhang
- Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Human pluripotent stem-cell-derived alveolar organoids for modeling pulmonary fibrosis and drug testing. Cell Death Discov 2021; 7:48. [PMID: 33723255 PMCID: PMC7961057 DOI: 10.1038/s41420-021-00439-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023] Open
Abstract
Detailed understanding of the pathogenesis and development of effective therapies for pulmonary fibrosis (PF) have been hampered by lack of in vitro human models that recapitulate disease pathophysiology. In this study, we generated alveolar organoids (AOs) derived from human pluripotent stem cells (hPSCs) for use as an PF model and for drug efficacy evaluation. Stepwise direct differentiation of hPSCs into alveolar epithelial cells by mimicking developmental cues in a temporally controlled manner was used to generate multicellular AOs. Derived AOs contained the expected spectrum of differentiated cells, including alveolar progenitors, type 1 and 2 alveolar epithelial cells and mesenchymal cells. Treatment with transforming growth factor (TGF-β1) induced fibrotic changes in AOs, offering a PF model for therapeutic evaluation of a structurally truncated form (NP-011) of milk fat globule-EGF factor 8 (MFG-E8) protein. The significant fibrogenic responses and collagen accumulation that were induced by treatment with TGF-β1 in these AOs were effectively ameliorated by treatment with NP-011 via suppression of extracellular signal-regulated kinase (ERK) signaling. Furthermore, administration of NP-011 reversed bleomycin-induced lung fibrosis in mice also via ERK signaling suppression and collagen reduction. This anti-fibrotic effect mirrored that following Pirfenidone and Nintedanib administration. Furthermore, NP-011 interacted with macrophages, which accelerated the collagen uptake for eliminating accumulated collagen in fibrotic lung tissues. This study provides a robust in vitro human organoid system for modeling PF and assessing anti-fibrotic mechanisms of potential drugs and suggests that modified MGF-E8 protein has therapeutic potential for treating PF.
Collapse
|
5
|
Orlando L, Tanasijevic B, Nakanishi M, Reid JC, García-Rodríguez JL, Chauhan KD, Porras DP, Aslostovar L, Lu JD, Shapovalova Z, Mitchell RR, Boyd AL, Bhatia M. Phosphorylation state of the histone variant H2A.X controls human stem and progenitor cell fate decisions. Cell Rep 2021; 34:108818. [PMID: 33691101 DOI: 10.1016/j.celrep.2021.108818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/28/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Histone variants (HVs) are a subfamily of epigenetic regulators implicated in embryonic development, but their role in human stem cell fate remains unclear. Here, we reveal that the phosphorylation state of the HV H2A.X (γH2A.X) regulates self-renewal and differentiation of human pluripotent stem cells (hPSCs) and leukemic progenitors. As demonstrated by CRISPR-Cas deletion, H2A.X is essential in maintaining normal hPSC behavior. However, reduced levels of γH2A.X enhances hPSC differentiation toward the hematopoietic lineage with concomitant inhibition of neural development. In contrast, activation and sustained levels of phosphorylated H2A.X enhance hPSC neural fate while suppressing hematopoiesis. This controlled lineage bias correlates to occupancy of γH2A.X at genomic loci associated with ectoderm versus mesoderm specification. Finally, drug modulation of H2A.X phosphorylation overcomes differentiation block of patient-derived leukemic progenitors. Our study demonstrates HVs may serve to regulate pluripotent cell fate and that this biology could be extended to somatic cancer stem cell control.
Collapse
Affiliation(s)
- Luca Orlando
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Borko Tanasijevic
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Mio Nakanishi
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Jennifer C Reid
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Juan L García-Rodríguez
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Kapil Dev Chauhan
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Deanna P Porras
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Lili Aslostovar
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Justin D Lu
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Zoya Shapovalova
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Ryan R Mitchell
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Allison L Boyd
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Mickie Bhatia
- McMaster University, Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
6
|
Gene Editing Correction of a Urea Cycle Defect in Organoid Stem Cell Derived Hepatocyte-like Cells. Int J Mol Sci 2021; 22:ijms22031217. [PMID: 33530582 PMCID: PMC7865883 DOI: 10.3390/ijms22031217] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Urea cycle disorders are enzymopathies resulting from inherited deficiencies in any genes of the cycle. In severe cases, currently available therapies are marginally effective, with liver transplantation being the only definitive treatment. Donor liver availability can limit even this therapy. Identification of novel therapeutics for genetic-based liver diseases requires models that provide measurable hepatic functions and phenotypes. Advances in stem cell and genome editing technologies could provide models for the investigation of cell-based genetic diseases, as well as the platforms for drug discovery. This report demonstrates a practical, and widely applicable, approach that includes the successful reprogramming of somatic cells from a patient with a urea cycle defect, their genetic correction and differentiation into hepatic organoids, and the subsequent demonstration of genetic and phenotypic change in the edited cells consistent with the correction of the defect. While individually rare, there is a large number of other genetic-based liver diseases. The approach described here could be applied to a broad range and a large number of patients with these hepatic diseases where it could serve as an in vitro model, as well as identify successful strategies for corrective cell-based therapy.
Collapse
|
7
|
Eskandarian P, Bagherzadeh Mohasefi J, Pirnejad H, Niazkhani Z. Prediction of future gene expression profile by analyzing its past variation pattern. Gene Expr Patterns 2021; 39:119166. [PMID: 33444808 DOI: 10.1016/j.gep.2021.119166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 01/21/2023]
Abstract
A number of initial Hematopoietic Stem Cells (HSC) are considered in a container that are able to divide into HSCs or differentiate into various types of descendant cells. In this paper, a method is designed to predict an approximate gene expression profile (GEP) for future descendant cells resulted from HSC division/differentiation. First, the GEP prediction problem is modeled into a multivariate time series prediction problem. A novel method called EHSCP (Extended Hematopoietic Stem Cell Prediction) is introduced which is an artificial neural machine to solve the problem. EHSCP accepts the initial sequence of measured GEPs as input and predicts GEPs of future descendant cells. This prediction can be performed for multiple stages of cell division/differentiation. EHSCP considers the GEP sequence as time series and computes correlation between input time series. Two novel artificial neural units called PLSTM (Parametric Long Short Term Memory) and MILSTM (Multi-Input LSTM) are designed. PLSTM makes EHSCP able to consider this correlation in output prediction. Since there exist thousands of time series in GEP prediction, a hierarchical encoder is proposed that computes this correlation using 101 MILSTMs. EHSCP is trained using 155 datasets and is evaluated on 39 test datasets. These evaluations show that EHSCP surpasses existing methods in terms of prediction accuracy and number of correctly-predicted division/differentiation stages. In these evaluations, number of correctly-predicted stages in EHSCP was 128 when as many as 8 initial stages were given.
Collapse
Affiliation(s)
- Parinaz Eskandarian
- Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran.
| | - Jamshid Bagherzadeh Mohasefi
- Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran; Department of Electrical and Computer Engineering, Urmia University, Urmia, Iran.
| | - Habibollah Pirnejad
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Zahra Niazkhani
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
8
|
Diesel Particulate Matter 2.5 Induces Epithelial-to-Mesenchymal Transition and Upregulation of SARS-CoV-2 Receptor during Human Pluripotent Stem Cell-Derived Alveolar Organoid Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228410. [PMID: 33202948 PMCID: PMC7696313 DOI: 10.3390/ijerph17228410] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
Growing evidence links prenatal exposure to particulate matter (PM2.5) with reduced lung function and incidence of pulmonary diseases in infancy and childhood. However, the underlying biological mechanisms of how prenatal PM2.5 exposure affects the lungs are incompletely understood, which explains the lack of an ideal in vitro lung development model. Human pluripotent stem cells (hPSCs) have been successfully employed for in vitro developmental toxicity evaluations due to their unique ability to differentiate into any type of cell in the body. In this study, we investigated the developmental toxicity of diesel fine PM (dPM2.5) exposure during hPSC-derived alveolar epithelial cell (AEC) differentiation and three-dimensional (3D) multicellular alveolar organoid (AO) development. We found that dPM2.5 (50 and 100 μg/mL) treatment disturbed the AEC differentiation, accompanied by upregulation of nicotinamide adenine dinucleotide phosphate oxidases and inflammation. Exposure to dPM2.5 also promoted epithelial-to-mesenchymal transition during AEC and AO development via activation of extracellular signal-regulated kinase signaling, while dPM2.5 had no effect on surfactant protein C expression in hPSC-derived AECs. Notably, we provided evidence, for the first time, that angiotensin-converting enzyme 2, a receptor to mediate the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) entry into target cells, and the cofactor transmembrane protease serine 2 were significantly upregulated in both hPSC-AECs and AOs treated with dPM2.5. In conclusion, we demonstrated the potential alveolar development toxicity and the increase of SARS-Cov-2 susceptibility of PM2.5. Our findings suggest that an hPSC-based 2D and 3D alveolar induction system could be a useful in vitro platform for evaluating the adverse effects of environmental toxins and for virus research.
Collapse
|
9
|
Regulation of JAM2 Expression in the Lungs of Streptozotocin-Induced Diabetic Mice and Human Pluripotent Stem Cell-Derived Alveolar Organoids. Biomedicines 2020; 8:biomedicines8090346. [PMID: 32932992 PMCID: PMC7555027 DOI: 10.3390/biomedicines8090346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/30/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022] Open
Abstract
Hyperglycemia is a causative factor in the pathogenesis of respiratory diseases, known to induce fibrosis and inflammation in the lung. However, little attention has been paid to genes related to hyperglycemic-induced lung alterations and stem cell applications for therapeutic use. In this study, our microarray data revealed significantly increased levels of junctional adhesion molecule 2 (JAM2) in the high glucose (HG)-induced transcriptional profile in human perivascular cells (hPVCs). The elevated level of JAM2 in HG-treated hPVCs was transcriptionally and epigenetically reversible when HG treatment was removed. We further investigated the expression of JAM2 using in vivo and in vitro hyperglycemic models. Our results showed significant upregulation of JAM2 in the lungs of streptozotocin (STZ)-induced diabetic mice, which was greatly suppressed by the administration of conditioned medium obtained from human mesenchymal stem cell cultures. Furthermore, JAM2 was found to be significantly upregulated in human pluripotent stem cell-derived multicellular alveolar organoids by exposure to HG. Our results suggest that JAM2 may play an important role in STZ-induced lung alterations and could be a potential indicator for predicting the therapeutic effects of stem cells and drugs in diabetic lung complications.
Collapse
|
10
|
Bacon K, Lavoie A, Rao BM, Daniele M, Menegatti S. Past, Present, and Future of Affinity-based Cell Separation Technologies. Acta Biomater 2020; 112:29-51. [PMID: 32442784 PMCID: PMC10364325 DOI: 10.1016/j.actbio.2020.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Progress in cell purification technology is critical to increase the availability of viable cells for therapeutic, diagnostic, and research applications. A variety of techniques are now available for cell separation, ranging from non-affinity methods such as density gradient centrifugation, dielectrophoresis, and filtration, to affinity methods such as chromatography, two-phase partitioning, and magnetic-/fluorescence-assisted cell sorting. For clinical and analytical procedures that require highly purified cells, the choice of cell purification method is crucial, since every method offers a different balance between yield, purity, and bioactivity of the cell product. For most applications, the requisite purity is only achievable through affinity methods, owing to the high target specificity that they grant. In this review, we discuss past and current methods for developing cell-targeting affinity ligands and their application in cell purification, along with the benefits and challenges associated with different purification formats. We further present new technologies, like stimuli-responsive ligands and parallelized microfluidic devices, towards improving the viability and throughput of cell products for tissue engineering and regenerative medicine. Our comparative analysis provides guidance in the multifarious landscape of cell separation techniques and highlights new technologies that are poised to play a key role in the future of cell purification in clinical settings and the biotech industry. STATEMENT OF SIGNIFICANCE: Technologies for cell purification have served science, medicine, and industrial biotechnology and biomanufacturing for decades. This review presents a comprehensive survey of this field by highlighting the scope and relevance of all known methods for cell isolation, old and new alike. The first section covers the main classes of target cells and compares traditional non-affinity and affinity-based purification techniques, focusing on established ligands and chromatographic formats. The second section presents an excursus of affinity-based pseudo-chromatographic and non-chromatographic technologies, especially focusing on magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Finally, the third section presents an overview of new technologies and emerging trends, highlighting how the progress in chemical, material, and microfluidic sciences has opened new exciting avenues towards high-throughput and high-purity cell isolation processes. This review is designed to guide scientists and engineers in their choice of suitable cell purification techniques for research or bioprocessing needs.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| |
Collapse
|
11
|
Addressing Variability and Heterogeneity of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:1-29. [DOI: 10.1007/5584_2019_350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Silveira GDP, Ishimura ME, Teixeira D, Galindo LT, Sardinha AA, Porcionatto M, Longo-Maugéri IM. Improvement of Mesenchymal Stem Cell Immunomodulatory Properties by Heat-Killed Propionibacterium acnes via TLR2. Front Mol Neurosci 2019; 11:489. [PMID: 30687005 PMCID: PMC6336115 DOI: 10.3389/fnmol.2018.00489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are an essential tool for regenerative medicine, which aims to develop new technologies to improve their effects to obtain useful transplantation results. MSC immunomodulatory role has been just demonstrated; however, how they react when they are stimulated by an adjuvant is poorly understood. Our group showed the adjuvant effect of killed Propionibacterium acnes (P. acnes) on hematopoietic stem cells. As these cells share the same MSCs bone marrow (BM) site and interact with each other, here we evaluated the P. acnes and its soluble polysaccharide (PS) effect on MSCs and their immunomodulatory role in a murine model of traumatic brain injury (TBI). The bacteria increased the absolute number of MSCs, including MSC subpopulations, and maintained MSC plasticity. P. acnes and PS enhanced MSC proliferation and improved their immunomodulatory effect. P. acnes-MSC and PS-MSC transplantation increased anti-inflammatory cytokine expression and diminished pro-inflammatory cytokine expression after injury. This effect seemed to be mediated via TLR2 since P. acnes-KOTLR2-MSC transplantation decreased TGF-β and IL-10 expression. Increasing in neural stem cells and neuroblasts after PS-MSC transplantation was also observed. The adjuvant effect of P. acnes is an alternative means of expanding MSCs and important to identify their subpopulations to know better their role under exogenous stimuli including inflammation resolution in an experimental model.
Collapse
Affiliation(s)
- Gabriela da Paz Silveira
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Mayari Eika Ishimura
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Daniela Teixeira
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Layla Tesla Galindo
- Division of Molecular Biology, Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Agnes Araujo Sardinha
- Division of Molecular Biology, Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Marimelia Porcionatto
- Division of Molecular Biology, Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ieda Maria Longo-Maugéri
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Lee JY, Kim M, Heo HR, Ha KS, Han ET, Park WS, Yang SR, Hong SH. Inhibition of MicroRNA-221 and 222 Enhances Hematopoietic Differentiation from Human Pluripotent Stem Cells via c-KIT Upregulation. Mol Cells 2018; 41:971-978. [PMID: 30396237 PMCID: PMC6277561 DOI: 10.14348/molcells.2018.0244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/27/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023] Open
Abstract
The stem cell factor (SCF)/c-KIT axis plays an important role in the hematopoietic differentiation of human pluripotent stem cells (hPSCs), but its regulatory mechanisms involving microRNAs (miRs) are not fully elucidated. Here, we demonstrated that supplementation with SCF increases the hematopoietic differentiation of hPSCs via the interaction with its receptor tyrosine kinase c-KIT, which is modulated by miR-221 and miR-222. c-KIT is comparably expressed in undifferentiated human embryonic and induced pluripotent stem cells. The inhibition of SCF signaling via treatment with a c-KIT antagonist (imatinib) during hPSC-derived hematopoiesis resulted in reductions in the yield and multi-lineage potential of hematopoietic progenitors. We found that the transcript levels of miR-221 and miR-222 targeting c-KIT were significantly lower in the pluripotent state than they were in terminally differentiated somatic cells. Furthermore, suppression of miR-221 and miR-222 in undifferentiated hPSC cultures induced more hematopoiesis by increasing c-KIT expression. Collectively, our data implied that the modulation of c-KIT by miRs may provide further potential strategies to expedite the generation of functional blood cells for therapeutic approaches and the study of the cellular machinery related to hematologic malignant diseases such as leukemia.
Collapse
Affiliation(s)
- Ji Yoon Lee
- Department of Biomedical Sciences, Stem Cell Institute, CHA University, Seongnam,
Korea
| | - MyungJoo Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Hye-Ryeon Heo
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Se-Ran Yang
- Department of Thoracic & Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341,
Korea
| |
Collapse
|
14
|
Reprogramming mechanisms influence the maturation of hematopoietic progenitors from human pluripotent stem cells. Cell Death Dis 2018; 9:1090. [PMID: 30356076 PMCID: PMC6200746 DOI: 10.1038/s41419-018-1124-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/26/2018] [Accepted: 10/01/2018] [Indexed: 12/28/2022]
Abstract
Somatic cell nuclear transfer (SCNT) or the forced expression of transcription factors can be used to generate autologous pluripotent stem cells (PSCs). Although transcriptomic and epigenomic comparisons of isogenic human NT-embryonic stem cells (NT-ESCs) and induced PSCs (iPSCs) in the undifferentiated state have been reported, their functional similarities and differentiation potentials have not been fully elucidated. Our study showed that NT-ESCs and iPSCs derived from the same donors generally displayed similar in vitro commitment capacity toward three germ layer lineages as well as proliferative activity and clonogenic capacity. However, the maturation capacity of NT-ESC-derived hematopoietic progenitors was significantly greater than the corresponding capacity of isogenic iPSC-derived progenitors. Additionally, donor-dependent variations in hematopoietic specification and commitment capacity were observed. Transcriptome and methylome analyses in undifferentiated NT-ESCs and iPSCs revealed a set of genes that may influence variations in hematopoietic commitment and maturation between PSC lines derived using different reprogramming methods. Here, we suggest that genetically identical iPSCs and NT-ESCs could be functionally unequal due to differential transcription and methylation levels acquired during reprogramming. Our proof-of-concept study indicates that reprogramming mechanisms and genetic background could contribute to diverse functionalities between PSCs.
Collapse
|
15
|
Kim JJ, Moghe PV. Parsing Stem Cell Lineage Development Using High Content Image Analysis of Epigenetic Spatial Markers. ACTA ACUST UNITED AC 2018; 46:e54. [PMID: 29927102 DOI: 10.1002/cpsc.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This unit describes a protocol for acquiring and analyzing high-content super-resolution images of human stem cell nuclei for the characterization and classification of the cell differentiation paths based on distinct patterns of epigenetic mark organization. Here, we describe the cell culture, immunocytochemical labeling, super-resolution imaging parameters, and MATLAB-based quantitative image analysis approaches for monitoring human mesenchymal stem cells (hMSCs) and human induced pluripotent stem cells (hiPSCs) as the cells differentiate towards various lineages. Although this protocol uses specific cell types as examples, this approach could be easily extended to a variety of cell types and nuclear epigenetic and mechanosensitive biomarkers that are relevant to specific cell developmental scenarios. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Joseph J Kim
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
16
|
Orgeur M, Martens M, Leonte G, Nassari S, Bonnin MA, Börno ST, Timmermann B, Hecht J, Duprez D, Stricker S. Genome-wide strategies identify downstream target genes of chick connective tissue-associated transcription factors. Development 2018; 145:dev.161208. [PMID: 29511024 DOI: 10.1242/dev.161208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/24/2018] [Indexed: 12/18/2022]
Abstract
Connective tissues support organs and play crucial roles in development, homeostasis and fibrosis, yet our understanding of their formation is still limited. To gain insight into the molecular mechanisms of connective tissue specification, we selected five zinc-finger transcription factors - OSR1, OSR2, EGR1, KLF2 and KLF4 - based on their expression patterns and/or known involvement in connective tissue subtype differentiation. RNA-seq and ChIP-seq profiling of chick limb micromass cultures revealed a set of common genes regulated by all five transcription factors, which we describe as a connective tissue core expression set. This common core was enriched with genes associated with axon guidance and myofibroblast signature, including fibrosis-related genes. In addition, each transcription factor regulated a specific set of signalling molecules and extracellular matrix components. This suggests a concept whereby local molecular niches can be created by the expression of specific transcription factors impinging on the specification of local microenvironments. The regulatory network established here identifies common and distinct molecular signatures of limb connective tissue subtypes, provides novel insight into the signalling pathways governing connective tissue specification, and serves as a resource for connective tissue development.
Collapse
Affiliation(s)
- Mickael Orgeur
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Thielallee 63, 14195 Berlin, Germany.,Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.,Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7622, Inserm U1156, IBPS-Developmental Biology Laboratory, 9 Quai Saint-Bernard, 75005 Paris, France
| | - Marvin Martens
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7622, Inserm U1156, IBPS-Developmental Biology Laboratory, 9 Quai Saint-Bernard, 75005 Paris, France
| | - Georgeta Leonte
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.,Freie Universität Berlin, Institute of Biology, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - Sonya Nassari
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7622, Inserm U1156, IBPS-Developmental Biology Laboratory, 9 Quai Saint-Bernard, 75005 Paris, France
| | - Marie-Ange Bonnin
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7622, Inserm U1156, IBPS-Developmental Biology Laboratory, 9 Quai Saint-Bernard, 75005 Paris, France
| | - Stefan T Börno
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Jochen Hecht
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitatsmedizin, Augustenburger Platz 1, 13353 Berlin, Germany.,Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Delphine Duprez
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7622, Inserm U1156, IBPS-Developmental Biology Laboratory, 9 Quai Saint-Bernard, 75005 Paris, France
| | - Sigmar Stricker
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Thielallee 63, 14195 Berlin, Germany .,Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| |
Collapse
|
17
|
Lorzadeh A, Bilenky M, Hammond C, Knapp DJHF, Li L, Miller PH, Carles A, Heravi-Moussavi A, Gakkhar S, Moksa M, Eaves CJ, Hirst M. Nucleosome Density ChIP-Seq Identifies Distinct Chromatin Modification Signatures Associated with MNase Accessibility. Cell Rep 2017; 17:2112-2124. [PMID: 27851972 DOI: 10.1016/j.celrep.2016.10.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/05/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022] Open
Abstract
Nucleosome position, density, and post-translational modification are widely accepted components of mechanisms regulating DNA transcription but still incompletely understood. We present a modified native ChIP-seq method combined with an analytical framework that allows MNase accessibility to be integrated with histone modification profiles. Application of this methodology to the primitive (CD34+) subset of normal human cord blood cells enabled genomic regions enriched in one versus two nucleosomes marked by histone 3 lysine 4 trimethylation (H3K4me3) and/or histone 3 lysine 27 trimethylation (H3K27me3) to be associated with their transcriptional and DNA methylation states. From this analysis, we defined four classes of promoter-specific profiles and demonstrated that a majority of bivalent marked promoters are heterogeneously marked at a single-cell level in this primitive cell type. Interestingly, extension of this approach to human embryonic stem cells revealed an altered relationship between chromatin modification state and nucleosome content at promoters, suggesting developmental stage-specific organization of histone methylation states.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Misha Bilenky
- Canada's Michael Smith Genome Science Center, BC Cancer Agency Vancouver, BC V5Z 4S6, Canada
| | - Colin Hammond
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - David J H F Knapp
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Luolan Li
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Paul H Miller
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Annaick Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Alireza Heravi-Moussavi
- Canada's Michael Smith Genome Science Center, BC Cancer Agency Vancouver, BC V5Z 4S6, Canada
| | - Sitanshu Gakkhar
- Canada's Michael Smith Genome Science Center, BC Cancer Agency Vancouver, BC V5Z 4S6, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Canada's Michael Smith Genome Science Center, BC Cancer Agency Vancouver, BC V5Z 4S6, Canada.
| |
Collapse
|
18
|
Zimmerlin L, Park TS, Zambidis ET. Capturing Human Naïve Pluripotency in the Embryo and in the Dish. Stem Cells Dev 2017; 26:1141-1161. [PMID: 28537488 DOI: 10.1089/scd.2017.0055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although human embryonic stem cells (hESCs) were first derived almost 20 years ago, it was only recently acknowledged that they share closer molecular and functional identity to postimplantation lineage-primed murine epiblast stem cells than to naïve preimplantation inner cell mass-derived mouse ESCs (mESCs). A myriad of transcriptional, epigenetic, biochemical, and metabolic attributes have now been described that distinguish naïve and primed pluripotent states in both rodents and humans. Conventional hESCs and human induced pluripotent stem cells (hiPSCs) appear to lack many of the defining hallmarks of naïve mESCs. These include important features of the naïve ground state murine epiblast, such as an open epigenetic architecture, reduced lineage-primed gene expression, and chimera and germline competence following injection into a recipient blastocyst-stage embryo. Several transgenic and chemical methods were recently reported that appear to revert conventional human PSCs to mESC-like ground states. However, it remains unclear if subtle deviations in global transcription, cell signaling dependencies, and extent of epigenetic/metabolic shifts in these various human naïve-reverted pluripotent states represent true functional differences or alternatively the existence of distinct human pluripotent states along a spectrum. In this study, we review the current understanding and developmental features of various human pluripotency-associated phenotypes and discuss potential biological mechanisms that may support stable maintenance of an authentic epiblast-like ground state of human pluripotency.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Tea Soon Park
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Elias T Zambidis
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| |
Collapse
|
19
|
Lee JY, Xu K, Nguyen H, Guedes VA, Borlongan CV, Acosta SA. Stem Cell-Induced Biobridges as Possible Tools to Aid Neuroreconstruction after CNS Injury. Front Cell Dev Biol 2017; 5:51. [PMID: 28540289 PMCID: PMC5424542 DOI: 10.3389/fcell.2017.00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
Notch-induced mesenchymal stromal cells (MSCs) mediate a distinct mechanism of repair after brain injury by forming a biobridge that facilitates biodistribution of host cells from a neurogenic niche to the area of injury. We have observed the biobridge in an area between the subventricular zone and the injured cortex using immunohistochemistry and laser capture. Cells in the biobridge express high levels of extracellular matrix metalloproteinases (MMPs), specifically MMP-9, which co-localized with a trail of MSCs graft. The transplanted stem cells then become almost undetectable, being replaced by newly recruited host cells. This stem cell-paved biobridge provides support for distal migration of host cells from the subventricular zone to the site of injury. Biobridge formation by transplanted stem cells seems to have a fundamental role in initiating endogenous repair processes. Two major stem cell-mediated repair mechanisms have been proposed thus far: direct cell replacement by transplanted grafts and bystander effects through the secretion of trophic factors including fibroblast growth factor 2 (FGF-2), epidermal growth factor (EGF), stem cell factor (SCF), erythropoietin, and brain-derived neurotrophic factor (BDNF) among others. This groundbreaking observation of biobridge formation by transplanted stem cells represents a novel mechanism for stem cell mediated brain repair. Future studies on graft-host interaction will likely establish biobridge formation as a fundamental mechanism underlying therapeutic effects of stem cells and contribute to the scientific pursuit of developing safe and efficient therapies not only for traumatic brain injury but also for other neurological disorders. The aim of this review is to hypothetically extend concepts related to the formation of biobridges in other central nervous system disorders.
Collapse
Affiliation(s)
- Jea Y Lee
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Kaya Xu
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Hung Nguyen
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Vivian A Guedes
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| | - Sandra A Acosta
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of MedicineTampa, FL, USA
| |
Collapse
|
20
|
Lee JH, Laronde S, Collins TJ, Shapovalova Z, Tanasijevic B, McNicol JD, Fiebig-Comyn A, Benoit YD, Lee JB, Mitchell RR, Bhatia M. Lineage-Specific Differentiation Is Influenced by State of Human Pluripotency. Cell Rep 2017; 19:20-35. [DOI: 10.1016/j.celrep.2017.03.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 01/22/2017] [Accepted: 03/10/2017] [Indexed: 12/27/2022] Open
|
21
|
Ross PJ, Canovas S. Mechanisms of epigenetic remodelling during preimplantation development. Reprod Fertil Dev 2017; 28:25-40. [PMID: 27062872 DOI: 10.1071/rd15365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetics involves mechanisms independent of modifications in the DNA sequence that result in changes in gene expression and are maintained through cell divisions. Because all cells in the organism contain the same genetic blueprint, epigenetics allows for cells to assume different phenotypes and maintain them upon cell replication. As such, during the life cycle, there are moments in which the epigenetic information needs to be reset for the initiation of a new organism. In mammals, the resetting of epigenetic marks occurs at two different moments, which both happen to be during gestation, and include primordial germ cells (PGCs) and early preimplantation embryos. Because epigenetic information is reversible and sensitive to environmental changes, it is probably no coincidence that both these extensive periods of epigenetic remodelling happen in the female reproductive tract, under a finely controlled maternal environment. It is becoming evident that perturbations during the extensive epigenetic remodelling in PGCs and embryos can lead to permanent and inheritable changes to the epigenome that can result in long-term changes to the offspring derived from them, as indicated by the Developmental Origins of Health and Disease (DOHaD) hypothesis and recent demonstration of inter- and trans-generational epigenetic alterations. In this context, an understanding of the mechanisms of epigenetic remodelling during early embryo development is important to assess the potential for gametic epigenetic mutations to contribute to the offspring and for new epimutations to be established during embryo manipulations that could affect a large number of cells in the offspring. It is of particular interest to understand whether and how epigenetic information can be passed on from the gametes to the embryo or offspring, and whether abnormalities in this process could lead to transgenerationally inheritable phenotypes. The aim of this review is to highlight recent progress made in understanding the nature and mechanisms of epigenetic remodelling that ensue after fertilisation.
Collapse
Affiliation(s)
- Pablo Juan Ross
- Department of Animal Science, University of California, Davis, CA 95616 USA
| | - Sebastian Canovas
- LARCEL (Laboratorio Andaluz de Reprogramación Celular), BIONAND, Centro Andaluz de Nanomedicina y Biotecnología Campanillas, Malaga 29590, Spain
| |
Collapse
|
22
|
Grzybek M, Golonko A, Walczak M, Lisowski P. Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling. Neurobiol Dis 2016; 99:84-120. [PMID: 27890672 DOI: 10.1016/j.nbd.2016.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/03/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
The reprogramming of human induced pluripotent stem cells (hiPSCs) proceeds in a stepwise manner with reprogramming factors binding and epigenetic composition changes during transition to maintain the epigenetic landscape, important for pluripotency. There arises a question as to whether the aberrant epigenetic state after reprogramming leads to epigenetic defects in induced stem cells causing unpredictable long term effects in differentiated cells. In this review, we present a comprehensive view of epigenetic alterations accompanying reprogramming, cell maintenance and differentiation as factors that influence applications of hiPSCs in stem cell based technologies. We conclude that sample heterogeneity masks DNA methylation signatures in subpopulations of cells and thus believe that beside a genetic evaluation, extensive epigenomic screening should become a standard procedure to ensure hiPSCs state before they are used for genome editing and differentiation into neurons of interest. In particular, we suggest that exploitation of the single-cell composition of the epigenome will provide important insights into heterogeneity within hiPSCs subpopulations to fast forward development of reliable hiPSC-based analytical platforms in neurological disorders modelling and before completed hiPSC technology will be implemented in clinical approaches.
Collapse
Affiliation(s)
- Maciej Grzybek
- Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland.
| | - Aleksandra Golonko
- Department of Biotechnology, Faculty of Civil and Environmental Engineering, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland.
| | - Marta Walczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland.
| | - Pawel Lisowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland; iPS Cell-Based Disease Modelling Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| |
Collapse
|
23
|
Wu BJ, Zhao LX, Zhu CC, Chen YL, Wei MY, Bao SQ, Sun SC, Li XH. Altered apoptosis/autophagy and epigenetic modifications cause the impaired postimplantation octaploid embryonic development in mice. Cell Cycle 2016; 16:82-90. [PMID: 27830977 DOI: 10.1080/15384101.2016.1252884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Polyploids are pervasive in plants and have large impacts on crop breeding, but natural polyploids are rare in animals. Mouse diploid embryos can be induced to become tetraploid by blastomere fusion at the 2-cell stage and tetraploid embryos can develop to the blastocyst stage in vitro. However, there is little information regarding mouse octaploid embryonic development and precise mechanisms contributing to octaploid embryonic developmental limitations are unknown. To investigate the genetic and epigenetic mechanisms underlying octaploid embryonic development, we generated mouse octaploid embryos and evaluated the in vitro/in vivo developmental potential. Here we show that octaploid embryos can develop to the blastocyst stage in vitro, but all fetus impaired immediately after implantation. Our results indicate that cell lineage specification of octaploid embryo was disorganized. Furthermore, these octaploid embryos showed increased apoptosis as well as alterations in epigenetic modifications when compared with diploid embryos. Thus, our cumulative data provide cues for why mouse octaploid embryonic development is limited and its failed postimplantation development.
Collapse
Affiliation(s)
- Bao-Jiang Wu
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China.,b Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University , Huhhot , China.,c Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal , Huhhot , China
| | - Li-Xia Zhao
- b Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University , Huhhot , China.,c Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal , Huhhot , China
| | - Cheng-Cheng Zhu
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Yang-Lin Chen
- b Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University , Huhhot , China
| | - Meng-Yi Wei
- b Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University , Huhhot , China
| | - Si-Qin Bao
- b Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University , Huhhot , China.,c Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal , Huhhot , China
| | - Shao-Chen Sun
- a College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Xi-He Li
- b Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Science, Inner Mongolia University , Huhhot , China.,c Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal , Huhhot , China
| |
Collapse
|
24
|
Resetting the epigenome for heart regeneration. Semin Cell Dev Biol 2016; 58:2-13. [DOI: 10.1016/j.semcdb.2015.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/29/2015] [Indexed: 12/27/2022]
|
25
|
Kim HR, Lee JH, Heo HR, Yang SR, Ha KS, Park WS, Han ET, Song H, Hong SH. Improved hematopoietic differentiation of human pluripotent stem cells via estrogen receptor signaling pathway. Cell Biosci 2016; 6:50. [PMID: 27583127 PMCID: PMC5006567 DOI: 10.1186/s13578-016-0111-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023] Open
Abstract
Background Aside from its importance in reproduction, estrogen (E2) is known to regulate the proliferation and differentiation of hematopoietic stem cells in rodents. However, the regulatory role of E2 in human hematopoietic system has not been investigated. The purpose of this study is to investigate the effect of E2 on hematopoietic differentiation using human pluripotent stem cells (hPSCs). Results E2 improved hematopoietic differentiation of hPSCs via estrogen receptor alpha (ER-α)-dependent pathway. During hematopoietic differentiation of hPSCs, ER-α is persistently maintained and hematopoietic phenotypes (CD34 and CD45) were exclusively detected in ER-α positive cells. Interestingly, continuous E2 signaling is required to promote hematopoietic output from hPSCs. Supplementation of E2 or an ER-α selective agonist significantly increased the number of hemangioblasts and hematopoietic progenitors, and subsequent erythropoiesis, whereas ER-β selective agonist did not. Furthermore, ICI 182,780 (ER antagonist) completely abrogated the E2-induced hematopoietic augmentation. Not only from hPSCs but also from human umbilical cord bloods, does E2 signaling potentiate hematopoietic development, suggesting universal function of E2 on hematopoiesis. Conclusions Our study identifies E2 as positive regulator of human hematopoiesis and suggests that endocrine factors such as E2 influence the behavior of hematopoietic stem cells in various physiological conditions. Electronic supplementary material The online version of this article (doi:10.1186/s13578-016-0111-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hye-Ryun Kim
- Department of Biomedical Science, College of Life Science, CHA University, 689 Sampyeong-dong, Bundang-gu, Seongnam, 463-400 Republic of Korea
| | - Jong-Hee Lee
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8N 3Z5 Canada
| | - Hye-Ryeon Heo
- Department of Internal Medicine, School of Medicine, Kangwon National University, Kangwondaehakgil 1, Chuncheon, Gangwon 200-701 Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea.,Stem Cell Institute, Kangwon National University, Chuncheon, Republic of Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Haengseok Song
- Department of Biomedical Science, College of Life Science, CHA University, 689 Sampyeong-dong, Bundang-gu, Seongnam, 463-400 Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Kangwondaehakgil 1, Chuncheon, Gangwon 200-701 Republic of Korea.,Stem Cell Institute, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
26
|
Bhanu NV, Sidoli S, Garcia BA. Histone modification profiling reveals differential signatures associated with human embryonic stem cell self-renewal and differentiation. Proteomics 2016; 16:448-58. [PMID: 26631989 DOI: 10.1002/pmic.201500231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/20/2015] [Accepted: 11/30/2015] [Indexed: 12/11/2022]
Abstract
In this study, we trace developmental stages using epigenome changes in human embryonic stem cells (hESCs) treated with drugs modulating either self-renewal or differentiation. Based on microscopy, qPCR and flow cytometry, we classified the treatment outcome as inducing pluripotency (hESC, flurbiprofen and gatifloxacin), mesendoderm (sinomenine), differentiation (cyamarin, digoxin, digitoxin, selegeline and theanine) and lineage-commitment (RA). When we analyzed histone PTMs that imprinted these gene and protein expressions, the above classification was reassorted. Hyperacetylation at H3K4, 9, 14, 18, 56 and 122 as well as H4K5, 8, 12 and 16 emerged as the pluripotency signature of hESCs. Methylations especially of H3 at K9, K20, K27 and K36 characterized differentiation initiation as seen in no-drug control and fluribiprofen. Sinomenine-treated cells clustered close to "differentiation initiators", consistent with flow cytometry where it induced mesendoderm, along with cyamarin and possibly selegnine. Neurectoderm, induced by RA and theanine manifested methylations on H3 shifts to H3.3. By both flow cytometry and histone PTM clustering, it appears that cells treated with gatifloxacin, flurbiprofen, digitoxin and digoxin were not yet lineage-committed or mixed cell types. Taken together, our moderate-throughput histone PTM profiling approach highlighted subtle epigenetic signatures that permitted us to predict divergent lineage progression even in differentiating cells with similar phenotype and gene expression.
Collapse
Affiliation(s)
- Natarajan V Bhanu
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simone Sidoli
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Lee JB, Graham M, Collins TJ, Lee JH, Hong SH, Mcnicol AJ, Shapovalova Z, Bhatia M. Reversible lineage-specific priming of human embryonic stem cells can be exploited to optimize the yield of differentiated cells. Stem Cells 2016; 33:1142-52. [PMID: 25639500 PMCID: PMC4413029 DOI: 10.1002/stem.1952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/09/2014] [Accepted: 11/21/2014] [Indexed: 12/17/2022]
Abstract
The clinical use of human embryonic stem cells (hESCs) requires efficient cellular expansion that must be paired with an ability to generate specialized progeny through differentiation. Self-renewal and differentiation are deemed inherent hallmarks of hESCs and a growing body of evidence suggests that initial culture conditions dictate these two aspects of hESC behavior. Here, we reveal that defined culture conditions using commercial mTeSR1 media augment the expansion of hESCs and enhance their capacity for neural differentiation at the expense of hematopoietic lineage competency without affecting pluripotency. This culture-induced modification was shown to be reversible, as culture in mouse embryonic fibroblast-conditioned media (MEF-CM) in subsequent passages allowed mTeSR1-expanded hESCs to re-establish hematopoietic differentiation potential. Optimal yield of hematopoietic cells can be achieved by expansion in mTeSR1 followed by a recovery period in MEF-CM. Furthermore, the lineage propensity to hematopoietic and neural cell types could be predicted via analysis of surrogate markers expressed by hESCs cultured in mTeSR1 versus MEF-CM, thereby circumventing laborious in vitro differentiation assays. Our study reveals that hESCs exist in a range of functional states and balance expansion with differentiation potential, which can be modulated by culture conditions in a predictive and quantitative manner.
Collapse
Affiliation(s)
- Jung Bok Lee
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
García-Castro IL, García-López G, Ávila-González D, Flores-Herrera H, Molina-Hernández A, Portillo W, Ramón-Gallegos E, Díaz NF. Markers of Pluripotency in Human Amniotic Epithelial Cells and Their Differentiation to Progenitor of Cortical Neurons. PLoS One 2015; 10:e0146082. [PMID: 26720151 PMCID: PMC4697857 DOI: 10.1371/journal.pone.0146082] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/11/2015] [Indexed: 11/19/2022] Open
Abstract
Human pluripotent stem cells (hPSC) have promise for regenerative medicine due to their auto-renovation and differentiation capacities. Nevertheless, there are several ethical and methodological issues about these cells that have not been resolved. Human amniotic epithelial cells (hAEC) have been proposed as source of pluripotent stem cells. Several groups have studied hAEC but have reported inconsistencies about their pluripotency properties. The aim of the present study was the in vitro characterization of hAEC collected from a Mexican population in order to identify transcription factors involved in the pluripotency circuitry and to determine their epigenetic state. Finally, we evaluated if these cells differentiate to cortical progenitors. We analyzed qualitatively and quantitatively the expression of the transcription factors of pluripotency (OCT4, SOX2, NANOG, KLF4 and REX1) by RT-PCR and RT-qPCR in hAEC. Also, we determined the presence of OCT4, SOX2, NANOG, SSEA3, SSEA4, TRA-1-60, E-cadherin, KLF4, TFE3 as well as the proliferation and epigenetic state by immunocytochemistry of the cells. Finally, hAEC were differentiated towards cortical progenitors using a protocol of two stages. Here we show that hAEC, obtained from a Mexican population and cultured in vitro (P0-P3), maintained the expression of several markers strongly involved in pluripotency maintenance (OCT4, SOX2, NANOG, TFE3, KLF4, SSEA3, SSEA4, TRA-1-60 and E-cadherin). Finally, when hAEC were treated with growth factors and small molecules, they expressed markers characteristic of cortical progenitors (TBR2, OTX2, NeuN and β-III-tubulin). Our results demonstrated that hAEC express naïve pluripotent markers (KLF4, REX1 and TFE3) as well as the cortical neuron phenotype after differentiation. This highlights the need for further investigation of hAEC as a possible source of hPSC.
Collapse
Affiliation(s)
- Irma Lydia García-Castro
- Laboratorio de Citopatología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional “Adolfo López Mateos”, México D.F., México
- Departamento de Biología Celular, Instituto Nacional de Perinatología, Montes Urales 800, Col. Lomas Virreyes, CP 11000, México D.F., México
| | - Guadalupe García-López
- Departamento de Biología Celular, Instituto Nacional de Perinatología, Montes Urales 800, Col. Lomas Virreyes, CP 11000, México D.F., México
| | - Daniela Ávila-González
- Departamento de Biología Celular, Instituto Nacional de Perinatología, Montes Urales 800, Col. Lomas Virreyes, CP 11000, México D.F., México
| | - Héctor Flores-Herrera
- Departamento de Inmuno-Bioquímica, Instituto Nacional de Perinatología, Montes Urales 800, Col. Lomas Virreyes, CP 11000, México D.F., México
| | - Anayansi Molina-Hernández
- Departamento de Biología Celular, Instituto Nacional de Perinatología, Montes Urales 800, Col. Lomas Virreyes, CP 11000, México D.F., México
| | - Wendy Portillo
- Departamento de Neurobiología Conductal y Cognitiva, Instituto de Neurobiología, UNAM, Querétaro, México
| | - Eva Ramón-Gallegos
- Laboratorio de Citopatología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional “Adolfo López Mateos”, México D.F., México
| | - Néstor Fabián Díaz
- Departamento de Biología Celular, Instituto Nacional de Perinatología, Montes Urales 800, Col. Lomas Virreyes, CP 11000, México D.F., México
- * E-mail:
| |
Collapse
|
29
|
Yan L, Guo H, Hu B, Li R, Yong J, Zhao Y, Zhi X, Fan X, Guo F, Wang X, Wang W, Wei Y, Wang Y, Wen L, Qiao J, Tang F. Epigenomic Landscape of Human Fetal Brain, Heart, and Liver. J Biol Chem 2015; 291:4386-98. [PMID: 26719341 DOI: 10.1074/jbc.m115.672931] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 11/06/2022] Open
Abstract
The epigenetic regulation of spatiotemporal gene expression is crucial for human development. Here, we present whole-genome chromatin immunoprecipitation followed by high throughput DNA sequencing (ChIP-seq) analyses of a wide variety of histone markers in the brain, heart, and liver of early human embryos shortly after their formation. We identified 40,181 active enhancers, with a large portion showing tissue-specific and developmental stage-specific patterns, pointing to their roles in controlling the ordered spatiotemporal expression of the developmental genes in early human embryos. Moreover, using sequential ChIP-seq, we showed that all three organs have hundreds to thousands of bivalent domains that are marked by both H3K4me3 and H3K27me3, probably to keep the progenitor cells in these organs ready for immediate differentiation into diverse cell types during subsequent developmental processes. Our work illustrates the potentially critical roles of tissue-specific and developmental stage-specific epigenomes in regulating the spatiotemporal expression of developmental genes during early human embryonic development.
Collapse
Affiliation(s)
- Liying Yan
- From the Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, and the Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191
| | - Hongshan Guo
- From the Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, and
| | - Boqiang Hu
- From the Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, and
| | - Rong Li
- From the Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, and the Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191
| | - Jun Yong
- From the Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, and
| | - Yangyu Zhao
- From the Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, and the Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191
| | - Xu Zhi
- From the Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, and the Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191
| | - Xiaoying Fan
- From the Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, and
| | - Fan Guo
- From the Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, and
| | - Xiaoye Wang
- From the Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, and the Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191
| | - Wei Wang
- From the Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, and the Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191
| | - Yuan Wei
- From the Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, and the Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191
| | - Yan Wang
- From the Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, and the Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191
| | - Lu Wen
- From the Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, and the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, the Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Jie Qiao
- From the Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, and the Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, the Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100871, and the Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871,
| | - Fuchou Tang
- From the Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, and the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, the Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100191, China the Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871,
| |
Collapse
|
30
|
Lee D, Ryu JH, Lee ST, Nam YK, Kim DS, Gong SP. Identification of embryonic stem cell activities in an embryonic cell line derived from marine medaka (Oryzias dancena). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1569-1576. [PMID: 26239820 DOI: 10.1007/s10695-015-0108-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 07/28/2015] [Indexed: 06/04/2023]
Abstract
This study was conducted to identify embryonic stem cell (ESC) activities of a long-term cultured embryonic cell line previously derived from blastula-stage Oryzias dancena embryos. Five sub-cell lines were established from the embryonic cell line via clonal expansion of single cells. ESC activities, including clonogenicity, alkaline phosphatase (AP) activity, and differentiation capacity, were examined in the five sub-cell lines. We observed both clonogenicity and AP activity in all five sub-cell lines, but the proportion of cells that exhibited both properties was significantly different among them. Even though we detected different formation rates and sizes of embryoid body (EB) among these cells, all lines were stably able to form EBs and further induction for differentiation showed their capability to differentiate into other cell types in a spontaneous manner. From this study, we determined that the embryonic cell lines examined possessed heterogeneous ESC activities and can be utilized as a marine model system for fish ESC-based research.
Collapse
Affiliation(s)
- Dongwook Lee
- Department of Fisheries Biology, Pukyong National University, Busan, 608-737, Korea
| | - Jun Hyung Ryu
- Department of Fisheries Biology, Pukyong National University, Busan, 608-737, Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, 200-701, Korea
| | - Yoon Kwon Nam
- Department of Fisheries Biology, Pukyong National University, Busan, 608-737, Korea
- Department of Marine Biomaterials and Aquaculture, Pukyong National University, Busan, 608-737, Korea
| | - Dong Soo Kim
- Department of Fisheries Biology, Pukyong National University, Busan, 608-737, Korea
- Department of Marine Biomaterials and Aquaculture, Pukyong National University, Busan, 608-737, Korea
| | - Seung Pyo Gong
- Department of Fisheries Biology, Pukyong National University, Busan, 608-737, Korea.
- Department of Marine Biomaterials and Aquaculture, Pukyong National University, Busan, 608-737, Korea.
| |
Collapse
|
31
|
Semrau S, van Oudenaarden A. Studying Lineage Decision-Making In Vitro: Emerging Concepts and Novel Tools. Annu Rev Cell Dev Biol 2015; 31:317-45. [DOI: 10.1146/annurev-cellbio-100814-125300] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Alexander van Oudenaarden
- Hubrecht Institute, 3584 CT Utrecht, The Netherlands;
- University Medical Center Utrecht, Cancer Genomics Netherlands, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
32
|
Mitchell R, Szabo E, Shapovalova Z, Aslostovar L, Makondo K, Bhatia M. Molecular evidence for OCT4-induced plasticity in adult human fibroblasts required for direct cell fate conversion to lineage specific progenitors. Stem Cells 2015; 32:2178-87. [PMID: 24740884 DOI: 10.1002/stem.1721] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/02/2014] [Accepted: 03/16/2014] [Indexed: 11/06/2022]
Abstract
Here we characterize the molecular and biological requirements for OCT4 plasticity induction in human skin derived fibroblasts (hFibs) that allows direct conversion of cell fate without iPSC formation. Our results indicate that adult hFibs not only require OCT4 but also short-term exposure to reprogramming media (RM) to successfully undergo direct conversion to early hematopoietic and neural progenitor fates. RM was found to be essential in this process and allowed for unique changes in global gene expression specific to the combined effects of OCT4 and treatment with reprogramming media to establish a plastic state. This molecular state of hFib plasticity was distinct from transient expression of a full complement of iPSC reprogramming factors consistent with a lack in molecular hallmarks of iPSC formation. Human Fib-derived OCT4 plastic cells display elevated levels of developmentally related genes associated with multiple lineages, but not those associated with pluripotency. In response to changes in the extracellular environment, plastic OCT4-expressing hFibs further activate genes involved in hematopoietic as well as tripotent neural progenitor biology that allow cell fate conversion. Our study provides a working definition of hFib-induced plasticity using OCT4 and a deconvoluted system to elucidate the process of direct cell fate reprogramming.
Collapse
Affiliation(s)
- Ryan Mitchell
- Stem Cell and Cancer Research Institute; Department of Biochemistry and Biomedical Sciences, McMaster University, Faculty of Health Sciences, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Liu S, Zhang L, Liu Y, Shen X, Yang L. Isoflurane inhibits embryonic stem cell self-renewal through retinoic acid receptor. Biomed Pharmacother 2015; 74:111-6. [PMID: 26349971 DOI: 10.1016/j.biopha.2015.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/26/2015] [Indexed: 11/18/2022] Open
Abstract
The commonly used inhalation anesthetic isoflurane could permeate rapidly through the placental barrier and induce toxicity to the central nervous system of the developing fetus. However, the effects of isoflurane in utero during early gestation are unknown. We therefore treated pregnant mice with 1.4% isoflurane for 2h per day for three days at day3.5 (E3.5) to day6.5 (E6.5) to investigated the toxicity of isoflurane. Pregnant mice were executed and the fetal mice were weighed and observed. Mouse ESCs (E14) was exposed to 2% isoflurane for 6h. Twenty-four hours later, self-renewal was examined with AP staining. Effects of isoflurane on the expression of RAR-γ were examined using Western blot. As a result, anesthesia with 1.4% isoflurane for 2 hour per day for 3 days reduced fetal growth and development. Isoflurane decreased self-renewal and the expression stemness genes (Nanog, Oct4, Sox2, and Lin28) in mESCs. Vitamin A attenuated the effects of isoflurane inducing self-renewal inhibition. In summary, Anesthesia with 1.4% isoflurane for 2h per day for 3 days reduced fetal growth and development. Moreover, isoflurane inhibits mESCs self-renewal through retinoic acid receptor.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Lei Zhang
- Department of Anesthesiology, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yi Liu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University School of Medicine, Qingdao 266071, China
| | - Xia Shen
- Department of Anesthesiology, The Eye, Ear, Nose and Throat Hospital of Fudan University, Shanghai Medical College of Fudan University, Shanghai, China
| | - Longqiu Yang
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou City, Henan Province, 450007 China
| |
Collapse
|
34
|
Fei Q, Yang X, Jiang H, Wang Q, Yu Y, Yu Y, Yi W, Zhou S, Chen T, Lu C, Atadja P, Liu XS, Li E, Zhang Y, Shou J. SETDB1 modulates PRC2 activity at developmental genes independently of H3K9 trimethylation in mouse ES cells. Genome Res 2015; 25:1325-35. [PMID: 26160163 PMCID: PMC4561491 DOI: 10.1101/gr.177576.114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/08/2015] [Indexed: 11/25/2022]
Abstract
SETDB1, a histone methyltransferase responsible for methylation of histone H3 lysine 9 (H3K9), is involved in maintenance of embryonic stem (ES) cells and early embryonic development of the mouse. However, how SETDB1 regulates gene expression during development is largely unknown. Here, we characterized genome-wide SETDB1 binding and H3K9 trimethylation (H3K9me3) profiles in mouse ES cells and uncovered two distinct classes of SETDB1 binding sites, termed solo and ensemble peaks. The solo peaks were devoid of H3K9me3 and enriched near developmental regulators while the ensemble peaks were associated with H3K9me3. A subset of the SETDB1 solo peaks, particularly those near neural development–related genes, was found to be associated with Polycomb Repressive Complex 2 (PRC2) as well as PRC2-interacting proteins JARID2 and MTF2. Genetic deletion of Setdb1 reduced EZH2 binding as well as histone 3 lysine 27 (H3K27) trimethylation level at SETDB1 solo peaks and facilitated neural differentiation. Furthermore, we found that H3K27me3 inhibits SETDB1 methyltransferase activity. The currently identified reciprocal action between SETDB1 and PRC2 reveals a novel mechanism underlying ES cell pluripotency and differentiation regulation.
Collapse
Affiliation(s)
- Qi Fei
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Xiaoqin Yang
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hua Jiang
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Qian Wang
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yanyan Yu
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Yiling Yu
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Wei Yi
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Shaolian Zhou
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Taiping Chen
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, USA
| | - Chris Lu
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Peter Atadja
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Xiaole Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - En Li
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Yong Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jianyong Shou
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| |
Collapse
|
35
|
Gokhale PJ, Au-Young JK, Dadi S, Keys DN, Harrison NJ, Jones M, Soneji S, Enver T, Sherlock JK, Andrews PW. Culture adaptation alters transcriptional hierarchies among single human embryonic stem cells reflecting altered patterns of differentiation. PLoS One 2015; 10:e0123467. [PMID: 25875838 PMCID: PMC4397016 DOI: 10.1371/journal.pone.0123467] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 03/03/2015] [Indexed: 01/17/2023] Open
Abstract
We have used single cell transcriptome analysis to re-examine the substates of early passage, karyotypically Normal, and late passage, karyotypically Abnormal (‘Culture Adapted’) human embryonic stem cells characterized by differential expression of the cell surface marker antigen, SSEA3. The results confirmed that culture adaptation is associated with alterations to the dynamics of the SSEA3(+) and SSEA3(-) substates of these cells, with SSEA3(-) Adapted cells remaining within the stem cell compartment whereas the SSEA3(-) Normal cells appear to have differentiated. However, the single cell data reveal that these substates are characterized by further heterogeneity that changes on culture adaptation. Notably the Adapted population includes cells with a transcriptome substate suggestive of a shift to a more naïve-like phenotype in contrast to the cells of the Normal population. Further, a subset of the Normal SSEA3(+) cells expresses genes typical of endoderm differentiation, despite also expressing the undifferentiated stem cell genes, POU5F1 (OCT4) and NANOG, whereas such apparently lineage-primed cells are absent from the Adapted population. These results suggest that the selective growth advantage gained by genetically variant, culture adapted human embryonic stem cells may derive in part from a changed substate structure that influences their propensity for differentiation.
Collapse
Affiliation(s)
- Paul J. Gokhale
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | | | - SriVidya Dadi
- ThermoFisher, Foster City, California, United States of America
| | - David N. Keys
- ThermoFisher, Foster City, California, United States of America
| | - Neil J. Harrison
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Mark Jones
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Shamit Soneji
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Tariq Enver
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Jon K. Sherlock
- ThermoFisher, Foster City, California, United States of America
| | - Peter W. Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Paranjpe SS, Veenstra GJC. Establishing pluripotency in early development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:626-36. [PMID: 25857441 DOI: 10.1016/j.bbagrm.2015.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 01/23/2023]
Abstract
The earliest steps of embryonic development involve important changes in chromatin and transcription factor networks, which are orchestrated to establish pluripotent cells that will form the embryo. DNA methylation, histone modifications, the pluripotency regulatory network of transcription factors, maternal factors and newly translated proteins all contribute to these transitions in dynamic ways. Moreover, these dynamics are linked to the onset of zygotic transcription. We will review recent progress in our understanding of chromatin state and regulation of gene expression in the context of embryonic development in vertebrates, in particular mouse, Xenopus and zebrafish. We include work on mouse embryonic stem cells and highlight work that illustrates how early embryonic dynamics establish gene regulatory networks and the state of pluripotency.
Collapse
Affiliation(s)
- Sarita S Paranjpe
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gert Jan C Veenstra
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
37
|
Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 2015; 516:56-61. [PMID: 25471879 PMCID: PMC4256722 DOI: 10.1038/nature13920] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/07/2014] [Indexed: 01/15/2023]
Abstract
Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates, but the regulatory circuits specifying these states and enabling transitions between them are not well understood. We set out to characterize transcriptional heterogeneity in PSCs by single-cell expression profiling under different chemical and genetic perturbations. Signaling factors and developmental regulators show highly variable expression, with expression states for some variable genes heritable through multiple cell divisions. Expression variability and population heterogeneity can be influenced by perturbation of signaling pathways and chromatin regulators. Strikingly, either removal of mature miRNAs or pharmacologic blockage of signaling pathways drives PSCs into a low-noise ground state characterized by a reconfigured pluripotency network, enhanced self-renewal, and a distinct chromatin state, an effect mediated by opposing miRNA families acting on the c-myc / Lin28 / let-7 axis. These data illuminate the nature of transcriptional heterogeneity in PSCs.
Collapse
|
38
|
Somatic transcriptome priming gates lineage-specific differentiation potential of human-induced pluripotent stem cell states. Nat Commun 2014; 5:5605. [PMID: 25465724 DOI: 10.1038/ncomms6605] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 10/20/2014] [Indexed: 12/12/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) provide an invaluable source for regenerative medicine, but are limited by proficient lineage-specific differentiation. Here we reveal that hiPSCs derived from human fibroblasts (Fibs) versus human cord blood (CB) exhibit indistinguishable pluripotency, but harbour biased propensities for differentiation. Genes associated with germ layer specification were identical in Fib- or CB-derived iPSCs, whereas lineage-specific marks emerge upon differentiation induction of hiPSCs that were correlated to the cell of origin. Differentiation propensities come at the expense of other lineages and cannot be overcome with stimuli for alternative cell fates. Although incomplete DNA methylation and distinct histone modifications of lineage-specific loci correlate to lineage-specific transcriptome priming, transitioning hiPSCs into naive state of pluripotency removes iPSC-memorized transcriptome. Upon re-entry to the primed state, transcriptome memory is restored, indicating a human-specific phenomenon whereby lineage gated developmental potential is not permanently erased, but can be modulated by the pluripotent state.
Collapse
|
39
|
Moya N, Cutts J, Gaasterland T, Willert K, Brafman DA. Endogenous WNT signaling regulates hPSC-derived neural progenitor cell heterogeneity and specifies their regional identity. Stem Cell Reports 2014; 3:1015-28. [PMID: 25458891 PMCID: PMC4264562 DOI: 10.1016/j.stemcr.2014.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 11/20/2022] Open
Abstract
Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population that is capable of nearly indefinite expansion and subsequent differentiation into the various neuronal and supporting cell types that comprise the CNS. However, current protocols for differentiating NPCs toward neuronal lineages result in a mixture of neurons from various regions of the CNS. In this study, we determined that endogenous WNT signaling is a primary contributor to the heterogeneity observed in NPC cultures and neuronal differentiation. Furthermore, exogenous manipulation of WNT signaling during neural differentiation, through either activation or inhibition, reduces this heterogeneity in NPC cultures, thereby promoting the formation of regionally homogeneous NPC and neuronal cultures. The ability to manipulate WNT signaling to generate regionally specific NPCs and neurons will be useful for studying human neural development and will greatly enhance the translational potential of hPSCs for neural-related therapies. Heterogeneous endogenous WNT signaling regulates hPSC-derived neuronal diversity Endogenous WNT signaling specifies the regional identity of hPSC-derived neurons Exogenous WNT signaling leads to uniform neuronal cultures from hPSCs Effects of WNT signaling on neurogenesis are recapitulated in an hPSC-based system
Collapse
Affiliation(s)
- Noel Moya
- Department of Cellular and Molecular Medicine, Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0695, USA
| | - Josh Cutts
- Department of Cellular and Molecular Medicine, Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0695, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | - Terry Gaasterland
- UCSD and Scripps Institution of Oceanography, Scripps Genome Center, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Karl Willert
- Department of Cellular and Molecular Medicine, Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0695, USA.
| | - David A Brafman
- Department of Cellular and Molecular Medicine, Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0695, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287-9709, USA.
| |
Collapse
|
40
|
Tajiri N, Duncan K, Antoine A, Pabon M, Acosta SA, de la Pena I, Hernadez-Ontiveros DG, Shinozuka K, Ishikawa H, Kaneko Y, Yankee E, McGrogan M, Case C, Borlongan CV. Stem cell-paved biobridge facilitates neural repair in traumatic brain injury. Front Syst Neurosci 2014; 8:116. [PMID: 25009475 PMCID: PMC4068001 DOI: 10.3389/fnsys.2014.00116] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/28/2014] [Indexed: 12/18/2022] Open
Abstract
Modified mesenchymal stromal cells (MSCs) display a unique mechanism of action during the repair phase of traumatic brain injury by exhibiting the ability to build a biobridge between the neurogenic niche and the site of injury. Immunohistochemistry and laser capture assay have visualized this biobridge in the area between the neurogenic subventricular zone and the injured cortex. This biobridge expresses high levels of extracellular matrix metalloproteinases (MMPs), which are initially co-localized with a stream of transplanted MSCs, but later this region contains only few to non-detectable grafts and becomes overgrown by newly recruited host cells. We have reported that long-distance migration of host cells from the neurogenic niche to the injured brain site can be attained via these transplanted stem cell-paved biobridges, which serve as a key regenerative process for the initiation of endogenous repair mechanisms. Thus, far the two major schools of discipline in stem cell repair mechanisms support the idea of "cell replacement" and the bystander effects of "trophic factor secretion." Our novel observation of stem cell-paved biobridges as pathways for directed migration of host cells from neurogenic niche toward the injured brain site adds another mode of action underlying stem cell therapy. More in-depth investigations on graft-host interaction will likely aid translational research focused on advancing this stem cell-paved biobridge from its current place, as an equally potent repair mechanism as cell replacement and trophic factor secretion, into a new treatment strategy for traumatic brain injury and other neurological disorders.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Kelsey Duncan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Alesia Antoine
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Mibel Pabon
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Sandra A Acosta
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Ike de la Pena
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Diana G Hernadez-Ontiveros
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Kazutaka Shinozuka
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Hiroto Ishikawa
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Yuji Kaneko
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | | | | | | | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| |
Collapse
|
41
|
Chang KH, Fang X, Wang H, Huang A, Cao H, Yang Y, Bonig H, Stamatoyannopoulos JA, Papayannopoulou T. Epigenetic modifications and chromosome conformations of the beta globin locus throughout development. Stem Cell Rev Rep 2014; 9:397-407. [PMID: 22374078 DOI: 10.1007/s12015-012-9355-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human embryonic stem cells provide an alternative to using human embryos for studying developmentally regulated gene expression. The co-expression of high levels of embryonic ε and fetal γ globin by the hESC-derived erythroblasts allows the interrogation of ε globin regulation at the transcriptional and epigenetic level which could only be attained previously by studying cell lines or transgenic mice. In this study, we compared the histone modifications across the β globin locus of the undifferentiated hESCs and hESC-, FL-, and mobilized PB CD34(+) cells-derived erythroblasts, which have distinct globin expression patterns corresponding to their developmental stages. We demonstrated that the histone codes employed by the β globin locus are conserved throughout development. Furthermore, in spite of the close proximity of the ε globin promoter, as compared to the β or γ globin promoter, with the LCR, a chromatin loop was also formed between the LCR and the active ε globin promoter, similar to the loop that forms between the β or γ globin promoters and the LCR, in contrary to the previously proposed tracking mechanism.
Collapse
Affiliation(s)
- Kai-Hsin Chang
- Department of Medicine, Division of Hematology, University of Washington, NE Pacific St, Box 357710, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen T, Dent SYR. Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet 2013; 15:93-106. [PMID: 24366184 DOI: 10.1038/nrg3607] [Citation(s) in RCA: 462] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cellular differentiation is, by definition, epigenetic. Genome-wide profiling of pluripotent cells and differentiated cells suggests global chromatin remodelling during differentiation, which results in a progressive transition from a fairly open chromatin configuration to a more compact state. Genetic studies in mouse models show major roles for a variety of histone modifiers and chromatin remodellers in key developmental transitions, such as the segregation of embryonic and extra-embryonic lineages in blastocyst stage embryos, the formation of the three germ layers during gastrulation and the differentiation of adult stem cells. Furthermore, rather than merely stabilizing the gene expression changes that are driven by developmental transcription factors, there is emerging evidence that chromatin regulators have multifaceted roles in cell fate decisions.
Collapse
Affiliation(s)
- Taiping Chen
- 1] Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center. [2] Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Science Park, 1808 Park Road 1C, Smithville, Texas 78957, USA. [3] The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| | - Sharon Y R Dent
- 1] Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center. [2] Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Science Park, 1808 Park Road 1C, Smithville, Texas 78957, USA. [3] The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| |
Collapse
|
43
|
McIntyre BAS, Alev C, Mechael R, Salci KR, Lee JB, Fiebig-Comyn A, Guezguez B, Wu Y, Sheng G, Bhatia M. Expansive generation of functional airway epithelium from human embryonic stem cells. Stem Cells Transl Med 2013; 3:7-17. [PMID: 24300555 DOI: 10.5966/sctm.2013-0119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Production of human embryonic stem cell (hESC)-derived lung progenitors has broad applicability for drug screening and cell therapy; however, this is complicated by limitations in demarcating phenotypic changes with functional validation of airway cell types. In this paper, we reveal the potential of hESCs to produce multipotent lung progenitors using a combined growth factor and physical culture approach, guided by the use of novel markers LIFRα and NRP1. Lung specification of hESCs was achieved by priming differentiation via matrix-specific support, followed by air-liquid interface to allow generation of lung progenitors capable of in vitro maturation into airway epithelial cell types, resulting in functional characteristics such as secretion of pulmonary surfactant, ciliation, polarization, and acquisition of innate immune activity. This approach provided a robust expansion of lung progenitors, allowing in vivo assessment, which demonstrated that only fully differentiated hESC-derived airway cells were retained in the distal airway, where they aided in physiological recovery in immunocompromised mice receiving airway injury. Our study provides a basis for translational applications of hESCs for lung diseases.
Collapse
Affiliation(s)
- Brendan A S McIntyre
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology (CDB), Kobe, Japan; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Post-translational modifications (PTMs) are known to be essential mechanisms used by eukaryotic cells to diversify their protein functions and dynamically coordinate their signaling networks. Defects in PTMs have been linked to numerous developmental disorders and human diseases, highlighting the importance of PTMs in maintaining normal cellular states. Human pluripotent stem cells (hPSCs), including embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), are capable of self-renewal and differentiation into a variety of functional somatic cells; these cells hold a great promise for the advancement of biomedical research and clinical therapy. The mechanisms underlying cellular pluripotency in human cells have been extensively explored in the past decade. In addition to the vast amount of knowledge obtained from the genetic and transcriptional research in hPSCs, there is a rapidly growing interest in the stem cell biology field to examine pluripotency at the protein and PTM level. This review addresses recent progress toward understanding the role of PTMs (glycosylation, phosphorylation, acetylation and methylation) in the regulation of cellular pluripotency.
Collapse
|
45
|
Stapel LC, Vastenhouw NL. Message control in developmental transitions; deciphering chromatin's role using zebrafish genomics. Brief Funct Genomics 2013; 13:106-20. [PMID: 24170706 DOI: 10.1093/bfgp/elt045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Now that the sequencing of genomes has become routine, understanding how a given genome is used in different ways to obtain cell type diversity in an organism is the next frontier. How specific transcription programs are established during vertebrate embryogenesis, however, remains poorly understood. Transcription is influenced by chromatin structure, which determines the accessibility of DNA-binding proteins to the genome. Although large-scale genomics approaches have uncovered specific features of chromatin structure that are diagnostic for different cell types and developmental stages, our functional understanding of chromatin in transcriptional regulation during development is very limited. In recent years, zebrafish embryogenesis has emerged as an excellent vertebrate model system to investigate the functional relationship between chromatin organization, gene regulation and development in a dynamic environment. Here, we review how studies in zebrafish have started to improve our understanding of the role of chromatin structure in genome activation and pluripotency and in the potential inheritance of transcriptional states from parent to progeny.
Collapse
Affiliation(s)
- L Carine Stapel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.
| | | |
Collapse
|
46
|
Cingolani P, Cao X, Khetani RS, Chen CC, Coon M, Sammak A, Bollig-Fischer A, Land S, Huang Y, Hudson ME, Garfinkel MD, Zhong S, Robinson GE, Ruden DM. Intronic non-CG DNA hydroxymethylation and alternative mRNA splicing in honey bees. BMC Genomics 2013; 14:666. [PMID: 24079845 PMCID: PMC3850688 DOI: 10.1186/1471-2164-14-666] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 09/22/2013] [Indexed: 11/20/2022] Open
Abstract
Background Previous whole-genome shotgun bisulfite sequencing experiments showed that DNA cytosine methylation in the honey bee (Apis mellifera) is almost exclusively at CG dinucleotides in exons. However, the most commonly used method, bisulfite sequencing, cannot distinguish 5-methylcytosine from 5-hydroxymethylcytosine, an oxidized form of 5-methylcytosine that is catalyzed by the TET family of dioxygenases. Furthermore, some analysis software programs under-represent non-CG DNA methylation and hydryoxymethylation for a variety of reasons. Therefore, we used an unbiased analysis of bisulfite sequencing data combined with molecular and bioinformatics approaches to distinguish 5-methylcytosine from 5-hydroxymethylcytosine. By doing this, we have performed the first whole genome analyses of DNA modifications at non-CG sites in honey bees and correlated the effects of these DNA modifications on gene expression and alternative mRNA splicing. Results We confirmed, using unbiased analyses of whole-genome shotgun bisulfite sequencing (BS-seq) data, with both new data and published data, the previous finding that CG DNA methylation is enriched in exons in honey bees. However, we also found evidence that cytosine methylation and hydroxymethylation at non-CG sites is enriched in introns. Using antibodies against 5-hydroxmethylcytosine, we confirmed that DNA hydroxymethylation at non-CG sites is enriched in introns. Additionally, using a new technique, Pvu-seq (which employs the enzyme PvuRts1l to digest DNA at 5-hydroxymethylcytosine sites followed by next-generation DNA sequencing), we further confirmed that hydroxymethylation is enriched in introns at non-CG sites. Conclusions Cytosine hydroxymethylation at non-CG sites might have more functional significance than previously appreciated, and in honey bees these modifications might be related to the regulation of alternative mRNA splicing by defining the locations of the introns.
Collapse
Affiliation(s)
- Pablo Cingolani
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tajiri N, Kaneko Y, Shinozuka K, Ishikawa H, Yankee E, McGrogan M, Case C, Borlongan CV. Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site. PLoS One 2013; 8:e74857. [PMID: 24023965 PMCID: PMC3762783 DOI: 10.1371/journal.pone.0074857] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/06/2013] [Indexed: 01/24/2023] Open
Abstract
Here, we report that a unique mechanism of action exerted by stem cells in the repair of the traumatically injured brain involves their ability to harness a biobridge between neurogenic niche and injured brain site. This biobridge, visualized immunohistochemically and laser captured, corresponded to an area between the neurogenic subventricular zone and the injured cortex. That the biobridge expressed high levels of extracellular matrix metalloproteinases characterized initially by a stream of transplanted stem cells, but subsequently contained only few to non-detectable grafts and overgrown by newly formed host cells, implicates a novel property of stem cells. The transplanted stem cells manifest themselves as pathways for trafficking the migration of host neurogenic cells, but once this biobridge is formed between the neurogenic site and the injured brain site, the grafted cells disappear and relinquish their task to the host neurogenic cells. Our findings reveal that long-distance migration of host cells from the neurogenic niche to the injured brain site can be achieved through transplanted stem cells serving as biobridges for initiation of endogenous repair mechanisms. This is the first report of a stem cell-paved “biobridge”. Indeed, to date the two major schools of discipline in stem cell repair mechanism primarily support the concept of “cell replacement” and bystander effects of “trophic factor secretion”. The present novel observations of a stem cell seducing a host cell to engage in brain repair advances basic science concepts on stem cell biology and extracellular matrix, as well as provokes translational research on propagating this stem cell-paved biobridge beyond cell replacement and trophic factor secretion for the treatment of traumatic brain injury and other neurological disorders.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Yuji Kaneko
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Kazutaka Shinozuka
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Hiroto Ishikawa
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Ernest Yankee
- Sanbio Inc, Mountain View, California, United States of America
| | | | - Casey Case
- Sanbio Inc, Mountain View, California, United States of America
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
48
|
Sachs M, Onodera C, Blaschke K, Ebata KT, Song JS, Ramalho-Santos M. Bivalent chromatin marks developmental regulatory genes in the mouse embryonic germline in vivo. Cell Rep 2013; 3:1777-84. [PMID: 23727241 DOI: 10.1016/j.celrep.2013.04.032] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 03/02/2013] [Accepted: 04/29/2013] [Indexed: 11/29/2022] Open
Abstract
Developmental regulatory genes have both activating (H3K4me3) and repressive (H3K27me3) histone modifications in embryonic stem cells (ESCs). This bivalent configuration is thought to maintain lineage commitment programs in a poised state. However, establishing physiological relevance has been complicated by the high number of cells required for chromatin immunoprecipitation (ChIP). We developed a low-cell-number chromatin immunoprecipitation (low-cell ChIP) protocol to investigate the chromatin of mouse primordial germ cells (PGCs). Genome-wide analysis of embryonic day 11.5 (E11.5) PGCs revealed H3K4me3/H3K27me3 bivalent domains highly enriched at developmental regulatory genes in a manner remarkably similar to ESCs. Developmental regulators remain bivalent and transcriptionally silent through the initiation of sexual differentiation at E13.5. We also identified >2,500 "orphan" bivalent domains that are distal to known genes and expressed in a tissue-specific manner but silent in PGCs. Our results demonstrate the existence of bivalent domains in the germline and raise the possibility that the somatic program is continuously maintained as bivalent, potentially imparting transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Michael Sachs
- Biomedical Sciences Graduate Program, 35 Medical Center Way, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
49
|
Sumi T, Oki S, Kitajima K, Meno C. Epiblast ground state is controlled by canonical Wnt/β-catenin signaling in the postimplantation mouse embryo and epiblast stem cells. PLoS One 2013; 8:e63378. [PMID: 23691040 PMCID: PMC3653965 DOI: 10.1371/journal.pone.0063378] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/27/2013] [Indexed: 12/30/2022] Open
Abstract
Epiblast stem cells (EpiSCs) are primed pluripotent stem cells and can be derived from postimplantation mouse embryos. We now show that the absence of canonical Wnt/β-catenin signaling is essential for maintenance of the undifferentiated state in mouse EpiSCs and in the epiblast of mouse embryos. Attenuation of Wnt signaling with the small-molecule inhibitor XAV939 or deletion of the β-catenin gene blocked spontaneous differentiation of EpiSCs toward mesoderm and enhanced the expression of pluripotency factor genes, allowing propagation of EpiSCs as a homogeneous population. EpiSCs were efficiently established and propagated from single epiblast cells in the presence of both XAV939 and the Rho kinase (ROCK) inhibitor Y27632. Cell transplantation revealed that EpiSCs were able to contribute to primordial germ cells and descendants of all three germ layers in a host embryo, suggesting that they maintained pluripotency, even after prolonged culture with XAV939. Such an improvement in the homogeneity of pluripotency achieved with the use of a Wnt inhibitor should prove advantageous for manipulation of primed pluripotent stem cells.
Collapse
Affiliation(s)
- Tomoyuki Sumi
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinya Oki
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Kitajima
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikara Meno
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
50
|
SPARC is involved in the maintenance of mitotically inactivated mouse embryonic fibroblast cells. In Vitro Cell Dev Biol Anim 2013; 49:458-64. [PMID: 23661086 DOI: 10.1007/s11626-013-9601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/13/2013] [Indexed: 10/26/2022]
Abstract
Mitotically inactivated feeder cells such as mouse embryonic fibroblast (MEFs) cells have been widely applied for physical and physiological support in the pluripotency maintenance of human pluripotent stem cells (hPSCs). However, accurate supporting mechanism or factors of feeder cells are poorly understood. Here, we isolated differentially expressed genes between wild-type MEFs and mitotically inactivated MEFs (miMEFs) by employing annealing control primer-based GeneFishing polymerase chain reaction. We identified a secreted protein acidic cysteine-rich glycoprotein (SPARC) gene that is upregulated in miMEFs. Suppression of SPARC expression in miMEFs using small interference RNA (siRNA) displayed gradual detachment of miMEFs. Furthermore, we found a significant reduction of OCT4- and SSEA3-positive hPS cell population maintained on SPARC siRNA-miMEFs compared to on miMEFs by flow cytometrical analysis. These findings suggest that SPARC plays a critical role in the maintenance of miMEFs without loss of cell number and might be a key component for supporting the culture of hPSCs.
Collapse
|