1
|
Medlock-Lanier T, Clay KB, Roberts-Galbraith RH. Planarian LDB and SSDP proteins scaffold transcriptional complexes for regeneration and patterning. Dev Biol 2024; 515:67-78. [PMID: 38968988 PMCID: PMC11361279 DOI: 10.1016/j.ydbio.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Sequence-specific transcription factors often function as components of large regulatory complexes. LIM-domain binding protein (LDB) and single-stranded DNA-binding protein (SSDP) function as core scaffolds of transcriptional complexes in animals and plants. Little is known about potential partners and functions for LDB/SSDP complexes in the context of tissue regeneration. In this work, we find that planarian LDB1 and SSDP2 promote tissue regeneration, with a particular function in anterior regeneration and mediolateral polarity reestablishment. We find that LDB1 and SSDP2 interact with one another and with characterized planarian LIM-HD proteins Arrowhead, Islet1, and Lhx1/5-1. We also show that SSDP2 and LDB1 function with islet1 in polarity reestablishment and with lhx1/5-1 in serotonergic neuron maturation. Finally, we find new roles for LDB1 and SSDP2 in regulating gene expression in the planarian intestine and parenchyma; these functions are likely LIM-HD-independent. Together, our work provides insight into LDB/SSDP complexes in a highly regenerative organism. Further, our work provides a strong starting point for identifying and characterizing potential binding partners of LDB1 and SSDP2 and for exploring roles for these proteins in diverse aspects of planarian physiology.
Collapse
Affiliation(s)
| | - Kendall B Clay
- Neuroscience Program, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
2
|
Li Y, Zhang Z, Yu J, Yin H, Chu X, Cao H, Tao Y, Zhang Y, Li Z, Wu S, Hu Y, Zhu F, Gao J, Wang X, Zhou B, Jiao W, Wu Y, Yang Y, Chen Y, Zhuo R, Yang Y, Zhang F, Shi L, Hu Y, Pan J, Hu S. Enhancer looping protein LDB1 modulates MYB expression in T-ALL cell lines in vitro by cooperating with master transcription factors. J Exp Clin Cancer Res 2024; 43:283. [PMID: 39385230 PMCID: PMC11462673 DOI: 10.1186/s13046-024-03199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Despite significant progress in the prognosis of pediatric T-cell acute lymphoblastic leukemia (T-ALL) in recent decades, a notable portion of children still confronts challenges such as treatment resistance and recurrence, leading to limited options and a poor prognosis. LIM domain-binding protein 1 (LDB1) has been confirmed to exert a crucial role in various physiological and pathological processes. In our research, we aim to elucidate the underlying function and mechanisms of LDB1 within the background of T-ALL. METHODS Employing short hairpin RNA (shRNA) techniques, we delineated the functional impact of LDB1 in T-ALL cell lines. Through the application of RNA-Seq, CUT&Tag, and immunoprecipitation assays, we scrutinized master transcription factors cooperating with LDB1 and identified downstream targets under LDB1 regulation. RESULTS LDB1 emerges as a critical transcription factor co-activator in cell lines derived from T-ALL. It primarily collaborates with master transcription factors (ERG, ETV6, IRF1) to cooperatively regulate the transcription of downstream target genes. Both in vitro and in vivo experiments affirm the essential fuction of LDB1 in the proliferation and survival of cell lines derived from T-ALL, with MYB identified as a significant downstream target of LDB1. CONCLUSIONS To sum up, our research establishes the pivotal fuction of LDB1 in the tumorigenesis and progression of T-ALL cell lines. Mechanistic insights reveal that LDB1 cooperates with ERG, ETV6, and IRF1 to modulate the expression of downstream effector genes. Furthermore, LDB1 controls MYB through remote enhancer modulation, providing valuable mechanistic insights into its involvement in the progression of T-ALL.
Collapse
Affiliation(s)
- Yan Li
- Children's Hospital of Soochow University, Suzhou, China
- Department of Pediatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, 215003, China
| | - Juanjuan Yu
- Children's Hospital of Soochow University, Suzhou, China
| | - Hongli Yin
- Institute of Pediatric Research, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, 215003, China
| | - Xinran Chu
- Department of Hematology, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, Jiangsu, China
| | - Haibo Cao
- Department of Pediatric Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, 215003, China
| | - Yongping Zhang
- Department of Hematology, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, Jiangsu, China
| | - Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, 215003, China
| | - Shuiyan Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, 215003, China
| | - Yizhou Hu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165, Stockholm, Sweden
| | - Frank Zhu
- Department of Internal Medicine, The Ohio State University, Columbus, 43210, USA
| | - Jizhao Gao
- Department of Pediatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaodong Wang
- Children's Hospital of Soochow University, Suzhou, China
| | - Bi Zhou
- Children's Hospital of Soochow University, Suzhou, China
- Department of Pediatric, Suzhou Hospital of AnHui Medical University, Suzhou, 234000, China
| | - Wanyan Jiao
- Children's Hospital of Soochow University, Suzhou, China
- Department of Pediatric, Yancheng , Third People' Hospital, YanCheng, 224000, China
| | - Yumeng Wu
- Children's Hospital of Soochow University, Suzhou, China
- Department of Pediatric, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Yang Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, 215003, China
| | - Yanling Chen
- Children's Hospital of Soochow University, Suzhou, China
| | - Ran Zhuo
- Children's Hospital of Soochow University, Suzhou, China
| | - Ying Yang
- Clinical Medicine, Guizhou Medical University, Guiyang, 550000, China
| | - Fenli Zhang
- Clinical Medicine, Guizhou Medical University, Guiyang, 550000, China
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization China Pharmaceutical University, Nanjing, 210009, China
| | - Yixin Hu
- Department of Hematology, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, Jiangsu, China.
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, 215003, China.
| | - Shaoyan Hu
- Department of Hematology, Children's Hospital of Soochow University, SIP, No.92 Zhongnan Street, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Bolesani E, Bornhorst D, Iyer LM, Zawada D, Friese N, Morgan M, Lange L, Gonzalez DM, Schrode N, Leffler A, Wunder J, Franke A, Drakhlis L, Sebra R, Schambach A, Goedel A, Dubois NC, Dobreva G, Moretti A, Zelaráyan LC, Abdelilah-Seyfried S, Zweigerdt R. Transient stabilization of human cardiovascular progenitor cells from human pluripotent stem cells in vitro reflects stage-specific heart development in vivo. Cardiovasc Res 2024; 120:1295-1311. [PMID: 38836637 DOI: 10.1093/cvr/cvae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/11/2024] [Accepted: 04/06/2024] [Indexed: 06/06/2024] Open
Abstract
AIMS Understanding the molecular identity of human pluripotent stem cell (hPSC)-derived cardiac progenitors and mechanisms controlling their proliferation and differentiation is valuable for developmental biology and regenerative medicine. METHODS AND RESULTS Here, we show that chemical modulation of histone acetyl transferases (by IQ-1) and WNT (by CHIR99021) synergistically enables the transient and reversible block of directed cardiac differentiation progression on hPSCs. The resulting stabilized cardiovascular progenitors (SCPs) are characterized by ISL1pos/KI-67pos/NKX2-5neg expression. In the presence of the chemical inhibitors, SCPs maintain a proliferation quiescent state. Upon small molecules, removal SCPs resume proliferation and concomitant NKX2-5 up-regulation triggers cell-autonomous differentiation into cardiomyocytes. Directed differentiation of SCPs into the endothelial and smooth muscle lineages confirms their full developmental potential typical of bona fide cardiovascular progenitors. Single-cell RNA-sequencing-based transcriptional profiling of our in vitro generated human SCPs notably reflects the dynamic cellular composition of E8.25-E9.25 posterior second heart field of mouse hearts, hallmarked by nuclear receptor sub-family 2 group F member 2 expression. Investigating molecular mechanisms of SCP stabilization, we found that the cell-autonomously regulated retinoic acid and BMP signalling is governing SCP transition from quiescence towards proliferation and cell-autonomous differentiation, reminiscent of a niche-like behaviour. CONCLUSION The chemically defined and reversible nature of our stabilization approach provides an unprecedented opportunity to dissect mechanisms of cardiovascular progenitors' specification and reveal their cellular and molecular properties.
Collapse
Affiliation(s)
- Emiliano Bolesani
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Dorothee Bornhorst
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Lavanya M Iyer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Nina Friese
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - David M Gonzalez
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nadine Schrode
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Julian Wunder
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Annika Franke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Lika Drakhlis
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Robert Sebra
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Alexander Goedel
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Nicole C Dubois
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gergana Dobreva
- Department of Anatomy and Developmental Biology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Laura C Zelaráyan
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
4
|
Aboreden NG, Lam JC, Goel VY, Wang S, Wang X, Midla SC, Quijano A, Keller CA, Giardine BM, Hardison RC, Zhang H, Hansen AS, Blobel GA. LDB1 establishes multi-enhancer networks to regulate gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609430. [PMID: 39229045 PMCID: PMC11370584 DOI: 10.1101/2024.08.23.609430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
How specific enhancer-promoter pairing is established is still mostly unclear. Besides the CTCF/cohesin machinery, only a few nuclear factors have been studied for a direct role in physically connecting regulatory elements. Here, we show via acute degradation experiments that LDB1 directly and broadly promotes enhancer-promoter loops. Most LDB1-mediated contacts, even those spanning hundreds of kb, can form in the absence of CTCF, cohesin, or YY1 as determined via the use of multiple degron systems. Moreover, an engineered LDB1-driven chromatin loop is cohesin independent. Cohesin-driven loop extrusion does not stall at LDB1 occupied sites but may aid the formation of a subset of LDB1 anchored loops. Leveraging the dynamic reorganization of nuclear architecture during the transition from mitosis to G1-phase, we establish a relationship between LDB1-dependent interactions in the context of TAD organization and gene activation. Lastly, Tri-C and Region Capture Micro-C reveal that LDB1 organizes multi-enhancer networks to activate transcription. This establishes LDB1 as a direct driver of regulatory network inter-connectivity.
Collapse
Affiliation(s)
- Nicholas G. Aboreden
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica C. Lam
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Viraat Y. Goel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Siqing Wang
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiaokang Wang
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susannah C. Midla
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alma Quijano
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cheryl A. Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda M. Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Ross C. Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Gerd A. Blobel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
5
|
Li C, Chen K, Fang Q, Shi S, Nan J, He J, Yin Y, Li X, Li J, Hou L, Hu X, Kellis M, Han X, Xiong X. Crosstalk between epitranscriptomic and epigenomic modifications and its implication in human diseases. CELL GENOMICS 2024; 4:100605. [PMID: 38981476 PMCID: PMC11406187 DOI: 10.1016/j.xgen.2024.100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/17/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Crosstalk between N6-methyladenosine (m6A) and epigenomes is crucial for gene regulation, but its regulatory directionality and disease significance remain unclear. Here, we utilize quantitative trait loci (QTLs) as genetic instruments to delineate directional maps of crosstalk between m6A and two epigenomic traits, DNA methylation (DNAme) and H3K27ac. We identify 47 m6A-to-H3K27ac and 4,733 m6A-to-DNAme and, in the reverse direction, 106 H3K27ac-to-m6A and 61,775 DNAme-to-m6A regulatory loci, with differential genomic location preference observed for different regulatory directions. Integrating these maps with complex diseases, we prioritize 20 genome-wide association study (GWAS) loci for neuroticism, depression, and narcolepsy in brain; 1,767 variants for asthma and expiratory flow traits in lung; and 249 for coronary artery disease, blood pressure, and pulse rate in muscle. This study establishes disease regulatory paths, such as rs3768410-DNAme-m6A-asthma and rs56104944-m6A-DNAme-hypertension, uncovering locus-specific crosstalk between m6A and epigenomic layers and offering insights into regulatory circuits underlying human diseases.
Collapse
Affiliation(s)
- Chengyu Li
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Kexuan Chen
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Qianchen Fang
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Shaohui Shi
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Jiuhong Nan
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Jialin He
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Yafei Yin
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoyu Li
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jingyun Li
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Lei Hou
- Department of Medicine, Biomedical Genetics Section, Boston University, Boston, MA 02118, USA
| | - Xinyang Hu
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xikun Han
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Xushen Xiong
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China.
| |
Collapse
|
6
|
Abu Nahia K, Sulej A, Migdał M, Ochocka N, Ho R, Kamińska B, Zagorski M, Winata CL. scRNA-seq reveals the diversity of the developing cardiac cell lineage and molecular players in heart rhythm regulation. iScience 2024; 27:110083. [PMID: 38872974 PMCID: PMC11170199 DOI: 10.1016/j.isci.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/26/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
We utilized scRNA-seq to delineate the diversity of cell types in the zebrafish heart. Transcriptome profiling of over 50,000 cells at 48 and 72 hpf defined at least 18 discrete cell lineages of the developing heart. Utilizing well-established gene signatures, we identified a population of cells likely to be the primary pacemaker and characterized the transcriptome profile defining this critical cell type. Two previously uncharacterized genes, atp1b3b and colec10, were found to be enriched in the sinoatrial cardiomyocytes. CRISPR/Cas9-mediated knockout of these two genes significantly reduced heart rate, implicating their role in cardiac development and conduction. Additionally, we describe other cardiac cell lineages, including the endothelial and neural cells, providing their expression profiles as a resource. Our results established a detailed atlas of the developing heart, providing valuable insights into cellular and molecular mechanisms, and pinpointed potential new players in heart rhythm regulation.
Collapse
Affiliation(s)
- Karim Abu Nahia
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Migdał
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Natalia Ochocka
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Richard Ho
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Cracow, Poland
- The Njord Centre, Department of Physics, University of Oslo, Oslo, Norway
| | - Bożena Kamińska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marcin Zagorski
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Cracow, Poland
| | | |
Collapse
|
7
|
Pollex T, Rabinowitz A, Gambetta MC, Marco-Ferreres R, Viales RR, Jankowski A, Schaub C, Furlong EEM. Enhancer-promoter interactions become more instructive in the transition from cell-fate specification to tissue differentiation. Nat Genet 2024; 56:686-696. [PMID: 38467791 PMCID: PMC11018526 DOI: 10.1038/s41588-024-01678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
To regulate expression, enhancers must come in proximity to their target gene. However, the relationship between the timing of enhancer-promoter (E-P) proximity and activity remains unclear, with examples of uncoupled, anticorrelated and correlated interactions. To assess this, we selected 600 characterized enhancers or promoters with tissue-specific activity in Drosophila embryos and performed Capture-C in FACS-purified myogenic or neurogenic cells during specification and tissue differentiation. This enabled direct comparison between E-P proximity and activity transitioning from OFF-to-ON and ON-to-OFF states across developmental conditions. This showed remarkably similar E-P topologies between specified muscle and neuronal cells, which are uncoupled from activity. During tissue differentiation, many new distal interactions emerge where changes in E-P proximity reflect changes in activity. The mode of E-P regulation therefore appears to change as embryogenesis proceeds, from largely permissive topologies during cell-fate specification to more instructive regulation during terminal tissue differentiation, when E-P proximity is coupled to activation.
Collapse
Affiliation(s)
- Tim Pollex
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Directors' Research Unit, Heidelberg, Germany
| | - Adam Rabinowitz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Maria Cristina Gambetta
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Raquel Marco-Ferreres
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Rebecca R Viales
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Aleksander Jankowski
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Christoph Schaub
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| |
Collapse
|
8
|
Dobreva G, Heineke J. Inter- and Intracellular Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:271-294. [PMID: 38884717 DOI: 10.1007/978-3-031-44087-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiovascular diseases, both congenital and acquired, are the leading cause of death worldwide, associated with significant health consequences and economic burden. Due to major advances in surgical procedures, most patients with congenital heart disease (CHD) survive into adulthood but suffer from previously unrecognized long-term consequences, such as early-onset heart failure. Therefore, understanding the molecular mechanisms resulting in heart defects and the lifelong complications due to hemodynamic overload are of utmost importance. Congenital heart disease arises in the first trimester of pregnancy, due to defects in the complex morphogenetic patterning of the heart. This process is coordinated through a complicated web of intercellular communication between the epicardium, the endocardium, and the myocardium. In the postnatal heart, similar crosstalk between cardiomyocytes, endothelial cells, and fibroblasts exists during pathological hemodynamic overload that emerges as a consequence of a congenital heart defect. Ultimately, communication between cells triggers the activation of intracellular signaling circuits, which allow fine coordination of cardiac development and function. Here, we review the inter- and intracellular signaling mechanisms in the heart as they were discovered mainly in genetically modified mice.
Collapse
Affiliation(s)
- Gergana Dobreva
- ECAS (European Center for Angioscience), Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, Mannheim, Germany.
- German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/Mannheim, Germany.
| | - Joerg Heineke
- German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/Mannheim, Germany.
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
9
|
Li Y, Bertozzi A, Mann MRW, Kühn B. Interdependent changes of nuclear lamins, nuclear pore complexes, and ploidy regulate cellular regeneration and stress response in the heart. Nucleus 2023; 14:2246310. [PMID: 37606283 PMCID: PMC10446781 DOI: 10.1080/19491034.2023.2246310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
In adult mammals, many heart muscle cells (cardiomyocytes) are polyploid, do not proliferate (post-mitotic), and, consequently, cannot contribute to heart regeneration. In contrast, fetal and neonatal heart muscle cells are diploid, proliferate, and contribute to heart regeneration. We have identified interdependent changes of the nuclear lamina, nuclear pore complexes, and DNA-content (ploidy) in heart muscle cell maturation. These results offer new perspectives on how cells alter their nuclear transport and, with that, their gene regulation in response to extracellular signals. We present how changes of the nuclear lamina alter nuclear pore complexes in heart muscle cells. The consequences of these changes for cellular regeneration and stress response in the heart are discussed.
Collapse
Affiliation(s)
- Yao Li
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alberto Bertozzi
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mellissa RW Mann
- Department of Obstetrics, Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Bernhard Kühn
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Maven BEJ, Gifford CA, Weilert M, Gonzalez-Teran B, Hüttenhain R, Pelonero A, Ivey KN, Samse-Knapp K, Kwong W, Gordon D, McGregor M, Nishino T, Okorie E, Rossman S, Costa MW, Krogan NJ, Zeitlinger J, Srivastava D. The multi-lineage transcription factor ISL1 controls cardiomyocyte cell fate through interaction with NKX2.5. Stem Cell Reports 2023; 18:2138-2153. [PMID: 37863045 PMCID: PMC10679653 DOI: 10.1016/j.stemcr.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023] Open
Abstract
Congenital heart disease often arises from perturbations of transcription factors (TFs) that guide cardiac development. ISLET1 (ISL1) is a TF that influences early cardiac cell fate, as well as differentiation of other cell types including motor neuron progenitors (MNPs) and pancreatic islet cells. While lineage specificity of ISL1 function is likely achieved through combinatorial interactions, its essential cardiac interacting partners are unknown. By assaying ISL1 genomic occupancy in human induced pluripotent stem cell-derived cardiac progenitors (CPs) or MNPs and leveraging the deep learning approach BPNet, we identified motifs of other TFs that predicted ISL1 occupancy in each lineage, with NKX2.5 and GATA motifs being most closely associated to ISL1 in CPs. Experimentally, nearly two-thirds of ISL1-bound loci were co-occupied by NKX2.5 and/or GATA4. Removal of NKX2.5 from CPs led to widespread ISL1 redistribution, and overexpression of NKX2.5 in MNPs led to ISL1 occupancy of CP-specific loci. These results reveal how ISL1 guides lineage choices through a combinatorial code that dictates genomic occupancy and transcription.
Collapse
Affiliation(s)
- Bonnie E J Maven
- Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology PhD Program, University of California, San Francisco, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Casey A Gifford
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Melanie Weilert
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Barbara Gonzalez-Teran
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, San Francisco, CA, USA
| | - Angelo Pelonero
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Kathryn N Ivey
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Kaitlen Samse-Knapp
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Wesley Kwong
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - David Gordon
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, San Francisco, CA, USA
| | - Michael McGregor
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, San Francisco, CA, USA
| | - Tomohiro Nishino
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Eyuche Okorie
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Sage Rossman
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Mauro W Costa
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, San Francisco, CA, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Pathology and Laboratory Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Deepak Srivastava
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, UCSF School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
11
|
Velichkova G, Dobreva G. Human pluripotent stem cell-based models of heart development and disease. Cells Dev 2023; 175:203857. [PMID: 37257755 DOI: 10.1016/j.cdev.2023.203857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/16/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
The heart is a complex organ composed of distinct cell types, such as cardiomyocytes, cardiac fibroblasts, endothelial cells, smooth muscle cells, neuronal cells and immune cells. All these cell types contribute to the structural, electrical and mechanical properties of the heart. Genetic manipulation and lineage tracing studies in mice have been instrumental in gaining critical insights into the networks regulating cardiac cell lineage specification, cell fate and plasticity. Such knowledge has been of fundamental importance for the development of efficient protocols for the directed differentiation of pluripotent stem cells (PSCs) in highly specialized cardiac cell types. In this review, we summarize the evolution and current advances in protocols for cardiac subtype specification, maturation, and assembly in cardiac microtissues and organoids.
Collapse
Affiliation(s)
- Gabriel Velichkova
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Centre for Cardiovascular Research (DZHK), Germany.
| |
Collapse
|
12
|
Bohuslavova R, Fabriciova V, Lebrón-Mora L, Malfatti J, Smolik O, Valihrach L, Benesova S, Zucha D, Berkova Z, Saudek F, Evans SM, Pavlinkova G. ISL1 controls pancreatic alpha cell fate and beta cell maturation. Cell Biosci 2023; 13:53. [PMID: 36899442 PMCID: PMC9999528 DOI: 10.1186/s13578-023-01003-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Glucose homeostasis is dependent on functional pancreatic α and ß cells. The mechanisms underlying the generation and maturation of these endocrine cells remain unclear. RESULTS We unravel the molecular mode of action of ISL1 in controlling α cell fate and the formation of functional ß cells in the pancreas. By combining transgenic mouse models, transcriptomic and epigenomic profiling, we uncover that elimination of Isl1 results in a diabetic phenotype with a complete loss of α cells, disrupted pancreatic islet architecture, downregulation of key ß-cell regulators and maturation markers of ß cells, and an enrichment in an intermediate endocrine progenitor transcriptomic profile. CONCLUSIONS Mechanistically, apart from the altered transcriptome of pancreatic endocrine cells, Isl1 elimination results in altered silencing H3K27me3 histone modifications in the promoter regions of genes that are essential for endocrine cell differentiation. Our results thus show that ISL1 transcriptionally and epigenetically controls α cell fate competence, and ß cell maturation, suggesting that ISL1 is a critical component for generating functional α and ß cells.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia.
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Laura Lebrón-Mora
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Jessica Malfatti
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Zuzana Berkova
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Frantisek Saudek
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Sylvia M Evans
- Department of Pharmacology; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia.
| |
Collapse
|
13
|
Medlock-Lanier T, Clay KB, Roberts-Galbraith RH. Planarian LDB and SSDP proteins scaffold transcriptional complexes for regeneration and patterning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527523. [PMID: 36798167 PMCID: PMC9934679 DOI: 10.1101/2023.02.07.527523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Sequence-specific transcription factors often function as components of large regulatory complexes. LIM-domain binding protein (LDB) and single-stranded DNA-binding protein (SSDP) function as core scaffolds of transcriptional complexes in animals and plants. Little is known about potential partners and functions for LDB/SSDP complexes in the context of tissue regeneration. In this work, we find that planarian LDB1 and SSDP2 promote tissue regeneration, with a particular function in mediolateral polarity reestablishment. We find that LDB1 and SSDP2 interact with one another and with characterized planarian LIM-HD proteins Arrowhead, Islet1, and Lhx1/5-1. SSDP2 and LDB1 also function with islet1 in polarity reestablishment and with lhx1/5-1 in serotonergic neuron maturation. Finally, we show new roles for LDB1 and SSDP2 in regulating gene expression in the planarian intestine and parenchyma; these functions may be LIM-HD-independent. Together, our work provides insight into LDB/SSDP complexes in a highly regenerative organism. Further, our work provides a strong starting point for identifying and characterizing potential binding partners of LDB1 and SSDP2 and for exploring roles for these proteins in diverse aspects of planarian physiology.
Collapse
Affiliation(s)
| | - Kendall B Clay
- Neuroscience Program, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
14
|
Zhao K, Yang Z. The second heart field: the first 20 years. Mamm Genome 2022:10.1007/s00335-022-09975-8. [PMID: 36550326 DOI: 10.1007/s00335-022-09975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
In 2001, three independent groups reported the identification of a novel cluster of progenitor cells that contribute to heart development in mouse and chicken embryos. This population of progenitor cells was designated as the second heart field (SHF), and a new research direction in heart development was launched. Twenty years have since passed and a comprehensive understanding of the SHF has been achieved. This review provides retrospective insights in to the contribution, the signaling regulatory networks and the epithelial properties of the SHF. It also includes the spatiotemporal characteristics of SHF development and interactions between the SHF and other types of cells during heart development. Although considerable efforts will be required to investigate the cellular heterogeneity of the SHF, together with its intricate regulatory networks and undefined mechanisms, it is expected that the burgeoning new technology of single-cell sequencing and precise lineage tracing will advance the comprehension of SHF function and its molecular signals. The advances in SHF research will translate to clinical applications and to the treatment of congenital heart diseases, especially conotruncal defects, as well as to regenerative medicine.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China.
| |
Collapse
|
15
|
Lamin A/C-dependent chromatin architecture safeguards naïve pluripotency to prevent aberrant cardiovascular cell fate and function. Nat Commun 2022; 13:6663. [PMID: 36333314 PMCID: PMC9636150 DOI: 10.1038/s41467-022-34366-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Tight control of cell fate choices is crucial for normal development. Here we show that lamin A/C plays a key role in chromatin organization in embryonic stem cells (ESCs), which safeguards naïve pluripotency and ensures proper cell fate choices during cardiogenesis. We report changes in chromatin compaction and localization of cardiac genes in Lmna-/- ESCs resulting in precocious activation of a transcriptional program promoting cardiomyocyte versus endothelial cell fate. This is accompanied by premature cardiomyocyte differentiation, cell cycle withdrawal and abnormal contractility. Gata4 is activated by lamin A/C loss and Gata4 silencing or haploinsufficiency rescues the aberrant cardiovascular cell fate choices induced by lamin A/C deficiency. We uncover divergent functions of lamin A/C in naïve pluripotent stem cells and cardiomyocytes, which have distinct contributions to the transcriptional alterations of patients with LMNA-associated cardiomyopathy. We conclude that disruption of lamin A/C-dependent chromatin architecture in ESCs is a primary event in LMNA loss-of-function cardiomyopathy.
Collapse
|
16
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
17
|
Liu G, Wang L, Wess J, Dean A. Enhancer looping protein LDB1 regulates hepatocyte gene expression by cooperating with liver transcription factors. Nucleic Acids Res 2022; 50:9195-9211. [PMID: 36018801 PMCID: PMC9458430 DOI: 10.1093/nar/gkac707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022] Open
Abstract
Enhancers establish proximity with distant target genes to regulate temporospatial gene expression and specify cell identity. Lim domain binding protein 1 (LDB1) is a conserved and widely expressed protein that functions as an enhancer looping factor. Previous studies in erythroid cells and neuronal cells showed that LDB1 forms protein complexes with different transcription factors to regulate cell-specific gene expression. Here, we show that LDB1 regulates expression of liver genes by occupying enhancer elements and cooperating with hepatic transcription factors HNF4A, FOXA1, TCF7 and GATA4. Using the glucose transporter SLC2A2 gene, encoding GLUT2, as an example, we find that LDB1 regulates gene expression by mediating enhancer-promoter interactions. In vivo, we find that LDB1 deficiency in primary mouse hepatocytes dysregulates metabolic gene expression and changes the enhancer landscape. Conditional deletion of LDB1 in adult mouse liver induces glucose intolerance. However, Ldb1 knockout hepatocytes show improved liver pathology under high-fat diet conditions associated with increased expression of genes related to liver fatty acid metabolic processes. Thus, LDB1 is linked to liver metabolic functions under normal and obesogenic conditions.
Collapse
Affiliation(s)
- Guoyou Liu
- Correspondence may also be addressed to Guoyou Liu. Tel: +1 301 435 9396;
| | - Lei Wang
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jürgen Wess
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann Dean
- To whom correspondence should be addressed. Tel: +1 301 496 6068;
| |
Collapse
|
18
|
Single-cell transcriptomic profiling unveils dysregulation of cardiac progenitor cells and cardiomyocytes in a mouse model of maternal hyperglycemia. Commun Biol 2022; 5:820. [PMID: 35970860 PMCID: PMC9378651 DOI: 10.1038/s42003-022-03779-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/28/2022] [Indexed: 11/08/2022] Open
Abstract
Congenital heart disease (CHD) is the most prevalent birth defect, often linked to genetic variations, environmental exposures, or combination of both. Epidemiological studies reveal that maternal pregestational diabetes is associated with ~5-fold higher risk of CHD in the offspring; however, the causal mechanisms affecting cardiac gene-regulatory-network (GRN) during early embryonic development remain poorly understood. In this study, we utilize an established murine model of pregestational diabetes to uncover the transcriptional responses in key cell-types of the developing heart exposed to maternal hyperglycemia (matHG). Here we show that matHG elicits diverse cellular responses in E9.5 and E11.5 embryonic hearts compared to non-diabetic hearts by single-cell RNA-sequencing. Through differential-gene-expression and cellular trajectory analyses, we identify perturbations in genes, predominantly affecting Isl1+ second heart field progenitors and Tnnt2+ cardiomyocytes with matHG. Using cell-fate mapping analysis in Isl1-lineage descendants, we demonstrate that matHG impairs cardiomyocyte differentiation and alters the expression of lineage-specifying cardiac genes. Finally, our work reveals matHG-mediated transcriptional changes in second heart field lineage that elevate CHD risk by perturbing Isl1-GRN during cardiomyocyte differentiation. Gene-environment interaction studies targeting the Isl1-GRN in cardiac progenitor cells will have a broader impact on understanding the mechanisms of matHG-induced risk of CHD associated with diabetic pregnancies. ScRNA-seq of embryonic heart tissues from a mouse model of maternal hyperglycemia (matHG) provides further insight into how matHG disrupts heart development and perturbs second heart field derived cardiomyocyte differentiation.
Collapse
|
19
|
Popay TM, Dixon JR. Coming full circle: On the origin and evolution of the looping model for enhancer-promoter communication. J Biol Chem 2022; 298:102117. [PMID: 35691341 PMCID: PMC9283939 DOI: 10.1016/j.jbc.2022.102117] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022] Open
Abstract
In mammalian organisms, enhancers can regulate transcription from great genomic distances. How enhancers affect distal gene expression has been a major question in the field of gene regulation. One model to explain how enhancers communicate with their target promoters, the chromatin looping model, posits that enhancers and promoters come in close spatial proximity to mediate communication. Chromatin looping has been broadly accepted as a means for enhancer-promoter communication, driven by accumulating in vitro and in vivo evidence. The genome is now known to be folded into a complex 3D arrangement, created and maintained in part by the interplay of the Cohesin complex and the DNA-binding protein CTCF. In the last few years, however, doubt over the relationship between looping and transcriptional activation has emerged, driven by studies finding that only a modest number of genes are perturbed with acute degradation of looping machinery components. In parallel, newer models describing distal enhancer action have also come to prominence. In this article, we explore the emergence and development of the looping model as a means for enhancer-promoter communication and review the contrasting evidence between historical gene-specific and current global data for the role of chromatin looping in transcriptional regulation. We also discuss evidence for alternative models to chromatin looping and their support in the literature. We suggest that, while there is abundant evidence for chromatin looping as a major mechanism for enhancer function, enhancer-promoter communication is likely mediated by more than one mechanism in an enhancer- and context-dependent manner.
Collapse
Affiliation(s)
- Tessa M Popay
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Jesse R Dixon
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA.
| |
Collapse
|
20
|
Bai M, Li G, Jiapaer Z, Guo X, Xi J, Wang G, Ye D, Chen W, Duan B, Kang J. Linc1548 promotes the transition of epiblast stem cells into neural progenitors by engaging OCT6 and SOX2. Stem Cells 2022; 40:22-34. [DOI: 10.1093/stmcls/sxab003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/17/2021] [Indexed: 11/12/2022]
Abstract
Abstract
The transition of embryonic stem cells from the epiblast stem cells (EpiSCs) to neural progenitor cells (NPCs), name as the neural induction process, is crucial for cell fate determination of neural differentiation. However, the mechanism of this transition is unclear. Here, we identified a long non-coding RNA (linc1548) as a critical regulator of neural differentiation of mouse embryonic stem cells (mESCs). Knockout of linc1548 did not affect the conversion of mESCs to EpiSCs, but delayed the transition from EpiSCs to NPCs. Moreover, linc1548 interacts with the transcription factors OCT6 and SOX2 forming an RNA-protein complex to regulate the transition from EpiSCs to NPCs. Finally, we showed that Zfp521 is an important target gene of this RNA-protein complex regulating neural differentiation. Our findings prove how the intrinsic transcription complex mediated by a lncRNA linc1548 and can better understand the intrinsic mechanism of neural fate determination.
Collapse
Affiliation(s)
- Mingliang Bai
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guoping Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeyidan Jiapaer
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Xinjiang Key Laboratory of Biology Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute for Advanced Study, Tongji University, Shanghai, China
| | - Jiajie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Dan Ye
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Baoyu Duan
- College of Medical Technology, Shanghai University of Medical and Health Sciences, Shanghai, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Nicoletti C. Methods for the Differential Analysis of Hi-C Data. Methods Mol Biol 2022; 2301:61-95. [PMID: 34415531 DOI: 10.1007/978-1-0716-1390-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The 3D organization of chromatin within the nucleus enables dynamic regulation and cell type-specific transcription of the genome. This is true at multiple levels of resolution: on a large scale, with chromosomes occupying distinct volumes (chromosome territories); at the level of individual chromatin fibers, which are organized into compartmentalized domains (e.g., Topologically Associating Domains-TADs), and at the level of short-range chromatin interactions between functional elements of the genome (e.g., enhancer-promoter loops).The widespread availability of Chromosome Conformation Capture (3C)-based high-throughput techniques has been instrumental in advancing our knowledge of chromatin nuclear organization. In particular, Hi-C has the potential to achieve the most comprehensive characterization of chromatin 3D interactions, as it is theoretically able to detect any pair of restriction fragments connected as a result of ligation by proximity.This chapter will illustrate how to compare the chromatin interactome in different experimental conditions, starting from pre-computed Hi-C contact matrices, how to visualize the results, and how to correlate the observed variations in chromatin interaction strength with changes in gene expression.
Collapse
Affiliation(s)
- Chiara Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
22
|
Abstract
The Human Genome Project marked a major milestone in the scientific community as it unravelled the ~3 billion bases that are central to crucial aspects of human life. Despite this achievement, it only scratched the surface of understanding how each nucleotide matters, both individually and as part of a larger unit. Beyond the coding genome, which comprises only ~2% of the whole genome, scientists have realized that large portions of the genome, not known to code for any protein, were crucial for regulating the coding genes. These large portions of the genome comprise the 'non-coding genome'. The history of gene regulation mediated by proteins that bind to the regulatory non-coding genome dates back many decades to the 1960s. However, the original definition of 'enhancers' was first used in the early 1980s. In this Review, we summarize benchmark studies that have mapped the role of cardiac enhancers in disease and development. We highlight instances in which enhancer-localized genetic variants explain the missing link to cardiac pathogenesis. Finally, we inspire readers to consider the next phase of exploring enhancer-based gene therapy for cardiovascular disease.
Collapse
|
23
|
Ren J, Miao D, Li Y, Gao R. Spotlight on Isl1: A Key Player in Cardiovascular Development and Diseases. Front Cell Dev Biol 2021; 9:793605. [PMID: 34901033 PMCID: PMC8656156 DOI: 10.3389/fcell.2021.793605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cardiac transcription factors orchestrate a regulatory network controlling cardiovascular development. Isl1, a LIM-homeodomain transcription factor, acts as a key player in multiple organs during embryonic development. Its crucial roles in cardiovascular development have been elucidated by extensive studies, especially as a marker gene for the second heart field progenitors. Here, we summarize the roles of Isl1 in cardiovascular development and function, and outline its cellular and molecular modes of action, thus providing insights for the molecular basis of cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Ren
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Danxiu Miao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China.,Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Yanshu Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Rui Gao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
24
|
A BMP4-p38 MAPK signaling axis controls ISL1 protein stability and activity during cardiogenesis. Stem Cell Reports 2021; 16:1894-1905. [PMID: 34329593 PMCID: PMC8365108 DOI: 10.1016/j.stemcr.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/03/2022] Open
Abstract
During development, cells respond rapidly to intra- and intercellular signals, which induce signaling cascades regulating the activity of transcription factors at the transcriptional and/or post-translational level. The transcription factor ISL1 plays a key role in second heart field development and cardiac differentiation, and its mRNA levels are tightly regulated during cardiogenesis. Here, we show that a BMP-p38 MAPK signaling axis controls ISL1 protein function at the post-translational level. BMP-mediated activation of p38 MAPK leads to ISL1 phosphorylation at S269 by p38, which prevents ISL1 degradation and ensures its transcriptional activity during cardiogenesis. Interfering with p38 MAPK signaling leads to the degradation of ISL1 by the proteasome, resulting in defects in cardiomyocyte differentiation and impaired zebrafish and mouse heart morphogenesis and function. Given the critical role of the tight control of ISL1 activity during cardiac lineage diversification, modulation of BMP4-p38 MAPK signaling could direct differentiation into specific cardiac cell subpopulations. ISL1 is phosphorylated by p38 MAPK at serine 269 A BMP4-p38 MAPK signaling axis controls ISL1 protein stability Phosphorylation of ISL1 by p38 regulates its activity during cardiogenesis p38 Inhibition in vivo results in ISL1 degradation and second heart field defects
Collapse
|
25
|
Zheng SQ, Chen HX, Liu XC, Yang Q, He GW. Identification of variants of ISL1 gene promoter and cellular functions in isolated ventricular septal defects. Am J Physiol Cell Physiol 2021; 321:C443-C452. [PMID: 34260301 DOI: 10.1152/ajpcell.00167.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ventricular septal defects (VSDs) are the most common congenital heart defects (CHDs). Studies have documented that ISL1 has a crucial impact on cardiac growth, but the role of variants in the ISL1 gene promoter in patients with VSD has not been explored. In 400 subjects (200 patients with isolated and sporadic VSDs: 200 healthy controls), we investigated the ISL1 gene promoter variant and performed cellular functional experiments by using the dual-luciferase reporter assay to verify the impact on gene expression. In the ISL1 promoter, five variants were found only in patients with VSD by sequencing. Cellular functional experiments demonstrated that three variants decreased the transcriptional activity of the ISL1 promoter (P < 0.05). Further analysis with the online JASPAR database demonstrated that a cluster of putative binding sites for transcription factors may be altered by these variants, possibly resulting in change of ISL1 protein expression and VSD formation. Our study has, for the first time, identified novel variants in the ISL1 gene promoter region in the Han Chinese patients with isolated and sporadic VSD. In addition, the cellular functional experiments, electrophoretic mobility shift assay, and bioinformatic analysis have demonstrated that these variants significantly alter the expression of the ISL1 gene and affect the binding of transcription factors, likely resulting in VSD. Therefore, this study may provide new insights into the role of the gene promoter region for a better understanding of genetic basis of the formation of CHDs and may promote further investigations on mechanism of the formation of CHDs.
Collapse
Affiliation(s)
- Si-Qiang Zheng
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Xiao-Cheng Liu
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China.,Drug Research and Development Center, Wannan Medical College, Wuhu, People's Republic of China.,Department of Surgery, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
26
|
Garland B, Delisle S, Al-Zahrani KN, Pryce BR, Sabourin LA. The Ste20-like kinase - a Jack of all trades? J Cell Sci 2021; 134:261804. [PMID: 33961052 DOI: 10.1242/jcs.258269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the past 20 years, the Ste20-like kinase (SLK; also known as STK2) has emerged as a central regulator of cytoskeletal dynamics. Reorganization of the cytoskeleton is necessary for a plethora of biological processes including apoptosis, proliferation, migration, tissue repair and signaling. Several studies have also uncovered a role for SLK in disease progression and cancer. Here, we review the recent findings in the SLK field and summarize the various roles of SLK in different animal models and discuss the biochemical mechanisms regulating SLK activity. Together, these studies have revealed multiple roles for SLK in coupling cytoskeletal dynamics to cell growth, in muscle repair and in negative-feedback loops critical for cancer progression. Furthermore, the ability of SLK to regulate some systems appears to be kinase activity independent, suggesting that it may be an important scaffold for signal transduction pathways. These various findings reveal highly complex functions and regulation patterns of SLK in development and disease, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Brennan Garland
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| | - Samuel Delisle
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| | - Khalid N Al-Zahrani
- Center for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G1X5, Canada
| | - Benjamin R Pryce
- Department of Pediatrics, Hollings Cancer Center, Medical University of South Carolina,Charleston, SC 29425, USA
| | - Luc A Sabourin
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| |
Collapse
|
27
|
Yuan X, Scott IC, Wilson MD. Heart Enhancers: Development and Disease Control at a Distance. Front Genet 2021; 12:642975. [PMID: 33777110 PMCID: PMC7987942 DOI: 10.3389/fgene.2021.642975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Bound by lineage-determining transcription factors and signaling effectors, enhancers play essential roles in controlling spatiotemporal gene expression profiles during development, homeostasis and disease. Recent synergistic advances in functional genomic technologies, combined with the developmental biology toolbox, have resulted in unprecedented genome-wide annotation of heart enhancers and their target genes. Starting with early studies of vertebrate heart enhancers and ending with state-of-the-art genome-wide enhancer discovery and testing, we will review how studying heart enhancers in metazoan species has helped inform our understanding of cardiac development and disease.
Collapse
Affiliation(s)
- Xuefei Yuan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael D. Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
She M, Tang M, Jiang T, Zeng Q. The Roles of the LIM Domain Proteins in Drosophila Cardiac and Hematopoietic Morphogenesis. Front Cardiovasc Med 2021; 8:616851. [PMID: 33681304 PMCID: PMC7928361 DOI: 10.3389/fcvm.2021.616851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster has been used as a model organism for study on development and pathophysiology of the heart. LIM domain proteins act as adaptors or scaffolds to promote the assembly of multimeric protein complexes. We found a total of 75 proteins encoded by 36 genes have LIM domain in Drosophila melanogaster by the tools of SMART, FLY-FISH, and FlyExpress, and around 41.7% proteins with LIM domain locate in lymph glands, muscles system, and circulatory system. Furthermore, we summarized functions of different LIM domain proteins in the development and physiology of fly heart and hematopoietic systems. It would be attractive to determine whether it exists a probable "LIM code" for the cycle of different cell fates in cardiac and hematopoietic tissues. Next, we aspired to propose a new research direction that the LIM domain proteins may play an important role in fly cardiac and hematopoietic morphogenesis.
Collapse
Affiliation(s)
- Meihua She
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Min Tang
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Tingting Jiang
- Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| |
Collapse
|
29
|
Kemmler CL, Riemslagh FW, Moran HR, Mosimann C. From Stripes to a Beating Heart: Early Cardiac Development in Zebrafish. J Cardiovasc Dev Dis 2021; 8:17. [PMID: 33578943 PMCID: PMC7916704 DOI: 10.3390/jcdd8020017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/18/2022] Open
Abstract
The heart is the first functional organ to form during vertebrate development. Congenital heart defects are the most common type of human birth defect, many originating as anomalies in early heart development. The zebrafish model provides an accessible vertebrate system to study early heart morphogenesis and to gain new insights into the mechanisms of congenital disease. Although composed of only two chambers compared with the four-chambered mammalian heart, the zebrafish heart integrates the core processes and cellular lineages central to cardiac development across vertebrates. The rapid, translucent development of zebrafish is amenable to in vivo imaging and genetic lineage tracing techniques, providing versatile tools to study heart field migration and myocardial progenitor addition and differentiation. Combining transgenic reporters with rapid genome engineering via CRISPR-Cas9 allows for functional testing of candidate genes associated with congenital heart defects and the discovery of molecular causes leading to observed phenotypes. Here, we summarize key insights gained through zebrafish studies into the early patterning of uncommitted lateral plate mesoderm into cardiac progenitors and their regulation. We review the central genetic mechanisms, available tools, and approaches for modeling congenital heart anomalies in the zebrafish as a representative vertebrate model.
Collapse
Affiliation(s)
| | | | | | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine and Children’s Hospital Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (C.L.K.); (F.W.R.); (H.R.M.)
| |
Collapse
|
30
|
Bertero A, Rosa-Garrido M. Three-dimensional chromatin organization in cardiac development and disease. J Mol Cell Cardiol 2021; 151:89-105. [PMID: 33242466 PMCID: PMC11056610 DOI: 10.1016/j.yjmcc.2020.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Recent technological advancements in the field of chromatin biology have rewritten the textbook on nuclear organization. We now appreciate that the folding of chromatin in the three-dimensional space (i.e. its 3D "architecture") is non-random, hierarchical, and highly complex. While 3D chromatin structure is partially encoded in the primary sequence and thereby broadly conserved across cell types and states, a substantial portion of the genome seems to be dynamic during development or in disease. Moreover, there is growing evidence that at least some of the 3D structure of chromatin is functionally linked to gene regulation, both being modulated by and impacting on multiple nuclear processes (including DNA replication, transcription, and RNA splicing). In recent years, these new concepts have nourished several investigations about the functional role of 3D chromatin topology dynamics in the heart during development and disease. This review aims to provide a comprehensive overview of our current understanding in this field, and to discuss how this knowledge can inform further research as well as clinical practice.
Collapse
Affiliation(s)
- Alessandro Bertero
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA 98109, USA.
| | - Manuel Rosa-Garrido
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, 650 Charles Young Dr, Los Angeles, CA 90095, USA.
| |
Collapse
|
31
|
Kubo N, Ishii H, Xiong X, Bianco S, Meitinger F, Hu R, Hocker JD, Conte M, Gorkin D, Yu M, Li B, Dixon JR, Hu M, Nicodemi M, Zhao H, Ren B. Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation. Nat Struct Mol Biol 2021; 28:152-161. [PMID: 33398174 PMCID: PMC7913465 DOI: 10.1038/s41594-020-00539-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023]
Abstract
The CCCTC-binding factor (CTCF) works together with the cohesin complex to drive the formation of chromatin loops and topologically associating domains, but its role in gene regulation has not been fully defined. Here, we investigated the effects of acute CTCF loss on chromatin architecture and transcriptional programs in mouse embryonic stem cells undergoing differentiation to neural precursor cells. We identified CTCF-dependent enhancer-promoter contacts genome-wide and found that they disproportionately affect genes that are bound by CTCF at the promoter and are dependent on long-distance enhancers. Disruption of promoter-proximal CTCF binding reduced both long-range enhancer-promoter contacts and transcription, which were restored by artificial tethering of CTCF to the promoter. Promoter-proximal CTCF binding is correlated with the transcription of over 2,000 genes across a diverse set of adult tissues. Taken together, the results of our study show that CTCF binding to promoters may promote long-distance enhancer-dependent transcription at specific genes in diverse cell types.
Collapse
Affiliation(s)
- Naoki Kubo
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Haruhiko Ishii
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Xiong Xiong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Simona Bianco
- Department of Physics, University of Naples Federico II, and INFN Complesso di Monte Sant’Angelo, Naples, Italy
| | - Franz Meitinger
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Rong Hu
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - James D. Hocker
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Mattia Conte
- Department of Physics, University of Naples Federico II, and INFN Complesso di Monte Sant’Angelo, Naples, Italy
| | - David Gorkin
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Miao Yu
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Bin Li
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Jesse R. Dixon
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mario Nicodemi
- Department of Physics, University of Naples Federico II, and INFN Complesso di Monte Sant’Angelo, Naples, Italy
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Departments of Chemistry, Biochemistry, and Bioengineering, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA,Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA,Department of Cellular and Molecular Medicine, Moores Cancer Center and Institute of Genome Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA,Correspondence to:
| |
Collapse
|
32
|
Han B, Zhang Y, Bi X, Zhou Y, Krueger CJ, Hu X, Zhu Z, Tong X, Zhang B. Bi-FoRe: an efficient bidirectional knockin strategy to generate pairwise conditional alleles with fluorescent indicators. Protein Cell 2021; 12:39-56. [PMID: 32681448 PMCID: PMC7815861 DOI: 10.1007/s13238-020-00747-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Gene expression labeling and conditional manipulation of gene function are important for elaborate dissection of gene function. However, contemporary generation of pairwise dual-function knockin alleles to achieve both conditional and geno-tagging effects with a single donor has not been reported. Here we first developed a strategy based on a flipping donor named FoRe to generate conditional knockout alleles coupled with fluorescent allele-labeling through NHEJ-mediated unidirectional targeted insertion in zebrafish facilitated by the CRISPR/Cas system. We demonstrated the feasibility of this strategy at sox10 and isl1 loci, and successfully achieved Cre-induced conditional knockout of target gene function and simultaneous switch of the fluorescent reporter, allowing generation of genetic mosaics for lineage tracing. We then improved the donor design enabling efficient one-step bidirectional knockin to generate paired positive and negative conditional alleles, both tagged with two different fluorescent reporters. By introducing Cre recombinase, these alleles could be used to achieve both conditional knockout and conditional gene restoration in parallel; furthermore, differential fluorescent labeling of the positive and negative alleles enables simple, early and efficient real-time discrimination of individual live embryos bearing different genotypes prior to the emergence of morphologically visible phenotypes. We named our improved donor as Bi-FoRe and demonstrated its feasibility at the sox10 locus. Furthermore, we eliminated the undesirable bacterial backbone in the donor using minicircle DNA technology. Our system could easily be expanded for other applications or to other organisms, and coupling fluorescent labeling of gene expression and conditional manipulation of gene function will provide unique opportunities to fully reveal the power of emerging single-cell sequencing technologies.
Collapse
Affiliation(s)
- Bingzhou Han
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yage Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xuetong Bi
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yang Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory, Atlanta, GA, 33032, USA
| | - Xinli Hu
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Zuoyan Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
33
|
Hatzistergos KE, Durante MA, Valasaki K, Wanschel ACBA, Harbour JW, Hare JM. A novel cardiomyogenic role for Isl1 + neural crest cells in the inflow tract. SCIENCE ADVANCES 2020; 6:6/49/eaba9950. [PMID: 33268364 PMCID: PMC7821887 DOI: 10.1126/sciadv.aba9950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
The degree to which populations of cardiac progenitors (CPCs) persist in the postnatal heart remains a controversial issue in cardiobiology. To address this question, we conducted a spatiotemporally resolved analysis of CPC deployment dynamics, tracking cells expressing the pan-CPC gene Isl1 Most CPCs undergo programmed silencing during early cardiogenesis through proteasome-mediated and PRC2 (Polycomb group repressive complex 2)-mediated Isl1 repression, selectively in the outflow tract. A notable exception is a domain of cardiac neural crest cells (CNCs) in the inflow tract. These "dorsal CNCs" are regulated through a Wnt/β-catenin/Isl1 feedback loop and generate a limited number of trabecular cardiomyocytes that undergo multiple clonal divisions during compaction, to eventually produce ~10% of the biventricular myocardium. After birth, CNCs continue to generate cardiomyocytes that, however, exhibit diminished clonal amplification dynamics. Thus, although the postnatal heart sustains cardiomyocyte-producing CNCs, their regenerative potential is likely diminished by the loss of trabeculation-like proliferative properties.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- Aristotle University of Thessaloniki, Faculty of Sciences, School of Biology, Department of Genetics, Development and Molecular Biology, Thessaloniki 54124, Greece.
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A Durante
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Krystalenia Valasaki
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Amarylis C B A Wanschel
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - J William Harbour
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
34
|
Bang S, Kim H, Jang K, Paik SS, Shin SJ. The loss of nuclear expression of single-stranded DNA binding protein 2 of gastric adenocarcinoma and its prognostic role: Analysis of molecular subtype. PLoS One 2020; 15:e0236896. [PMID: 32745119 PMCID: PMC7398516 DOI: 10.1371/journal.pone.0236896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/15/2020] [Indexed: 01/10/2023] Open
Abstract
Single-stranded DNA binding protein 2 (SSBP2) is ubiquitously expressed, with several studies reporting it to be a tumor suppressor. We investigated SSBP2 expression and its clinicopathological significance in gastric cancer. SSBP2 expression was examined by immunohistochemistry in 539 gastric cancer sections. The cases were divided into three subtypes, namely, Epstein–Barr virus-associated (EBV), microsatellite unstable, and others (microsatellite stable and EBV negative), based on the molecular classification of The Cancer Genome Atlas (TCGA). Cases were also divided into two subgroups according to the amplification status of human epidermal growth factor receptor 2 (HER2). Most cases showed SSBP2 positivity, and only 24 (4.5%) cases displayed negative nuclear expression. Loss of nuclear expression correlated significantly with high pT category (P = 0.001), nodal metastasis (P = 0.002), and stage of progression (P = 0.005), with no correlation between molecular characteristics and SSBP2 expression. All HER2 amplification cases displayed positive SSBP2 expression. Negative SSBP2 cases showed significantly shorter recurrence-free survival (RFS) compared to positive SSBP2 cases (P = 0.008). Loss of nuclear expression of SSBP2 was significantly associated with shorter RFS in the microsatellite stable and EBV negative groups (P = 0.002), as well as the HER2 negative group (P = 0.007). However, there were no statistically significant differences in multivariate analyses. Loss of nuclear expression of SSBP2 was a poor prognostic factor, associated with stage of progression and recurrence, and showed no significant difference in molecular characteristics, including TCGA subtype and HER2 status.
Collapse
Affiliation(s)
- Seongsik Bang
- Departments of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hyunsung Kim
- Departments of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Kiseok Jang
- Departments of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Seung Sam Paik
- Departments of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
35
|
Liang L, Su W, Zhou L, Cao Y, Zhou X, Liu S, Zhao Y, Ding X, Wang Q, Zhang H. Statin downregulation of miR-652-3p protects endothelium from dyslipidemia by promoting ISL1 expression. Metabolism 2020; 107:154226. [PMID: 32277945 DOI: 10.1016/j.metabol.2020.154226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Aberrant endothelial function is a major contributing factor in cardiovascular disease. Dyslipidemia leads to decreased nitric oxide (NO) bioavailability, an early sign of endothelial failure. Low insulin gene enhancer protein (ISL1) levels decrease healthy NO bioavailability. We hypothesized that the microRNA miR-652-3p negatively regulates endothelial ISL1 expression and that dyslipidemia-induced miR-652-3p upregulation induces aberrant endothelial functioning via ISL1 downregulation. METHODS Various in vitro experiments were conducted in human umbilical vein endothelial cells (HUVECs). Luciferase assays were performed in HEK293 cells. We constructed a high-fat diet (HFD) Apoe-/- murine model of dyslipidemia and a rat model of low-density lipoprotein (LDL)-induced dyslipidemia to conduct in vivo and ex vivo experiments. RESULTS Luciferase assays confirmed miR-652-3p's targeting of the ISL1 3'-untranslated region (3'-UTR). Simvastatin blocked oxidized LDL (ox-LDL)-induced increases in miR-652-3p and ox-LDL-induced decreases in ISL1 protein expression, endothelial NO synthase (eNOS) activation, and NO production. Simvastatin's effects were abrogated by miR-652-3p overexpression and phenocopied by miR-652-3p inhibition. The dyslipidemic mouse model exhibited increased miR-652-3p and decreased ISL1 protein levels in the endothelium, effects opposed by simvastatin or miR-652-3p inhibition. The impact of simvastatin in vivo was abolished by overexpressing miR-652-3p or knocking-down ISL1. The rat model of dyslipidemia exhibited a similar pattern of miR-652-3p upregulation, attenuated ISL1 protein levels, decreased eNOS activation, and decreased NO production, effects mitigated by simvastatin. CONCLUSIONS Dyslipidemia upregulates endothelial miR-652-3p, which decreases ISL1 protein levels, eNOS activation, and NO production. Simvastatin therapy lowers endothelial miR-652-3p expression to protect endothelial function under dyslipidemic conditions.
Collapse
Affiliation(s)
- Liwen Liang
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Wenhua Su
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Liang Zhou
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Yu Cao
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Xiuli Zhou
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Shiqi Liu
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Yan Zhao
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Xiaoxue Ding
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Qian Wang
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China
| | - Hong Zhang
- Department of Cardiology, First People's Hospital of Yunnan Province, Kunming, China.
| |
Collapse
|
36
|
Fong HT, Hagen T, Inoue T. LDB1 and the SWI/SNF complex participate in both transcriptional activation and repression by Caenorhabditis elegans BLIMP1/PRDM1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194577. [PMID: 32417234 DOI: 10.1016/j.bbagrm.2020.194577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 01/05/2023]
Abstract
Transcription factors of the BLIMP1/PRDM1 family are important regulators of development. BLIMP1/PRDM1 can both activate and repress gene expression, however, the mechanism of activation is not well understood. Therefore, we looked for factors involved in gene activation by C. elegans BLMP-1, the ortholog of BLIMP1/PRDM1. BLMP-1 activates the expression of bed-3, a gene involved in vulval development. By screening nuclear proteins that function in vulval development, we identified two proteins (LDB-1 and HAM-3) required for BLMP-1 dependent bed-3 expression. LDB-1 is the sole C. elegans member of the LIM Binding Protein (LDB) family, whereas HAM-3 is an accessory subunit of the SWI/SNF complex (ortholog of human SMARCD3/BAF60C). A core SWI/SNF subunit SWSN-1 (ortholog of human SMARCC1/BAF155) is also involved. We found that LDB-1 and HAM-3 bind to BLMP-1, suggesting that BLMP-1 recruits LDB-1 and the SWI/SNF complex to activate bed-3 expression. Interestingly, LDB-1 and HAM-3 are involved in both transcriptional activation and repression. In particular, BLMP-1, LDB-1 and HAM-3 co-regulate a set of hypodermal genes including bed-3 (activated), col-124 (activated) and lin-29 (repressed). On the other hand, LDB-1 and HAM-3 are not required for activation or repression of some genes regulated by BLMP-1 (e.g. T09D3.8, nas-10). We also found that human LDB1, SMARCD3/BAF60C and SMARCC1/BAF155 all physically interact with human BLIMP1/PRDM1 in vitro and are closely associated with BLIMP1/PRDM1 in vivo. Taken together, these results identify LDB1 and SWI/SNF as likely conserved cofactors of BLIMP1/PRDM1, which participate in activation and repression of a subset of BLIMP1/PRDM1-regulated genes.
Collapse
Affiliation(s)
- Hei Tung Fong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| | - Takao Inoue
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| |
Collapse
|
37
|
Lund C, Yellapragada V, Vuoristo S, Balboa D, Trova S, Allet C, Eskici N, Pulli K, Giacobini P, Tuuri T, Raivio T. Characterization of the human GnRH neuron developmental transcriptome using a GNRH1-TdTomato reporter line in human pluripotent stem cells. Dis Model Mech 2020; 13:dmm040105. [PMID: 31996360 PMCID: PMC7075073 DOI: 10.1242/dmm.040105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/16/2020] [Indexed: 12/21/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons provide a fundamental signal for the onset of puberty and subsequent reproductive functions by secretion of gonadotropin-releasing hormone. Their disrupted development or function leads to congenital hypogonadotropic hypogonadism (CHH). To model the development of human GnRH neurons, we generated a stable GNRH1-TdTomato reporter cell line in human pluripotent stem cells (hPSCs) using CRISPR-Cas9 genome editing. RNA-sequencing of the reporter clone, differentiated into GnRH neurons by dual SMAD inhibition and FGF8 treatment, revealed 6461 differentially expressed genes between progenitors and GnRH neurons. Expression of the transcription factor ISL1, one of the top 50 most upregulated genes in the TdTomato-expressing GnRH neurons, was confirmed in 10.5 gestational week-old human fetal GnRH neurons. Among the differentially expressed genes, we detected 15 genes that are implicated in CHH and several genes that are implicated in human puberty timing. Finally, FGF8 treatment in the neuronal progenitor pool led to upregulation of 37 genes expressed both in progenitors and in TdTomato-expressing GnRH neurons, which suggests upstream regulation of these genes by FGF8 signaling during GnRH neuron differentiation. These results illustrate how hPSC-derived human GnRH neuron transcriptomic analysis can be utilized to dissect signaling pathways and gene regulatory networks involved in human GnRH neuron development.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Carina Lund
- Stem Cells and Metabolism Research Program, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Venkatram Yellapragada
- Stem Cells and Metabolism Research Program, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Sanna Vuoristo
- Department of Obstetrics and Gynecology, 00029 Helsinki University Hospital, Helsinki, Finland
| | - Diego Balboa
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Sara Trova
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, U1172 Lille, France
| | - Cecile Allet
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, U1172 Lille, France
| | - Nazli Eskici
- Stem Cells and Metabolism Research Program, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Kristiina Pulli
- Stem Cells and Metabolism Research Program, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Paolo Giacobini
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, U1172 Lille, France
- University of Lille, FHU 1000 Days for Health, School of Medicine, 59000 Lille, France
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, 00029 Helsinki University Hospital, Helsinki, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- New Children's Hospital, Pediatric Research Center, 00029 Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
38
|
Yu X, Martella A, Kolovos P, Stevens M, Stadhouders R, Grosveld FG, Andrieu-Soler C. The dynamic emergence of GATA1 complexes identified in in vitro embryonic stem cell differentiation and in vivo mouse fetal liver. Haematologica 2019; 105:1802-1812. [PMID: 31582556 PMCID: PMC7327653 DOI: 10.3324/haematol.2019.216010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 10/03/2019] [Indexed: 01/20/2023] Open
Abstract
GATA1 is an essential transcriptional regulator of myeloid hematopoietic differentiation towards red blood cells. During erythroid differentiation, GATA1 forms different complexes with other transcription factors such as LDB1, TAL1, E2A and LMO2 ("the LDB1 complex") or with FOG1. The functions of GATA1 complexes have been studied extensively in definitive erythroid differentiation; however, the temporal and spatial formation of these complexes during erythroid development is unknown. We applied proximity ligation assay (PLA) to detect, localize and quantify individual interactions during embryonic stem cell differentiation and in mouse fetal liver (FL) tissue. We show that GATA1/LDB1 interactions appear before the proerythroblast stage and increase in a subset of the CD71+/TER119- cells to activate the terminal erythroid differentiation program in 12.5 day FL. Using Ldb1 and Gata1 knockdown FL cells, we studied the functional contribution of the GATA1/LDB1 complex during differentiation. This shows that the active LDB1 complex appears quite late at the proerythroblast stage of differentiation and confirms the power of PLA in studying the dynamic interaction of proteins in cell differentiation at the single cell level. We provide dynamic insight into the temporal and spatial formation of the GATA1 and LDB1 transcription factor complexes during hematopoietic development and differentiation.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands.,Current address: Department of Medical Microbiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Andrea Martella
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands.,AstraZeneca, R&D Innovative Medicines, Cambridge Science Park, Milton Road, Cambridge, UK
| | - Petros Kolovos
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands.,Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Mary Stevens
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands
| | - Ralph Stadhouders
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands.,Department of Pulmonary Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Frank G Grosveld
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands
| | - Charlotte Andrieu-Soler
- Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands .,Institut de Génétique Moléculaire Montpellier, Université de Montpellier, CNRS, Montpellier, France.,Université de Paris, Laboratoire d'excellence (LabEx) du globule rouge GR-Ex, Paris, France
| |
Collapse
|
39
|
Abstract
The function of the mammalian heart depends on the interplay between different cardiac cell types. The deployment of these cells, with precise spatiotemporal regulation, is also important during development to establish the heart structure. In this Review, we discuss the diverse origins of cardiac cell types and the lineage relationships between cells of a given type that contribute to different parts of the heart. The emerging lineage tree shows the progression of cell fate diversification, with patterning cues preceding cell type segregation, as well as points of convergence, with overlapping lineages contributing to a given tissue. Several cell lineage markers have been identified. However, caution is required with genetic-tracing experiments in comparison with clonal analyses. Genetic studies on cell populations provided insights into the mechanisms for lineage decisions. In the past 3 years, results of single-cell transcriptomics are beginning to reveal cell heterogeneity and early developmental trajectories. Equating this information with the in vivo location of cells and their lineage history is a current challenge. Characterization of the progenitor cells that form the heart and of the gene regulatory networks that control their deployment is of major importance for understanding the origin of congenital heart malformations and for producing cardiac tissue for use in regenerative medicine.
Collapse
|
40
|
Enhancer long-range contacts: The multi-adaptor protein LDB1 is the tie that binds. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:625-633. [DOI: 10.1016/j.bbagrm.2019.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 11/20/2022]
|
41
|
Gao R, Liang X, Cheedipudi S, Cordero J, Jiang X, Zhang Q, Caputo L, Günther S, Kuenne C, Ren Y, Bhattacharya S, Yuan X, Barreto G, Chen Y, Braun T, Evans SM, Sun Y, Dobreva G. Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate. Cell Res 2019; 29:486-501. [PMID: 31024170 PMCID: PMC6796926 DOI: 10.1038/s41422-019-0168-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/01/2019] [Indexed: 01/25/2023] Open
Abstract
Generation of widely differing and specialized cell types from a single totipotent zygote involves large-scale transcriptional changes and chromatin reorganization. Pioneer transcription factors play key roles in programming the epigenome and facilitating recruitment of additional regulatory factors during successive cell lineage specification and differentiation steps. Here we show that Isl1 acts as a pioneer factor driving cardiomyocyte lineage commitment by shaping the chromatin landscape of cardiac progenitor cells. Using an Isl1 hypomorphic mouse line which shows congenital heart defects, genome-wide profiling of Isl1 binding together with RNA- and ATAC-sequencing of cardiac progenitor cells and their derivatives, we uncover a regulatory network downstream of Isl1 that orchestrates cardiogenesis. Mechanistically, we show that Isl1 binds to compacted chromatin and works in concert with the Brg1-Baf60c-based SWI/SNF complex to promote permissive cardiac lineage-specific alterations in the chromatin landscape not only of genes with critical functions in cardiac progenitor cells, but also of cardiomyocyte structural genes that are highly expressed when Isl1 itself is no longer present. Thus, the Isl1/Brg1-Baf60c complex plays a crucial role in orchestrating proper cardiogenesis and in establishing epigenetic memory of cardiomyocyte fate commitment.
Collapse
Affiliation(s)
- Rui Gao
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xingqun Liang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | | | - Julio Cordero
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xue Jiang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qingquan Zhang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Luca Caputo
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Kuenne
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yonggang Ren
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Xuejun Yuan
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Guillermo Barreto
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yihan Chen
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sylvia M Evans
- Department of Medicine, Skaggs School of Pharmacy, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Yunfu Sun
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Gergana Dobreva
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Department of Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Medical Faculty, University of Frankfurt, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
42
|
Magli A, Baik J, Pota P, Cordero CO, Kwak IY, Garry DJ, Love PE, Dynlacht BD, Perlingeiro RCR. Pax3 cooperates with Ldb1 to direct local chromosome architecture during myogenic lineage specification. Nat Commun 2019; 10:2316. [PMID: 31127120 PMCID: PMC6534668 DOI: 10.1038/s41467-019-10318-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
Chromatin looping allows enhancer-bound regulatory factors to influence transcription. Large domains, referred to as topologically associated domains, participate in genome organization. However, the mechanisms underlining interactions within these domains, which control gene expression, are not fully understood. Here we report that activation of embryonic myogenesis is associated with establishment of long-range chromatin interactions centered on Pax3-bound loci. Using mass spectrometry and genomic studies, we identify the ubiquitously expressed LIM-domain binding protein 1 (Ldb1) as the mediator of looping interactions at a subset of Pax3 binding sites. Ldb1 is recruited to Pax3-bound elements independently of CTCF-Cohesin, and is necessary for efficient deposition of H3K4me1 at these sites and chromatin looping. When Ldb1 is deleted in Pax3-expressing cells in vivo, specification of migratory myogenic progenitors is severely impaired. These results highlight Ldb1 requirement for Pax3 myogenic activity and demonstrate how transcription factors can promote formation of sub-topologically associated domain interactions involved in lineage specification.
Collapse
Affiliation(s)
- Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - June Baik
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Pruthvi Pota
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Carolina Ortiz Cordero
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Il-Youp Kwak
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel J Garry
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Rita C R Perlingeiro
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
43
|
Schoenfelder S, Fraser P. Long-range enhancer–promoter contacts in gene expression control. Nat Rev Genet 2019; 20:437-455. [DOI: 10.1038/s41576-019-0128-0] [Citation(s) in RCA: 486] [Impact Index Per Article: 97.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Zhang Q, Zhang Q, Jiang X, Ye Y, Liao H, Zhu F, Yan J, Luo L, Tian L, Jiang C, Chen Y, Liang X, Sun Y. Collaborative ISL1/GATA3 interaction in controlling neuroblastoma oncogenic pathways overlapping with but distinct from MYCN. Theranostics 2019; 9:986-1000. [PMID: 30867811 PMCID: PMC6401405 DOI: 10.7150/thno.30199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Transcription factor ISL1 plays a critical role in sympathetic neurogenesis. Expression of ISL1 has been associated with neuroblastoma, a pediatric tumor derived from sympatho-adrenal progenitors, however the role of ISL1 in neuroblastoma remains unexplored. Method: Here, we knocked down ISL1 (KD) in SH-SY5Y neuroblastoma cells and performed RNA-seq and ISL1 ChIP-seq analyses. Results: Analyses of these data revealed that ISL1 acts upstream of multiple oncogenic genes and pathways essential for neuroblastoma proliferation and differentiation, including LMO1 and LIN28B. ISL1 promotes expression of a number of cell cycle associated genes, but represses differentiation associated genes including RA receptors and the downstream target genes EPAS1 and CDKN1A. Consequently, Knockdown of ISL1 inhibits neuroblastoma cell proliferation and migration in vitro and impedes tumor growth in vivo, and enhances neuronal differentiation by RA treatment. Furthermore, genome-wide mapping revealed a substantial co-occupancy of binding regions by ISL1 and GATA3, and ISL1 physically interacts with GATA3, and together they synergistically regulate the aforementioned oncogenic pathways. In addition, analyses of the roles of ISL1 and MYCN in MYCN-amplified and MYCN non-amplified neuroblastoma cells revealed an epistatic relationship between ISL1 and MYCN. ISL1 and MYCN function in parallel to regulate common yet distinct oncogenic pathways in neuroblastoma. Conclusion: Our study has demonstrated that ISL1 plays an essential role in neuroblastoma regulatory networks and may serve as a potential therapeutic target in neuroblastoma.
Collapse
|
45
|
LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice. Nature 2019; 565:448-453. [PMID: 30626972 PMCID: PMC6436840 DOI: 10.1038/s41586-018-0845-0] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/06/2018] [Indexed: 01/28/2023]
Abstract
The genome is partitioned into topologically associated domains (TADs) and genomic compartments of shared chromatin valance. This architecture is constrained by the DNA polymer, which precludes genic interactions between chromosomes. Here, we report a dramatic divergence from this pattern of nuclear organization that occurs in mouse olfactory sensory neurons (OSNs). In situ HiC on FAC-sorted OSNs and their progenitors shows that olfactory receptor (OR) gene clusters from 18 chromosomes make specific and robust interchromosomal contacts that increase with differentiation. These contacts are orchestrated by intergenic OR enhancers, the Greek Islands, which first contribute to the formation of OR compartments and then form a multi-chromosomal super-enhancer that associates with the single active OR. Greek Island-bound transcription factor Lhx2 and adaptor protein Ldb1 regulate the assembly and maintenance of OR compartments, Greek Island hubs, and OR transcription, providing mechanistic insight and functional support for the role of trans interactions in gene expression.
Collapse
|
46
|
The LIM domain binding protein 1, Ldb1, has distinct roles in Neu-induced mammary tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1590-1597. [DOI: 10.1016/j.bbamcr.2018.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 01/15/2023]
|
47
|
Xiao D, Jin K, Xiang M. Necessity and Sufficiency of Ldb1 in the Generation, Differentiation and Maintenance of Non-photoreceptor Cell Types During Retinal Development. Front Mol Neurosci 2018; 11:271. [PMID: 30127719 PMCID: PMC6087769 DOI: 10.3389/fnmol.2018.00271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022] Open
Abstract
During mammalian retinal development, the multipotent progenitors differentiate into all classes of retinal cells under the delicate control of transcriptional factors. The deficiency of a transcription cofactor, the LIM-domain binding protein Ldb1, has been shown to cause proliferation and developmental defects in multiple tissues including cardiovascular, hematopoietic, and nervous systems; however, it remains unclear whether and how it regulates retinal development. By expression profiling, RNA in situ hybridization and immunostaining, here we show that Ldb1 is expressed in the progenitors during early retinal development, but later its expression gradually shifts to non-photoreceptor cell types including bipolar, amacrine, horizontal, ganglion, and Müller glial cells. Retina-specific ablation of Ldb1 in mice resulted in microphthalmia, optic nerve hypoplasia, retinal thinning and detachment, and profound vision impairment as determined by electroretinography. In the mutant retina, there was precocious differentiation of amacrine and horizontal cells, indicating a requirement of Ldb1 in maintaining the retinal progenitor pool. Additionally, all non-photoreceptor cell types were greatly reduced which appeared to be caused by a generation defect and/or retinal degeneration via excessive cell apoptosis. Furthermore, we showed that misexpressed Ldb1 was sufficient to promote the generation of bipolar, amacrine, horizontal, ganglion, and Müller glial cells at the expense of photoreceptors. Together, these results demonstrate that Ldb1 is not only necessary but also sufficient for the development and/or maintenance of non-photoreceptor cell types, and implicate that the pleiotropic functions of Ldb1 during retinal development are context-dependent and determined by its interaction with diverse LIM-HD (LIM-homeodomain) and LMO (LIM domain-only) binding protein partners.
Collapse
Affiliation(s)
- Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kangxin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
48
|
Fukui H, Miyazaki T, Chow RWY, Ishikawa H, Nakajima H, Vermot J, Mochizuki N. Hippo signaling determines the number of venous pole cells that originate from the anterior lateral plate mesoderm in zebrafish. eLife 2018; 7:29106. [PMID: 29809141 PMCID: PMC5995544 DOI: 10.7554/elife.29106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 05/26/2018] [Indexed: 12/11/2022] Open
Abstract
The differentiation of the lateral plate mesoderm cells into heart field cells constitutes a critical step in the development of cardiac tissue and the genesis of functional cardiomyocytes. Hippo signaling controls cardiomyocyte proliferation, but the role of Hippo signaling during early cardiogenesis remains unclear. Here, we show that Hippo signaling regulates atrial cell number by specifying the developmental potential of cells within the anterior lateral plate mesoderm (ALPM), which are incorporated into the venous pole of the heart tube and ultimately into the atrium of the heart. We demonstrate that Hippo signaling acts through large tumor suppressor kinase 1/2 to modulate BMP signaling and the expression of hand2, a key transcription factor that is involved in the differentiation of atrial cardiomyocytes. Collectively, these results demonstrate that Hippo signaling defines venous pole cardiomyocyte number by modulating both the number and the identity of the ALPM cells that will populate the atrium of the heart.
Collapse
Affiliation(s)
- Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Renee Wei-Yan Chow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Hiroyuki Ishikawa
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.,AMED-Core Research for Evolutional Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
49
|
Continuous addition of progenitors forms the cardiac ventricle in zebrafish. Nat Commun 2018; 9:2001. [PMID: 29784942 PMCID: PMC5962599 DOI: 10.1038/s41467-018-04402-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/27/2018] [Indexed: 01/10/2023] Open
Abstract
The vertebrate heart develops from several progenitor lineages. After early-differentiating first heart field (FHF) progenitors form the linear heart tube, late-differentiating second heart field (SHF) progenitors extend the atrium and ventricle, and form inflow and outflow tracts (IFT/OFT). However, the position and migration of late-differentiating progenitors during heart formation remains unclear. Here, we track zebrafish heart development using transgenics based on the cardiopharyngeal gene tbx1. Live imaging uncovers a tbx1 reporter-expressing cell sheath that continuously disseminates from the lateral plate mesoderm towards the forming heart tube. High-speed imaging and optogenetic lineage tracing corroborates that the zebrafish ventricle forms through continuous addition from the undifferentiated progenitor sheath followed by late-phase accrual of the bulbus arteriosus (BA). FGF inhibition during sheath migration reduces ventricle size and abolishes BA formation, refining the window of FGF action during OFT formation. Our findings consolidate previous end-point analyses and establish zebrafish ventricle formation as a continuous process. Late-differentiating second heart field progenitors contribute to atrium, ventricle, and outflow tract in the zebrafish heart but how remains unclear. Here, the authors image heart formation in transgenics based on the cardiopharyngeal gene tbx1 and show that progenitors are continuously added.
Collapse
|
50
|
Guo X, Xu Y, Wang Z, Wu Y, Chen J, Wang G, Lu C, Jia W, Xi J, Zhu S, Jiapaer Z, Wan X, Liu Z, Gao S, Kang J. A Linc1405/Eomes Complex Promotes Cardiac Mesoderm Specification and Cardiogenesis. Cell Stem Cell 2018; 22:893-908.e6. [PMID: 29754779 DOI: 10.1016/j.stem.2018.04.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/07/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
Large intergenic non-coding RNAs (lincRNAs) play widespread roles in epigenetic regulation during multiple differentiation processes, but little is known about their mode of action in cardiac differentiation. Here, we identified the key roles of a lincRNA, termed linc1405, in modulating the core network of cardiac differentiation by functionally interacting with Eomes. Chromatin- and RNA-immunoprecipitation assays showed that exon 2 of linc1405 physically mediates a complex consisting of Eomes, trithorax group (TrxG) subunit WDR5, and histone acetyltransferase GCN5 binding at the enhancer region of Mesp1 gene and activates its expression during cardiac mesoderm specification of embryonic stem cells. Importantly, linc1405 co-localizes with Eomes, WDR5, and GCN5 at the primitive streak, and linc1405 depletion impairs heart development and function in vivo. In summary, linc1405 mediates a Eomes/WDR5/GCN5 complex that contributes to cardiogenesis, highlighting the critical roles of lincRNA-based complexes in the epigenetic regulation of cardiogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Institute of Regenerative Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yanxin Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zikang Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chenqi Lu
- Department of Biostatistics and Computational Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiajie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Songcheng Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zeyidan Jiapaer
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Zhongmin Liu
- Institute of Regenerative Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|