1
|
Holman AR, Tran S, Destici E, Farah EN, Li T, Nelson AC, Engler AJ, Chi NC. Single-cell multi-modal integrative analyses highlight functional dynamic gene regulatory networks directing human cardiac development. CELL GENOMICS 2024; 4:100680. [PMID: 39437788 PMCID: PMC11605693 DOI: 10.1016/j.xgen.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Illuminating the precise stepwise genetic programs directing cardiac development provides insights into the mechanisms of congenital heart disease and strategies for cardiac regenerative therapies. Here, we integrate in vitro and in vivo human single-cell multi-omic studies with high-throughput functional genomic screening to reveal dynamic, cardiac-specific gene regulatory networks (GRNs) and transcriptional regulators during human cardiomyocyte development. Interrogating developmental trajectories reconstructed from single-cell data unexpectedly reveal divergent cardiomyocyte lineages with distinct gene programs based on developmental signaling pathways. High-throughput functional genomic screens identify key transcription factors from inferred GRNs that are functionally relevant for cardiomyocyte lineages derived from each pathway. Notably, we discover a critical heat shock transcription factor 1 (HSF1)-mediated cardiometabolic GRN controlling cardiac mitochondrial/metabolic function and cell survival, also observed in fetal human cardiomyocytes. Overall, these multi-modal genomic studies enable the systematic discovery and validation of coordinated GRNs and transcriptional regulators controlling the development of distinct human cardiomyocyte populations.
Collapse
Affiliation(s)
- Alyssa R Holman
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaina Tran
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eugin Destici
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elie N Farah
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting Li
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aileena C Nelson
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA
| | - Neil C Chi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Wu X, Swanson K, Yildirim Z, Liu W, Liao R, Wu JC. Clinical trials in-a-dish for cardiovascular medicine. Eur Heart J 2024; 45:4275-4290. [PMID: 39270727 PMCID: PMC11491156 DOI: 10.1093/eurheartj/ehae519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases persist as a global health challenge that requires methodological innovation for effective drug development. Conventional pipelines relying on animal models suffer from high failure rates due to significant interspecies variation between humans and animal models. In response, the recently enacted Food and Drug Administration Modernization Act 2.0 encourages alternative approaches including induced pluripotent stem cells (iPSCs). Human iPSCs provide a patient-specific, precise, and screenable platform for drug testing, paving the way for cardiovascular precision medicine. This review discusses milestones in iPSC differentiation and their applications from disease modelling to drug discovery in cardiovascular medicine. It then explores challenges and emerging opportunities for the implementation of 'clinical trials in-a-dish'. Concluding, this review proposes a framework for future clinical trial design with strategic incorporations of iPSC technology, microphysiological systems, clinical pan-omics, and artificial intelligence to improve success rates and advance cardiovascular healthcare.
Collapse
Affiliation(s)
- Xuekun Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyle Swanson
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Greenstone Biosciences, Palo Alto, CA, USA
| | - Zehra Yildirim
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wenqiang Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ronglih Liao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Chang Y, Bai R, Zhang Y, Lu WJ, Ma S, Zhu M, Lan F, Jiang Y. SMYD1 modulates the proliferation of multipotent cardiac progenitor cells derived from human pluripotent stem cells during myocardial differentiation through GSK3β/β-catenin&ERK signaling. Stem Cell Res Ther 2024; 15:350. [PMID: 39380045 PMCID: PMC11462858 DOI: 10.1186/s13287-024-03899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The histone-lysine N-methyltransferase SMYD1, which is specific to striated muscle, plays a crucial role in regulating early heart development. Its deficiency has been linked to the occurrence of congenital heart disease. Nevertheless, the precise mechanism by which SMYD1 deficiency contributes to congenital heart disease remains unclear. METHODS We established a SMYD1 knockout pluripotent stem cell line and a doxycycline-inducible SMYD1 expression pluripotent stem cell line to investigate the functions of SMYD1 utilizing an in vitro-directed myocardial differentiation model. RESULTS Cardiomyocytes lacking SMYD1 displayed drastically diminished differentiation efficiency, concomitant with heightened proliferation capacity of cardiac progenitor cells during the early cardiac differentiation stage. These cellular phenotypes were confirmed through experiments inducing the re-expression of SMYD1. Transcriptome sequencing and small molecule inhibitor intervention suggested that the GSK3β/β-catenin&ERK signaling pathway was involved in the proliferation of cardiac progenitor cells. Chromatin immunoprecipitation demonstrated that SMYD1 acted as a transcriptional activator of GSK3β through histone H3 lysine 4 trimethylation. Additionally, dual-luciferase analyses indicated that SMYD1 could interact with the promoter region of GSK3β, thereby augmenting its transcriptional activity. Moreover, administering insulin and Insulin-like growth factor 1 can enhance the efficacy of myocardial differentiation in SMYD1 knockout cells. CONCLUSIONS Our research indicated that the participation of SMYD1 in the GSK3β/β-catenin&ERK signaling cascade modulated the proliferation of cardiac progenitor cells during myocardial differentiation. This process was partly reliant on the transcription of GSK3β. Our research provided a novel insight into the genetic modification effect of SMYD1 during early myocardial differentiation. The findings were essential to the molecular mechanism and potential interventions for congenital heart disease.
Collapse
Affiliation(s)
- Yun Chang
- Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Rui Bai
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yongshuai Zhang
- Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Wen-Jing Lu
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Shuhong Ma
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Min Zhu
- Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Feng Lan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China.
| | - Youxu Jiang
- Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China.
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Okhovatian S, Khosravi R, Wang EY, Zhao Y, Radisic M. Biofabrication strategies for cardiac tissue engineering. Curr Opin Biotechnol 2024; 88:103166. [PMID: 38941865 DOI: 10.1016/j.copbio.2024.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/30/2024]
Abstract
Biofabrication technologies hold the potential to provide high-throughput, easy-to-operate, and cost-effective systems that recapitulate complexities of the native heart. The size of the fabricated model, printing resolution, biocompatibility, and ease-of-fabrication are some of the major parameters that can be improved to develop more sophisticated cardiac models. Here, we review recent cardiac engineering technologies ranging from microscaled organoids, millimeter-scaled heart-on-a-chip platforms, in vitro ventricle models sized to the fetal heart, larger cardiac patches seeded with billions of cells, and associated biofabrication technologies used to produce these models. Finally, advancements that facilitate model translation are discussed, such as their application as carriers for bioactive components and cells in vivo or their capability for drug testing and disease modeling in vitro.
Collapse
Affiliation(s)
- Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Ramak Khosravi
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada; Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Erika Y Wang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.
| |
Collapse
|
5
|
Prondzynski M, Berkson P, Trembley MA, Tharani Y, Shani K, Bortolin RH, Sweat ME, Mayourian J, Yucel D, Cordoves AM, Gabbin B, Hou C, Anyanwu NJ, Nawar F, Cotton J, Milosh J, Walker D, Zhang Y, Lu F, Liu X, Parker KK, Bezzerides VJ, Pu WT. Efficient and reproducible generation of human iPSC-derived cardiomyocytes and cardiac organoids in stirred suspension systems. Nat Commun 2024; 15:5929. [PMID: 39009604 PMCID: PMC11251028 DOI: 10.1038/s41467-024-50224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
Human iPSC-derived cardiomyocytes (hiPSC-CMs) have proven invaluable for cardiac disease modeling and regeneration. Challenges with quality, inter-batch consistency, cryopreservation and scale remain, reducing experimental reproducibility and clinical translation. Here, we report a robust stirred suspension cardiac differentiation protocol, and we perform extensive morphological and functional characterization of the resulting bioreactor-differentiated iPSC-CMs (bCMs). Across multiple different iPSC lines, the protocol produces 1.2E6/mL bCMs with ~94% purity. bCMs have high viability after cryo-recovery (>90%) and predominantly ventricular identity. Compared to standard monolayer-differentiated CMs, bCMs are more reproducible across batches and have more mature functional properties. The protocol also works with magnetically stirred spinner flasks, which are more economical and scalable than bioreactors. Minor protocol modifications generate cardiac organoids fully in suspension culture. These reproducible, scalable, and resource-efficient approaches to generate iPSC-CMs and organoids will expand their applications, and our benchmark data will enable comparison to cells produced by other cardiac differentiation protocols.
Collapse
Affiliation(s)
| | - Paul Berkson
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Michael A Trembley
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yashasvi Tharani
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Kevin Shani
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
| | - Raul H Bortolin
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Mason E Sweat
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Joshua Mayourian
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Dogacan Yucel
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Albert M Cordoves
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
| | - Beatrice Gabbin
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Cuilan Hou
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Cardiology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Nnaemeka J Anyanwu
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
| | - Farina Nawar
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Justin Cotton
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Joseph Milosh
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - David Walker
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yan Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Fujian Lu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Xujie Liu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Fuwai Hospital, Chinese Academy of Medical Science, Shenzhen, Shenzhen, Guangdong Province, 518057, China
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | | | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
6
|
Groen E, Mummery CL, Yiangou L, Davis RP. Three-dimensional cardiac models: a pre-clinical testing platform. Biochem Soc Trans 2024; 52:1045-1059. [PMID: 38778769 PMCID: PMC11346450 DOI: 10.1042/bst20230444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Major advancements in human pluripotent stem cell (hPSC) technology over recent years have yielded valuable tools for cardiovascular research. Multi-cell type 3-dimensional (3D) cardiac models in particular, are providing complementary approaches to animal studies that are better representatives than simple 2-dimensional (2D) cultures of differentiated hPSCs. These human 3D cardiac models can be broadly divided into two categories; namely those generated through aggregating pre-differentiated cells and those that form self-organizing structures during their in vitro differentiation from hPSCs. These models can either replicate aspects of cardiac development or enable the examination of interactions among constituent cell types, with some of these models showing increased maturity compared with 2D systems. Both groups have already emerged as physiologically relevant pre-clinical platforms for studying heart disease mechanisms, exhibiting key functional attributes of the human heart. In this review, we describe the different cardiac organoid models derived from hPSCs, their generation methods, applications in cardiovascular disease research and use in drug screening. We also address their current limitations and challenges as pre-clinical testing platforms and propose potential improvements to enhance their efficacy in cardiac drug discovery.
Collapse
Affiliation(s)
- Eline Groen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Richard P. Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2300RC Leiden, The Netherlands
| |
Collapse
|
7
|
Mabry SA, Pavon N. Exploring the prospects, advancements, and challenges of in vitro modeling of the heart-brain axis. Front Cell Neurosci 2024; 18:1386355. [PMID: 38766369 PMCID: PMC11099243 DOI: 10.3389/fncel.2024.1386355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Research on bidirectional communication between the heart and brain has often relied on studies involving nonhuman animals. Dependance on animal models offer limited applicability to humans and a lack of high-throughput screening. Recently, the field of 3D cell biology, specifically organoid technology, has rapidly emerged as a valuable tool for studying interactions across organ systems, i.e., gut-brain axis. The initial success of organoid models indicates the usefulness of 3D cultures for elucidating the intricate interactivity of the autonomic nervous system and overall health. This perspective aims to explore the potential of advancing in vitro modeling of the heart-brain axis by discussing the benefits, applications, and adaptability of organoid technologies. We closely examine the current state of brain organoids in conjunction with the advancements of cardiac organoids. Moreover, we explore the use of combined organoid systems to investigate pathophysiology and provide a platform for treatment discovery. Finally, we address the challenges that accompany the use of 3D models for studying the heart-brain axis with an emphasis on generating tailored engineering strategies for further refinement of dynamic organ system modeling in vitro.
Collapse
Affiliation(s)
- Senegal Alfred Mabry
- Affect and Cognition Laboratory, Department of Psychology and Human Development, College of Human Ecology, Cornell University, Ithaca, NY, United States
| | - Narciso Pavon
- ChangHui Pak Laboratory, Department of Biochemistry and Molecular Biology, College of Natural Sciences, University of Massachusetts-Amherst, Amherst, MA, United States
| |
Collapse
|
8
|
Hamidzada H, Pascual-Gil S, Wu Q, Kent GM, Massé S, Kantores C, Kuzmanov U, Gomez-Garcia MJ, Rafatian N, Gorman RA, Wauchop M, Chen W, Landau S, Subha T, Atkins MH, Zhao Y, Beroncal E, Fernandes I, Nanthakumar J, Vohra S, Wang EY, Sadikov TV, Razani B, McGaha TL, Andreazza AC, Gramolini A, Backx PH, Nanthakumar K, Laflamme MA, Keller G, Radisic M, Epelman S. Primitive macrophages induce sarcomeric maturation and functional enhancement of developing human cardiac microtissues via efferocytic pathways. NATURE CARDIOVASCULAR RESEARCH 2024; 3:567-593. [PMID: 39086373 PMCID: PMC11290557 DOI: 10.1038/s44161-024-00471-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2024] [Indexed: 08/02/2024]
Abstract
Yolk sac macrophages are the first to seed the developing heart, however we have no understanding of their roles in human heart development and function due to a lack of accessible tissue. Here, we bridge this gap by differentiating human embryonic stem cells (hESCs) into primitive LYVE1+ macrophages (hESC-macrophages) that stably engraft within contractile cardiac microtissues composed of hESC-cardiomyocytes and fibroblasts. Engraftment induces a human fetal cardiac macrophage gene program enriched in efferocytic pathways. Functionally, hESC-macrophages trigger cardiomyocyte sarcomeric protein maturation, enhance contractile force and improve relaxation kinetics. Mechanistically, hESC-macrophages engage in phosphatidylserine dependent ingestion of apoptotic cardiomyocyte cargo, which reduces microtissue stress, leading hESC-cardiomyocytes to more closely resemble early human fetal ventricular cardiomyocytes, both transcriptionally and metabolically. Inhibiting hESC-macrophage efferocytosis impairs sarcomeric protein maturation and reduces cardiac microtissue function. Taken together, macrophage-engineered human cardiac microtissues represent a considerably improved model for human heart development, and reveal a major beneficial role for human primitive macrophages in enhancing early cardiac tissue function.
Collapse
Affiliation(s)
- Homaira Hamidzada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
- Department of Immunology, University of Toronto, Toronto, ON
| | - Simon Pascual-Gil
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
| | - Qinghua Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON
| | - Gregory M. Kent
- McEwen Stem Cell Institute, University Health Network, Toronto, ON
- Department of Medical Biophysics, University of Toronto, Toronto, ON
| | - Stéphane Massé
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, ON
| | - Crystal Kantores
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
| | - Uros Kuzmanov
- Department of Physiology, University of Toronto, Toronto, ON
| | - M. Juliana Gomez-Garcia
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON
- McEwen Stem Cell Institute, University Health Network, Toronto, ON
| | - Naimeh Rafatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON
| | | | | | - Wenliang Chen
- Scientific Research Center, the Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524023, China
| | - Shira Landau
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON
| | - Tasnia Subha
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, ON
| | - Michael H. Atkins
- McEwen Stem Cell Institute, University Health Network, Toronto, ON
- Department of Medical Biophysics, University of Toronto, Toronto, ON
| | - Yimu Zhao
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON
| | - Erika Beroncal
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON
| | - Ian Fernandes
- McEwen Stem Cell Institute, University Health Network, Toronto, ON
- Department of Medical Biophysics, University of Toronto, Toronto, ON
| | - Jared Nanthakumar
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
| | - Shabana Vohra
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
| | - Erika Y. Wang
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, United States
| | | | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, United States
- Department of Cardiology, Pittsburgh VA Medical Center, Pittsburgh, PA, United States
| | - Tracy L. McGaha
- Department of Immunology, University of Toronto, Toronto, ON
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON
| | - Ana C. Andreazza
- Department of Psychiatry, University of Toronto, Toronto, ON
- Mitochondrial Innovation Initiative, Toronto, ON
| | - Anthony Gramolini
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
- Department of Physiology, University of Toronto, Toronto, ON
| | - Peter H. Backx
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Department of Physiology, University of Toronto, Toronto, ON
- Department of Biology, York University, Toronto, ON
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, ON
| | - Michael A. Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON
- Department of Medical Biophysics, University of Toronto, Toronto, ON
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON
| | - Milica Radisic
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, ON
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
- Department of Immunology, University of Toronto, Toronto, ON
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON
| |
Collapse
|
9
|
Park S, Cho SW. Bioengineering toolkits for potentiating organoid therapeutics. Adv Drug Deliv Rev 2024; 208:115238. [PMID: 38447933 DOI: 10.1016/j.addr.2024.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoids are three-dimensional, multicellular constructs that recapitulate the structural and functional features of specific organs. Because of these characteristics, organoids have been widely applied in biomedical research in recent decades. Remarkable advancements in organoid technology have positioned them as promising candidates for regenerative medicine. However, current organoids still have limitations, such as the absence of internal vasculature, limited functionality, and a small size that is not commensurate with that of actual organs. These limitations hinder their survival and regenerative effects after transplantation. Another significant concern is the reliance on mouse tumor-derived matrix in organoid culture, which is unsuitable for clinical translation due to its tumor origin and safety issues. Therefore, our aim is to describe engineering strategies and alternative biocompatible materials that can facilitate the practical applications of organoids in regenerative medicine. Furthermore, we highlight meaningful progress in organoid transplantation, with a particular emphasis on the functional restoration of various organs.
Collapse
Affiliation(s)
- Sewon Park
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
10
|
Stiefbold M, Zhang H, Wan LQ. Engineered platforms for mimicking cardiac development and drug screening. Cell Mol Life Sci 2024; 81:197. [PMID: 38664263 PMCID: PMC11045633 DOI: 10.1007/s00018-024-05231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
Congenital heart defects are associated with significant health challenges, demanding a deep understanding of the underlying biological mechanisms and, thus, better devices or platforms that can recapitulate human cardiac development. The discovery of human pluripotent stem cells has substantially reduced the dependence on animal models. Recent advances in stem cell biology, genetic editing, omics, microfluidics, and sensor technologies have further enabled remarkable progress in the development of in vitro platforms with increased fidelity and efficiency. In this review, we provide an overview of advancements in in vitro cardiac development platforms, with a particular focus on technological innovation. We categorize these platforms into four areas: two-dimensional solid substrate cultures, engineered substrate architectures that enhance cellular functions, cardiac organoids, and embryos/explants-on-chip models. We conclude by addressing current limitations and presenting future perspectives.
Collapse
Affiliation(s)
- Madison Stiefbold
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Biotech 2147, 110 8t Street, Troy, NY, 12180, USA
| | - Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Biotech 2147, 110 8t Street, Troy, NY, 12180, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Biotech 2147, 110 8t Street, Troy, NY, 12180, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
11
|
Chao G, Zukin S, Fortuna PRJ, Boettner B, Church GM. Progress and limitations in engineering cellular adhesion for research and therapeutics. Trends Cell Biol 2024; 34:277-287. [PMID: 37580241 DOI: 10.1016/j.tcb.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/16/2023]
Abstract
Intercellular interactions form the cornerstone of multicellular biology. Despite advances in protein engineering, researchers artificially directing physical cell interactions still rely on endogenous cell adhesion molecules (CAMs) alongside off-target interactions and unintended signaling. Recently, methods for directing cellular interactions have been developed utilizing programmable domains such as coiled coils (CCs), nanobody-antigen, and single-stranded DNA (ssDNA). We first discuss desirable molecular- and systems-level properties in engineered CAMs, using the helixCAM platform as a benchmark. Next, we propose applications for engineered CAMs in immunology, developmental biology, tissue engineering, and neuroscience. Biologists in various fields can readily adapt current engineered CAMs to establish control over cell interactions, and their utilization in basic and translational research will incentivize further expansion in engineered CAM capabilities.
Collapse
Affiliation(s)
- George Chao
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Stefan Zukin
- Wyss Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Bakinowska E, Kiełbowski K, Boboryko D, Bratborska AW, Olejnik-Wojciechowska J, Rusiński M, Pawlik A. The Role of Stem Cells in the Treatment of Cardiovascular Diseases. Int J Mol Sci 2024; 25:3901. [PMID: 38612710 PMCID: PMC11011548 DOI: 10.3390/ijms25073901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and include several vascular and cardiac disorders, such as atherosclerosis, coronary artery disease, cardiomyopathies, and heart failure. Multiple treatment strategies exist for CVDs, but there is a need for regenerative treatment of damaged heart. Stem cells are a broad variety of cells with a great differentiation potential that have regenerative and immunomodulatory properties. Multiple studies have evaluated the efficacy of stem cells in CVDs, such as mesenchymal stem cells and induced pluripotent stem cell-derived cardiomyocytes. These studies have demonstrated that stem cells can improve the left ventricle ejection fraction, reduce fibrosis, and decrease infarct size. Other studies have investigated potential methods to improve the survival, engraftment, and functionality of stem cells in the treatment of CVDs. The aim of the present review is to summarize the current evidence on the role of stem cells in the treatment of CVDs, and how to improve their efficacy.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | | | - Joanna Olejnik-Wojciechowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Marcin Rusiński
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| |
Collapse
|
13
|
Chi C, Roland TJ, Song K. Differentiation of Pluripotent Stem Cells for Disease Modeling: Learning from Heart Development. Pharmaceuticals (Basel) 2024; 17:337. [PMID: 38543122 PMCID: PMC10975450 DOI: 10.3390/ph17030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
Heart disease is a pressing public health problem and the leading cause of death worldwide. The heart is the first organ to gain function during embryogenesis in mammals. Heart development involves cell determination, expansion, migration, and crosstalk, which are orchestrated by numerous signaling pathways, such as the Wnt, TGF-β, IGF, and Retinoic acid signaling pathways. Human-induced pluripotent stem cell-based platforms are emerging as promising approaches for modeling heart disease in vitro. Understanding the signaling pathways that are essential for cardiac development has shed light on the molecular mechanisms of congenital heart defects and postnatal heart diseases, significantly advancing stem cell-based platforms to model heart diseases. This review summarizes signaling pathways that are crucial for heart development and discusses how these findings improve the strategies for modeling human heart disease in vitro.
Collapse
Affiliation(s)
- Congwu Chi
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Truman J. Roland
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Kunhua Song
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| |
Collapse
|
14
|
Zhang T, Qian C, Song M, Tang Y, Zhou Y, Dong G, Shen Q, Chen W, Wang A, Shen S, Zhao Y, Lu Y. Application Prospect of Induced Pluripotent Stem Cells in Organoids and Cell Therapy. Int J Mol Sci 2024; 25:2680. [PMID: 38473926 DOI: 10.3390/ijms25052680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Since its inception, induced pluripotent stem cell (iPSC) technology has been hailed as a powerful tool for comprehending disease etiology and advancing drug screening across various domains. While earlier iPSC-based disease modeling and drug assessment primarily operated at the cellular level, recent years have witnessed a significant shift towards organoid-based investigations. Organoids derived from iPSCs offer distinct advantages, particularly in enabling the observation of disease progression and drug metabolism in an in vivo-like environment, surpassing the capabilities of iPSC-derived cells. Furthermore, iPSC-based cell therapy has emerged as a focal point of clinical interest. In this review, we provide an extensive overview of non-integrative reprogramming methods that have evolved since the inception of iPSC technology. We also deliver a comprehensive examination of iPSC-derived organoids, spanning the realms of the nervous system, cardiovascular system, and oncology, as well as systematically elucidate recent advancements in iPSC-related cell therapies.
Collapse
Affiliation(s)
- Teng Zhang
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qian
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengyao Song
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Tang
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yueke Zhou
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanglu Dong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiuhong Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenxing Chen
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Aiyun Wang
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, H91 W2TY Galway, Ireland
| | - Yang Zhao
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
15
|
Noël ES. Cardiac construction-Recent advances in morphological and transcriptional modeling of early heart development. Curr Top Dev Biol 2024; 156:121-156. [PMID: 38556421 DOI: 10.1016/bs.ctdb.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
During human embryonic development the early establishment of a functional heart is vital to support the growing fetus. However, forming the embryonic heart is an extremely complex process, requiring spatiotemporally controlled cell specification and differentiation, tissue organization, and coordination of cardiac function. These complexities, in concert with the early and rapid development of the embryonic heart, mean that understanding the intricate interplay between these processes that help shape the early heart remains highly challenging. In this review I focus on recent insights from animal models that have shed new light on the earliest stages of heart development. This includes specification and organization of cardiac progenitors, cell and tissue movements that make and shape the early heart tube, and the initiation of the first beat in the developing heart. In addition I highlight relevant in vitro models that could support translation of findings from animal models to human heart development. Finally I discuss challenges that are being addressed in the field, along with future considerations that together may help move us towards a deeper understanding of how our hearts are made.
Collapse
Affiliation(s)
- Emily S Noël
- School of Biosciences and Bateson Centre, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
16
|
McIntire E, Barr KA, Gonzales NM, Gilad Y. Guided Differentiation of Pluripotent Stem Cells for Cardiac Cell Diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.21.550072. [PMID: 37502898 PMCID: PMC10370173 DOI: 10.1101/2023.07.21.550072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We have developed a guided differentiation protocol for induced pluripotent stem cells (iPSCs) that rapidly generates a temporally and functionally diverse set of cardiac-relevant cell types. By leveraging techniques used in embryoid body and cardiac organoid generation, we produce both progenitor and terminal cardiac cell types concomitantly in just 10 days. Our results show that guided differentiation generates functionally relevant cardiac cell types that closely align with the transcriptional profiles of cells from differentiation time-course collections, mature cardiac organoids, and in vivo heart tissue. Guided differentiation prioritizes simplicity by minimizing the number of reagents and steps required, thereby enabling rapid and cost-effective experimental throughput. We expect this approach will provide a scalable cardiac model for population-level studies of gene regulatory variation and gene-by-environment interactions.
Collapse
Affiliation(s)
- Erik McIntire
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Kenneth A Barr
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Natalia M Gonzales
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
17
|
Miao Y, Tan C, Pek NM, Yu Z, Iwasawa K, Kechele DO, Sundaram N, Pastrana-Gomez V, Kishimoto K, Yang MC, Jiang C, Tchieu J, Whitsett JA, McCracken KW, Rottier RJ, Kotton DN, Helmrath MA, Wells JM, Takebe T, Zorn AM, Chen YW, Guo M, Gu M. Deciphering Endothelial and Mesenchymal Organ Specification in Vascularized Lung and Intestinal Organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.577460. [PMID: 38370768 PMCID: PMC10871227 DOI: 10.1101/2024.02.06.577460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
To investigate the co-development of vasculature, mesenchyme, and epithelium crucial for organogenesis and the acquisition of organ-specific characteristics, we constructed a human pluripotent stem cell-derived organoid system comprising lung or intestinal epithelium surrounded by organotypic mesenchyme and vasculature. We demonstrated the pivotal role of co-differentiating mesoderm and endoderm via precise BMP regulation in generating multilineage organoids and gut tube patterning. Single-cell RNA-seq analysis revealed organ specificity in endothelium and mesenchyme, and uncovered key ligands driving endothelial specification in the lung (e.g., WNT2B and Semaphorins) or intestine (e.g., GDF15). Upon transplantation under the kidney capsule in mice, these organoids further matured and developed perfusable human-specific sub-epithelial capillaries. Additionally, our model recapitulated the abnormal endothelial-epithelial crosstalk in patients with FOXF1 deletion or mutations. Multilineage organoids provide a unique platform to study developmental cues guiding endothelial and mesenchymal cell fate determination, and investigate intricate cell-cell communications in human organogenesis and disease. Highlights BMP signaling fine-tunes the co-differentiation of mesoderm and endoderm.The cellular composition in multilineage organoids resembles that of human fetal organs.Mesenchyme and endothelium co-developed within the organoids adopt organ-specific characteristics.Multilineage organoids recapitulate abnormal endothelial-epithelial crosstalk in FOXF1-associated disorders.
Collapse
|
18
|
Yang Y, Yang H, Kiskin FN, Zhang JZ. The new era of cardiovascular research: revolutionizing cardiovascular research with 3D models in a dish. MEDICAL REVIEW (2021) 2024; 4:68-85. [PMID: 38515776 PMCID: PMC10954298 DOI: 10.1515/mr-2023-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/18/2024] [Indexed: 03/23/2024]
Abstract
Cardiovascular research has heavily relied on studies using patient samples and animal models. However, patient studies often miss the data from the crucial early stage of cardiovascular diseases, as obtaining primary tissues at this stage is impracticable. Transgenic animal models can offer some insights into disease mechanisms, although they usually do not fully recapitulate the phenotype of cardiovascular diseases and their progression. In recent years, a promising breakthrough has emerged in the form of in vitro three-dimensional (3D) cardiovascular models utilizing human pluripotent stem cells. These innovative models recreate the intricate 3D structure of the human heart and vessels within a controlled environment. This advancement is pivotal as it addresses the existing gaps in cardiovascular research, allowing scientists to study different stages of cardiovascular diseases and specific drug responses using human-origin models. In this review, we first outline various approaches employed to generate these models. We then comprehensively discuss their applications in studying cardiovascular diseases by providing insights into molecular and cellular changes associated with cardiovascular conditions. Moreover, we highlight the potential of these 3D models serving as a platform for drug testing to assess drug efficacy and safety. Despite their immense potential, challenges persist, particularly in maintaining the complex structure of 3D heart and vessel models and ensuring their function is comparable to real organs. However, overcoming these challenges could revolutionize cardiovascular research. It has the potential to offer comprehensive mechanistic insights into human-specific disease processes, ultimately expediting the development of personalized therapies.
Collapse
Affiliation(s)
- Yuan Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Hao Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Fedir N. Kiskin
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Joe Z. Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| |
Collapse
|
19
|
Roland TJ, Song K. Advances in the Generation of Constructed Cardiac Tissue Derived from Induced Pluripotent Stem Cells for Disease Modeling and Therapeutic Discovery. Cells 2024; 13:250. [PMID: 38334642 PMCID: PMC10854966 DOI: 10.3390/cells13030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
The human heart lacks significant regenerative capacity; thus, the solution to heart failure (HF) remains organ donation, requiring surgery and immunosuppression. The demand for constructed cardiac tissues (CCTs) to model and treat disease continues to grow. Recent advances in induced pluripotent stem cell (iPSC) manipulation, CRISPR gene editing, and 3D tissue culture have enabled a boom in iPSC-derived CCTs (iPSC-CCTs) with diverse cell types and architecture. Compared with 2D-cultured cells, iPSC-CCTs better recapitulate heart biology, demonstrating the potential to advance organ modeling, drug discovery, and regenerative medicine, though iPSC-CCTs could benefit from better methods to faithfully mimic heart physiology and electrophysiology. Here, we summarize advances in iPSC-CCTs and future developments in the vascularization, immunization, and maturation of iPSC-CCTs for study and therapy.
Collapse
Affiliation(s)
- Truman J. Roland
- Heart Institute, University of South Florida, Tampa, FL 33602, USA;
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Kunhua Song
- Heart Institute, University of South Florida, Tampa, FL 33602, USA;
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| |
Collapse
|
20
|
Huang C, Jin H. Progress and perspective of organoid technology in breast cancer research. Chin Med J (Engl) 2024:00029330-990000000-00903. [PMID: 38185826 PMCID: PMC11407818 DOI: 10.1097/cm9.0000000000002889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 01/09/2024] Open
Abstract
ABSTRACT Breast cancer, a malignant tumor with a high incidence in women, lacks in vitro research models that can represent the biological functions of breast tumors in vivo. As a new biological tool, the organoid model has unique advantages over traditional methods, such as cell culture and patient-derived xenografts. Combining organoids with other emerging technologies, such as gene engineering and microfluidic chip technology, provides an effective method to compensate for the deficiencies in organoid models of breast cancer in vivo. The emergence of breast cancer organoids has provided new tools and research directions in precision medicine, personality therapy, and drug research. In this review, we summarized the merits and demerits of organoids compared to traditional biological models, explored the latest developments in the combination of new technologies and organoid models, and discussed the construction methods and application prospects of different breast organoid models.
Collapse
Affiliation(s)
- Changsheng Huang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing 100034, China
| | | |
Collapse
|
21
|
Olmsted ZT, Paredes-Espinosa MB, Paluh JL. Embryonic Spinal Cord Innervation in Human Trunk Organogenesis Gastruloids: Cardiac Versus Enteric Customization and Beyond. Methods Mol Biol 2024; 2767:135-159. [PMID: 37284941 DOI: 10.1007/7651_2023_491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Trunk-biased human gastruloids provide the ability to couple developmentally relevant spinal neurogenesis and organ morphogenesis via spatiotemporal self-organization events from derivatives of the three germ layers. The multi-lineage nature of gastruloids provides the full complexity of regulatory signaling cues that surpasses directed organoids and lays the foundation for an ex vivo self-evolving system. Here we detail two distinct protocols for trunk-biased gastruloids from an elongated, polarized structure with coordinated organ-specific neural patterning. Following an induction phase to caudalize iPSCs to trunk phenotype, divergent features of organogenesis and end-organ innervation yield separate models of enteric and cardiac nervous system formation. Both protocols are permissive to multi-lineage development and allow the study of neural integration events within a native, embryo-like context. We discuss the customizability of human gastruloids and the optimization of initial and extended conditions that maintain a permissive environment for multi-lineage differentiation and integration.
Collapse
Affiliation(s)
- Zachary T Olmsted
- State University of New York Polytechnic Institute, College of Nanoscale Science and Engineering, Nanobioscience, Albany, NY, USA
- University of California Los Angeles, Ronald Reagan UCLA Medical Center, Department of Neurosurgery, Los Angeles, CA, USA
| | - Maria Belen Paredes-Espinosa
- State University of New York Polytechnic Institute, College of Nanoscale Science and Engineering, Nanobioscience, Albany, NY, USA
| | - Janet L Paluh
- State University of New York Polytechnic Institute, College of Nanoscale Science and Engineering, Nanobioscience, Albany, NY, USA
| |
Collapse
|
22
|
Joo H, Min S, Cho SW. Advanced lung organoids for respiratory system and pulmonary disease modeling. J Tissue Eng 2024; 15:20417314241232502. [PMID: 38406820 PMCID: PMC10894554 DOI: 10.1177/20417314241232502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Amidst the recent coronavirus disease 2019 (COVID-19) pandemic, respiratory system research has made remarkable progress, particularly focusing on infectious diseases. Lung organoid, a miniaturized structure recapitulating lung tissue, has gained global attention because of its advantages over other conventional models such as two-dimensional (2D) cell models and animal models. Nevertheless, lung organoids still face limitations concerning heterogeneity, complexity, and maturity compared to the native lung tissue. To address these limitations, researchers have employed co-culture methods with various cell types including endothelial cells, mesenchymal cells, and immune cells, and incorporated bioengineering platforms such as air-liquid interfaces, microfluidic chips, and functional hydrogels. These advancements have facilitated applications of lung organoids to studies of pulmonary diseases, providing insights into disease mechanisms and potential treatments. This review introduces recent progress in the production methods of lung organoids, strategies for improving maturity, functionality, and complexity of organoids, and their application in disease modeling, including respiratory infection and pulmonary fibrosis.
Collapse
Affiliation(s)
- Hyebin Joo
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| |
Collapse
|
23
|
Gómez-Álvarez M, Agustina-Hernández M, Francés-Herrero E, Rodríguez-Eguren A, Bueno-Fernandez C, Cervelló I. Addressing Key Questions in Organoid Models: Who, Where, How, and Why? Int J Mol Sci 2023; 24:16014. [PMID: 37958996 PMCID: PMC10650475 DOI: 10.3390/ijms242116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Organoids are three-dimensional cellular structures designed to recreate the biological characteristics of the body's native tissues and organs in vitro. There has been a recent surge in studies utilizing organoids due to their distinct advantages over traditional two-dimensional in vitro approaches. However, there is no consensus on how to define organoids. This literature review aims to clarify the concept of organoids and address the four fundamental questions pertaining to organoid models: (i) What constitutes organoids?-The cellular material. (ii) Where do organoids grow?-The extracellular scaffold. (iii) How are organoids maintained in vitro?-Via the culture media. (iv) Why are organoids suitable in vitro models?-They represent reproducible, stable, and scalable models for biological applications. Finally, this review provides an update on the organoid models employed within the female reproductive tract, underscoring their relevance in both basic biology and clinical applications.
Collapse
Affiliation(s)
- María Gómez-Álvarez
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Marcos Agustina-Hernández
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Emilio Francés-Herrero
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
- Department of Pediatrics, Obstetrics and Gynecology, Universitat de València, 46010 Valencia, Spain
| | - Adolfo Rodríguez-Eguren
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Clara Bueno-Fernandez
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
- Department of Pediatrics, Obstetrics and Gynecology, Universitat de València, 46010 Valencia, Spain
| | - Irene Cervelló
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| |
Collapse
|
24
|
Schuster KJ, Christiaen L. The Chordate Origins of Heart Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558507. [PMID: 37781597 PMCID: PMC10541106 DOI: 10.1101/2023.09.19.558507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The human heart is infamous for not healing after infarction in adults, prompting biomedical interest in species that can regenerate damaged hearts. In such animals as zebrafish and neonatal mice, cardiac repair relies on remaining heart tissue supporting cardiomyocyte proliferation. Natural de novo cardiogenesis in post-embryonic stages thus remains elusive. Here we show that the tunicate Ciona, an ascidian among the closest living relatives to the vertebrates, can survive complete chemogenetic ablation of the heart and loss of cardiac function, and recover both cardiac tissue and contractility. As in vertebrates, Ciona heart regeneration relies on Bone Morphogenetic Protein (BMP) signaling-dependent proliferation of cardiomyocytes, providing insights into the evolutionary origins of regenerative cardiogenesis in chordates. Remarkably, prospective lineage tracing by photoconversion of the fluorescent protein Kaede suggested that new cardiomyocytes can emerge from endodermal lineages in post-metamorphic animals, providing an unprecedented case of regenerative de novo cardiogenesis. Finally, while embryos cannot compensate for early losses of the cardiogenic lineage, forming heartless juveniles, developing animals gain their regenerative ability during metamorphosis, uncovering a fundamental transition between deterministic embryogenesis and regulative post-embryonic development.
Collapse
Affiliation(s)
- Keaton J Schuster
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
- Michael Sars Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
25
|
Yang Z, Zhang Y, Wang J, Yin J, Wang Z, Pei R. Cardiac organoid: multiple construction approaches and potential applications. J Mater Chem B 2023; 11:7567-7581. [PMID: 37477533 DOI: 10.1039/d3tb00783a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The human cardiac organoid (hCO) is three-dimensional tissue model that is similar to an in vivo organ and has great potential on heart development biology, disease modeling, drug screening and regenerative medicine. However, the construction of hCO presents a unique challenge compared with other organoids such as the lung, small intestine, pancreas, liver. Since heart disease is the dominant cause of death and the treatment of such disease is one of the most unmet medical needs worldwide, developing technologies for the construction and application of hCO is a critical task for the scientific community. In this review, we discuss the current classification and construction methods of hCO. In addition, we describe its applications in drug screening, disease modeling, and regenerative medicine. Finally, we propose the limitations of the cardiac organoid and future research directions. A detailed understanding of hCO will provide ways to improve its construction and expand its applications.
Collapse
Affiliation(s)
- Ziyi Yang
- School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| | - Jine Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| | - Jingbo Yin
- School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
| | - Zheng Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| |
Collapse
|
26
|
Wu F, He Q, Li F, Yang X. A review of protocols for engineering human cardiac organoids. Heliyon 2023; 9:e19938. [PMID: 37809996 PMCID: PMC10559357 DOI: 10.1016/j.heliyon.2023.e19938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
The use of human cardiac organoids (hCOs) as 3D in vitro models for cardiovascular research has shown great promise. Human pluripotent stem cells (hPSCs) have proven to be a potent source for engineering hCOs. However, various protocols for generating hCOs from hPSCs result in significant differences in heart development, maturity, complexity, vascularization, and spatial structure, all of which can influence their functional and physiological properties. This protocol review aims to highlight different strategies for generating hCOs using hPSCs while also critically discussing their challenges and limitations.
Collapse
Affiliation(s)
- Fujian Wu
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, 518055, Guangdong, China
- Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, 510632, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Qian He
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Furong Li
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| | - Xiaofei Yang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, 518055, Guangdong, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China
| |
Collapse
|
27
|
Reyat JS, di Maio A, Grygielska B, Pike J, Kemble S, Rodriguez-Romero A, Simoglou Karali C, Croft AP, Psaila B, Simões F, Rayes J, Khan AO. Modelling the pathology and treatment of cardiac fibrosis in vascularised atrial and ventricular cardiac microtissues. Front Cardiovasc Med 2023; 10:1156759. [PMID: 37727305 PMCID: PMC10506403 DOI: 10.3389/fcvm.2023.1156759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Recent advances in human cardiac 3D approaches have yielded progressively more complex and physiologically relevant culture systems. However, their application in the study of complex pathological processes, such as inflammation and fibrosis, and their utility as models for drug development have been thus far limited. Methods In this work, we report the development of chamber-specific, vascularised human induced pluripotent stem cell-derived cardiac microtissues, which allow for the multi-parametric assessment of cardiac fibrosis. Results We demonstrate the generation of a robust vascular system in the microtissues composed of endothelial cells, fibroblasts and atrial or ventricular cardiomyocytes that exhibit gene expression signatures, architectural, and electrophysiological resemblance to in vivo-derived anatomical cardiac tissues. Following pro-fibrotic stimulation using TGFβ, cardiac microtissues recapitulated hallmarks of cardiac fibrosis, including myofibroblast activation and collagen deposition. A study of Ca2+ dynamics in fibrotic microtissues using optical mapping revealed prolonged Ca2+ decay, reflecting cardiomyocyte dysfunction, which is linked to the severity of fibrosis. This phenotype could be reversed by TGFβ receptor inhibition or by using the BET bromodomain inhibitor, JQ1. Discussion In conclusion, we present a novel methodology for the generation of chamber-specific cardiac microtissues that is highly scalable and allows for the multi-parametric assessment of cardiac remodelling and pharmacological screening.
Collapse
Affiliation(s)
- Jasmeet S. Reyat
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Physiology, Anatomy and Genetics, Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom
| | - Alessandro di Maio
- The Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Birmingham, United Kingdom
| | - Beata Grygielska
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jeremy Pike
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- The Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Birmingham, United Kingdom
| | - Samuel Kemble
- Rheumatology Research Group, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Antonio Rodriguez-Romero
- Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Christina Simoglou Karali
- Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Adam P. Croft
- Rheumatology Research Group, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Bethan Psaila
- Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Filipa Simões
- Department of Physiology, Anatomy and Genetics, Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom
| | - Julie Rayes
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- The Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Birmingham, United Kingdom
| | - Abdullah O. Khan
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Yang H, Yang Y, Kiskin FN, Shen M, Zhang JZ. Recent advances in regulating the proliferation or maturation of human-induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2023; 14:228. [PMID: 37649113 PMCID: PMC10469435 DOI: 10.1186/s13287-023-03470-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
In the last decade, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM)-based cell therapy has drawn broad attention as a potential therapy for treating injured hearts. However, mass production of hiPSC-CMs remains challenging, limiting their translational potential in regenerative medicine. Therefore, multiple strategies including cell cycle regulators, small molecules, co-culture systems, and epigenetic modifiers have been used to improve the proliferation of hiPSC-CMs. On the other hand, the immaturity of these proliferative hiPSC-CMs could lead to lethal arrhythmias due to their limited ability to functionally couple with resident cardiomyocytes. To achieve functional maturity, numerous methods such as prolonged culture, biochemical or biophysical stimulation, in vivo transplantation, and 3D culture approaches have been employed. In this review, we summarize recent approaches used to promote hiPSC-CM proliferation, and thoroughly review recent advances in promoting hiPSC-CM maturation, which will serve as the foundation for large-scale production of mature hiPSC-CMs for future clinical applications.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yuan Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Fedir N Kiskin
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Mengcheng Shen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
29
|
Noh JM, Choi SC, Song MH, Kim KS, Jun S, Park JH, Kim JH, Kim K, Ko TH, Choi JI, Gim JA, Kim JH, Jang Y, Park Y, Na JE, Rhyu IJ, Lim DS. The Activation of the LIMK/Cofilin Signaling Pathway via Extracellular Matrix-Integrin Interactions Is Critical for the Generation of Mature and Vascularized Cardiac Organoids. Cells 2023; 12:2029. [PMID: 37626839 PMCID: PMC10453200 DOI: 10.3390/cells12162029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The generation of mature and vascularized human pluripotent stem cell-derived cardiac organoids (hPSC-COs) is necessary to ensure the validity of drug screening and disease modeling. This study investigates the effects of cellular aggregate (CA) stemness and self-organization on the generation of mature and vascularized hPSC-COs and elucidates the mechanisms underlying cardiac organoid (CO) maturation and vascularization. COs derived from 2-day-old CAs with high stemness (H-COs) and COs derived from 5-day-old CAs with low stemness (L-COs) were generated in a self-organized microenvironment via Wnt signaling induction. This study finds that H-COs exhibit ventricular, structural, metabolic, and functional cardiomyocyte maturation and vessel networks consisting of endothelial cells, smooth muscle cells, pericytes, and basement membranes compared to L-COs. Transcriptional profiling shows the upregulation of genes associated with cardiac maturation and vessel formation in H-COs compared with the genes in L-COs. Through experiments with LIMK inhibitors, the activation of ROCK-LIMK-pCofilin via ECM-integrin interactions leads to cardiomyocyte maturation and vessel formation in H-COs. Furthermore, the LIMK/Cofilin signaling pathway induces TGFβ/NODAL and PDGF pathway activation for the maturation and vascularization of H-COs. The study demonstrates for the first time that LIMK/Cofilin axis activation plays an important role in the generation of mature and vascularized COs.
Collapse
Affiliation(s)
- Ji-Min Noh
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.-M.N.); (S.-C.C.); (M.-H.S.); (K.S.K.); (S.J.); (J.H.P.); (J.H.K.)
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.-M.N.); (S.-C.C.); (M.-H.S.); (K.S.K.); (S.J.); (J.H.P.); (J.H.K.)
- R&D Center for Companion Diagnostic, SOL Bio Corporation, Suite 510, 27, Seongsui-ro7-gil, Seongdong-gu, Seoul 04780, Republic of Korea
| | - Myeong-Hwa Song
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.-M.N.); (S.-C.C.); (M.-H.S.); (K.S.K.); (S.J.); (J.H.P.); (J.H.K.)
| | - Kyung Seob Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.-M.N.); (S.-C.C.); (M.-H.S.); (K.S.K.); (S.J.); (J.H.P.); (J.H.K.)
| | - Seongmin Jun
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.-M.N.); (S.-C.C.); (M.-H.S.); (K.S.K.); (S.J.); (J.H.P.); (J.H.K.)
| | - Jae Hyoung Park
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.-M.N.); (S.-C.C.); (M.-H.S.); (K.S.K.); (S.J.); (J.H.P.); (J.H.K.)
| | - Ju Hyeon Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.-M.N.); (S.-C.C.); (M.-H.S.); (K.S.K.); (S.J.); (J.H.P.); (J.H.K.)
| | - Kyoungmi Kim
- Department of Physiology, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Tae Hee Ko
- Division of Cardiology, Department of Internal Medicine, Anam Hospital, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (T.H.K.); (J.-I.C.)
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Anam Hospital, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (T.H.K.); (J.-I.C.)
| | - Jeong-An Gim
- Medical Science Research Center, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea;
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| | - Yongjun Jang
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (Y.J.); (Y.P.)
| | - Yongdoo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (Y.J.); (Y.P.)
| | - Ji Eun Na
- Department of Anatomy College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.E.N.); (I.J.R.)
| | - Im Joo Rhyu
- Department of Anatomy College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.E.N.); (I.J.R.)
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (J.-M.N.); (S.-C.C.); (M.-H.S.); (K.S.K.); (S.J.); (J.H.P.); (J.H.K.)
| |
Collapse
|
30
|
Muniyandi P, O’Hern C, Popa MA, Aguirre A. Biotechnological advances and applications of human pluripotent stem cell-derived heart models. Front Bioeng Biotechnol 2023; 11:1214431. [PMID: 37560538 PMCID: PMC10407810 DOI: 10.3389/fbioe.2023.1214431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
In recent years, significant biotechnological advancements have been made in engineering human cardiac tissues and organ-like models. This field of research is crucial for both basic and translational research due to cardiovascular disease being the leading cause of death in the developed world. Additionally, drug-associated cardiotoxicity poses a major challenge for drug development in the pharmaceutical and biotechnological industries. Progress in three-dimensional cell culture and microfluidic devices has enabled the generation of human cardiac models that faithfully recapitulate key aspects of human physiology. In this review, we will discuss 3D pluripotent stem cell (PSC)-models of the human heart, such as engineered heart tissues and organoids, and their applications in disease modeling and drug screening.
Collapse
Affiliation(s)
- Priyadharshni Muniyandi
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Colin O’Hern
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Mirel Adrian Popa
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
31
|
Lee JW, Lee CS, Son H, Lee J, Kang M, Chai J, Cho HJ, Kim HS. SOX17-mediated LPAR4 expression plays a pivotal role in cardiac development and regeneration after myocardial infarction. Exp Mol Med 2023; 55:1424-1436. [PMID: 37394586 PMCID: PMC10394006 DOI: 10.1038/s12276-023-01025-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/09/2023] [Accepted: 03/26/2023] [Indexed: 07/04/2023] Open
Abstract
Lysophosphatidic acid receptor 4 (LPAR4) exhibits transient expression at the cardiac progenitor stage during pluripotent stem cell (PSC)-derived cardiac differentiation. Using RNA sequencing, promoter analyses, and a loss-of-function study in human PSCs, we discovered that SRY-box transcription factor 17 (SOX17) is an essential upstream factor of LPAR4 during cardiac differentiation. We conducted mouse embryo analyses to further verify our human PSC in vitro findings and confirmed the transient and sequential expression of SOX17 and LPAR4 during in vivo cardiac development. In an adult bone marrow transplantation model using LPAR4 promoter-driven GFP cells, we observed two LPAR4+ cell types in the heart following myocardial infarction (MI). Cardiac differentiation potential was shown in heart-resident LPAR4+ cells, which are SOX17+, but not bone marrow-derived infiltrated LPAR4+ cells. Furthermore, we tested various strategies to enhance cardiac repair through the regulation of downstream signals of LPAR4. During the early stages following MI, the downstream inhibition of LPAR4 by a p38 mitogen-activated protein kinase (p38 MAPK) blocker improved cardiac function and reduced fibrotic scarring compared to that observed following LPAR4 stimulation. These findings improve our understanding of heart development and suggest novel therapeutic strategies that enhance repair and regeneration after injury by modulating LPAR4 signaling.
Collapse
Affiliation(s)
- Jin-Woo Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Choon-Soo Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - HyunJu Son
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jaewon Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Minjun Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jinho Chai
- Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Jai Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Hyo-Soo Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
32
|
Tenreiro MF, Branco MA, Cotovio JP, Cabral JMS, Fernandes TG, Diogo MM. Advancing organoid design through co-emergence, assembly, and bioengineering. Trends Biotechnol 2023; 41:923-938. [PMID: 36653200 DOI: 10.1016/j.tibtech.2022.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023]
Abstract
Human adult stem cells and patient-derived induced pluripotent stem cells represent promising tools to understand human biology, development, and disease. Under a permissive environment, stem cell derivatives can self-organize and reconstruct their native milieu, resulting in the creation of organ-like entities known as organoids. Although organoids represent a breakthrough in the stem cell field, there are still considerable shortcomings preventing their widespread use, namely their variability, limited function, and reductionist size. In the past few years, sophisticated methodologies have been proposed to allow the design of organoids with improved biological fidelity and physiological relevance. Here, we summarize these emerging technologies and provide insights into how they can be utilized to fulfill the potential of stem cells.
Collapse
Affiliation(s)
- Miguel F Tenreiro
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Mariana A Branco
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - João P Cotovio
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Maria Margarida Diogo
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| |
Collapse
|
33
|
Soares BX, Miranda CC, Fernandes TG. Systems bioengineering approaches for developmental toxicology. Comput Struct Biotechnol J 2023; 21:3272-3279. [PMID: 38213895 PMCID: PMC10781881 DOI: 10.1016/j.csbj.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 01/13/2024] Open
Abstract
Developmental toxicology is the field of study that examines the effects of chemical and physical agents on developing organisms. By using principles of systems biology and bioengineering, a systems bioengineering approach could be applied to study the complex interactions between developing organisms, the environment, and toxic agents. This approach would result in a holistic understanding of the effects of toxic agents on organisms, by considering the interactions between different biological systems and the impacts of toxicants on those interactions. It would be useful in identifying key biological pathways and mechanisms affected by toxic agents, as well as in the development of predictive models to assess potential risks of exposure to toxicants during development. In this review, we discuss the relevance of systems bioengineering to the field of developmental toxicity and provide up-to-date examples that illustrate the use of engineering principles for this application.
Collapse
Affiliation(s)
- Beatriz Xavier Soares
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia C. Miranda
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- AccelBio, Collaborative Laboratory to Foster Translation and Drug Discovery, Cantanhede, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
34
|
Abstract
The heart is the first functional organ established during embryogenesis. Investigating heart development and disease is a fascinating and crucial field of research because cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. Therefore, there is great interest in establishing in vitro models for recapitulating both physiological and pathological aspects of human heart development, tissue function and malfunction. Derived from pluripotent stem cells, a large variety of three-dimensional cardiac in vitro models have been introduced in recent years. In this At a Glance article, we discuss the available methods to generate such models, grouped according to the following classification: cardiac organoids, cardiac microtissues and engineered cardiac tissues. For these models, we provide a systematic overview of their applications for disease modeling and therapeutic development, as well as their advantages and limitations to assist scientists in choosing the most suitable model for their research purpose.
Collapse
Affiliation(s)
- Lika Drakhlis
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
- Authors for correspondence (; )
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
- Authors for correspondence (; )
| |
Collapse
|
35
|
Coughlan MF, Perelman LT. Label-free characterization of organoids with quantitative confocal Raman spectral imaging. CELL REPORTS METHODS 2023; 3:100457. [PMID: 37159664 PMCID: PMC10162994 DOI: 10.1016/j.crmeth.2023.100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Stem cell-derived organoids have the potential to significantly improve the drug discovery process. However, a key challenge is monitoring the maturation process and drug response. In this issue of Cell Reports Methods, LaLone et al. have shown that quantitative confocal Raman spectral imaging, a label-free technique, can reliably monitor organoid development, drug accumulation, and drug metabolism.
Collapse
Affiliation(s)
- Mark F. Coughlan
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
| | - Lev T. Perelman
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
| |
Collapse
|
36
|
Voges HK, Foster SR, Reynolds L, Parker BL, Devilée L, Quaife-Ryan GA, Fortuna PRJ, Mathieson E, Fitzsimmons R, Lor M, Batho C, Reid J, Pocock M, Friedman CE, Mizikovsky D, Francois M, Palpant NJ, Needham EJ, Peralta M, Monte-Nieto GD, Jones LK, Smyth IM, Mehdiabadi NR, Bolk F, Janbandhu V, Yao E, Harvey RP, Chong JJH, Elliott DA, Stanley EG, Wiszniak S, Schwarz Q, James DE, Mills RJ, Porrello ER, Hudson JE. Vascular cells improve functionality of human cardiac organoids. Cell Rep 2023:112322. [PMID: 37105170 DOI: 10.1016/j.celrep.2023.112322] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/13/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Crosstalk between cardiac cells is critical for heart performance. Here we show that vascular cells within human cardiac organoids (hCOs) enhance their maturation, force of contraction, and utility in disease modeling. Herein we optimize our protocol to generate vascular populations in addition to epicardial, fibroblast, and cardiomyocyte cells that self-organize into in-vivo-like structures in hCOs. We identify mechanisms of communication between endothelial cells, pericytes, fibroblasts, and cardiomyocytes that ultimately contribute to cardiac organoid maturation. In particular, (1) endothelial-derived LAMA5 regulates expression of mature sarcomeric proteins and contractility, and (2) paracrine platelet-derived growth factor receptor β (PDGFRβ) signaling from vascular cells upregulates matrix deposition to augment hCO contractile force. Finally, we demonstrate that vascular cells determine the magnitude of diastolic dysfunction caused by inflammatory factors and identify a paracrine role of endothelin driving dysfunction. Together this study highlights the importance and role of vascular cells in organoid models.
Collapse
Affiliation(s)
- Holly K Voges
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Simon R Foster
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Liam Reynolds
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lynn Devilée
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Gregory A Quaife-Ryan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Ellen Mathieson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Mary Lor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Christopher Batho
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Janice Reid
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark Pocock
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Clayton E Friedman
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Mathias Francois
- The Centenary Institute, David Richmond Program for Cardiovascular Research: Gene Regulation and Editing, Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Elise J Needham
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marina Peralta
- Australian Regenerative Medicine Institute. Monash University, Clayton, VIC 3800, Australia
| | | | - Lynelle K Jones
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Neda R Mehdiabadi
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Francesca Bolk
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ernestene Yao
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia; School of Biotechnology and Biomolecular Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - David A Elliott
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Sophie Wiszniak
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, The University of Sydney, Sydney, 2010 NSW, Australia
| | - Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, VIC 3052, Australia.
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
37
|
Zawada D, Kornherr J, Meier AB, Santamaria G, Dorn T, Nowak-Imialek M, Ortmann D, Zhang F, Lachmann M, Dreßen M, Ortiz M, Mascetti VL, Harmer SC, Nobles M, Tinker A, De Angelis MT, Pedersen RA, Grote P, Laugwitz KL, Moretti A, Goedel A. Retinoic acid signaling modulation guides in vitro specification of human heart field-specific progenitor pools. Nat Commun 2023; 14:1722. [PMID: 37012244 PMCID: PMC10070453 DOI: 10.1038/s41467-023-36764-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/15/2023] [Indexed: 04/05/2023] Open
Abstract
Cardiogenesis relies on the precise spatiotemporal coordination of multiple progenitor populations. Understanding the specification and differentiation of these distinct progenitor pools during human embryonic development is crucial for advancing our knowledge of congenital cardiac malformations and designing new regenerative therapies. By combining genetic labelling, single-cell transcriptomics, and ex vivo human-mouse embryonic chimeras we uncovered that modulation of retinoic acid signaling instructs human pluripotent stem cells to form heart field-specific progenitors with distinct fate potentials. In addition to the classical first and second heart fields, we observed the appearance of juxta-cardiac field progenitors giving rise to both myocardial and epicardial cells. Applying these findings to stem-cell based disease modelling we identified specific transcriptional dysregulation in first and second heart field progenitors derived from stem cells of patients with hypoplastic left heart syndrome. This highlights the suitability of our in vitro differentiation platform for studying human cardiac development and disease.
Collapse
Affiliation(s)
- Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Jessica Kornherr
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Anna B Meier
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Gianluca Santamaria
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Catanzaro, Italy
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Monika Nowak-Imialek
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Daniel Ortmann
- Department of Surgery, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Fangfang Zhang
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Mark Lachmann
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Martina Dreßen
- German Heart Center Munich, Department of Cardiovascular Surgery, Institute Insure - Technical University of Munich, School of Medicine and Health, Munich, Germany
| | | | - Victoria L Mascetti
- Bristol Heart Institute, Bristol Medical School, Translational Health Sciences, Bristol, UK
| | - Stephen C Harmer
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Muriel Nobles
- Clinical Pharmacology & Precision Medicine, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andrew Tinker
- Clinical Pharmacology & Precision Medicine, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Maria Teresa De Angelis
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Catanzaro, Italy
| | - Roger A Pedersen
- Department of Obstetrics and Gynecology, Stanford School of Medicine, Stanford University, Stanford, USA
| | - Phillip Grote
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany.
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany.
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany.
- Department of Surgery, Yale University School of Medicine, New Haven, USA.
| | - Alexander Goedel
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany.
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
38
|
Sahara M. Recent Advances in Generation of In Vitro Cardiac Organoids. Int J Mol Sci 2023; 24:ijms24076244. [PMID: 37047216 PMCID: PMC10094119 DOI: 10.3390/ijms24076244] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac organoids are in vitro self-organizing and three-dimensional structures composed of multiple cardiac cells (i.e., cardiomyocytes, endothelial cells, cardiac fibroblasts, etc.) with or without biological scaffolds. Since cardiac organoids recapitulate structural and functional characteristics of the native heart to a higher degree compared to the conventional two-dimensional culture systems, their applications, in combination with pluripotent stem cell technologies, are being widely expanded for the investigation of cardiogenesis, cardiac disease modeling, drug screening and development, and regenerative medicine. In this mini-review, recent advances in cardiac organoid technologies are summarized in chronological order, with a focus on the methodological points for each organoid formation. Further, the current limitations and the future perspectives in these promising systems are also discussed.
Collapse
|
39
|
Abstract
Studies in animal models tracing organogenesis of the mesoderm-derived heart have emphasized the importance of signals coming from adjacent endodermal tissues in coordinating proper cardiac morphogenesis. Although in vitro models such as cardiac organoids have shown great potential to recapitulate the physiology of the human heart, they are unable to capture the complex crosstalk that takes place between the co-developing heart and endodermal organs, partly due to their distinct germ layer origins. In an effort to address this long-sought challenge, recent reports of multilineage organoids comprising both cardiac and endodermal derivatives have energized the efforts to understand how inter-organ, cross-lineage communications influence their respective morphogenesis. These co-differentiation systems have produced intriguing findings of shared signaling requirements for inducing cardiac specification together with primitive foregut, pulmonary, or intestinal lineages. Overall, these multilineage cardiac organoids offer an unprecedented window into human development that can reveal how the endoderm and heart cooperate to direct morphogenesis, patterning, and maturation. Further, through spatiotemporal reorganization, the co-emerged multilineage cells self-assemble into distinct compartments as seen in the cardiac-foregut, cardiac-intestine, and cardiopulmonary organoids and undergo cell migration and tissue reorganization to establish tissue boundaries. Looking into the future, these cardiac incorporated, multilineage organoids will inspire future strategies for improved cell sourcing for regenerative interventions and provide more effective models for disease investigation and drug testing. In this review, we will introduce the developmental context of coordinated heart and endoderm morphogenesis, discuss strategies for in vitro co-induction of cardiac and endodermal derivatives, and finally comment on the challenges and exciting new research directions enabled by this breakthrough.
Collapse
Affiliation(s)
- Wai Hoe Ng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Barbie Varghese
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Hongpeng Jia
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
40
|
Singh BN, Yucel D, Garay BI, Tolkacheva EG, Kyba M, Perlingeiro RCR, van Berlo JH, Ogle BM. Proliferation and Maturation: Janus and the Art of Cardiac Tissue Engineering. Circ Res 2023; 132:519-540. [PMID: 36795845 PMCID: PMC9943541 DOI: 10.1161/circresaha.122.321770] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
During cardiac development and morphogenesis, cardiac progenitor cells differentiate into cardiomyocytes that expand in number and size to generate the fully formed heart. Much is known about the factors that regulate initial differentiation of cardiomyocytes, and there is ongoing research to identify how these fetal and immature cardiomyocytes develop into fully functioning, mature cells. Accumulating evidence indicates that maturation limits proliferation and conversely proliferation occurs rarely in cardiomyocytes of the adult myocardium. We term this oppositional interplay the proliferation-maturation dichotomy. Here we review the factors that are involved in this interplay and discuss how a better understanding of the proliferation-maturation dichotomy could advance the utility of human induced pluripotent stem cell-derived cardiomyocytes for modeling in 3-dimensional engineered cardiac tissues to obtain truly adult-level function.
Collapse
Affiliation(s)
- Bhairab N. Singh
- Department of Pediatrics, University of Minnesota, MN, USA
- Department of Biomedical Engineering, University of Minnesota, MN, USA
- Stem Cell Institute, University of Minnesota, MN, USA
| | - Dogacan Yucel
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Bayardo I. Garay
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
- Medical Scientist Training Program, University of Minnesota Medical School, MN, USA
| | - Elena G. Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
- Institute for Engineering in Medicine, University of Minnesota, MN, USA
| | - Michael Kyba
- Department of Pediatrics, University of Minnesota, MN, USA
- Stem Cell Institute, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Rita C. R. Perlingeiro
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Jop H. van Berlo
- Stem Cell Institute, University of Minnesota, MN, USA
- Department of Medicine, Cardiovascular Division, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
| | - Brenda M. Ogle
- Department of Pediatrics, University of Minnesota, MN, USA
- Department of Biomedical Engineering, University of Minnesota, MN, USA
- Stem Cell Institute, University of Minnesota, MN, USA
- Lillehei Heart Institute, University of Minnesota, MN, USA
- Institute for Engineering in Medicine, University of Minnesota, MN, USA
- Masonic Cancer Center, University of Minnesota, MN, USA
| |
Collapse
|
41
|
Extracellular Matrix-Based Approaches in Cardiac Regeneration: Challenges and Opportunities. Int J Mol Sci 2022; 23:ijms232415783. [PMID: 36555424 PMCID: PMC9779713 DOI: 10.3390/ijms232415783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiac development is characterized by the active proliferation of different cardiac cell types, in particular cardiomyocytes and endothelial cells, that eventually build the beating heart. In mammals, these cells lose their regenerative potential early after birth, representing a major obstacle to our current capacity to restore the myocardial structure and function after an injury. Increasing evidence indicates that the cardiac extracellular matrix (ECM) actively regulates and orchestrates the proliferation, differentiation, and migration of cardiac cells within the heart, and that any change in either the composition of the ECM or its mechanical properties ultimately affect the behavior of these cells throughout one's life. Thus, understanding the role of ECMs' proteins and related signaling pathways on cardiac cell proliferation is essential to develop effective strategies fostering the regeneration of a damaged heart. This review provides an overview of the components of the ECM and its mechanical properties, whose function in cardiac regeneration has been elucidated, with a major focus on the strengths and weaknesses of the experimental models so far exploited to demonstrate the actual pro-regenerative capacity of the components of the ECM and to translate this knowledge into new therapies.
Collapse
|
42
|
Cost-Effective Mechanical Aggregation of Cardiac Progenitors and Encapsulation in Matrigel Support Self-Organization in a Dynamic Culture Environment. Int J Mol Sci 2022; 23:ijms232415785. [PMID: 36555427 PMCID: PMC9779514 DOI: 10.3390/ijms232415785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Human iPSC-derived self-organized cardiac tissues can be valuable for the development of platforms for disease modeling and drug screening, enhancing test accuracy and reducing pharmaceutical industry financial burden. However, current differentiation systems still rely on static culture conditions and specialized commercial microwells for aggregation, which hinders the full potential of hiPSC-derived cardiac tissues. Herein, we integrate cost-effective and reproducible manual aggregation of hiPSC-derived cardiac progenitors with Matrigel encapsulation and a dynamic culture to support hiPSC cardiac differentiation and self-organization. Manual aggregation at day 7 of cardiac differentiation resulted in 97% of beating aggregates with 78% of cTnT-positive cells. Matrigel encapsulation conjugated with a dynamic culture promoted cell migration and the creation of organized structures, with observed cell polarization and the creation of lumens. In addition, encapsulation increased buoyancy and decreased coalescence of the hiPSC-derived cardiac aggregates. Moreover, VEGF supplementation increased over two-fold the percentage of CD31-positive cells resulting in the emergence of microvessel-like structures. Thus, this study shows that the explored culture parameters support the self-organization of hiPSC-derived cardiac microtissues containing multiple cardiac cell types. Additional stimuli (e.g., BMP) in long-term scalable and fully automatized cultures can further potentiate highly structured and mature hiPSC-derived cardiac models, contributing to the development of reliable platforms for high-throughput drug screening and disease modeling.
Collapse
|
43
|
Cable J, Lutolf MP, Fu J, Park SE, Apostolou A, Chen S, Song CJ, Spence JR, Liberali P, Lancaster M, Meier AB, Pek NMQ, Wells JM, Capeling MM, Uzquiano A, Musah S, Huch M, Gouti M, Hombrink P, Quadrato G, Urenda JP. Organoids as tools for fundamental discovery and translation-a Keystone Symposia report. Ann N Y Acad Sci 2022; 1518:196-208. [PMID: 36177906 PMCID: PMC11293861 DOI: 10.1111/nyas.14874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complex three-dimensional in vitro organ-like models, or organoids, offer a unique biological tool with distinct advantages over two-dimensional cell culture systems, which can be too simplistic, and animal models, which can be too complex and may fail to recapitulate human physiology and pathology. Significant progress has been made in driving stem cells to differentiate into different organoid types, though several challenges remain. For example, many organoid models suffer from high heterogeneity, and it can be difficult to fully incorporate the complexity of in vivo tissue and organ development to faithfully reproduce human biology. Successfully addressing such limitations would increase the viability of organoids as models for drug development and preclinical testing. On April 3-6, 2022, experts in organoid development and biology convened at the Keystone Symposium "Organoids as Tools for Fundamental Discovery and Translation" to discuss recent advances and insights from this relatively new model system into human development and disease.
Collapse
Affiliation(s)
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Lausanne, Switzerland
- Institute of Chemical Sciences and Engineering, School of Basic Science (SB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Roche Institute for Translational Bioengineering (ITB), Pharma Research and Early Development (pRED), F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sunghee Estelle Park
- Department of Bioengineering and NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Athanasia Apostolou
- Emulate Inc, Boston, Massachusetts, USA
- Department of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York City, New York, USA
| | - Cheng Jack Song
- Keck Medicine of University of Southern California, Los Angeles, California, USA
| | - Jason R Spence
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI) and University of Basel, Basel, Switzerland
| | | | - Anna B Meier
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Nicole Min Qian Pek
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati, Ohio, USA
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - James M Wells
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati, Ohio, USA
- Division of Developmental Biology and Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Meghan M Capeling
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Ana Uzquiano
- Department of Stem Cell and Regenerative Biology, Harvard University
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Samira Musah
- Developmental and Stem Cell Biology Program and Division of Nephrology, Department of Medicine and Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Biomolecular and Tissue Engineering, Durham, North Carolina, USA
- Department of Biomedical Engineering, Pratt School of Engineering, Durham, North Carolina, USA
- Duke Regeneration Center, Duke University, Durham, North Carolina, USA
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mina Gouti
- Stem Cell Modelling of Development & Disease Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Pleun Hombrink
- University Medical Center Utrecht and HUB Organoids, Utrecht, Netherlands
| | - Giorgia Quadrato
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine and Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, California, USA
| | - Jean-Paul Urenda
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine and Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
44
|
Scherba JC, Karra R, Turek JW, Bursac N. Toward improved understanding of cardiac development and congenital heart disease: The advent of cardiac organoids. J Thorac Cardiovasc Surg 2022; 164:2013-2018. [PMID: 35307217 PMCID: PMC9395547 DOI: 10.1016/j.jtcvs.2022.02.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
Human cardiac organoid systems hold significant promise for mechanistic studies of early heart morphogenesis and an improved understanding of congenital cardiac disease. During the past decade, we have witnessed remarkable progress in genome editing technology, stem cell research, and bioengineering. The fundamental basic research discoveries accelerate rapidly into clinical translation, paving the way for myocardial regeneration, better understanding of the structural heart disease, and bioengineering of heart structures and even entire hearts. The new horizon is vast and diverse, ranging from creating universal stem cell biobanking to genome edited heart xenotransplantation. Herein, a group of experts from Duke University discuss the state of the art and the possible influence of cardiac organoids on our understanding of structural heart disease. It may not be immediately clear now in what practical ways this technology will be translated into our daily work, yet the current progress in bioengineering will likely have a very significant influence on our surgical practice. Igor E. Konstantinov, MD, PhD, FRACS
Collapse
Affiliation(s)
- Jacob C Scherba
- Department of Biomedical Engineering, Duke University, Durham, NC; Duke University School of Medicine, Duke University, Durham, NC
| | - Ravi Karra
- Department of Medicine, Duke University Medical Center, Durham, NC; Department of Pathology, Duke University Medical Center, Durham, NC
| | - Joseph W Turek
- Duke University School of Medicine, Duke University, Durham, NC; Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC.
| |
Collapse
|
45
|
Cable J, Arlotta P, Parker KK, Hughes AJ, Goodwin K, Mummery CL, Kamm RD, Engle SJ, Tagle DA, Boj SF, Stanton AE, Morishita Y, Kemp ML, Norfleet DA, May EE, Lu A, Bashir R, Feinberg AW, Hull SM, Gonzalez AL, Blatchley MR, Montserrat Pulido N, Morizane R, McDevitt TC, Mishra D, Mulero-Russe A. Engineering multicellular living systems-a Keystone Symposia report. Ann N Y Acad Sci 2022; 1518:183-195. [PMID: 36177947 PMCID: PMC9771928 DOI: 10.1111/nyas.14896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ability to engineer complex multicellular systems has enormous potential to inform our understanding of biological processes and disease and alter the drug development process. Engineering living systems to emulate natural processes or to incorporate new functions relies on a detailed understanding of the biochemical, mechanical, and other cues between cells and between cells and their environment that result in the coordinated action of multicellular systems. On April 3-6, 2022, experts in the field met at the Keystone symposium "Engineering Multicellular Living Systems" to discuss recent advances in understanding how cells cooperate within a multicellular system, as well as recent efforts to engineer systems like organ-on-a-chip models, biological robots, and organoids. Given the similarities and common themes, this meeting was held in conjunction with the symposium "Organoids as Tools for Fundamental Discovery and Translation".
Collapse
Affiliation(s)
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kevin Kit Parker
- Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Alex J Hughes
- Department of Bioengineering, School of Engineering and Applied Science and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Christine L Mummery
- Department of Anatomy and Embryology and LUMC hiPSC Hotel, Leiden University Medical Center, Leiden, the Netherlands
| | - Roger D Kamm
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sandra J Engle
- Translational Biology, Biogen, Cambridge, Massachusetts, USA
| | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Sylvia F Boj
- Hubrecht Organoid Technology (HUB), Utrecht, the Netherlands
| | - Alice E Stanton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Dennis A Norfleet
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Elebeoba E May
- Department of Biomedical Engineering and HEALTH Research Institute, University of Houston, Houston, Texas, USA
- Wisconsin Institute of Discovery and Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aric Lu
- Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Draper Laboratory, Biological Engineering Division, Cambridge, Massachusetts, USA
| | - Rashid Bashir
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Holonyak Micro & Nanotechnology Laboratory, Department of Electrical and Computer Engineering and Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering and Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Sarah M Hull
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Anjelica L Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Michael R Blatchley
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | | | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Todd C McDevitt
- The Gladstone Institutes and Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Deepak Mishra
- Department of Biological Engineering, Synthetic Biology Center, Cambridge, Massachusetts, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adriana Mulero-Russe
- Parker H. Petit Institute for Bioengineering and Bioscience and School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
46
|
Wang J, Morgan W, Saini A, Liu T, Lough J, Han L. Single-cell transcriptomic profiling reveals specific maturation signatures in human cardiomyocytes derived from LMNB2-inactivated induced pluripotent stem cells. Front Cell Dev Biol 2022; 10:895162. [PMID: 36518540 PMCID: PMC9742441 DOI: 10.3389/fcell.2022.895162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2023] Open
Abstract
Mammalian cardiomyocyte maturation entails phenotypic and functional optimization during the late fetal and postnatal phases of heart development, both processes driven and coordinated by complex gene regulatory networks. Cardiomyocytes derived from human induced pluripotent stem cells (iPSCs) are heterogenous and immature, barely resembling their adult in vivo counterparts. To characterize relevant developmental programs and maturation states during human iPSC-cardiomyocyte differentiation, we performed single-cell transcriptomic sequencing, which revealed six cardiomyocyte subpopulations, whose heterogeneity was defined by cell cycle and maturation states. Two of those subpopulations were characterized by a mature, non-proliferative transcriptional profile. To further investigate the proliferation-maturation transition in cardiomyocytes, we induced loss-of-function of LMNB2, which represses cell cycle progression in primary cardiomyocytes in vivo. This resulted in increased maturation in LMNB2-inactivated cardiomyocytes, characterized by transcriptional profiles related to myofibril structure and energy metabolism. Furthermore, we identified maturation signatures and maturational trajectories unique for control and LMNB2-inactivated cardiomyocytes. By comparing these datasets with single-cell transcriptomes of human fetal hearts, we were able to define spatiotemporal maturation states in human iPSC-cardiomyocytes. Our results provide an integrated approach for comparing in vitro-differentiated cardiomyocytes with their in vivo counterparts and suggest a strategy to promote cardiomyocyte maturation.
Collapse
Affiliation(s)
- Jie Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - William Morgan
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Pediatric Cardiology, Herma Heart Institute, Children’s Hospital of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ankur Saini
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Pediatric Cardiology, Herma Heart Institute, Children’s Hospital of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - John Lough
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lu Han
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Pediatric Cardiology, Herma Heart Institute, Children’s Hospital of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
47
|
Baptista LS, Porrini C, Kronemberger GS, Kelly DJ, Perrault CM. 3D organ-on-a-chip: The convergence of microphysiological systems and organoids. Front Cell Dev Biol 2022; 10:1043117. [PMID: 36478741 PMCID: PMC9720174 DOI: 10.3389/fcell.2022.1043117] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 07/29/2023] Open
Abstract
Medicine today faces the combined challenge of an increasing number of untreatable diseases and fewer drugs reaching the clinic. While pharmaceutical companies have increased the number of drugs in early development and entering phase I of clinical trials, fewer actually successfully pass phase III and launch into the market. In fact, only 1 out of every 9 drugs entering phase I will launch. In vitro preclinical tests are used to predict earlier and better the potential of new drugs and thus avoid expensive clinical trial phases. The most recent developments favor 3D cell culture and human stem cell biology. These 3D humanized models known as organoids better mimic the 3D tissue architecture and physiological cell behavior of healthy and disease models, but face critical issues in production such as small-scale batches, greater costs (when compared to monolayer cultures) and reproducibility. To become the gold standard and most relevant biological model for drug discovery and development, organoid technology needs to integrate biological culture processes with advanced microtechnologies, such as microphysiological systems based on microfluidics technology. Microphysiological systems, known as organ-on-a-chip, mimic physiological conditions better than conventional cell culture models since they can emulate perfusion, mechanical and other parameters crucial for tissue and organ physiology. In addition, they reduce labor cost and human error by supporting automated operation and reduce reagent use in miniaturized culture systems. There is thus a clear advantage in combining organoid culture with microsystems for drug development. The main objective of this review is to address the recent advances in organoids and microphysiological systems highlighting crucial technologies for reaching a synergistic strategy, including bioprinting.
Collapse
Affiliation(s)
- Leandra S. Baptista
- Eden Tech, Paris, France
- Universidade Federal do Rio de Janeiro, Campus UFRJ Duque de Caxias Prof Geraldo Cidade, Rio de Janeiro, Brazil
| | | | - Gabriela S. Kronemberger
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | |
Collapse
|
48
|
Ergir E, Oliver-De La Cruz J, Fernandes S, Cassani M, Niro F, Pereira-Sousa D, Vrbský J, Vinarský V, Perestrelo AR, Debellis D, Vadovičová N, Uldrijan S, Cavalieri F, Pagliari S, Redl H, Ertl P, Forte G. Generation and maturation of human iPSC-derived 3D organotypic cardiac microtissues in long-term culture. Sci Rep 2022; 12:17409. [PMID: 36257968 PMCID: PMC9579206 DOI: 10.1038/s41598-022-22225-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/11/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide; hence there is an increasing focus on developing physiologically relevant in vitro cardiovascular tissue models suitable for studying personalized medicine and pre-clinical tests. Despite recent advances, models that reproduce both tissue complexity and maturation are still limited. We have established a scaffold-free protocol to generate multicellular, beating human cardiac microtissues in vitro from hiPSCs-namely human organotypic cardiac microtissues (hOCMTs)-that show some degree of self-organization and can be cultured for long term. This is achieved by the differentiation of hiPSC in 2D monolayer culture towards cardiovascular lineage, followed by further aggregation on low-attachment culture dishes in 3D. The generated hOCMTs contain multiple cell types that physiologically compose the heart and beat without external stimuli for more than 100 days. We have shown that 3D hOCMTs display improved cardiac specification, survival and metabolic maturation as compared to standard monolayer cardiac differentiation. We also confirmed the functionality of hOCMTs by their response to cardioactive drugs in long-term culture. Furthermore, we demonstrated that they could be used to study chemotherapy-induced cardiotoxicity. Due to showing a tendency for self-organization, cellular heterogeneity, and functionality in our 3D microtissues over extended culture time, we could also confirm these constructs as human cardiac organoids (hCOs). This study could help to develop more physiologically-relevant cardiac tissue models, and represent a powerful platform for future translational research in cardiovascular biology.
Collapse
Affiliation(s)
- Ece Ergir
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic ,grid.5329.d0000 0001 2348 4034Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1040 Vienna, Austria
| | - Jorge Oliver-De La Cruz
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Soraia Fernandes
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Marco Cassani
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Francesco Niro
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic ,grid.10267.320000 0001 2194 0956Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech Republic
| | - Daniel Pereira-Sousa
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic ,grid.10267.320000 0001 2194 0956Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech Republic
| | - Jan Vrbský
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Vladimír Vinarský
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Ana Rubina Perestrelo
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Doriana Debellis
- grid.25786.3e0000 0004 1764 2907Electron Microscopy Facility, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Natália Vadovičová
- grid.10267.320000 0001 2194 0956Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech Republic
| | - Stjepan Uldrijan
- grid.10267.320000 0001 2194 0956Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech Republic
| | - Francesca Cavalieri
- grid.1008.90000 0001 2179 088XDepartment of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.6530.00000 0001 2300 0941Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Stefania Pagliari
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Heinz Redl
- grid.454388.6Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria ,grid.511951.8Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Peter Ertl
- grid.5329.d0000 0001 2348 4034Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1040 Vienna, Austria ,grid.511951.8Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Giancarlo Forte
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic ,grid.1374.10000 0001 2097 1371Department of Biomaterials Science, Institute of Dentistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
49
|
Wang Q, Guo F, Jin Y, Ma Y. Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduct Target Ther 2022; 7:336. [PMID: 36167824 PMCID: PMC9513303 DOI: 10.1038/s41392-022-01194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Digestive system diseases arise primarily through the interplay of genetic and environmental influences; there is an urgent need in elucidating the pathogenic mechanisms of these diseases and deploy personalized treatments. Traditional and long-established model systems rarely reproduce either tissue complexity or human physiology faithfully; these shortcomings underscore the need for better models. Organoids represent a promising research model, helping us gain a more profound understanding of the digestive organs; this model can also be used to provide patients with precise and individualized treatment and to build rapid in vitro test models for drug screening or gene/cell therapy, linking basic research with clinical treatment. Over the past few decades, the use of organoids has led to an advanced understanding of the composition of each digestive organ and has facilitated disease modeling, chemotherapy dose prediction, CRISPR-Cas9 genetic intervention, high-throughput drug screening, and identification of SARS-CoV-2 targets, pathogenic infection. However, the existing organoids of the digestive system mainly include the epithelial system. In order to reveal the pathogenic mechanism of digestive diseases, it is necessary to establish a completer and more physiological organoid model. Combining organoids and advanced techniques to test individualized treatments of different formulations is a promising approach that requires further exploration. This review highlights the advancements in the field of organoid technology from the perspectives of disease modeling and personalized therapy.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanying Guo
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yutao Jin
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
50
|
Challenges and opportunities for the next generation of cardiovascular tissue engineering. Nat Methods 2022; 19:1064-1071. [PMID: 36064773 DOI: 10.1038/s41592-022-01591-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/07/2022] [Indexed: 12/21/2022]
Abstract
Engineered cardiac tissues derived from human induced pluripotent stem cells offer unique opportunities for patient-specific disease modeling, drug discovery and cardiac repair. Since the first engineered hearts were introduced over two decades ago, human induced pluripotent stem cell-based three-dimensional cardiac organoids and heart-on-a-chip systems have now become mainstays in basic cardiovascular research as valuable platforms for investigating fundamental human pathophysiology and development. However, major obstacles remain to be addressed before the field can truly advance toward commercial and clinical translation. Here we provide a snapshot of the state-of-the-art methods in cardiac tissue engineering, with a focus on in vitro models of the human heart. Looking ahead, we discuss major challenges and opportunities in the field and suggest strategies for enabling broad acceptance of engineered cardiac tissues as models of cardiac pathophysiology and testbeds for the development of therapies.
Collapse
|