1
|
Vo QD, Nakamura K, Saito Y, Iida T, Yoshida M, Amioka N, Akagi S, Miyoshi T, Yuasa S. iPSC-Derived Biological Pacemaker-From Bench to Bedside. Cells 2024; 13:2045. [PMID: 39768137 PMCID: PMC11674228 DOI: 10.3390/cells13242045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived biological pacemakers have emerged as an alternative to traditional electronic pacemakers for managing cardiac arrhythmias. While effective, electronic pacemakers face challenges such as device failure, lead complications, and surgical risks, particularly in children. iPSC-derived pacemakers offer a promising solution by mimicking the sinoatrial node's natural pacemaking function, providing a more physiological approach to rhythm control. These cells can differentiate into cardiomyocytes capable of autonomous electrical activity, integrating into heart tissue. However, challenges such as achieving cellular maturity, long-term functionality, and immune response remain significant barriers to clinical translation. Future research should focus on refining gene-editing techniques, optimizing differentiation, and developing scalable production processes to enhance the safety and effectiveness of these biological pacemakers. With further advancements, iPSC-derived pacemakers could offer a patient-specific, durable alternative for cardiac rhythm management. This review discusses key advancements in differentiation protocols and preclinical studies, demonstrating their potential in treating dysrhythmias.
Collapse
Affiliation(s)
- Quan Duy Vo
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
- Center for Advanced Heart Failure, Okayama University Hospital, Okayama 700-8558, Japan
| | - Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama 700-8558, Japan; (Y.S.); (N.A.)
| | - Toshihiro Iida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Masashi Yoshida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Naofumi Amioka
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama 700-8558, Japan; (Y.S.); (N.A.)
| | - Satoshi Akagi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Shinsuke Yuasa
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| |
Collapse
|
2
|
Dong A, Yoshizumi M, Kokubo H. Odz4 upregulates SAN-specific genes to promote differentiation into cardiac pacemaker-like cells. FEBS Lett 2024. [PMID: 39462648 DOI: 10.1002/1873-3468.15036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024]
Abstract
Cardiac arrhythmias stemming from abnormal sinoatrial node (SAN) function can lead to sudden death. Developing a biological pacemaker device for treating sick sinus syndrome (SSS) could offer a potential cure. Understanding SAN differentiation is crucial, yet its regulatory mechanism remains unclear. We reanalyzed published RNA-seq data and identified Odz4 as a SAN-specific candidate. In situ hybridization revealed Odz4 expression in the cardiac crescent and throughout the cardiac conduction system (CCS). To assess the role of Odz4 in CCS differentiation, we utilized a Tet-Off inducible system for its intracellular domain (ICD). Embryonic bodies (EBs) exogenously expressing Odz4-ICD exhibited an increased propensity to develop into pacemaker-like cells with enhanced automaticity and upregulated expression of SAN-specific genes. CellChat and GO analyses unveiled SAN-specific enrichment of ligand-receptor sets, especially Ptn-Ncl, and extracellular matrix components in the group exogenously expressing Odz4-ICD. Our findings underscore the significance of Odz4 in SAN development and offer fresh insights into biological pacemaker establishment.
Collapse
Affiliation(s)
- Anqi Dong
- Department of Physiology and Biophysics, Hiroshima University, Japan
| | - Masao Yoshizumi
- Department of Physiology and Biophysics, Hiroshima University, Japan
| | - Hiroki Kokubo
- Department of Physiology and Biophysics, Hiroshima University, Japan
- Department of Physical Therapy, Tohto University, Chiba, Japan
| |
Collapse
|
3
|
Lin Z, Lin B, Hang C, Lu R, Xiong H, Liu J, Wang S, Gong Z, Zhang M, Li D, Fang G, Ding J, Su X, Guo H, Shi D, Xie D, Liu Y, Liang D, Yang J, Chen YH. A new paradigm for generating high-quality cardiac pacemaker cells from mouse pluripotent stem cells. Signal Transduct Target Ther 2024; 9:230. [PMID: 39237509 PMCID: PMC11377569 DOI: 10.1038/s41392-024-01942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Cardiac biological pacing (BP) is one of the future directions for bradyarrhythmias intervention. Currently, cardiac pacemaker cells (PCs) used for cardiac BP are mainly derived from pluripotent stem cells (PSCs). However, the production of high-quality cardiac PCs from PSCs remains a challenge. Here, we developed a cardiac PC differentiation strategy by adopting dual PC markers and simulating the developmental route of PCs. First, two PC markers, Shox2 and Hcn4, were selected to establish Shox2:EGFP; Hcn4:mCherry mouse PSC reporter line. Then, by stepwise guiding naïve PSCs to cardiac PCs following naïve to formative pluripotency transition and manipulating signaling pathways during cardiac PCs differentiation, we designed the FSK method that increased the yield of SHOX2+; HCN4+ cells with typical PC characteristics, which was 12 and 42 folds higher than that of the embryoid body (EB) and the monolayer M10 methods respectively. In addition, the in vitro cardiac PCs differentiation trajectory was mapped by single-cell RNA sequencing (scRNA-seq), which resembled in vivo PCs development, and ZFP503 was verified as a key regulator of cardiac PCs differentiation. These PSC-derived cardiac PCs have the potential to drive advances in cardiac BP technology, help with the understanding of PCs (patho)physiology, and benefit drug discovery for PC-related diseases as well.
Collapse
Affiliation(s)
- Zheyi Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Bowen Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Chengwen Hang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Renhong Lu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Hui Xiong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Siyu Wang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zheng Gong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Desheng Li
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Guojian Fang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Jie Ding
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Xuling Su
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Huixin Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Dan Shi
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Duanyang Xie
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China
| | - Jian Yang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China.
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| | - Yi-Han Chen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| |
Collapse
|
4
|
Sleiman Y, Reisqs JB, Boutjdir M. Differentiation of Sinoatrial-like Cardiomyocytes as a Biological Pacemaker Model. Int J Mol Sci 2024; 25:9155. [PMID: 39273104 PMCID: PMC11394733 DOI: 10.3390/ijms25179155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/15/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are widely used for disease modeling and pharmacological screening. However, their application has mainly focused on inherited cardiopathies affecting ventricular cardiomyocytes, leading to extensive knowledge on generating ventricular-like hiPSC-CMs. Electronic pacemakers, despite their utility, have significant disadvantages, including lack of hormonal responsiveness, infection risk, limited battery life, and inability to adapt to changes in heart size. Therefore, developing an in vitro multiscale model of the human sinoatrial node (SAN) pacemaker using hiPSC-CM and SAN-like cardiomyocyte differentiation protocols is essential. This would enhance the understanding of SAN-related pathologies and support targeted therapies. Generating SAN-like cardiomyocytes offers the potential for biological pacemakers and specialized conduction tissues, promising significant benefits for patients with conduction system defects. This review focuses on arrythmias related to pacemaker dysfunction, examining protocols' advantages and drawbacks for generating SAN-like cardiomyocytes from hESCs/hiPSCs, and discussing therapeutic approaches involving their engraftment in animal models.
Collapse
Affiliation(s)
- Yvonne Sleiman
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
| | - Jean-Baptiste Reisqs
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY 11203, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
5
|
Zhang ZH, Barajas-Martinez H, Jiang H, Huang CX, Antzelevitch C, Xia H, Hu D. Gene and stem cell therapy for inherited cardiac arrhythmias. Pharmacol Ther 2024; 256:108596. [PMID: 38301770 DOI: 10.1016/j.pharmthera.2024.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024]
Abstract
Inherited cardiac arrhythmias are a group of genetic diseases predisposing to sudden cardiac arrest, mainly resulting from variants in genes encoding cardiac ion channels or proteins involved in their regulation. Currently available therapeutic options (pharmacotherapy, ablative therapy and device-based therapy) can not preclude the occurrence of arrhythmia events and/or provide complete protection. With growing understanding of the genetic background and molecular mechanisms of inherited cardiac arrhythmias, advancing insight of stem cell technology, and development of vectors and delivery strategies, gene therapy and stem cell therapy may be promising approaches for treatment of inherited cardiac arrhythmias. Recent years have witnessed impressive progress in the basic science aspects and there is a clear and urgent need to be translated into the clinical management of arrhythmic events. In this review, we present a succinct overview of gene and cell therapy strategies, and summarize the current status of gene and cell therapy. Finally, we discuss future directions for implementation of gene and cell therapy in the therapy of inherited cardiac arrhythmias.
Collapse
Affiliation(s)
- Zhong-He Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnwood, PA, 19096, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnwood, PA, 19096, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| |
Collapse
|
6
|
Lee C, Xu S, Samad T, Goodyer WR, Raissadati A, Heinrich P, Wu SM. The cardiac conduction system: History, development, and disease. Curr Top Dev Biol 2024; 156:157-200. [PMID: 38556422 DOI: 10.1016/bs.ctdb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The heart is the first organ to form during embryonic development, establishing the circulatory infrastructure necessary to sustain life and enable downstream organogenesis. Critical to the heart's function is its ability to initiate and propagate electrical impulses that allow for the coordinated contraction and relaxation of its chambers, and thus, the movement of blood and nutrients. Several specialized structures within the heart, collectively known as the cardiac conduction system (CCS), are responsible for this phenomenon. In this review, we discuss the discovery and scientific history of the mammalian cardiac conduction system as well as the key genes and transcription factors implicated in the formation of its major structures. We also describe known human diseases related to CCS development and explore existing challenges in the clinical context.
Collapse
Affiliation(s)
- Carissa Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Sidra Xu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Tahmina Samad
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States; Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - William R Goodyer
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alireza Raissadati
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Paul Heinrich
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Cardiology, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States.
| |
Collapse
|
7
|
Soma Y, Tani H, Morita-Umei Y, Kishino Y, Fukuda K, Tohyama S. Pluripotent stem cell-based cardiac regenerative therapy for heart failure. J Mol Cell Cardiol 2024; 187:90-100. [PMID: 38331557 DOI: 10.1016/j.yjmcc.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 02/10/2024]
Abstract
Cardiac regenerative therapy using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is expected to become an alternative to heart transplantation for severe heart failure. It is now possible to produce large numbers of human pluripotent stem cells (hPSCs) and eliminate non-cardiomyocytes, including residual undifferentiated hPSCs, which can cause teratoma formation after transplantation. There are two main strategies for transplanting hPSC-CMs: injection of hPSC-CMs into the myocardium from the epicardial side, and implantation of hPSC-CM patches or engineered heart tissues onto the epicardium. Transplantation of hPSC-CMs into the myocardium of large animals in a myocardial infarction model improved cardiac function. The engrafted hPSC-CMs matured, and microvessels derived from the host entered the graft abundantly. Furthermore, as less invasive methods using catheters, injection into the coronary artery and injection into the myocardium from the endocardium side have recently been investigated. Since transplantation of hPSC-CMs alone has a low engraftment rate, various methods such as transplantation with the extracellular matrix or non-cardiomyocytes and aggregation of hPSC-CMs have been developed. Post-transplant arrhythmias, imaging of engrafted hPSC-CMs, and immune rejection are the remaining major issues, and research is being conducted to address them. The clinical application of cardiac regenerative therapy using hPSC-CMs has just begun and is expected to spread widely if its safety and efficacy are proven in the near future.
Collapse
Affiliation(s)
- Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Joint Research Laboratory for Medical Innovation in Heart Disease, Keio University School of Medicine, Tokyo, Japan
| | - Yuika Morita-Umei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
8
|
Liu S, Fang C, Zhong C, Li J, Xiao Q. Recent advances in pluripotent stem cell-derived cardiac organoids and heart-on-chip applications for studying anti-cancer drug-induced cardiotoxicity. Cell Biol Toxicol 2023; 39:2527-2549. [PMID: 37889357 DOI: 10.1007/s10565-023-09835-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Cardiovascular disease (CVD) caused by anti-cancer drug-induced cardiotoxicity is now the second leading cause of mortality among cancer survivors. It is necessary to establish efficient in vitro models for early predicting the potential cardiotoxicity of anti-cancer drugs, as well as for screening drugs that would alleviate cardiotoxicity during and post treatment. Human induced pluripotent stem cells (hiPSCs) have opened up new avenues in cardio-oncology. With the breakthrough of tissue engineering technology, a variety of hiPSC-derived cardiac microtissues or organoids have been recently reported, which have shown enormous potential in studying cardiotoxicity. Moreover, using hiPSC-derived heart-on-chip for studying cardiotoxicity has provided novel insights into the underlying mechanisms. Herein, we summarize different types of anti-cancer drug-induced cardiotoxicities and present an extensive overview on the applications of hiPSC-derived cardiac microtissues, cardiac organoids, and heart-on-chips in cardiotoxicity. Finally, we highlight clinical and translational challenges around hiPSC-derived cardiac microtissues/organoids/heart-on chips and their applications in anti-cancer drug-induced cardiotoxicity. • Anti-cancer drug-induced cardiotoxicities represent pressing challenges for cancer treatments, and cardiovascular disease is the second leading cause of mortality among cancer survivors. • Newly reported in vitro models such as hiPSC-derived cardiac microtissues/organoids/chips show enormous potential for studying cardio-oncology. • Emerging evidence supports that hiPSC-derived cardiac organoids and heart-on-chip are promising in vitro platforms for predicting and minimizing anti-cancer drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Silin Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London, EC1M 6BQ, UK
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chongkai Fang
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London, EC1M 6BQ, UK
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chong Zhong
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jing Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London, EC1M 6BQ, UK.
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
9
|
Wang F, Yin L, Zhang W, Tang Y, Wang X, Huang C. The method of sinus node-like pacemaker cells from human induced pluripotent stem cells by BMP and Wnt signaling. Cell Biol Toxicol 2023; 39:2725-2741. [PMID: 36856942 DOI: 10.1007/s10565-023-09797-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
The embryonic development of sinus nodes (SAN) is co-regulated by multiple signaling pathways. Among these, the bone morphogenetic protein (BMP) and Wnt signaling pathways are involved in the development of SAN. In this study, the effects of BMP and Wnt signaling on the differentiation of SAN-like pacemaker cells (SANLPCs) were investigated. Human induced pluripotent stem cells (hiPSCs) were divided into four groups: control, BMP4, CHIR-3, and BMP4 + CHIR (CHIR: a Wnt signaling activator). The samples were tested at day (D) 15 of differentiation. The final protocol for the activation of BMP signaling at D0-D3 and reactivation of Wnt signaling at D5-D7 in the differentiation of hiPSCs were determined. The results showed that the mRNA levels of pacemaker markers (TBX18, SHOX2, TBX3, HCN4, and HCN1) were higher in the BMP4 + CHIR group than in the control group, and working myocardial genes were downregulated. The immunofluorescence assay revealed that the expression of SHOX2 and HCN4 increased in the BMP4 + CHIR group compared to that in the other groups. In addition, the results of patch clamps revealed that a funny current of higher density and typical SAN action potentials were recorded, except in the control group, in which the L-type calcium current was higher in the BMP4 + CHIR group than in the other groups. Finally, the proportion of SANLPCs (cTnT+ NKX2.5-) was further enhanced by the combination of BMP4 and CHIR treatment. In summary, the combination of BMP and Wnt signaling promotes the differentiation of SANLPCs from hiPSCs.
Collapse
Affiliation(s)
- Fengyuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Lin Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
10
|
Dai Y, Nasehi F, Winchester CD, Foley AC. Tbx5 overexpression in embryoid bodies increases TAK1 expression but does not enhance the differentiation of sinoatrial node cardiomyocytes. Biol Open 2023; 12:bio059881. [PMID: 37272627 PMCID: PMC10261723 DOI: 10.1242/bio.059881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023] Open
Abstract
Genetic studies place Tbx5 at the apex of the sinoatrial node (SAN) transcriptional program. To understand its role in SAN differentiation, clonal embryonic stem (ES) cell lines were made that conditionally overexpress Tbx5, Tbx3, Tbx18, Shox2, Islet-1, and MAP3k7/TAK1. Cardiac cells differentiated using embryoid bodies (EBs). EBs overexpressing Tbx5, Islet1, and TAK1 beat faster than cardiac cells differentiated from control ES cell lines, suggesting possible roles in SAN differentiation. Tbx5 overexpressing EBs showed increased expression of TAK1, but cardiomyocytes did not differentiate as SAN cells. EBs showed no change in the expression of the SAN transcription factors Shox2 and Islet1 and decreased expression of the SAN channel protein HCN4. EBs constitutively overexpressing TAK1 direct cardiac differentiation to the SAN fate but have reduced phosphorylation of its targets, p38 and Jnk. This opens the possibility that blocking the phosphorylation of TAK1 targets may have the same impact as forced overexpression. To test this, we treated EBs with 5z-7-Oxozeanol (OXO), an inhibitor of TAK1 phosphorylation. Like TAK1 overexpressing cardiac cells, cardiomyocytes differentiated in the presence of OXO beat faster and showed increased expression of SAN genes (Shox2, HCN4, and Islet1). This suggests that activation of the SAN transcriptional network can be accomplished by blocking the phosphorylation of TAK1.
Collapse
Affiliation(s)
- Yunkai Dai
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC 29425, USA
| | - Fatemeh Nasehi
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC 29425, USA
| | - Charles D. Winchester
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC 29425, USA
| | - Ann C. Foley
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC 29425, USA
| |
Collapse
|
11
|
Henley T, Goudy J, Easterling M, Donley C, Wirka R, Bressan M. Local tissue mechanics control cardiac pacemaker cell embryonic patterning. Life Sci Alliance 2023; 6:e202201799. [PMID: 36973005 PMCID: PMC10043993 DOI: 10.26508/lsa.202201799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac pacemaker cells (CPCs) initiate the electric impulses that drive the rhythmic beating of the heart. CPCs reside in a heterogeneous, ECM-rich microenvironment termed the sinoatrial node (SAN). Surprisingly, little is known regarding the biochemical composition or mechanical properties of the SAN, and how the unique structural characteristics present in this region of the heart influence CPC function remains poorly understood. Here, we have identified that SAN development involves the construction of a "soft" macromolecular ECM that specifically encapsulates CPCs. In addition, we demonstrate that subjecting embryonic CPCs to substrate stiffnesses higher than those measured in vivo results in loss of coherent electrical oscillation and dysregulation of the HCN4 and NCX1 ion channels required for CPC automaticity. Collectively, these data indicate that local mechanics play a critical role in maintaining the embryonic CPC function while also quantitatively defining the range of material properties that are optimal for embryonic CPC maturation.
Collapse
Affiliation(s)
- Trevor Henley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie Goudy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marietta Easterling
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carrie Donley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert Wirka
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Bressan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Martin KE, Ravisankar P, Beerens M, MacRae CA, Waxman JS. Nr2f1a maintains atrial nkx2.5 expression to repress pacemaker identity within venous atrial cardiomyocytes of zebrafish. eLife 2023; 12:e77408. [PMID: 37184369 PMCID: PMC10185342 DOI: 10.7554/elife.77408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Maintenance of cardiomyocyte identity is vital for normal heart development and function. However, our understanding of cardiomyocyte plasticity remains incomplete. Here, we show that sustained expression of the zebrafish transcription factor Nr2f1a prevents the progressive acquisition of ventricular cardiomyocyte (VC) and pacemaker cardiomyocyte (PC) identities within distinct regions of the atrium. Transcriptomic analysis of flow-sorted atrial cardiomyocytes (ACs) from nr2f1a mutant zebrafish embryos showed increased VC marker gene expression and altered expression of core PC regulatory genes, including decreased expression of nkx2.5, a critical repressor of PC differentiation. At the arterial (outflow) pole of the atrium in nr2f1a mutants, cardiomyocytes resolve to VC identity within the expanded atrioventricular canal. However, at the venous (inflow) pole of the atrium, there is a progressive wave of AC transdifferentiation into PCs across the atrium toward the arterial pole. Restoring Nkx2.5 is sufficient to repress PC marker identity in nr2f1a mutant atria and analysis of chromatin accessibility identified an Nr2f1a-dependent nkx2.5 enhancer expressed in the atrial myocardium directly adjacent to PCs. CRISPR/Cas9-mediated deletion of the putative nkx2.5 enhancer leads to a loss of Nkx2.5-expressing ACs and expansion of a PC reporter, supporting that Nr2f1a limits PC differentiation within venous ACs via maintaining nkx2.5 expression. The Nr2f-dependent maintenance of AC identity within discrete atrial compartments may provide insights into the molecular etiology of concurrent structural congenital heart defects and associated arrhythmias.
Collapse
Affiliation(s)
- Kendall E Martin
- Molecular Genetics, Biochemistry, and Microbiology Graduate Program, University of Cincinnati College of MedicineCincinnatiUnited States
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Padmapriyadarshini Ravisankar
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Manu Beerens
- Divisions of Cardiovascular Medicine, Genetics and Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Calum A MacRae
- Divisions of Cardiovascular Medicine, Genetics and Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
13
|
Karimi T, Pan Z, Potaman VN, Alt EU. Conversion of Unmodified Stem Cells to Pacemaker Cells by Overexpression of Key Developmental Genes. Cells 2023; 12:1381. [PMID: 37408215 PMCID: PMC10216671 DOI: 10.3390/cells12101381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Arrhythmias of the heart are currently treated by implanting electronic pacemakers and defibrillators. Unmodified adipose tissue-derived stem cells (ASCs) have the potential to differentiate into all three germ layers but have not yet been tested for the generation of pacemaker and Purkinje cells. We investigated if-based on overexpression of dominant conduction cell-specific genes in ASCs-biological pacemaker cells could be induced. Here we show that by overexpression of certain genes that are active during the natural development of the conduction system, the differentiation of ASCs to pacemaker and Purkinje-like cells is feasible. Our study revealed that the most effective procedure consisted of short-term upregulation of gene combinations SHOX2-TBX5-HCN2, and to a lesser extent SHOX2-TBX3-HCN2. Single-gene expression protocols were ineffective. Future clinical implantation of such pacemaker and Purkinje cells, derived from unmodified ASCs of the same patient, could open up new horizons for the treatment of arrythmias.
Collapse
Affiliation(s)
- Tahereh Karimi
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA;
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
| | - Zhizhong Pan
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vladimir N. Potaman
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
- InGeneron Inc., 8205 El Rio Street, Houston, TX 77054, USA
| | - Eckhard U. Alt
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA;
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
- InGeneron Inc., 8205 El Rio Street, Houston, TX 77054, USA
- Sanford Health, University of South Dakota, Sioux Falls, SD 57104, USA
- Isar Klinikum Munich, Sonnenstr 24-26, 80331 Munich, Germany
| |
Collapse
|
14
|
Manoj P, Kim JA, Kim S, Li T, Sewani M, Chelu MG, Li N. Sinus node dysfunction: current understanding and future directions. Am J Physiol Heart Circ Physiol 2023; 324:H259-H278. [PMID: 36563014 PMCID: PMC9886352 DOI: 10.1152/ajpheart.00618.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The sinoatrial node (SAN) is the primary pacemaker of the heart. Normal SAN function is crucial in maintaining proper cardiac rhythm and contraction. Sinus node dysfunction (SND) is due to abnormalities within the SAN, which can affect the heartbeat frequency, regularity, and the propagation of electrical pulses through the cardiac conduction system. As a result, SND often increases the risk of cardiac arrhythmias. SND is most commonly seen as a disease of the elderly given the role of degenerative fibrosis as well as other age-dependent changes in its pathogenesis. Despite the prevalence of SND, current treatment is limited to pacemaker implantation, which is associated with substantial medical costs and complications. Emerging evidence has identified various genetic abnormalities that can cause SND, shedding light on the molecular underpinnings of SND. Identification of these molecular mechanisms and pathways implicated in the pathogenesis of SND is hoped to identify novel therapeutic targets for the development of more effective therapies for this disease. In this review article, we examine the anatomy of the SAN and the pathophysiology and epidemiology of SND. We then discuss in detail the most common genetic mutations correlated with SND and provide our perspectives on future research and therapeutic opportunities in this field.
Collapse
Affiliation(s)
- Pavan Manoj
- School of Public Health, Texas A&M University, College Station, Texas
| | - Jitae A Kim
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Stephanie Kim
- Department of BioSciences, Rice University, Houston, Texas
| | - Tingting Li
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Maham Sewani
- Department of BioSciences, Rice University, Houston, Texas
| | - Mihail G Chelu
- Division of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Na Li
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
15
|
Pan Z, Liang P. Human-Induced Pluripotent Stem Cell-Based Differentiation of Cardiomyocyte Subtypes for Drug Discovery and Cell Therapy. Handb Exp Pharmacol 2023; 281:209-233. [PMID: 37421443 DOI: 10.1007/164_2023_663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Drug attrition rates have increased over the past few years, accompanied with growing costs for the pharmaceutical industry and consumers. Lack of in vitro models connecting the results of toxicity screening assays with clinical outcomes accounts for this high attrition rate. The emergence of cardiomyocytes derived from human pluripotent stem cells provides an amenable source of cells for disease modeling, drug discovery, and cardiotoxicity screening. Functionally similar to to embryonic stem cells, but with fewer ethical concerns, induced pluripotent stem cells (iPSCs) can recapitulate patient-specific genetic backgrounds, which would be a huge revolution for personalized medicine. The generated iPSC-derived cardiomyocytes (iPSC-CMs) represent different subtypes including ventricular-, atrial-, and nodal-like cardiomyocytes. Purifying these subtypes for chamber-specific drug screening presents opportunities and challenges. In this chapter, we discuss the strategies for the purification of iPSC-CMs, the use of iPSC-CMs for drug discovery and cardiotoxicity test, and the current limitations of iPSC-CMs that should be overcome for wider and more precise cardiovascular applications.
Collapse
Affiliation(s)
- Ziwei Pan
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Ping Liang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
Chambers LM, Rhoades EL, Bharti R, Braley C, Tewari S, Trestan L, Alali Z, Bayik D, Lathia JD, Sangwan N, Bazeley P, Joehlin-Price AS, Wang Z, Dutta S, Dwidar M, Hajjar A, Ahern PP, Claesen J, Rose P, Vargas R, Brown JM, Michener C, Reizes O. Disruption of the Gut Microbiota Confers Cisplatin Resistance in Epithelial Ovarian Cancer. Cancer Res 2022; 82:4654-4669. [PMID: 36206317 PMCID: PMC9772178 DOI: 10.1158/0008-5472.can-22-0455] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/03/2022] [Accepted: 10/04/2022] [Indexed: 01/24/2023]
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of gynecologic cancer death. Despite initial responses to intervention, up to 80% of patient tumors recur and require additional treatment. Retrospective clinical analysis of patients with ovarian cancer indicates antibiotic use during chemotherapy treatment is associated with poor overall survival. Here, we assessed whether antibiotic (ABX) treatment would impact growth of EOC and sensitivity to cisplatin. Immunocompetent or immunocompromised mice were given untreated control or ABX-containing (metronidazole, ampicillin, vancomycin, and neomycin) water prior to intraperitoneal injection with EOC cells, and cisplatin therapy was administered biweekly until endpoint. Tumor-bearing ABX-treated mice exhibited accelerated tumor growth and resistance to cisplatin therapy compared with control treatment. ABX treatment led to reduced apoptosis, increased DNA damage repair, and enhanced angiogenesis in cisplatin-treated tumors, and tumors from ABX-treated mice contained a higher frequency of cisplatin-augmented cancer stem cells than control mice. Stool analysis indicated nonresistant gut microbial species were disrupted by ABX treatment. Cecal transplants of microbiota derived from control-treated mice was sufficient to ameliorate chemoresistance and prolong survival of ABX-treated mice, indicative of a gut-derived tumor suppressor. Metabolomics analyses identified circulating gut-derived metabolites that were altered by ABX treatment and restored by recolonization, providing candidate metabolites that mediate the cross-talk between the gut microbiome and ovarian cancer. Collectively, these findings indicate that an intact microbiome functions as a tumor suppressor in EOC, and perturbation of the gut microbiota with ABX treatment promotes tumor growth and suppresses cisplatin sensitivity. SIGNIFICANCE Restoration of the gut microbiome, which is disrupted following antibiotic treatment, may help overcome platinum resistance in patients with epithelial ovarian cancer. See related commentary by Hawkins and Nephew, p. 4511.
Collapse
Affiliation(s)
- Laura M. Chambers
- Division of Gynecologic Oncology; Obstetrics, Gynecology and Women’s Health Institute, Cleveland Clinic, Cleveland, OH
- Current address: Division of Gynecologic Oncology; The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Emily L. Rhoades
- Department of Cardiovascular and Metabolic Sciences, Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Rashmi Bharti
- Department of Cardiovascular and Metabolic Sciences, Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Chad Braley
- Department of Cardiovascular and Metabolic Sciences, Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Surabhi Tewari
- Department of Cardiovascular and Metabolic Sciences, Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Lexie Trestan
- Department of Cardiovascular and Metabolic Sciences, Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Zahraa Alali
- Department of Cardiovascular and Metabolic Sciences, Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Defne Bayik
- Department of Cardiovascular and Metabolic Sciences, Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Naseer Sangwan
- Microbiome Analytics and Composition Core Facility, Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Peter Bazeley
- Department of Quantitative Health Services, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland OH
| | - Amy S. Joehlin-Price
- Department of Gynecologic Pathology, Pathology and Lab Medicine Institute, Cleveland Clinic Foundation, Cleveland OH
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Sumita Dutta
- Department of Cardiovascular and Metabolic Sciences, Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Mohammed Dwidar
- Microbial Culture and Engineering Facility, Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland OH
| | - Adeline Hajjar
- Gnotobiotic Core Facility, Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Philip P. Ahern
- Department of Cardiovascular and Metabolic Sciences, Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences, Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Peter Rose
- Division of Gynecologic Oncology; Obstetrics, Gynecology and Women’s Health Institute, Cleveland Clinic, Cleveland, OH
| | - Roberto Vargas
- Division of Gynecologic Oncology; Obstetrics, Gynecology and Women’s Health Institute, Cleveland Clinic, Cleveland, OH
| | - J. Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Chad Michener
- Division of Gynecologic Oncology; Obstetrics, Gynecology and Women’s Health Institute, Cleveland Clinic, Cleveland, OH
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Corresponding Author: Ofer Reizes, PhD, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, , Telephone: +1(216) 455-0880
| |
Collapse
|
17
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
18
|
Yin L, Wang FY, Zhang W, Wang X, Tang YH, Wang T, Chen YT, Huang CX. RA signaling pathway combined with Wnt signaling pathway regulates human-induced pluripotent stem cells (hiPSCs) differentiation to sinus node-like cells. Stem Cell Res Ther 2022; 13:324. [PMID: 35851424 PMCID: PMC9290266 DOI: 10.1186/s13287-022-03006-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The source of SAN is debated among researchers. Many studies have shown that RA and Wnt signaling are involved in heart development. In this study, we investigated the role of retinoic acid (RA) and Wnt signaling in the induction of sinus node-like cells. METHODS The experimental samples were divided into four groups: control group (CHIR = 0), CHIR = 3, RA + CHIR = 0 andRA + CHIR = 3. After 20 days of differentiation, Western blot, RT-qPCR, immunofluorescence and flow cytometry were performed to identify sinus node-like cells. Finally, whole-cell patch clamp technique was used to record pacing funny current and action potential (AP) in four groups. RESULTS The best intervention method used in our experiment was RA = 0.25 µmol/L D5-D9 + CHIR = 3 µmol/L D5-D7. Results showed that CHIR can increase the expression of ISL-1 and TBX3, while RA mainly elevated Shox2. Immunofluorescence assay and flow cytometry further illustrated that combining RA with CHIR can induce sinus node-like cells (CTNT+Shox2+Nkx2.5-). Moreover, CHIR might reduce the frequency of cell beats, but in conjunction with RA could partly compensate for this side effect. Whole cell patch clamps were able to record funny current and the typical sinus node AP in the experimental group, which did not appear in the control group. CONCLUSIONS Combining RA with Wnt signaling within a specific period can induce sinus node-like cells.
Collapse
Affiliation(s)
- Lin Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Feng-yuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Yan-hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Yu-ting Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Cong-xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| |
Collapse
|
19
|
Darche FF, Ullrich ND, Huang Z, Koenen M, Rivinius R, Frey N, Schweizer PA. Improved Generation of Human Induced Pluripotent Stem Cell-Derived Cardiac Pacemaker Cells Using Novel Differentiation Protocols. Int J Mol Sci 2022; 23:ijms23137318. [PMID: 35806319 PMCID: PMC9266442 DOI: 10.3390/ijms23137318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Current protocols for the differentiation of human-induced pluripotent stem cells (hiPSC) into cardiomyocytes only generate a small amount of cardiac pacemaker cells. In previous work, we reported the generation of high amounts of cardiac pacemaker cells by co-culturing hiPSC with mouse visceral endoderm-like (END2) cells. However, potential medical applications of cardiac pacemaker cells generated according to this protocol, comprise an incalculable xenogeneic risk. We thus aimed to establish novel protocols maintaining the differentiation efficiency of the END2 cell-based protocol, yet eliminating the use of END2 cells. Three protocols were based on the activation and inhibition of the Wingless/Integrated (Wnt) signaling pathway, supplemented either with retinoic acid and the Wnt activator CHIR99021 (protocol B) or with the NODAL inhibitor SB431542 (protocol C) or with a combination of all three components (protocol D). An additional fourth protocol (protocol E) was used, which was originally developed by the manufacturer STEMCELL Technologies for the differentiation of hiPSC or hESC into atrial cardiomyocytes. All protocols (B, C, D, E) were compared to the END2 cell-based protocol A, serving as reference, in terms of their ability to differentiate hiPSC into cardiac pacemaker cells. Our analysis revealed that protocol E induced upregulation of 12 out of 15 cardiac pacemaker-specific genes. For comparison, reference protocol A upregulated 11, while protocols B, C and D upregulated 9, 10 and 8 cardiac pacemaker-specific genes, respectively. Cells differentiated according to protocol E displayed intense fluorescence signals of cardiac pacemaker-specific markers and showed excellent rate responsiveness to adrenergic and cholinergic stimulation. In conclusion, we characterized four novel and END2 cell-independent protocols for the differentiation of hiPSC into cardiac pacemaker cells, of which protocol E was the most efficient.
Collapse
Affiliation(s)
- Fabrice F. Darche
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
- Correspondence: ; Tel.: +49-6221-56-8676; Fax: +49-6221-56-5515
| | - Nina D. Ullrich
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ziqiang Huang
- EMBL Imaging Centre, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany;
| | - Michael Koenen
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Rasmus Rivinius
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| | - Patrick A. Schweizer
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| |
Collapse
|
20
|
Abstract
An ensemble of in vitro cardiac tissue models has been developed over the past several decades to aid our understanding of complex cardiovascular disorders using a reductionist approach. These approaches often rely on recapitulating single or multiple clinically relevant end points in a dish indicative of the cardiac pathophysiology. The possibility to generate disease-relevant and patient-specific human induced pluripotent stem cells has further leveraged the utility of the cardiac models as screening tools at a large scale. To elucidate biological mechanisms in the cardiac models, it is critical to integrate physiological cues in form of biochemical, biophysical, and electromechanical stimuli to achieve desired tissue-like maturity for a robust phenotyping. Here, we review the latest advances in the directed stem cell differentiation approaches to derive a wide gamut of cardiovascular cell types, to allow customization in cardiac model systems, and to study diseased states in multiple cell types. We also highlight the recent progress in the development of several cardiovascular models, such as cardiac organoids, microtissues, engineered heart tissues, and microphysiological systems. We further expand our discussion on defining the context of use for the selection of currently available cardiac tissue models. Last, we discuss the limitations and challenges with the current state-of-the-art cardiac models and highlight future directions.
Collapse
Affiliation(s)
- Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Suji Choi
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.)
| | - Christina Alamana
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, Wyss Institute for Biologically Inspired Engineering, Boston, MA (K.K.P.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Greenstone Biosciences, Palo Alto, CA (J.C.W.)
| |
Collapse
|
21
|
Hou X, Ma S, Fan W, Li F, Xu M, Yang C, Liu F, Yan Y, Wan J, Lan F, Liao B. Chemically defined and small molecules-based generation of sinoatrial node-like cells. Stem Cell Res Ther 2022; 13:158. [PMID: 35410454 PMCID: PMC8996538 DOI: 10.1186/s13287-022-02834-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Existing methods for in vitro differentiation of human pluripotent stem cells (hPSCs) into sinoatrial node-like cells (SANLCs) require complex and undefined medium constituents. This might hinder the elucidation of the molecular mechanisms involved in cardiac subtype specification and prevent translational application. In our study, we aimed to establish a chemically defined differentiation methods to generate SANLCs effectively and stably. Methods We induced human embryonic stem cells (hESCs)/induced PSCs (hiPSCs) to pan-cardiomyocytes by temporal modulation of the WNT/β-catenin (WNT) signaling pathway with GSK3 inhibitor and WNT inhibitor. During cardiac mesoderm stage of the differentiation process, signaling of WNT, retinoid acid (RA), and fibroblast growth factor (FGF) was manipulated by three specific molecules. Moreover, metabolic selection was designed to improve the enrichment of SANLCs. Finally, RT-PCR, immunofluorescence, flow cytometry, and whole cell patch clamp were used to identify the SANLCs.
Results WNT, RA, and FGF signaling promote the differentiation of hPSCs into SANLCs in a concentration- and time window-sensitive manner, respectively. Synergetic modulation of WNT, FGF, and RA signaling pathways enhance the pacemaker phenotype and improve the differentiation efficiency of SANLCs (up to 45%). Moreover, the purification based on lactate metabolism and glucose starvation further reached approximately 50% of SANLCs. Finally, the electrophysiological data demonstrate that cells differentiated with the proposed protocol produce a considerable number of SANLCs that display typical electrophysiological characteristics of pacemaker cells in vitro. Conclusion We provide an optimized and chemically defined protocol to generate SANLCs by combined modulation of WNT, RA, and FGF signaling pathways and metabolic selection by lactate enrichment and glucose starvation. This chemically defined method for generating SANLCs might provide a platform for disease modeling, drug discovery, predictive toxicology, and biological pacemaker construction. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02834-y.
Collapse
Affiliation(s)
- Xiaojie Hou
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Shuhong Ma
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518057, China
| | - Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Fang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.,Department of Cardiology, Jianyang City People's Hospital, Jianyang, 641499, China
| | - Miaomiao Xu
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518057, China
| | - Chao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Feng Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Ying Yan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China. .,Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, China. .,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Feng Lan
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518057, China.
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China. .,Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, China. .,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
22
|
Ghazizadeh Z, Zhu J, Fattahi F, Tang A, Sun X, Amin S, Tsai SY, Khalaj M, Zhou T, Samuel RM, Zhang T, Ortega FA, Gordillo M, Moroziewicz D, Paull D, Noggle SA, Xiang JZ, Studer L, Christini DJ, Pitt GS, Evans T, Chen S. A dual SHOX2:GFP; MYH6:mCherry knockin hESC reporter line for derivation of human SAN-like cells. iScience 2022; 25:104153. [PMID: 35434558 PMCID: PMC9010642 DOI: 10.1016/j.isci.2022.104153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 01/19/2023] Open
Abstract
The sinoatrial node (SAN) is the primary pacemaker of the heart. The human SAN is poorly understood due to limited primary tissue access and limitations in robust in vitro derivation methods. We developed a dual SHOX2:GFP; MYH6:mCherry knockin human embryonic stem cell (hESC) reporter line, which allows the identification and purification of SAN-like cells. Using this line, we performed several rounds of chemical screens and developed an efficient strategy to generate and purify hESC-derived SAN-like cells (hESC-SAN). The derived hESC-SAN cells display molecular and electrophysiological characteristics of bona fide nodal cells, which allowed exploration of their transcriptional profile at single-cell level. In sum, our dual reporter system facilitated an effective strategy for deriving human SAN-like cells, which can potentially be used for future disease modeling and drug discovery.
Collapse
Affiliation(s)
- Zaniar Ghazizadeh
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA,Corresponding author
| | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Faranak Fattahi
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alice Tang
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Xiaolu Sun
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sadaf Amin
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Su-Yi Tsai
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Mona Khalaj
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ting Zhou
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ryan M. Samuel
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tuo Zhang
- Genomic Resource Core Facility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Francis A. Ortega
- Physiology, Biophysics, and Systems Biology Graduate Program, Weill Cornell Medical College, New York, NY 10065, USA,Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Miriam Gordillo
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Dorota Moroziewicz
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, 3rd Floor, New York, NY 10019, USA
| | | | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, 3rd Floor, New York, NY 10019, USA
| | - Scott A. Noggle
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, 3rd Floor, New York, NY 10019, USA
| | - Jenny Zhaoying Xiang
- Genomic Resource Core Facility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David J. Christini
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA,Corresponding author
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA,Corresponding author
| |
Collapse
|
23
|
Effect of Shenfu Injection on Differentiation of Bone Marrow Mesenchymal Stem Cells into Pacemaker-Like Cells and Improvement of Pacing Function of Sinoatrial Node. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4299892. [PMID: 35186186 PMCID: PMC8853776 DOI: 10.1155/2022/4299892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
Sick sinus syndrome (SSS), a complex type of cardiac arrhythmia, is a major health threat to humans. Shenfu injection (SFI), a formula of traditional Chinese medicine (TCM), is effective in improving bradyarrhythmia. However, the underlying mechanism of SFI’s therapeutic effect is subject to few systematic investigations. The purpose of the present research is to examine whether SFI can boost the differentiation effectiveness of bone marrow mesenchymal stem cells (BMSCs) into pacemaker-like cells and whether the transplantation of these cells can improve the pacing function of the sinoatrial node (SAN) in a rabbit model of SSS. BMSCs from New Zealand rabbits were extracted, followed by incubation in vitro. The flow cytometry was utilized to identify the expression of CD29, CD44, CD90, and CD105 surface markers. The isolated BMSCs were treated with SFI, and the whole-cell patch-clamp method was performed to detect hyperpolarization-the activated cyclic nucleotide-gated potassium channel 4 (HCN4) channel current activation curve. The SSS rabbit model was established using the formaldehyde wet dressing method, and BMSCs treated with SFI were transplanted into the SAN of the SSS rabbit model. We detected changes in the body-surface electrocardiogram and recorded dynamic heart rate measurements. Furthermore, transplanted SFI-treated BMSCs were subjected to HE staining, TUNEL staining, qPCR, western blotting, immunofluorescence, immunohistochemistry, and enzyme-linked immunosorbent assay to study their characteristics. Our results indicate that the transplantation of SFI-treated BMSCs into the SAN of SSS rabbits improved the pacing function of the SAN. In vitro data showed that SFI induced the proliferation of BMSCs, promoted their differentiation capacity into pacemaker-like cells, and increased the HCN4 expression in BMSCs. In vivo, the transplantation of SFI treated-BMSCs preserved the function of SAN in SSS rabbits, improved the expression of the HCN4 gene and gap junction proteins (Cx43 and Cx45), and significantly upregulated the expression of cAMP in the SAN, compared to the SSS model group. In summary, the present research demonstrated that SFI might enhance the differentiation capacity of BMSCs into pacemaker-like cells, hence offering a novel approach for the development of biological pacemakers. Additionally, we confirmed the effectiveness and safety of pacemaker-like cells differentiated from BMSCs in improving the pacing function of the SAN.
Collapse
|
24
|
Dastidar S, Majumdar D, Tipanee J, Singh K, Klein AF, Furling D, Chuah MK, VandenDriessche T. Comprehensive transcriptome-wide analysis of spliceopathy correction of myotonic dystrophy using CRISPR-Cas9 in iPSCs-derived cardiomyocytes. Mol Ther 2022; 30:75-91. [PMID: 34371182 PMCID: PMC8753376 DOI: 10.1016/j.ymthe.2021.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 01/07/2023] Open
Abstract
CTG repeat expansion (CTGexp) is associated with aberrant alternate splicing that contributes to cardiac dysfunction in myotonic dystrophy type 1 (DM1). Excision of this CTGexp repeat using CRISPR-Cas resulted in the disappearance of punctate ribonuclear foci in cardiomyocyte-like cells derived from DM1-induced pluripotent stem cells (iPSCs). This was associated with correction of the underlying spliceopathy as determined by RNA sequencing and alternate splicing analysis. Certain genes were of particular interest due to their role in cardiac development, maturation, and function (TPM4, CYP2J2, DMD, MBNL3, CACNA1H, ROCK2, ACTB) or their association with splicing (SMN2, GCFC2, MBNL3). Moreover, while comparing isogenic CRISPR-Cas9-corrected versus non-corrected DM1 cardiomyocytes, a prominent difference in the splicing pattern for a number of candidate genes was apparent pertaining to genes that are associated with cardiac function (TNNT, TNNT2, TTN, TPM1, SYNE1, CACNA1A, MTMR1, NEBL, TPM1), cellular signaling (NCOR2, CLIP1, LRRFIP2, CLASP1, CAMK2G), and other DM1-related genes (i.e., NUMA1, MBNL2, LDB3) in addition to the disease-causing DMPK gene itself. Subsequent validation using a selected gene subset, including MBNL1, MBNL2, INSR, ADD3, and CRTC2, further confirmed correction of the spliceopathy following CTGexp repeat excision. To our knowledge, the present study provides the first comprehensive unbiased transcriptome-wide analysis of the differential splicing landscape in DM1 patient-derived cardiac cells after excision of the CTGexp repeat using CRISPR-Cas9, showing reversal of the abnormal cardiac spliceopathy in DM1.
Collapse
Affiliation(s)
- Sumitava Dastidar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Debanjana Majumdar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Kshitiz Singh
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Arnaud F. Klein
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Denis Furling
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Marinee K. Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium,Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium,Corresponding author: Marinee K. Chuah, Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium,Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium,Corresponding author: Thierry VandenDriessche, Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| |
Collapse
|
25
|
Zhang W, Zhao H, Quan D, Tang Y, Wang X, Huang C. Tbx18 promoted the conversion of human-induced pluripotent stem cell-derived cardiomyocytes into sinoatrial node-like pacemaker cells. Cell Biol Int 2021; 46:403-414. [PMID: 34882885 DOI: 10.1002/cbin.11738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/16/2021] [Accepted: 12/04/2021] [Indexed: 01/22/2023]
Abstract
Sinoatrial node (SAN) pacemaker cells originate from T-box transcription factor 18 (Tbx18)-expressing progenitor cells. The present study aimed to investigate whether overexpression of human transcription factor Tbx18 could reprogram human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) into SAN-like pacemaker cells (SANLPCs) in vitro. In the study, hiPSCs were first differentiated into hiPSC-CMs through regulating the Wnt/β-catenin pathway, then purified hiPSC-CMs were transfected by Tbx18 adenovirus (Tbx18-CMs group) or green fluorescent protein (GFP) adenovirus (GFP-CMs group). The beating frequency of the Tbx18-CMs group was significantly higher than that of the hiPSC-CMs group and GFP-CMs group. Compared with the other two groups, the expression levels of hyperpolarization-activated cyclic nucleotide-gated potassium channel isoform 4, connexin-45 in the Tbx18-CMs group were markedly upregulated, while the expressions of transcription factor NKX2.5, CX43 were significantly downregulated. Whole-cell patch-clamp results illustrated that action potential and "funny" current (If ) similar to SAN pacemaker cells could be recorded in the Tbx18-CMs group. In conclusion, this present study demonstrated that overexpression of Tbx18 promoted the conversion of hiPSC-CMs into SANLPCs.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Hongyi Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Dajun Quan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| |
Collapse
|
26
|
Komosa ER, Wolfson DW, Bressan M, Cho HC, Ogle BM. Implementing Biological Pacemakers: Design Criteria for Successful. Circ Arrhythm Electrophysiol 2021; 14:e009957. [PMID: 34592837 PMCID: PMC8530973 DOI: 10.1161/circep.121.009957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Each heartbeat that pumps blood throughout the body is initiated by an electrical impulse generated in the sinoatrial node (SAN). However, a number of disease conditions can hamper the ability of the SAN's pacemaker cells to generate consistent action potentials and maintain an orderly conduction path, leading to arrhythmias. For symptomatic patients, current treatments rely on implantation of an electronic pacing device. However, complications inherent to the indwelling hardware give pause to categorical use of device therapy for a subset of populations, including pediatric patients or those with temporary pacing needs. Cellular-based biological pacemakers, derived in vitro or in situ, could function as a therapeutic alternative to current electronic pacemakers. Understanding how biological pacemakers measure up to the SAN would facilitate defining and demonstrating its advantages over current treatments. In this review, we discuss recent approaches to creating biological pacemakers and delineate design criteria to guide future progress based on insights from basic biology of the SAN. We emphasize the need for long-term efficacy in vivo via maintenance of relevant proteins, source-sink balance, a niche reflective of the native SAN microenvironment, and chronotropic competence. With a focus on such criteria, combined with delivery methods tailored for disease indications, clinical implementation will be attainable.
Collapse
Affiliation(s)
- Elizabeth R Komosa
- Department of Biomedical Engineering (E.R.K., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
- Stem Cell Institute (E.R.K., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
| | - David W Wolfson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (D.W.W., H.C.C.)
| | - Michael Bressan
- Department of Cell Biology and Physiology (M.B.), University of North Carolina-Chapel Hill
- McAllister Heart Institute (M.B.), University of North Carolina-Chapel Hill
| | - Hee Cheol Cho
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (D.W.W., H.C.C.)
- Department of Pediatrics, Emory University, Atlanta, GA (H.C.C.)
| | - Brenda M Ogle
- Department of Biomedical Engineering (E.R.K., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
- Stem Cell Institute (E.R.K., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
- Department of Pediatrics (B.M.O), University of Minnesota-Twin Cities, Minneapolis
- Lillehei Heart Institute (B.M.O), University of Minnesota-Twin Cities, Minneapolis
- Institute for Engineering in Medicine (B.M.O), University of Minnesota-Twin Cities, Minneapolis
- Masonic Cancer Center (B.M.O), University of Minnesota-Twin Cities, Minneapolis
| |
Collapse
|
27
|
Teng Y, Loveless R, Benson EM, Sun L, Shull AY, Shay C. SHOX2 cooperates with STAT3 to promote breast cancer metastasis through the transcriptional activation of WASF3. J Exp Clin Cancer Res 2021; 40:274. [PMID: 34465361 PMCID: PMC8406721 DOI: 10.1186/s13046-021-02083-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metastasis is most often the root cause of cancer-related death. Human short stature homeobox 2 (SHOX2), a homeodomain transcription factor, is a novel inducer of epithelial-to-mesenchymal transition in breast cancer cells, though its exact role and underlying mechanisms in metastasis are not well understood. METHODS TCGA analysis was performed to identify the clinical relevance of SHOX2 in breast cancer. Gene depletion was achieved by short hairpin RNA and small interfering RNA. Molecular regulations and alterations were assessed by Western blotting, immunoprecipitation, immunohistochemistry, qRT-PCR, chromatin immunoprecipitation coupled with qPCR (ChIP-qPCR), and ChIP/re-ChIP. The impact of SHOX2 signaling on tumor growth and metastasis was evaluated in orthotopic breast tumor mice. RESULTS The expression level of SHOX2 is strongly associated with poor distant metastasis-free survival in breast cancer patients and inactivation of SHOX2 suppresses breast tumor growth and metastasis in mice. In breast cancer cells, SHOX2 directly activates Wiskott-Aldridge syndrome protein family member 3 (WASF3), a metastasis-promoting gene, at the transcriptional level, leading to a significant increase in metastatic potential. Mechanistically, SHOX2 activates signal transducer and activator of transcription 3 (STAT3) and recruits it to the WASF3 promoter, where STAT3 cooperates with SHOX2 to form a functional immunocomplex to promote WASF3 transcriptional activity in breast cancer cells. WASF3 knockdown abrogates SHOX2-induced metastasis, but not SHOX2-dependent tumorigenesis. CONCLUSIONS These findings provide a critical link between the SHOX2-STAT3-WASF3 signaling axis and metastasis and suggest that the targeting of this signaling node may represent a valuable alternative strategy for combating breast cancer metastasis.
Collapse
Affiliation(s)
- Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, GA, 30322, Atlanta, USA.
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, 30912, Augusta, GA, USA.
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, 30912, Augusta, GA, USA
| | - Elayne M Benson
- Department of Biology, Presbyterian College, 29325, Clinton, SC, USA
| | - Li Sun
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, 30912, Augusta, GA, USA
| | - Austin Y Shull
- Department of Biology, Presbyterian College, 29325, Clinton, SC, USA
| | - Chloe Shay
- Emory Children's Center, Emory University School of Medicine, 30322, Atlanta, GA, USA
| |
Collapse
|
28
|
Naumova N, Iop L. Bioengineering the Cardiac Conduction System: Advances in Cellular, Gene, and Tissue Engineering for Heart Rhythm Regeneration. Front Bioeng Biotechnol 2021; 9:673477. [PMID: 34409019 PMCID: PMC8365186 DOI: 10.3389/fbioe.2021.673477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Heart rhythm disturbances caused by different etiologies may affect pediatric and adult patients with life-threatening consequences. When pharmacological therapy is ineffective in treating the disturbances, the implantation of electronic devices to control and/or restore normal heart pacing is a unique clinical management option. Although these artificial devices are life-saving, they display many limitations; not least, they do not have any capability to adapt to somatic growth or respond to neuroautonomic physiological changes. A biological pacemaker could offer a new clinical solution for restoring heart rhythms in the conditions of disorder in the cardiac conduction system. Several experimental approaches, such as cell-based, gene-based approaches, and the combination of both, for the generation of biological pacemakers are currently established and widely studied. Pacemaker bioengineering is also emerging as a technology to regenerate nodal tissues. This review analyzes and summarizes the strategies applied so far for the development of biological pacemakers, and discusses current translational challenges toward the first-in-human clinical application.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
29
|
Zhu Y, You J, Wei W, Gu J, Xu C, Gu X. Downregulated lncRNA RCPCD promotes differentiation of embryonic stem cells into cardiac pacemaker-like cells by suppressing HCN4 promoter methylation. Cell Death Dis 2021; 12:667. [PMID: 34215719 PMCID: PMC8253811 DOI: 10.1038/s41419-021-03949-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022]
Abstract
Long non-coding RNA (lncRNA) is receiving increasing attention in embryonic stem cells (ESCs) research. However, the roles of lncRNA in the differentiation of ESCs into pacemaker-like cells are still unclear. Therefore, the present study aims to explore the roles and mechanisms of lncRNA in the differentiation of ESCs into pacemaker-like cells. ESCs were cultured and induced differentiation to pacemaker-like cells. RNA sequencing was used to identify the differential expression lncRNAs during the differentiation of ESCs into pacemaker-like cells. Cell morphology observation, flow cytometry, quantitative real-time polymerase chain reaction, western blot, and immunofluorescence were used to detect the differentiation of ESCs into pacemaker-like cells. LncRNA and genes overexpression or knockdown through transfected adenovirus in the differentiation process. The fluorescence in situ hybridization (FISH) detected the lncRNA location in the differentiated ESCs. Luciferase reporter gene assay, methylation-specific PCR, chromatin immunoprecipitation assay, and RNA immunoprecipitation assay were performed to reveal the mechanism of lncRNA-regulating HCN4 expression. Rescue experiments were used to confirm that lncRNA regulates the differentiation of ESCs into pacemaker-like cells through HCN4. We cultured the ESCs and induced the differentiation of ESCs into pacemaker-like cells successfully. The expression of lncRNA RCPCD was significantly decreased in the differentiation of ESCs into pacemaker-like cells. Overexpression of RCPCD inhibited the differentiation of ESCs into pacemaker-like cells. RCPCD inhibited the expression of HCN4 by increasing HCN4 methylation at the promoter region through DNMT1, DNMT2, and DNMT3. RCPCD inhibited the differentiation of ESCs into pacemaker-like cells by inhibiting the expression of HCN4. Our results confirm the roles and mechanism of lncRNA RCPCD in the differentiation of ESCs into pacemaker-like cells, which could pave the path for the development of a cell-based biological pacemaker.
Collapse
Affiliation(s)
- Ye Zhu
- Clinical Medical College of Yangzhou University, Yangzhou, China. .,Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, China.
| | - Jia You
- Department of Internal Medicine, Yangzhou Maternal and Child Health Care Hospital, Yangzhou, Jiangsu, 225001, China
| | - Wei Wei
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jianjun Gu
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, US
| | - Xiang Gu
- Clinical Medical College of Yangzhou University, Yangzhou, China.,Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
30
|
Jiang Y, Bao X, Lian XL. A dual cardiomyocyte reporter model derived from human pluripotent stem cells. Stem Cell Res Ther 2021; 12:305. [PMID: 34051863 PMCID: PMC8164304 DOI: 10.1186/s13287-021-02341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death in the USA. Cardiomyocytes (CMs) derived from human pluripotent stem cells (hPSCs) provide a valuable cell source for regenerative therapy, disease modeling, and drug screening. Here, we established a hPSC line integrated with a mCherry fluorescent protein driven by the alpha myosin heavy chain (aMHC) promoter, which could be used to purify CMs based on the aMHC promoter activity in these cells. Combined with a fluorescent voltage indicator, ASAP2f, we achieved a dual reporter CM platform, which enables purification and characterization of CM subtypes and holds great potential for disease modeling and drug discovery of CVD.
Collapse
Affiliation(s)
- Yuqian Jiang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
31
|
Yan Y, Liu F, Dang X, Zhou R, Liao B. TBX3 induces biased differentiation of human induced pluripotent stem cells into cardiac pacemaker-like cells. Gene Expr Patterns 2021; 40:119184. [PMID: 33975000 DOI: 10.1016/j.gep.2021.119184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND TBX3 plays a critical role in the formation of the sinoatrial node (SAN) during embryonic heart development. However, the contribution of TBX3 in driving the differentiation of human induced pluripotent stem cells (hiPSC)into pacemaker cells remains to be explored. RESULTS Using the pan-cardiomyocyte differentiation protocol of human induced pluripotent stem cells (hiPSC),TBX3 gene was introduced into the differentiating hiPSC on day 5 post-differentiation, and the differentiation of pacemaker-like cardiomyocytes was evaluated on day 21. The results showed that TBX3 significantly induced biased differentiation of hiPSC into pacemaker-like cells as judged by significantly increased expression of SAN-specific marker gene, SHOX2, and slightly decreased expression of SAN-detrimental transcription factor, NKX2-5. CONCLUSION Our results suggest that TBX3 plays an important role in driving the differentiation of hiPSC into pacemaker-like cells, and manipulation of TBX3 expression during pan-cardiomyocyte differentiation may lead to the development of therapeutic pacemaker cells.
Collapse
Affiliation(s)
- Ying Yan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China; College of Integrated Traditional Chinese and Western Medicine, Southwest Medical university, Luzhou, Sichuan, 646000, China.
| | - Feng Liu
- Department of Cardiac Macrovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Xitong Dang
- The Key laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Rui Zhou
- The Key laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Bin Liao
- Department of Cardiac Macrovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
32
|
James EC, Tomaskovic-Crook E, Crook JM. Bioengineering Clinically Relevant Cardiomyocytes and Cardiac Tissues from Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms22063005. [PMID: 33809429 PMCID: PMC8001925 DOI: 10.3390/ijms22063005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The regenerative capacity of cardiomyocytes is insufficient to functionally recover damaged tissue, and as such, ischaemic heart disease forms the largest proportion of cardiovascular associated deaths. Human-induced pluripotent stem cells (hiPSCs) have enormous potential for developing patient specific cardiomyocytes for modelling heart disease, patient-based cardiac toxicity testing and potentially replacement therapy. However, traditional protocols for hiPSC-derived cardiomyocytes yield mixed populations of atrial, ventricular and nodal-like cells with immature cardiac properties. New insights gleaned from embryonic heart development have progressed the precise production of subtype-specific hiPSC-derived cardiomyocytes; however, their physiological immaturity severely limits their utility as model systems and their use for drug screening and cell therapy. The long-entrenched challenges in this field are being addressed by innovative bioengingeering technologies that incorporate biophysical, biochemical and more recently biomimetic electrical cues, with the latter having the potential to be used to both direct hiPSC differentiation and augment maturation and the function of derived cardiomyocytes and cardiac tissues by mimicking endogenous electric fields.
Collapse
Affiliation(s)
- Emma Claire James
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
| | - Eva Tomaskovic-Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- Correspondence: (E.T.-C.); (J.M.C.)
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- Department of Surgery, St Vincent’s Hospital, The University of Melbourne, Fitzroy 3065, Australia
- Correspondence: (E.T.-C.); (J.M.C.)
| |
Collapse
|
33
|
Li Y, Wang K, Li Q, Hancox JC, Zhang H. Reciprocal interaction between IK1 and If in biological pacemakers: A simulation study. PLoS Comput Biol 2021; 17:e1008177. [PMID: 33690622 PMCID: PMC7984617 DOI: 10.1371/journal.pcbi.1008177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/22/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
Pacemaking dysfunction (PD) may result in heart rhythm disorders, syncope or even death. Current treatment of PD using implanted electronic pacemakers has some limitations, such as finite battery life and the risk of repeated surgery. As such, the biological pacemaker has been proposed as a potential alternative to the electronic pacemaker for PD treatment. Experimentally and computationally, it has been shown that bio-engineered pacemaker cells can be generated from non-rhythmic ventricular myocytes (VMs) by knocking out genes related to the inward rectifier potassium channel current (IK1) or by overexpressing hyperpolarization-activated cyclic nucleotide gated channel genes responsible for the "funny" current (If). However, it is unclear if a bio-engineered pacemaker based on the modification of IK1- and If-related channels simultaneously would enhance the ability and stability of bio-engineered pacemaking action potentials. In this study, the possible mechanism(s) responsible for VMs to generate spontaneous pacemaking activity by regulating IK1 and If density were investigated by a computational approach. Our results showed that there was a reciprocal interaction between IK1 and If in ventricular pacemaker model. The effect of IK1 depression on generating ventricular pacemaker was mono-phasic while that of If augmentation was bi-phasic. A moderate increase of If promoted pacemaking activity but excessive increase of If resulted in a slowdown in the pacemaking rate and even an unstable pacemaking state. The dedicated interplay between IK1 and If in generating stable pacemaking and dysrhythmias was evaluated. Finally, a theoretical analysis in the IK1/If parameter space for generating pacemaking action potentials in different states was provided. In conclusion, to the best of our knowledge, this study provides a wide theoretical insight into understandings for generating stable and robust pacemaker cells from non-pacemaking VMs by the interplay of IK1 and If, which may be helpful in designing engineered biological pacemakers for application purposes.
Collapse
Affiliation(s)
- Yacong Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- * E-mail: (KW); (HZ)
| | - Qince Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, United Kingdom
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Henggui Zhang
- Peng Cheng Laboratory, Shenzhen, China
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- * E-mail: (KW); (HZ)
| |
Collapse
|
34
|
Liao X, Wu C, Shao Z, Zhang S, Zou Y, Wang K, Ha Y, Xing J, Zheng A, Shen Z, Zheng S, Guo J, Jie W. SETD4 in the Proliferation, Migration, Angiogenesis, Myogenic Differentiation and Genomic Methylation of Bone Marrow Mesenchymal Stem Cells. Stem Cell Rev Rep 2021; 17:1374-1389. [PMID: 33506343 DOI: 10.1007/s12015-021-10121-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 11/28/2022]
Abstract
Epigenetic modification is a crucial mechanism affecting the biological function of stem cells. SETD4 is a histone methyltransferase, and its biological role in bone marrow mesenchymal stem cells (BMSCs) is currently unknown. In this study, we employed CRISPR/Cas9 technology edited mouse model and found that SETD4 knockout significantly promoted the proliferation of BMSCs, impaired BMSCs migration and differentiation potentials of lineages of cardiacmyocyte and smooth muscle cell, and even the angiogenesis via paracrine of VEGF. Through Reduced Representation Bisulfite Sequencing (RRBS) method, we verified that the overall genomic methylation of BMSCs in the SETD4 knockout group only was decreased by 0.47 % compared with wild type. However, the changed genomic methylation covers a total of 96,331 differential methylated CpG sites and 8,692 differential methylation regions (DMRs), with part of them settled in promoter regions. Bioinformatic analysis revealed that differential CpG islands and DMRs in promoter impacted 270 GO functions and 34 KEGG signaling pathways, with some closely related to stem cell biology. Mechanismly, SETD4 knockout inhibited sets of monomethylases and dimethylases for histone lysine, along with significant changes in some factors including Nkx2.5, Gata4, Gli2, Grem2, E2f7, Map7, Nr2f2 and Shox2 that associated with stem cell biology. These results are the first to reveal that even though SETD4 changes the genome's overall methylation to a limited extent in BMSCs, it still affects the numerous cellular functions and signaling pathways, implying SETD4-altered genomic methylation serves a crucial molecular role in BMSCs' biological functions.
Collapse
Affiliation(s)
- Xiaomin Liao
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Caixia Wu
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Zhongming Shao
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Shuya Zhang
- Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, China
| | - Yuan Zou
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Keke Wang
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yanping Ha
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Jingci Xing
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Axiu Zheng
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Zhihua Shen
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China
| | - Shaojiang Zheng
- Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, China.,Key Laboratory of Emergency and Trauma of Ministry of Education & Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, China
| | - Junli Guo
- Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, China. .,Key Laboratory of Emergency and Trauma of Ministry of Education & Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, China.
| | - Wei Jie
- Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, 524023, China. .,Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, The First Affiliated Hospital of Hainan Medical University, Haikou, 571199, China. .,Key Laboratory of Emergency and Trauma of Ministry of Education & Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
35
|
Co ML, Khouzam JP, Pour-Ghaz I, Minhas S, Basu-Ray I. Emerging Technologies in Cardiac Pacing From Leadless Pacers to Stem Cells. Curr Probl Cardiol 2021; 46:100797. [PMID: 33561694 DOI: 10.1016/j.cpcardiol.2021.100797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 01/28/2023]
Abstract
Modern pacemakers can sense and pace multiple chambers of the heart. These pacemakers have different modes and features to optimize atrioventricular synchrony and promote intrinsic conduction. Despite recent advancements, current pacemakers have several drawbacks that limit their feasibility. In this review article, we discuss several of these limitations and detail several emerging technologies in cardiac pacing aimed to solve some of these limitations. We present several technological advancements in cardiac pacing, including the use of leadless pacemakers, physiologic pacing, battery improvements, and bioartificial pacemakers. More research still needs to be done in testing the safety and efficacy of these new developments.
Collapse
Affiliation(s)
- Michael Lawren Co
- Department of Cardiology, Loma Linda University Medical Center, Loma Linda, CA
| | | | - Issa Pour-Ghaz
- Department of Cardiology, University of Tennessee Health Science Center, Memphis, TN
| | - Sheharyar Minhas
- Department of Internal Medicine, Baptist Memorial Hospital, Memphis, TN
| | - Indranill Basu-Ray
- Arrythmia Service, Department of Cardiology, Memphis VA Medical Center, The University of Memphis, Memphis, TN.
| |
Collapse
|
36
|
Jackson AO, Rahman GA, Yin K, Long S. Enhancing Matured Stem-Cardiac Cell Generation and Transplantation: A Novel Strategy for Heart Failure Therapy. J Cardiovasc Transl Res 2020; 14:556-572. [PMID: 33258081 DOI: 10.1007/s12265-020-10085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
Heart failure (HF) remains one of the major causes of morbidity and mortality worldwide. Recent studies have shown that stem cells (SCs) including bone marrow mesenchymal stem (BMSC), embryonic bodies (EB), embryonic stem (ESC), human induced pluripotent stem (hiPSC)-derived cardiac cells generation, and transplantation treated myocardial infarction (MI) in vivo and in human. However, the immature phenotypes compromise their clinical application requiring immediate intervention to improve stem-derived cardiac cell (S-CCs) maturation. Recently, an unbiased multi-omic analysis involving genomics, transcriptomics, epigenomics, proteomics, and metabolomics identified specific strategies for the generation of matured S-CCs that may enhance patients' recovery processes upon transplantation. However, these strategies still remain undisclosed. Here, we summarize the recently discovered strategies for the matured S-CC generation. In addition, cardiac patch formation and transplantation that accelerated HF recuperation in clinical trials are discussed. A better understanding of this work may lead to efficient generation of matured S-CCs for regenerative medicine. Graphical abstract.
Collapse
Affiliation(s)
- Ampadu O Jackson
- Department of Biochemistry and Molecular Biology, University of South China, Hengyang, 421001, Hunan Province, China.,International College, University of South China, Hengyang, 421001, Hunan Province, China.,Cape Coast Teaching Hospital, Cape Coast, Department of Surgery, School of Medical Science, University of Cape Coast, Cape Coast, Ghana
| | - Ganiyu A Rahman
- Cape Coast Teaching Hospital, Cape Coast, Department of Surgery, School of Medical Science, University of Cape Coast, Cape Coast, Ghana
| | - Kai Yin
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Shiyin Long
- Department of Biochemistry and Molecular Biology, University of South China, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
37
|
Sontayananon N, Redwood C, Davies B, Gehmlich K. Fluorescent PSC-Derived Cardiomyocyte Reporter Lines: Generation Approaches and Their Applications in Cardiovascular Medicine. BIOLOGY 2020; 9:biology9110402. [PMID: 33207727 PMCID: PMC7697758 DOI: 10.3390/biology9110402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Recent advances have made pluripotent stem cell (PSC)-derived cardiomyocytes an attractive option to model both normal and diseased cardiac function at the single-cell level. However, in vitro differentiation yields heterogeneous populations of cardiomyocytes and other cell types, potentially confounding phenotypic analyses. Fluorescent PSC-derived cardiomyocyte reporter systems allow specific cell lineages to be labelled, facilitating cell isolation for downstream applications including drug testing, disease modelling and cardiac regeneration. In this review, the different genetic strategies used to generate such reporter lines are presented with an emphasis on their relative technical advantages and disadvantages. Next, we explore how the fluorescent reporter lines have provided insights into cardiac development and cardiomyocyte physiology. Finally, we discuss how exciting new approaches using PSC-derived cardiomyocyte reporter lines are contributing to progress in cardiac cell therapy with respect to both graft adaptation and clinical safety.
Collapse
Affiliation(s)
- Naeramit Sontayananon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX3 9DU, UK; (N.S.); (C.R.)
| | - Charles Redwood
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX3 9DU, UK; (N.S.); (C.R.)
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
- Correspondence: (B.D.); (K.G.)
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX3 9DU, UK; (N.S.); (C.R.)
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: (B.D.); (K.G.)
| |
Collapse
|
38
|
Yechikov S, Kao HKJ, Chang CW, Pretto D, Zhang XD, Sun YH, Smithers R, Sirish P, Nolta JA, Chan JW, Chiamvimonvat N, Lieu DK. NODAL inhibition promotes differentiation of pacemaker-like cardiomyocytes from human induced pluripotent stem cells. Stem Cell Res 2020; 49:102043. [PMID: 33128951 PMCID: PMC7814970 DOI: 10.1016/j.scr.2020.102043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Directed cardiomyogenesis from human induced pluripotent stem cells (hiPSCs) has been greatly improved in the last decade but directed differentiation to pacemaking cardiomyocytes (CMs) remains incompletely understood. In this study, we demonstrated that inhibition of NODAL signaling by a specific NODAL inhibitor (SB431542) in the cardiac mesoderm differentiation stage downregulated PITX2c, a transcription factor that is known to inhibit the formation of the sinoatrial node in the left atrium during cardiac development. The resulting hiPSC-CMs were smaller in cell size, expressed higher pro-pacemaking transcription factors, TBX3 and TBX18, and exhibited pacemaking-like electrophysiological characteristics compared to control hiPSC-CMs differentiated from established Wnt-based protocol. The pacemaker-like subtype increased up to 2.4-fold in hiPSC-CMs differentiated with the addition of SB431542 relative to the control. Hence, Nodal inhibition in the cardiac mesoderm stage promoted pacemaker-like CM differentiation from hiPSCs. Improving the yield of human pacemaker-like CMs is a critical first step in the development of functional human cell-based biopacemakers.
Collapse
Affiliation(s)
- Sergey Yechikov
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, USA
| | - Hillary K J Kao
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, USA
| | - Che-Wei Chang
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Dalyir Pretto
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, USA
| | - Xiao-Dong Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95817, USA
| | - Yao-Hui Sun
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, USA
| | - Regan Smithers
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, USA; Bridges to Stem Cell Research Program, California State University Sacramento, Sacramento, CA 95819, USA
| | - Padmini Sirish
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95817, USA; Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| | - Jan A Nolta
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, USA; Department of Hematology and Oncology, University of California, Davis, Sacramento, CA 95817, USA
| | - James W Chan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95817, USA; Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| | - Deborah K Lieu
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
39
|
Protze SI, Lee JH, Keller GM. Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications. Cell Stem Cell 2020; 25:311-327. [PMID: 31491395 DOI: 10.1016/j.stem.2019.07.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in our understanding of cardiovascular development have provided a roadmap for the directed differentiation of human pluripotent stem cells (hPSCs) to the major cell types found in the heart. In this Perspective, we review the state of the field in generating and maturing cardiovascular cells from hPSCs based on our fundamental understanding of heart development. We then highlight their applications for studying human heart development, modeling disease-performing drug screening, and cell replacement therapy. With the advancements highlighted here, the promise that hPSCs will deliver new treatments for degenerative and debilitating diseases may soon be fulfilled.
Collapse
Affiliation(s)
- Stephanie I Protze
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Jee Hoon Lee
- BlueRock Therapeutics ULC, Toronto, ON M5G 1L7, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
40
|
Swedlund B, Lescroart F. Cardiopharyngeal Progenitor Specification: Multiple Roads to the Heart and Head Muscles. Cold Spring Harb Perspect Biol 2020; 12:a036731. [PMID: 31818856 PMCID: PMC7397823 DOI: 10.1101/cshperspect.a036731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the heart arises from various sources of undifferentiated mesodermal progenitors, with an additional contribution from ectodermal neural crest cells. Mesodermal cardiac progenitors are plastic and multipotent, but are nevertheless specified to a precise heart region and cell type very early during development. Recent findings have defined both this lineage plasticity and early commitment of cardiac progenitors, using a combination of single-cell and population analyses. In this review, we discuss several aspects of cardiac progenitor specification. We discuss their markers, fate potential in vitro and in vivo, early segregation and commitment, and also intrinsic and extrinsic cues regulating lineage restriction from multipotency to a specific cell type of the heart. Finally, we also discuss the subdivisions of the cardiopharyngeal field, and the shared origins of the heart with other mesodermal derivatives, including head and neck muscles.
Collapse
Affiliation(s)
- Benjamin Swedlund
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | |
Collapse
|
41
|
Li Y, Wang K, Li Q, Zhang H. Biological pacemaker: from biological experiments to computational simulation. J Zhejiang Univ Sci B 2020; 21:524-536. [PMID: 32633107 DOI: 10.1631/jzus.b1900632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pacemaking dysfunction has become a significant disease that may contribute to heart rhythm disorders, syncope, and even death. Up to now, the best way to treat it is to implant electronic pacemakers. However, these have many disadvantages such as limited battery life, infection, and fixed pacing rate. There is an urgent need for a biological pacemaker (bio-pacemaker). This is expected to replace electronic devices because of its low risk of complications and the ability to respond to emotion. Here we survey the contemporary development of the bio-pacemaker by both experimental and computational approaches. The former mainly includes gene therapy and cell therapy, whilst the latter involves the use of multi-scale computer models of the heart, ranging from the single cell to the tissue slice. Up to now, a bio-pacemaker has been successfully applied in big mammals, but it still has a long way from clinical uses for the treatment of human heart diseases. It is hoped that the use of the computational model of a bio-pacemaker may accelerate this process. Finally, we propose potential research directions for generating a bio-pacemaker based on cardiac computational modeling.
Collapse
Affiliation(s)
- Yacong Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qince Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.,Peng Cheng Laboratory, Shenzhen 518052, China
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.,School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.,Peng Cheng Laboratory, Shenzhen 518052, China
| |
Collapse
|
42
|
Zhao MT, Shao NY, Garg V. Subtype-specific cardiomyocytes for precision medicine: Where are we now? Stem Cells 2020; 38:822-833. [PMID: 32232889 DOI: 10.1002/stem.3178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 11/12/2022]
Abstract
Patient-derived pluripotent stem cells (PSCs) have greatly transformed the current understanding of human heart development and cardiovascular disease. Cardiomyocytes derived from personalized PSCs are powerful tools for modeling heart disease and performing patient-based cardiac toxicity testing. However, these PSC-derived cardiomyocytes (PSC-CMs) are a mixed population of atrial-, ventricular-, and pacemaker-like cells in the dish, hindering the future of precision cardiovascular medicine. Recent insights gleaned from the developing heart have paved new avenues to refine subtype-specific cardiomyocytes from patients with known pathogenic genetic variants and clinical phenotypes. Here, we discuss the recent progress on generating subtype-specific (atrial, ventricular, and nodal) cardiomyocytes from the perspective of embryonic heart development and how human pluripotent stem cells will expand our current knowledge on molecular mechanisms of cardiovascular disease and the future of precision medicine.
Collapse
Affiliation(s)
- Ming-Tao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Ning-Yi Shao
- Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| | - Vidu Garg
- Center for Cardiovascular Research, The Abigail Wexner Research Institute and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Molecular Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
43
|
Li N, Zeng Y, Huang J. Signaling pathways and clinical application of RASSF1A and SHOX2 in lung cancer. J Cancer Res Clin Oncol 2020; 146:1379-1393. [PMID: 32266538 DOI: 10.1007/s00432-020-03188-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND An increasing number of studies have focused on the early diagnostic value of the methylation of RASSF1A and SHOX2 in lung cancer. However, the intricate cellular events related to RASSF1A and SHOX2 in lung cancer are still a mystery. For researchers and clinicians aiming to more profoundly understand the diagnostic value of methylated RASSF1A and SHOX2 in lung cancer, this review will provide deeper insights into the molecular events of RASSF1A and SHOX2 in lung cancer. METHODOLOGY We searched for relevant publications in the PubMed and Google Scholar databases using the keywords "RASSF1A", "SHOX2" and "lung cancer" etc. First, we reviewed the RASSF1A and SHOX2 genes, from their family structures to the functions of their basic structural domains. Then we mainly focused on the roles of RASSF1A and SHOX2 in lung cancer, especially on their molecular events in recent decades. Finally, we compared the value of measuring RASSF1A and SHOX2 gene methylation with that of the common methods for the diagnosis of lung cancer patients. RESULTS The RASSF1A and SHOX2 genes were confirmed to be regulators or effectors of multiple cancer signaling pathways, driving tumorigenesis and lung cancer progression. The detection of RASSF1A and SHOX2 gene methylation has higher sensitivity and specificity than other commonly used methods for diagnosing lung cancer, especially in the early stage. CONCLUSIONS The RASSF1A and SHOX2 genes are critical for the processes of tumorigenesis, development, metastasis, drug resistance, and recurrence in lung cancer. The combined detection of RASSF1A and SHOX2 gene methylation was identified as an excellent method for the screening and surveillance of lung cancer that exhibits high sensitivity and specificity.
Collapse
Affiliation(s)
- Nanhong Li
- Department of Pathology, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yu Zeng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, China
| | - Jian Huang
- Department of Pathology, Guangdong Medical University, Zhanjiang, 524023, China.
- Pathological Diagnosis and Research Center, Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
44
|
Liang W, Al Qarawi W, Davis DR. Disease Modelling and Precision Medicine Using Canadian Cardiomyocytes. Can J Cardiol 2020; 36:467-469. [PMID: 32146064 DOI: 10.1016/j.cjca.2019.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022] Open
Affiliation(s)
- Wenbin Liang
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Wael Al Qarawi
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Darryl R Davis
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
45
|
Eckhardt LL, Kalscheur MM. Replacing Hardware With "Viralware". J Am Coll Cardiol 2020; 73:1688-1690. [PMID: 30947922 DOI: 10.1016/j.jacc.2019.01.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Lee L Eckhardt
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, Wisconsin; Cellular and Molecular Arrhythmia Research Program (CMARP), University of Wisconsin-Madison, Madison, Wisconsin.
| | - Matthew M Kalscheur
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, Wisconsin; Section of Cardiovascular Medicine, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
46
|
Abstract
Cardiac pacemaking is a most fundamental cardiac function, thoroughly investigated for decades with a multiscale approach at organ, tissue, cell and molecular levels, to clarify the basic mechanisms underlying generation and control of cardiac rhythm. Understanding the processes involved in pacemaker activity is of paramount importance for a basic physiological knowledge, but also as a way to reveal details of pathological dysfunctions useful in the perspective of a therapeutic approach. Among the mechanisms involved in pacemaking, the "funny" (If) current has properties most specifically fitting the requirements for generation and control of repetitive activity, and has consequently received the most attention in studies of the pacemaker function. Present knowledge of the basic mechanisms of pacemaking and the properties of funny channels has led to important developments of clinical relevance. These include: (1) the successful development of heart rate-reducing agents, such as ivabradine, able to control cardiac rhythm and useful in the treatment of diseases such as coronary artery disease, heart failure and tachyarrhythmias; (2) the understanding of the genetic basis of disorders of cardiac rhythm caused by HCN channelopathies; (3) the design of strategies to implement biological pacemakers based on transfer of HCN channels or of stem cell-derived pacemaker cells expressing If, with the ultimate goal to replace electronic devices. In this review, I will give a brief historical account of the discovery of the funny current and the development of the concept of If-based pacemaking, in the context of a wider, more complex model of cardiac rhythmic function.
Collapse
Affiliation(s)
- Dario DiFrancesco
- Department of Biosciences, University of Milano, IBF-CNR University of Milano Unit, Milan, Italy
| |
Collapse
|
47
|
Zhao H, Wang F, Tang Y, Wang X, Wang T, Zhao Q, Huang C. HCN2 and TBX3 Reprogram Human-Induced Pluripotent Stem Cells-Derived Cardiomyocytes into Pacemaker-Like Cells. DNA Cell Biol 2020; 39:289-298. [PMID: 31916853 DOI: 10.1089/dna.2019.5135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TBX3 reprograms cardiac myocytes into cells that possess sinoatrial node phenotype, but no specific funny current (If) was detected. We explore whether overexpression of TBX3 alone or combined with HCN2 can reprogram human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) into pacemaker-like cells. HiPSC-CMs were transfected with TBX3 and/or HCN2 in this study. Expression analysis showed that overexpression of TBX3 induces a reduced reduction expression profile of working cardiomyocytes into that of pacemaker cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and electrophysiological analyses showed a reduced expression of connexins subunits (CX40, CX43), the sodium current (SCN5A, INa), the inward rectified potassium channels (Kir2.1, IK1), and an increased expression of connexins subunits (CX30.2, CX45). No If was detected. The reduction of IK1 resulted in a more depolarized maximum diastolic potential together with an expression of If (generated by HCN2), which they work in synergy to generate spontaneous diastolic depolarization that was the most typical characteristic of pacemaker cells. In conclusion, overexpression of TBX3 and HCN2 could reprogram hiPSC-CMs into pacemaker-like cells. The ability to enable diastolic depolarization formation provides a new strategy for the construction of a biological pacemaker.
Collapse
Affiliation(s)
- Hongyi Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Fengyuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| |
Collapse
|
48
|
Liang W, Han P, Kim EH, Mak J, Zhang R, Torrente AG, Goldhaber JI, Marbán E, Cho HC. Canonical Wnt signaling promotes pacemaker cell specification of cardiac mesodermal cells derived from mouse and human embryonic stem cells. Stem Cells 2019; 38:352-368. [PMID: 31648393 DOI: 10.1002/stem.3106] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/30/2019] [Indexed: 01/03/2023]
Abstract
Cardiac differentiation of embryonic stem cells (ESCs) can give rise to de novo chamber cardiomyocytes and nodal pacemaker cells. Compared with our understanding of direct differentiation toward atrial and ventricular myocytes, the mechanisms for nodal pacemaker cell commitment are not well understood. Taking a cue from the prominence of canonical Wnt signaling during cardiac pacemaker tissue development in chick embryos, we asked if modulations of Wnt signaling influence cardiac progenitors to bifurcate to either chamber cardiomyocytes or pacemaker cells. Omitting an exogenous Wnt inhibitor, which is routinely added to maximize cardiac myocyte yield during differentiation of mouse and human ESCs, led to increased yield of spontaneously beating cardiomyocytes with action potential properties similar to those of native sinoatrial node pacemaker cells. The pacemaker phenotype was accompanied by enhanced expression of genes and gene products that mark nodal pacemaker cells such as Hcn4, Tbx18, Tbx3, and Shox2. Addition of exogenous Wnt3a ligand, which activates canonical Wnt/β-catenin signaling, increased the yield of pacemaker-like myocytes while reducing cTNT-positive pan-cardiac differentiation. Conversely, addition of inhibitors of Wnt/β-catenin signaling led to increased chamber myocyte lineage development at the expense of pacemaker cell specification. The positive impact of canonical Wnt signaling on nodal pacemaker cell differentiation was evidenced in direct differentiation of two human ESC lines and human induced pluripotent stem cells. Our data identify the Wnt/β-catenin pathway as a critical determinant of cardiac myocyte subtype commitment during ESC differentiation: endogenous Wnt signaling favors the pacemaker lineage, whereas its suppression promotes the chamber cardiomyocyte lineage.
Collapse
Affiliation(s)
- Wenbin Liang
- University of Ottawa Heart Institute and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Pengcheng Han
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Elizabeth H Kim
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Jordan Mak
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Rui Zhang
- Cedars-Sinai Heart Institute, Los Angeles, California
| | | | | | | | - Hee Cheol Cho
- Department of Pediatrics, Emory University, Atlanta, Georgia.,Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| |
Collapse
|
49
|
Genetically Modified Porcine Mesenchymal Stem Cells by Lentiviral Tbx18 Create a Biological Pacemaker. Stem Cells Int 2019; 2019:3621314. [PMID: 31814832 PMCID: PMC6877911 DOI: 10.1155/2019/3621314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/13/2019] [Accepted: 08/24/2019] [Indexed: 11/24/2022] Open
Abstract
Background Tbx18 is a vital transcription factor involved in embryonic sinoatrial node (SAN) formation process but is gradually vanished after birth. Myocardial injection of lentiviral Tbx18 converts cardiomyocytes into pacemaker-like cells morphologically and functionally. In this in vitro and in vivo study, genetical modification of porcine bone mesenchymal stem cells (BMSCs) by recapturing the Tbx18 expression creates a biological pacemaker which was examined. Methods The isolated porcine BMSCs were transfected with lentiviral Tbx18, and the induced pacemaker-like cells were analyzed using real-time polymerase chain reaction and western blotting to investigate the efficiency of transformation. Then, the induced pacemaker-like cells were implanted into the right ventricle of the SAN dysfunction porcine model after the differentiation process. Biological pacemaker activity and ectopic pacing region were tested by an electrocardiograph (ECG) monitor. Results The isolated porcine BMSCs expressed specific surface markers of stem cells; meanwhile, the expression of myocardial markers was upregulated significantly after lentiviral Tbx18 transfection. The porcine SAN dysfunction model was constructed by electrocoagulation using a surgical electrotome. The results showed that the mean heart beat (HR) of BMSCs-Tbx18 was significantly higher than that of BMSCs-GFP. An ectopic pacing region was affirmed into the right ventricle by ECG after implantation of BMSCs-Tbx18. Conclusion It was verified that Lenti-Tbx18 is capable of transducing porcine BMSCs into pacemaker-like cells. Genetically modified porcine BMSCs by lentiviral Tbx18 could create a biological pacemaker. However, further researches in large-scale animals are required to rule out unexpected complications prior to application in clinical practice.
Collapse
|
50
|
Bressan M, Henley T, Louie JD, Liu G, Christodoulou D, Bai X, Taylor J, Seidman CE, Seidman JG, Mikawa T. Dynamic Cellular Integration Drives Functional Assembly of the Heart's Pacemaker Complex. Cell Rep 2019; 23:2283-2291. [PMID: 29791840 PMCID: PMC6007983 DOI: 10.1016/j.celrep.2018.04.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/27/2018] [Accepted: 04/17/2018] [Indexed: 11/23/2022] Open
Abstract
Impulses generated by a multicellular, bioelectric signaling center termed the sinoatrial node (SAN) stimulate the rhythmic contraction of the heart. The SAN consists of a network of electrochemically oscillating pacemaker cells encased in a heterogeneous connective tissue microenvironment. Although the cellular composition of the SAN has been a point of interest for more than a century, the biological processes that drive the tissue-level assembly of the cells within the SAN are unknown. Here, we demonstrate that the SAN’s structural features result from a developmental process during which mesenchymal cells derived from a multipotent progenitor structure, the proepicardium, integrate with and surround pacemaker myocardium. This process actively remodels the forming SAN and is necessary for sustained electrogenic signal generation and propagation. Collectively, these findings provide experimental evidence for how the microenvironmental architecture of the SAN is patterned and demonstrate that proper cellular arrangement is critical for cardiac pacemaker biorhythmicity.
Collapse
Affiliation(s)
- Michael Bressan
- Department of Cell Biology and Physiology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Trevor Henley
- Department of Cell Biology and Physiology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan D Louie
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gary Liu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Xue Bai
- Department of Pathology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joan Taylor
- Department of Pathology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Takashi Mikawa
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|