1
|
Saha S, Haynes WJ, Del Rio NM, Young EE, Zhang J, Seo J, Huang L, Holm AM, Blashka W, Murphy L, Scholz MJ, Henrichs A, Suresh Babu J, Steill J, Stewart R, Kamp TJ, Brown ME. Diminished Immune Cell Adhesion in Hypoimmune ICAM-1 Knockout Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597791. [PMID: 38895244 PMCID: PMC11185752 DOI: 10.1101/2024.06.07.597791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hypoimmune gene edited human pluripotent stem cells (hPSCs) are a promising platform for developing reparative cellular therapies that evade immune rejection. Existing first-generation hypoimmune strategies have used CRISPR/Cas9 editing to modulate genes associated with adaptive (e.g., T cell) immune responses, but have largely not addressed the innate immune cells (e.g., monocytes, neutrophils) that mediate inflammation and rejection processes occurring early after graft transplantation. We identified the adhesion molecule ICAM-1 as a novel hypoimmune target that plays multiple critical roles in both adaptive and innate immune responses post-transplantation. In a series of studies, we found that ICAM-1 blocking or knock-out (KO) in hPSC-derived cardiovascular therapies imparted significantly diminished binding of multiple immune cell types. ICAM-1 KO resulted in diminished T cell proliferation responses in vitro and in longer in vivo retention/protection of KO grafts following immune cell encounter in NeoThy humanized mice. The ICAM-1 KO edit was also introduced into existing first-generation hypoimmune hPSCs and prevented immune cell binding, thereby enhancing the overall hypoimmune capacity of the cells. This novel hypoimmune editing strategy has the potential to improve the long-term efficacy and safety profiles of regenerative therapies for cardiovascular pathologies and a number of other diseases.
Collapse
Affiliation(s)
- Sayandeep Saha
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - W. John Haynes
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Natalia M. Del Rio
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Elizabeth E. Young
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI
| | - Jiwon Seo
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Liupei Huang
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Alexis M. Holm
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Wesley Blashka
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Lydia Murphy
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Merrick J. Scholz
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Abigale Henrichs
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | | | - John Steill
- Morgridge Institute for Research, Madison, WI
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI
| | - Timothy J. Kamp
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Medicine, Madison, WI
| | - Matthew E. Brown
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| |
Collapse
|
2
|
Seo J, Saha S, Brown ME. The past, present, and future promise of pluripotent stem cells. JOURNAL OF IMMUNOLOGY AND REGENERATIVE MEDICINE 2024; 22-23:100077. [PMID: 38706532 PMCID: PMC11065261 DOI: 10.1016/j.regen.2024.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Affiliation(s)
| | | | - Matthew E. Brown
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Division of Transplantation, 600 Highland Avenue, Madison, WI, 53792, United States
| |
Collapse
|
3
|
Roy CN, Shu ST, Kline C, Rigatti L, Smithgall TE, Ambrose Z. Use of pediatric thymus to humanize mice for HIV-1 mucosal transmission. Sci Rep 2023; 13:17067. [PMID: 37816950 PMCID: PMC10564933 DOI: 10.1038/s41598-023-44366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023] Open
Abstract
Humanized mice have been used to study human immunodeficiency virus type 1 (HIV-1) transmission, pathogenesis, and treatment. The ability of pediatric thymus tissue implanted either in the leg (Leg PedThy) or under the renal capsule (Renal PedThy) with allogeneic CD34+ hematopoietic cells (HSCs) in NSG mice was evaluated for reconstitution of human immune cells and for rectal transmission of HIV-1. These mice were compared to traditional BLT mice implanted with fetal liver and thymus under the renal capsule and mice injected only with HSCs. Renal PedThy mice had similar immune reconstitution in the blood, spleen and intestine as BLT mice, while Leg PedThy mice had transient detection of immune cells, particularly CD4+ T cells and macrophages, the target cells for HIV-1 infection. Rectal transmission and replication of HIV-1 was efficient in BLT mice but lower and more variable in Renal PedThy mice. HIV-1 was poorly transmitted in HSC mice and not transmitted in Leg PedThy mice, which correlated with the frequencies of target cells in the spleen and intestine. Humanization of NSG mice with pediatric thymus was successful when implanted under the kidney capsule, but led to less efficient HIV-1 rectal transmission and replication compared to BLT mice.
Collapse
Affiliation(s)
- Chandra N Roy
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher Kline
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lora Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Luo W, Hoang H, Liao Y, Pan J, Ayello J, Cairo MS. A humanized orthotopic mouse model for preclinical evaluation of immunotherapy in Ewing sarcoma. Front Immunol 2023; 14:1277987. [PMID: 37868989 PMCID: PMC10587429 DOI: 10.3389/fimmu.2023.1277987] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The advent of novel cancer immunotherapy approaches is revolutionizing the treatment for cancer. Current small animal models for most cancers are syngeneic or genetically engineered mouse models or xenograft models based on immunodeficient mouse strains. These models have been limited in evaluating immunotherapy regimens due to the lack of functional human immune system. Development of animal models for bone cancer faces another challenge in the accessibility of tumor engraftment sites. Here, we describe a protocol to develop an orthotopic humanized mouse model for a bone and soft tissue sarcoma, Ewing sarcoma, by transplanting fresh human cord blood CD34+ hematopoietic stem cells into young NSG-SGM3 mice combined with subsequent Ewing sarcoma patient derived cell engraftment in the tibia of the humanized mice. We demonstrated early and robust reconstitution of human CD45+ leukocytes including T cells, B cells, natural killer cells and monocytes. Ewing sarcoma xenograft tumors successfully orthotopically engrafted in the humanized mice with minimal invasive procedures. We validated the translational utility of this orthotopic humanized model by evaluating the safety and efficacy of an immunotherapy antibody, magrolimab. Treatment with magrolimab induces CD47 blockade resulting in significantly decreased primary tumor growth, decreased lung metastasis and prolonged animal survival in the established humanized model. Furthermore, the humanized model recapitulated the dose dependent toxicity associated with the CD47 blockade as observed in patients in clinical trials. In conclusion, this orthotopic humanized mouse model of Ewing sarcoma represents an improved platform for evaluating immunotherapy in bone and soft tissue sarcoma, such as Ewing sarcoma. With careful design and optimization, this model is generalizable for other bone malignancies.
Collapse
Affiliation(s)
- Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, NY, United States
| | - Hai Hoang
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Jian Pan
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, NY, United States
- Department of Medicine, New York Medical College, Valhalla, NY, United States
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
5
|
Kim JT, Bresson-Tan G, Zack JA. Current Advances in Humanized Mouse Models for Studying NK Cells and HIV Infection. Microorganisms 2023; 11:1984. [PMID: 37630544 PMCID: PMC10458594 DOI: 10.3390/microorganisms11081984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Human immunodeficiency virus (HIV) has infected millions of people worldwide and continues to be a major global health problem. Scientists required a small animal model to study HIV pathogenesis and immune responses. To this end, humanized mice were created by transplanting human cells and/or tissues into immunodeficient mice to reconstitute a human immune system. Thus, humanized mice have become a critical animal model for HIV researchers, but with some limitations. Current conventional humanized mice are prone to death by graft versus host disease induced by the mouse signal regulatory protein α and CD47 signaling pathway. In addition, commonly used humanized mice generate low levels of human cytokines required for robust myeloid and natural killer cell development and function. Here, we describe recent advances in humanization procedures and transgenic and knock-in immunodeficient mice to address these limitations.
Collapse
Affiliation(s)
- Jocelyn T. Kim
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.T.K.)
| | - Gabrielle Bresson-Tan
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.T.K.)
| | - Jerome A. Zack
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Berube LL, Nickel KOP, Iida M, Ramisetty S, Kulkarni P, Salgia R, Wheeler DL, Kimple RJ. Radiation Sensitivity: The Rise of Predictive Patient-Derived Cancer Models. Semin Radiat Oncol 2023; 33:279-286. [PMID: 37331782 PMCID: PMC10287034 DOI: 10.1016/j.semradonc.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Patient-derived cancer models have been used for decades to improve our understanding of cancer and test anticancer treatments. Advances in radiation delivery have made these models more attractive for studying radiation sensitizers and understanding an individual patient's radiation sensitivity. Advances in the use of patient-derived cancer models lead to a more clinically relevant outcome, although many questions remain regarding the optimal use of patient-derived xenografts and patient-derived spheroid cultures. The use of patient-derived cancer models as personalized predictive avatars through mouse and zebrafish models is discussed, and the advantages and disadvantages of patient-derived spheroids are reviewed. In addition, the use of large repositories of patient-derived models to develop predictive algorithms to guide treatment selection is discussed. Finally, we review methods for establishing patient-derived models and identify key factors that influence their use as both avatars and models of cancer biology.
Collapse
Affiliation(s)
- Liliana L Berube
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Kwang-Ok P Nickel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sravani Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI; University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI; University of Wisconsin Carbone Cancer Center, Madison, WI.
| |
Collapse
|
7
|
Del Rio NM, Huang L, Murphy L, Babu JS, Daffada CM, Haynes WJ, Keck JG, Brehm MA, Shultz LD, Brown ME. Generation of the NeoThy mouse model for human immune system studies. Lab Anim (NY) 2023; 52:149-168. [PMID: 37386161 PMCID: PMC10935607 DOI: 10.1038/s41684-023-01196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/18/2023] [Indexed: 07/01/2023]
Abstract
Humanized mouse models, created via transplantation of human hematopoietic tissues into immune-deficient mice, support a number of research applications, including transplantation immunology, virology and oncology studies. As an alternative to the bone marrow, liver, thymus humanized mouse, which uses fetal tissues for generating a chimeric human immune system, the NeoThy humanized mouse uses nonfetal tissue sources. Specifically, the NeoThy model incorporates hematopoietic stem and progenitor cells from umbilical cord blood (UCB) as well as thymus tissue that is typically discarded as medical waste during neonatal cardiac surgeries. Compared with fetal thymus tissue, the abundant quantity of neonatal thymus tissue offers the opportunity to prepare over 1,000 NeoThy mice from an individual thymus donor. Here we describe a protocol for processing of the neonatal tissues (thymus and UCB) and hematopoietic stem and progenitor cell separation, human leukocyte antigen typing and matching of allogenic thymus and UCB tissues, creation of NeoThy mice, assessment of human immune cell reconstitution and all experimental steps from planning and design to data analysis. This entire protocol takes a total of ~19 h to complete, with steps broken up into multiple sessions of 4 h or less that can be paused and completed over multiple days. The protocol can be completed, after practice, by individuals with intermediate laboratory and animal handling skills, enabling researchers to make effective use of this promising in vivo model of human immune function.
Collapse
Affiliation(s)
| | - Liupei Huang
- University of Wisconsin-Madison, Madison, WI, USA
| | - Lydia Murphy
- University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | - Michael A Brehm
- The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | |
Collapse
|
8
|
Talaie T, Wang H, Kuo WI, Danzl N, Gulsen MR, Wolabaugh AN, Ding X, Sykes M, Li HW. Origin, phenotype and autoimmune potential of T cells in human immune system mice receiving neonatal human thymus tissue. Front Immunol 2023; 14:1159341. [PMID: 37251390 PMCID: PMC10213218 DOI: 10.3389/fimmu.2023.1159341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Robust human immune system (HIS) mice are created using human fetal thymus tissue and hematopoietic stem cells (HSCs). A HIS mouse model using neonatal human thymus tissue and umbilical cord blood (CB) HSCs (NeoHu) was recently described. We improved the model by removing the native murine thymus, which can also generate human T cells, and demonstrated definitively the capacity of human T cells to develop in a grafted neonatal human thymus. Human T cells derived from the neonatal thymus tissue appeared in peripheral blood early post-transplantation and CB-derived T cells appeared later. Naïve T cells were demonstrated in peripheral blood but effector memory and T peripheral helper phenotypes predominated later, in association with development of autoimmunity in some animals. Treatment of thymus grafts with 2-deoxyglucose (2-DG) increased the proportion of stem cells derived from injected HSCs, delayed onset of autoimmune disease, reduced early T cell reconstitution, and reduced effector/memory T cell conversion. Younger neonatal human thymus tissue was associated with improved T cell reconstitution. While the NeoHu model bypasses the need for fetal tissue, it has yet to demonstrate equivalent reconstitution to fetal tissue, though 2-DG can improve results by removing native thymocytes prior to transplantation.
Collapse
Affiliation(s)
- Tara Talaie
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Hui Wang
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Wan-I Kuo
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Nichole Danzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Mert R. Gulsen
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Amber N. Wolabaugh
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Xiaolan Ding
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Surgery and Department of Microbiology & Immunology, Columbia University, New York, NY, United States
| | - Hao Wei Li
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| |
Collapse
|
9
|
Colas C, Volodina O, Béland K, Pham TNQ, Li Y, Dallaire F, Soulard C, Lemieux W, Colamartino ABL, Tremblay-Laganière C, Dicaire R, Guimond J, Vobecky S, Poirier N, Patey N, Cohen ÉA, Haddad E. Generation of functional human T cell development in NOD/SCID/IL2rγ null humanized mice without using fetal tissue: Application as a model of HIV infection and persistence. Stem Cell Reports 2023; 18:597-612. [PMID: 36736326 PMCID: PMC9969074 DOI: 10.1016/j.stemcr.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
Humanization of mice with functional T cells currently relies on co-implantation of hematopoietic stem cells from fetal liver and autologous fetal thymic tissue (so-called BLT mouse model). Here, we show that NOD/SCID/IL2rγnull mice humanized with cord blood- derived CD34+ cells and implanted with allogeneic pediatric thymic tissues excised during cardiac surgeries (CCST) represent an alternative to BLT mice. CCST mice displayed a strong immune reconstitution, with functional T cells originating from CD34+ progenitor cells. They were equally susceptible to mucosal or intraperitoneal HIV infection and had significantly higher HIV-specific T cell responses. Antiretroviral therapy (ART) robustly suppressed viremia and reduced the frequencies of cells carrying integrated HIV DNA. As in BLT mice, we observed a complete viral rebound following ART interruption, suggesting the presence of HIV reservoirs. In conclusion, CCST mice represent a practical alternative to BLT mice, broadening the use of humanized mice for research.
Collapse
Affiliation(s)
- Chloé Colas
- Department of Microbiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Olga Volodina
- Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
| | - Kathie Béland
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Tram N Q Pham
- Department of Microbiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada; Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
| | - Yuanyi Li
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Frédéric Dallaire
- Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
| | - Clara Soulard
- Department of Microbiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - William Lemieux
- Department of Microbiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Aurélien B L Colamartino
- Department of Microbiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Camille Tremblay-Laganière
- Department of Microbiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Renée Dicaire
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | - Suzanne Vobecky
- Department of Cardiac Surgery, CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Nancy Poirier
- Department of Cardiac Surgery, CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Natasha Patey
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Pathology, CHU Sainte-Justine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Éric A Cohen
- Department of Microbiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada; Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada.
| | - Elie Haddad
- Department of Microbiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Pediatrics, Université de Montréal, Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
10
|
Steinkamp MP, Lagutina I, Brayer KJ, Schultz F, Burke D, Pankratz VS, Adams SF, Hudson LG, Ness SA, Wandinger-Ness A. Humanized Patient-derived Xenograft Models of Disseminated Ovarian Cancer Recapitulate Key Aspects of the Tumor Immune Environment within the Peritoneal Cavity. CANCER RESEARCH COMMUNICATIONS 2023; 3:309-324. [PMID: 36860657 PMCID: PMC9973420 DOI: 10.1158/2767-9764.crc-22-0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/23/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The importance of the immune microenvironment in ovarian cancer progression, metastasis, and response to therapies has become increasingly clear, especially with the new emphasis on immunotherapies. To leverage the power of patient-derived xenograft (PDX) models within a humanized immune microenvironment, three ovarian cancer PDXs were grown in humanized NBSGW (huNBSGW) mice engrafted with human CD34+ cord blood-derived hematopoietic stem cells. Analysis of cytokine levels in the ascites fluid and identification of infiltrating immune cells in the tumors demonstrated that these humanized PDX (huPDX) established an immune tumor microenvironment similar to what has been reported for patients with ovarian cancer. The lack of human myeloid cell differentiation has been a major setback for humanized mouse models, but our analysis shows that PDX engraftment increases the human myeloid population in the peripheral blood. Analysis of cytokines within the ascites fluid of huPDX revealed high levels of human M-CSF, a key myeloid differentiation factor as well as other elevated cytokines that have previously been identified in ovarian cancer patient ascites fluid including those involved in immune cell differentiation and recruitment. Human tumor-associated macrophages and tumor-infiltrating lymphocytes were detected within the tumors of humanized mice, demonstrating immune cell recruitment to tumors. Comparison of the three huPDX revealed certain differences in cytokine signatures and in the extent of immune cell recruitment. Our studies show that huNBSGW PDX models reconstitute important aspects of the ovarian cancer immune tumor microenvironment, which may recommend these models for preclinical therapeutic trials. Significance huPDX models are ideal preclinical models for testing novel therapies. They reflect the genetic heterogeneity of the patient population, enhance human myeloid differentiation, and recruit immune cells to the tumor microenvironment.
Collapse
Affiliation(s)
- Mara P. Steinkamp
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Irina Lagutina
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Kathryn J. Brayer
- Analytical and Translational Genomics Shared Resource, Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Fred Schultz
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Danielle Burke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Vernon S. Pankratz
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Biostatistics Shared Resource, Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Sarah F. Adams
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
- Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Laurie G. Hudson
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
- Department of Pharmaceutical Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Scott A. Ness
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Angela Wandinger-Ness
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
11
|
Sackett SD, Kaplan SJ, Mitchell SA, Brown ME, Burrack AL, Grey S, Huangfu D, Odorico J. Genetic Engineering of Immune Evasive Stem Cell-Derived Islets. Transpl Int 2022; 35:10817. [PMID: 36545154 PMCID: PMC9762357 DOI: 10.3389/ti.2022.10817] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Genome editing has the potential to revolutionize many investigative and therapeutic strategies in biology and medicine. In the field of regenerative medicine, one of the leading applications of genome engineering technology is the generation of immune evasive pluripotent stem cell-derived somatic cells for transplantation. In particular, as more functional and therapeutically relevant human pluripotent stem cell-derived islets (SCDI) are produced in many labs and studied in clinical trials, there is keen interest in studying the immunogenicity of these cells and modulating allogeneic and autoimmune immune responses for therapeutic benefit. Significant experimental work has already suggested that elimination of Human Leukocytes Antigen (HLA) expression and overexpression of immunomodulatory genes can impact survival of a variety of pluripotent stem cell-derived somatic cell types. Limited work published to date focuses on stem cell-derived islets and work in a number of labs is ongoing. Rapid progress is occurring in the genome editing of human pluripotent stem cells and their progeny focused on evading destruction by the immune system in transplantation models, and while much research is still needed, there is no doubt the combined technologies of genome editing and stem cell therapy will profoundly impact transplantation medicine in the future.
Collapse
Affiliation(s)
- Sara D. Sackett
- Division of Transplantation, Department of Surgery, UW Transplant Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States,*Correspondence: Sara D. Sackett,
| | - Samuel J. Kaplan
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Samantha A. Mitchell
- Division of Transplantation, Department of Surgery, UW Transplant Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Matthew E. Brown
- Division of Transplantation, Department of Surgery, UW Transplant Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Adam L. Burrack
- Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, MN,Center for Immunology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Shane Grey
- Immunology Division, Garvan Institute of Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Danwei Huangfu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jon Odorico
- Division of Transplantation, Department of Surgery, UW Transplant Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
12
|
Wang X, Wu C, Wei H. Humanized Germ-Free Mice for Investigating the Intervention Effect of Commensal Microbiome on Cancer Immunotherapy. Antioxid Redox Signal 2022; 37:1291-1302. [PMID: 35403435 DOI: 10.1089/ars.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Significance: A growing body of evidence has demonstrated that the commensal microbiome is deeply involved in the host immune response, accounting for significantly divergent clinical outcomes among cancer patients receiving immunotherapy. Therefore, precise screening and evaluating of functional bacterial strains as novel targets for cancer immunotherapy have attracted great enthusiasm from both academia and industry, which calls for the construction and application of advanced animal models to support translational research in this field. Recent Advances: Significant progress has been made to elucidate the intervention effect of commensal microbiome on immunotherapy based on animal experiments. Especially, correlation between gut microbiota and host response to immunotherapy has been continuously discovered in a variety of cancer types, laying the foundation for causality establishment and mechanism research. Critical Issues: In oncology research, it is particularly not uncommon to see that a promising preclinical result fails to translate into clinical success. The use of conventional murine models in immunotherapy-associated microbiome research is very likely to bring discredit on the preclinical findings. We emphasize the value of germ-free (GF) mice and humanized mice as advanced models in this field. Future Directions: Integrating rederivation and humanization to generate humanized GF mice as preclinical models would make it possible to clarify the role of specific bacterial strains in immunotherapy as well as obtain preclinical findings that are more predictive for humans, leading to novel microbiome-based strategies for cancer immunotherapy. Antioxid. Redox Signal. 37, 1291-1302.
Collapse
Affiliation(s)
- Xinning Wang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chengwei Wu
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Fraker S, Atkinson B, Heredia A. Humanized mouse models for preclinical evaluation of HIV cure strategies. AIDS Rev 2022; 24:139-151. [PMID: 35622983 PMCID: PMC9643647 DOI: 10.24875/aidsrev.22000013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Although the world is currently focused on the COVID-19 pandemic, HIV/AIDS remains a significant threat to public health. To date, the HIV/AIDS pandemic has claimed the lives of over 36 million people, while nearly 38 million people are currently living with the virus. Despite the undeniable success of antiretroviral therapy (ART) in controlling HIV, the medications are not curative. Soon after initial infection, HIV integrates into the genome of infected cells as a provirus, primarily, within CD4+ T lymphocytes and tissue macrophages. When not actively transcribed, the provirus is referred to as a latent reservoir because it is hidden to the immune system and ART. Following ART discontinuation, HIV may emerge from the replication-competent proviruses and resumes the infection of healthy cells. Thus, these latent reservoirs are a major obstacle to an HIV cure, and their removal remains a priority. A vital aspect in the development of curative therapies is the demonstration of efficacy in an animal model, such as the humanized mouse model. Therefore, optimization, standardization, and validation of the humanized mouse model are a priority. The purpose of this review article is to provide an update on existing humanized mouse models, highlighting the advantages and disadvantages of each as they pertain to HIV cure studies and to review the approaches to curative therapies that are under investigation.
Collapse
Affiliation(s)
- Sally Fraker
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Benjamin Atkinson
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
14
|
Little C, Haynes W, Huang L, Daffada C, Wolfe K, Perrin E, Simpson J, Kropp Schmidt J, Hinkle H, Keding L, Behrens R, Evans D, Kaufman D, Thomson J, Golos T, Brown M. Robust engraftment of fetal nonhuman primate CD34-positive cells in immune-deficient mice. J Leukoc Biol 2022; 112:759-769. [PMID: 35352381 PMCID: PMC9522924 DOI: 10.1002/jlb.5ta0921-481rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/09/2022] [Indexed: 11/07/2022] Open
Abstract
Nonhuman primates (NHPs) represent one of the most important models for preclinical studies of novel biomedical interventions. In contrast with small animal models, however, widespread utilization of NHPs is restricted by cost, logistics, and availability. Therefore, we sought to develop a translational primatized mouse model, akin to a humanized mouse, to allow for high-throughput in vivo experimentation leveraged to inform large animal immunology-based studies. We found that adult rhesus macaque mobilized blood (AMb) CD34+-enriched hematopoietic stem and progenitor cells (HSPCs) engrafted at low but persistent levels in immune-deficient mice harboring transgenes for human (NHP cross-reactive) GM-CSF and IL3, but did not in mice with wild-type murine cytokines lacking NHP cross-reactivity. To enhance engraftment, fetal liver-derived HSPCs were selected as the infusion product based on an increased CD34hi fraction compared with AMb and bone marrow. Coupled with cotransplantation of rhesus fetal thymic fragments beneath the mouse kidney capsule, fetal liver-derived HSPC infusion in cytokine-transgenic mice yielded robust multilineage lymphohematopoietic engraftment. The emergent immune system recapitulated that of the fetal monkey, with similar relative frequencies of lymphocyte, granulocyte, and monocyte subsets within the thymic, secondary lymphoid, and peripheral compartments. Importantly, while exhibiting a predominantly naïve phenotype, in vitro functional assays demonstrated robust cellular activation in response to nonspecific and allogenic stimuli. This primatized mouse represents a viable and translatable model for the study of hematopoietic stem cell physiology, immune development, and functional immunology in NHPs. Summary Sentence: Engraftment of rhesus macaque hematopoietic tissues in immune-deficient mice yields a robust BLT/NeoThy-type primatized mouse model for studying nonhuman primate hematopoiesis and immune function in vivo.
Collapse
Affiliation(s)
- C.J. Little
- University of Wisconsin – Madison, Department of Surgery, Division of Transplantation
| | - W.J. Haynes
- University of Wisconsin – Madison, Department of Surgery, Division of Transplantation
| | - L. Huang
- University of Wisconsin – Madison, Department of Surgery, Division of Transplantation
| | - C.M. Daffada
- University of Wisconsin – Madison, Department of Surgery, Division of Transplantation
| | - K.B. Wolfe
- University of Wisconsin – Madison, Department of Pathology and Laboratory Medicine
| | - E. Perrin
- University of Wisconsin – Madison, Wisconsin National Primate Research Center
| | - J.A. Simpson
- University of Wisconsin – Madison, Department of Surgery, Division of Transplantation
| | - J.A. Kropp Schmidt
- University of Wisconsin – Madison, Wisconsin National Primate Research Center
| | - H.M. Hinkle
- University of Wisconsin – Madison, Wisconsin National Primate Research Center
| | - L.T. Keding
- University of Wisconsin – Madison, Wisconsin National Primate Research Center
| | - R.T. Behrens
- University of Wisconsin – Madison, AIDS Vaccine Research Laboratory
| | - D.T. Evans
- University of Wisconsin – Madison, Department of Pathology and Laboratory Medicine
- University of Wisconsin – Madison, AIDS Vaccine Research Laboratory
| | - D.B. Kaufman
- University of Wisconsin – Madison, Department of Surgery, Division of Transplantation
| | | | - T.G. Golos
- University of Wisconsin – Madison, Department of Comparative Biosciences
| | - M.E. Brown
- University of Wisconsin – Madison, Department of Surgery, Division of Transplantation
| |
Collapse
|
15
|
Khosravi-Maharlooei M, Madley R, Borsotti C, Ferreira LMR, Sharp RC, Brehm MA, Greiner DL, Parent AV, Anderson MS, Sykes M, Creusot RJ. Modeling human T1D-associated autoimmune processes. Mol Metab 2022; 56:101417. [PMID: 34902607 PMCID: PMC8739876 DOI: 10.1016/j.molmet.2021.101417] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by impaired immune tolerance to β-cell antigens and progressive destruction of insulin-producing β-cells. Animal models have provided valuable insights for understanding the etiology and pathogenesis of this disease, but they fall short of reflecting the extensive heterogeneity of the disease in humans, which is contributed by various combinations of risk gene alleles and unique environmental factors. Collectively, these factors have been used to define subgroups of patients, termed endotypes, with distinct predominating disease characteristics. SCOPE OF REVIEW Here, we review the gaps filled by these models in understanding the intricate involvement and regulation of the immune system in human T1D pathogenesis. We describe the various models developed so far and the scientific questions that have been addressed using them. Finally, we discuss the limitations of these models, primarily ascribed to hosting a human immune system (HIS) in a xenogeneic recipient, and what remains to be done to improve their physiological relevance. MAJOR CONCLUSIONS To understand the role of genetic and environmental factors or evaluate immune-modifying therapies in humans, it is critical to develop and apply models in which human cells can be manipulated and their functions studied under conditions that recapitulate as closely as possible the physiological conditions of the human body. While microphysiological systems and living tissue slices provide some of these conditions, HIS mice enable more extensive analyses using in vivo systems.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Rachel Madley
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Chiara Borsotti
- Department of Health Sciences, Histology laboratory, Università del Piemonte Orientale, Novara, Italy
| | - Leonardo M R Ferreira
- Departments of Microbiology & Immunology, and Regenerative Medicine & Cell Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Robert C Sharp
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Michael A Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Audrey V Parent
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Remi J Creusot
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
16
|
Hess NJ, Brown ME, Capitini CM. GVHD Pathogenesis, Prevention and Treatment: Lessons From Humanized Mouse Transplant Models. Front Immunol 2021; 12:723544. [PMID: 34394131 PMCID: PMC8358790 DOI: 10.3389/fimmu.2021.723544] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/15/2021] [Indexed: 01/14/2023] Open
Abstract
Graft-vs-host disease (GVHD) is the most common cause of non-relapse mortality following allogeneic hematopoietic stem cell transplantation (HSCT) despite advances in conditioning regimens, HLA genotyping and immune suppression. While murine studies have yielded important insights into the cellular responses of GVHD, differences between murine and human biology has hindered the translation of novel therapies into the clinic. Recently, the field has expanded the ability to investigate primary human T cell responses through the transplantation of human T cells into immunodeficient mice. These xenogeneic HSCT models benefit from the human T cell receptors, CD4 and CD8 proteins having cross-reactivity to murine MHC in addition to several cytokines and co-stimulatory proteins. This has allowed for the direct assessment of key factors in GVHD pathogenesis to be investigated prior to entering clinical trials. In this review, we will summarize the current state of clinical GVHD research and discuss how xenogeneic HSCT models will aid in advancing the current pipeline of novel GVHD prophylaxis therapies into the clinic.
Collapse
Affiliation(s)
- Nicholas J. Hess
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Matthew E. Brown
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
17
|
Hermsen J, Brown ME. Humanized Mouse Models for Evaluation of PSC Immunogenicity. ACTA ACUST UNITED AC 2021; 54:e113. [PMID: 32588980 DOI: 10.1002/cpsc.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New human pluripotent stem cell (hPSC)-derived therapies are advancing to clinical trials at an increasingly rapid pace. In addition to ensuring that the therapies function properly, there is a critical need to investigate the human immune response to these cell products. A robust allogeneic (or autologous) immune response could swiftly eliminate an otherwise promising cell therapy, even in immunosuppressed patients. In coming years, researchers in the regenerative medicine field will need to utilize a number of in vitro and in vivo assays and models to evaluate and better understand hPSC immunogenicity. Humanized mouse models-mice engrafted with functional human immune cell types-are an important research tool for investigating the mechanisms of the adaptive immune response to hPSC therapies. This article provides an overview of humanized mouse models relevant to the study of hPSC immunogenicity and explores central considerations for investigators seeking to utilize these powerful models in their research. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Jack Hermsen
- University of Wisconsin School of Medicine and Public Health Western Clinical Campus, Madison, Wisconsin
| | - Matthew E Brown
- University of Wisconsin School of Medicine and Public Health Western Clinical Campus, Madison, Wisconsin
| |
Collapse
|
18
|
Gillgrass A, Wessels JM, Yang JX, Kaushic C. Advances in Humanized Mouse Models to Improve Understanding of HIV-1 Pathogenesis and Immune Responses. Front Immunol 2021; 11:617516. [PMID: 33746940 PMCID: PMC7973037 DOI: 10.3389/fimmu.2020.617516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Although antiretroviral therapy has transformed human immunodeficiency virus-type 1 (HIV-1) from a deadly infection into a chronic disease, it does not clear the viral reservoir, leaving HIV-1 as an uncurable infection. Currently, 1.2 million new HIV-1 infections occur globally each year, with little decrease over many years. Therefore, additional research is required to advance the current state of HIV management, find potential therapeutic strategies, and further understand the mechanisms of HIV pathogenesis and prevention strategies. Non-human primates (NHP) have been used extensively in HIV research and have provided critical advances within the field, but there are several issues that limit their use. Humanized mouse (Hu-mouse) models, or immunodeficient mice engrafted with human immune cells and/or tissues, provide a cost-effective and practical approach to create models for HIV research. Hu-mice closely parallel multiple aspects of human HIV infection and disease progression. Here, we highlight how innovations in Hu-mouse models have advanced HIV-1 research in the past decade. We discuss the effect of different background strains of mice, of modifications on the reconstitution of the immune cells, and the pros and cons of different human cells and/or tissue engraftment methods, on the ability to examine HIV-1 infection and immune response. Finally, we consider the newest advances in the Hu-mouse models and their potential to advance research in emerging areas of mucosal infections, understand the role of microbiota and the complex issues in HIV-TB co-infection. These innovations in Hu-mouse models hold the potential to significantly enhance mechanistic research to develop novel strategies for HIV prevention and therapeutics.
Collapse
Affiliation(s)
- Amy Gillgrass
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Jocelyn M. Wessels
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Jack X. Yang
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
19
|
Prostaglandin E2 Receptor 4 (EP4) as a Therapeutic Target to Impede Breast Cancer-Associated Angiogenesis and Lymphangiogenesis. Cancers (Basel) 2021; 13:cancers13050942. [PMID: 33668160 PMCID: PMC7956318 DOI: 10.3390/cancers13050942] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
The formation of new blood (angiogenesis) and lymphatic (lymphangiogenesis) vessels are major events associated with most epithelial malignancies, including breast cancer. Angiogenesis is essential for cancer cell survival. Lymphangiogenesis is critical in maintaining tumoral interstitial fluid balance and importing tumor-facilitatory immune cells. Both vascular routes also serve as conduits for cancer metastasis. Intratumoral hypoxia promotes both events by stimulating multiple angiogenic/lymphangiogenic growth factors. Studies on tumor-associated lymphangiogenesis and its exploitation for therapy have received less attention from the research community than those on angiogenesis. Inflammation is a key mediator of both processes, hijacked by many cancers by the aberrant expression of the inflammation-associated enzyme cyclo-oxygenase (COX)-2. In this review, we focus on breast cancer and showed that COX-2 is a major promoter of both events, primarily resulting from the activation of prostaglandin (PG) E receptor EP4 on tumor cells, tumor-infiltrating immune cells, and endothelial cells; and the induction of oncogenic microRNAs. The COX-2/EP4 pathway also promotes additional events in breast cancer progression, such as cancer cell migration, invasion, and the stimulation of stem-like cells. Based on a combination of studies using multiple breast cancer models, we show that EP4 antagonists hold a major promise in breast cancer therapy in combination with other modalities including immune check-point inhibitors.
Collapse
|
20
|
Humanization of Immunodeficient Animals for the Modeling of Transplantation, Graft Versus Host Disease, and Regenerative Medicine. Transplantation 2021; 104:2290-2306. [PMID: 32068660 PMCID: PMC7590965 DOI: 10.1097/tp.0000000000003177] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humanization of animals is a powerful tool for the exploration of human disease pathogenesis in biomedical research, as well as for the development of therapeutic interventions with enhanced translational potential. Humanized models enable us to overcome biologic differences that exist between humans and other species, while giving us a platform to study human processes in vivo. To become humanized, an immune-deficient recipient is engrafted with cells, tissues, or organoids. The mouse is the most well studied of these hosts, with a variety of immunodeficient strains available for various specific uses. More recently, efforts have turned to the humanization of other animal species such as the rat, which offers some technical and immunologic advantages over mice. These advances, together with ongoing developments in the incorporation of human transgenes and additional mutations in humanized mouse models, have expanded our opportunities to replicate aspects of human allotransplantation and to assist in the development of immunotherapies. In this review, the immune and tissue humanization of various species is presented with an emphasis on their potential for use as models for allotransplantation, graft versus host disease, and regenerative medicine.
Collapse
|
21
|
Mian SA, Anjos-Afonso F, Bonnet D. Advances in Human Immune System Mouse Models for Studying Human Hematopoiesis and Cancer Immunotherapy. Front Immunol 2021; 11:619236. [PMID: 33603749 PMCID: PMC7884350 DOI: 10.3389/fimmu.2020.619236] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy has established itself as a promising tool for cancer treatment. There are many challenges that remain including lack of targets and some patients across various cancers who have not shown robust clinical response. One of the major problems that have hindered the progress in the field is the dearth of appropriate mouse models that can reliably recapitulate the complexity of human immune-microenvironment as well as the malignancy itself. Immunodeficient mice reconstituted with human immune cells offer a unique opportunity to comprehensively evaluate immunotherapeutic strategies. These immunosuppressed and genetically modified mice, with some overexpressing human growth factors, have improved human hematopoietic engraftment as well as created more functional immune cell development in primary and secondary lymphoid tissues in these mice. In addition, several new approaches to modify or to add human niche elements to further humanize these immunodeficient mice have allowed a more precise characterization of human hematopoiesis. These important refinements have opened the possibility to evaluate not only human immune responses to different tumor cells but also to investigate how malignant cells interact with their niche and most importantly to test immunotherapies in a more preclinically relevant setting, which can ultimately lead to better success of these drugs in clinical trials.
Collapse
Affiliation(s)
- Syed A Mian
- Haematopoietic Stem Cell Lab, The Francis Crick Institute, London, United Kingdom.,Department of Haematology, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Fernando Anjos-Afonso
- Haematopoietic Signalling Group, European Cancer Stem Cell Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Dominique Bonnet
- Haematopoietic Stem Cell Lab, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
22
|
Gibson A, Liu A, Eliceiri K. Response to letter to the editor on "The use of human ex vivo models in burn research - Developments and perspectives". Burns 2020; 47:968-969. [PMID: 33934910 DOI: 10.1016/j.burns.2020.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Angela Gibson
- Department of Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, Madison 53792, United States.
| | - Aiping Liu
- Department of Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, Madison 53792, United States
| | - Kevin Eliceiri
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, United States; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
23
|
Karim AS, Liu A, Lin C, Uselmann AJ, Eliceiri KW, Brown ME, Gibson ALF. Evolution of ischemia and neovascularization in a murine model of full thickness human wound healing. Wound Repair Regen 2020; 28:812-822. [PMID: 32686215 PMCID: PMC8592059 DOI: 10.1111/wrr.12847] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/16/2020] [Accepted: 06/28/2020] [Indexed: 11/30/2022]
Abstract
Translation of wound healing research is limited by the lack of an appropriate animal model, due to the anatomic and wound healing differences in animals and humans. Here, we characterize healing of grafted, full-thickness human skin in an in vivo model of wound healing. Full-thickness human skin, obtained from reconstructive operations, was grafted onto the dorsal flank of NOD.Cg-KitW41J Tyr + Prkdcscid Il2rgtm1Wjl /ThomJ mice. The xenografts were harvested 1 to 12 weeks after grafting, and histologic analyses were completed for viability, neovascularization, and hypoxia. Visual inspection of the xenograft shows drying and sloughing of the epidermis starting at week four. By week 12, the xenograft appears healed but has lost 63.05 ± 0.24% of the initial graft size. There is histologic evidence of epidermolysis as early as 2 weeks, which progresses until week 4, when new epidermis appears from the wound edges. Epidermal regeneration is complete by week 12, although the epidermis appears hypertrophied. An initial increase of infiltrating immune mouse cells into the xenograft normalizes to baseline 6 months after grafting. Neovascularization, as evidenced by positive staining for the proteins human CD31 and alpha smooth muscle actin, is present as early as 2 weeks after grafting at the interface between the xenograft and the mouse tissue. CD31 and alpha smooth muscle actin staining increased throughout the xenograft over the 12 weeks, leading to greater viability of the tissue. Likewise, there is increased Hypoxia Inducible Factor 1-alpha expression at the interface of viable and nonviable tissue, which suggest a hypoxia-driven process causing early graft loss. These findings illustrate human skin wound healing in an ischemic environment, providing a timeline for use of full thickness human skin after grafting in a murine model to study mechanisms underlying human skin wound healing.
Collapse
Affiliation(s)
- Aos S. Karim
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Aiping Liu
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Christie Lin
- OnLume Inc., Madison, Wisconsin
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Adam J. Uselmann
- OnLume Inc., Madison, Wisconsin
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kevin W. Eliceiri
- OnLume Inc., Madison, Wisconsin
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Matthew E. Brown
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Angela L. F. Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
24
|
Huo KG, D'Arcangelo E, Tsao MS. Patient-derived cell line, xenograft and organoid models in lung cancer therapy. Transl Lung Cancer Res 2020; 9:2214-2232. [PMID: 33209645 PMCID: PMC7653147 DOI: 10.21037/tlcr-20-154] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lung cancer accounts for most cancer-related deaths worldwide and has an overall 5-year survival rate of ~15%. Cell lines have played important roles in the study of cancer biology and potential therapeutic targets, as well as pre-clinical testing of novel drugs. However, most experimental therapies that have cleared preclinical testing using established cell lines have failed phase III clinical trials. This suggests that such models may not adequately recapitulate patient tumor biology and clinical outcome predictions. Here, we discuss and compare different pre-clinical lung cancer models, including established cell lines, patient-derived cell lines, xenografts and organoids, summarize the methodology for generating these models, and review their relative advantages and limitations in different oncologic research applications. We further discuss additional gaps in patient-derived pre-clinical models to better recapitulate tumor biology and improve their clinical predictive power.
Collapse
Affiliation(s)
- Ku-Geng Huo
- University Health Network and Princess Margaret Cancer Centre, Toronto, Canada
| | - Elisa D'Arcangelo
- University Health Network and Princess Margaret Cancer Centre, Toronto, Canada
| | - Ming-Sound Tsao
- University Health Network and Princess Margaret Cancer Centre, Toronto, Canada
| |
Collapse
|
25
|
Wang Q, Lee Y, Shuryak I, Pujol Canadell M, Taveras M, Perrier JR, Bacon BA, Rodrigues MA, Kowalski R, Capaccio C, Brenner DJ, Turner HC. Development of the FAST-DOSE assay system for high-throughput biodosimetry and radiation triage. Sci Rep 2020; 10:12716. [PMID: 32728041 PMCID: PMC7392759 DOI: 10.1038/s41598-020-69460-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/09/2020] [Indexed: 11/09/2022] Open
Abstract
Following a large-scale radiological incident, there is a need for FDA-approved biodosimetry devices and biomarkers with the ability to rapidly determine past radiation exposure with sufficient accuracy for early population triage and medical management. Towards this goal, we have developed FAST-DOSE (Fluorescent Automated Screening Tool for Dosimetry), an immunofluorescent, biomarker-based system designed to reconstruct absorbed radiation dose in peripheral blood samples collected from potentially exposed individuals. The objective of this study was to examine the performance of the FAST-DOSE assay system to quantify intracellular protein changes in blood leukocytes for early biodosimetry triage from humanized NOD-scid-gamma (Hu-NSG) mice and non-human primates (NHPs) exposed to ionizing radiation up to 8 days after radiation exposure. In the Hu-NSG mice studies, the FAST-DOSE biomarker panel was able to generate delivered dose estimates at days 1, 2 and 3 post exposure, whereas in the NHP studies, the biomarker panel was able to successfully classify samples by dose categories below or above 2 Gy up to 8 days after total body exposure. These results suggest that the FAST-DOSE bioassay has large potential as a useful diagnostic tool for rapid and reliable screening of potentially exposed individuals to aid early triage decisions within the first week post-exposure.
Collapse
Affiliation(s)
- Qi Wang
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Radiation Oncology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Monica Pujol Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Maria Taveras
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jay R Perrier
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
- ASELL, LLC, Owings Mills, MD, 21117, USA
| | - Bezalel A Bacon
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | | | | | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
26
|
Hess NJ, Hudson AW, Hematti P, Gumperz JE. Early T Cell Activation Metrics Predict Graft-versus-Host Disease in a Humanized Mouse Model of Hematopoietic Stem Cell Transplantation. THE JOURNAL OF IMMUNOLOGY 2020; 205:272-281. [PMID: 32444392 DOI: 10.4049/jimmunol.2000054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/28/2020] [Indexed: 01/22/2023]
Abstract
Acute graft-versus-host disease (GVHD) is a frequent complication of hematopoietic transplantation, yet patient risk stratification remains difficult, and prognostic biomarkers to guide early clinical interventions are lacking. We developed an approach to evaluate the potential of human T cells from hematopoietic grafts to produce GVHD. Nonconditioned NBSGW mice transplanted with titrated doses of human bone marrow developed GVHD that was characterized by widespread lymphocyte infiltration and organ pathology. Interestingly, GVHD was not an inevitable outcome in our system and was influenced by transplant dose, inflammatory status of the host, and type of graft. Mice that went on to develop GVHD showed signs of rapid proliferation in the human T cell population during the first 1-3 wk posttransplant and had elevated human IFN-γ in plasma that correlated negatively with the expansion of the human hematopoietic compartment. Furthermore, these early T cell activation metrics were predictive of GVHD onset 3-6 wk before phenotypic pathology. These results reveal an early window of susceptibility for pathological T cell activation following hematopoietic transplantation that is not simply determined by transient inflammation resulting from conditioning-associated damage and show that T cell parameters during this window can serve as prognostic biomarkers for risk of later GVHD development.
Collapse
Affiliation(s)
- Nicholas J Hess
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706
| | - Amy W Hudson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Peiman Hematti
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705
| | - Jenny E Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706;
| |
Collapse
|
27
|
Morton JJ, Alzofon N, Jimeno A. The humanized mouse: Emerging translational potential. Mol Carcinog 2020; 59:830-838. [PMID: 32275343 DOI: 10.1002/mc.23195] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022]
Abstract
The humanized mouse (HM) has emerged as a valuable animal model in cancer research. Engrafted with components of a human immune system and subsequently implanted with tumor tissue from cell lines or in the form of patient-derived xenografts, the HM provides a unique platform in which the tumor microenvironment (TME) can be evaluated in vivo. This model may also be beneficial in the assessment of potential cancer treatments including immune checkpoint inhibitors. However, to maximize its utility, researchers need to understand the critical factors necessary to ensure that the tumor immune interactions in the HM are representative of those within cancer patients. In most current HM models, the human T cells residing in the HM are educated in a murine thymus, allogeneic to implanted tumor tissue, and/or alloreactive to mouse tissues, making their interaction and reactivity with tumor cells suspect. There are several strategies underway to harmonize the immune-tumor environment in the HM. Once the essential components of the HM-tumor TME interface have been identified and understood, the HM model will permit not only the discovery of effective immunotherapy treatments, but it can be used to predict patient responses to great clinical benefit.
Collapse
Affiliation(s)
- J Jason Morton
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Nathaniel Alzofon
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
28
|
Agarwal Y, Beatty C, Biradar S, Castronova I, Ho S, Melody K, Bility MT. Moving beyond the mousetrap: current and emerging humanized mouse and rat models for investigating prevention and cure strategies against HIV infection and associated pathologies. Retrovirology 2020; 17:8. [PMID: 32276640 PMCID: PMC7149862 DOI: 10.1186/s12977-020-00515-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022] Open
Abstract
The development of safe and effective combination antiretroviral therapies for human immunodeficiency virus (HIV) infection over the past several decades has significantly reduced HIV-associated morbidity and mortality. Additionally, antiretroviral drugs have provided an effective means of protection against HIV transmission. Despite these advances, significant limitations exist; namely, the inability to eliminate HIV reservoirs, the inability to reverse lymphoid tissues damage, and the lack of an effective vaccine for preventing HIV transmission. Evaluation of the safety and efficacy of therapeutics and vaccines for eliminating HIV reservoirs and preventing HIV transmission requires robust in vivo models. Since HIV is a human-specific pathogen, that targets hematopoietic lineage cells and lymphoid tissues, in vivo animal models for HIV-host interactions require incorporation of human hematopoietic lineage cells and lymphoid tissues. In this review, we will discuss the construction of mouse models with human lymphoid tissues and/or hematopoietic lineage cells, termed, human immune system (HIS)-humanized mice. These HIS-humanized mouse models can support the development of functional human innate and adaptive immune cells, along with primary (thymus) and secondary (spleen) lymphoid tissues. We will discuss applications of HIS-humanized mouse models in evaluating the safety and efficacy of therapeutics against HIV reservoirs and associated immunopathology, and delineate the human immune response elicited by candidate HIV vaccines. In addition to focusing on how these HIS-humanized mouse models have already furthered our understanding of HIV and contributed to HIV therapeutics development, we discuss how emerging HIS-humanized rat models could address the limitations of HIS-mouse models.
Collapse
Affiliation(s)
- Yash Agarwal
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cole Beatty
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shivkumar Biradar
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Isabella Castronova
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sara Ho
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin Melody
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Moses Turkle Bility
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Abstract
Thymus regenerative therapy implementation is severely obstructed by the limited number and expansion capacity in vitro of tissue-specific thymic epithelial stem cells (TESC). Current solutions are mostly based on growth factors that can drive differentiation of pluripotent stem cells toward tissue-specific TESC. Target-specific small chemical compounds represent an alternative solution that could induce and support the clonal expansion of TESC and reversibly block their differentiation into mature cells. These compounds could be used both in the composition of culture media designed for TESC expansion in vitro, and in drugs development for thymic regeneration in vivo. It should allow reaching the ultimate objective - autologous thymic tissue regeneration in paediatric patients who had their thymus removed in the course of cardiac surgery.
Collapse
|
30
|
Cosper PF, Abel L, Lee YS, Paz C, Kaushik S, Nickel KP, Alexandridis R, Scott JG, Bruce JY, Kimple RJ. Patient Derived Models to Study Head and Neck Cancer Radiation Response. Cancers (Basel) 2020; 12:E419. [PMID: 32059418 PMCID: PMC7072508 DOI: 10.3390/cancers12020419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 01/23/2023] Open
Abstract
Patient-derived model systems are important tools for studying novel anti-cancer therapies. Patient-derived xenografts (PDXs) have gained favor over the last 10 years as newer mouse strains have improved the success rate of establishing PDXs from patient biopsies. PDXs can be engrafted from head and neck cancer (HNC) samples across a wide range of cancer stages, retain the genetic features of their human source, and can be treated with both chemotherapy and radiation, allowing for clinically relevant studies. Not only do PDXs allow for the study of patient tissues in an in vivo model, they can also provide a renewable source of cancer cells for organoid cultures. Herein, we review the uses of HNC patient-derived models for radiation research, including approaches to establishing both orthotopic and heterotopic PDXs, approaches and potential pitfalls to delivering chemotherapy and radiation to these animal models, biological advantages and limitations, and alternatives to animal studies that still use patient-derived tissues.
Collapse
Affiliation(s)
- Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (P.F.C.); (L.A.); (Y.-S.L.); (C.P.); (S.K.); (K.P.N.)
| | - Lindsey Abel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (P.F.C.); (L.A.); (Y.-S.L.); (C.P.); (S.K.); (K.P.N.)
| | - Yong-Syu Lee
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (P.F.C.); (L.A.); (Y.-S.L.); (C.P.); (S.K.); (K.P.N.)
| | - Cristina Paz
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (P.F.C.); (L.A.); (Y.-S.L.); (C.P.); (S.K.); (K.P.N.)
| | - Saakshi Kaushik
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (P.F.C.); (L.A.); (Y.-S.L.); (C.P.); (S.K.); (K.P.N.)
| | - Kwangok P. Nickel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (P.F.C.); (L.A.); (Y.-S.L.); (C.P.); (S.K.); (K.P.N.)
| | - Roxana Alexandridis
- Department of Biostatistics and Medical Informatics, UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Jacob G. Scott
- Departments of Translational Hematology and Oncology Research and Radiation Oncology, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Justine Y. Bruce
- Department of Medicine, Division of Hematology and Oncology, UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Randall J. Kimple
- Department of Human Oncology, UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
31
|
O’Connell AK, Douam F. Humanized Mice for Live-Attenuated Vaccine Research: From Unmet Potential to New Promises. Vaccines (Basel) 2020; 8:E36. [PMID: 31973073 PMCID: PMC7157703 DOI: 10.3390/vaccines8010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 01/24/2023] Open
Abstract
Live-attenuated vaccines (LAV) represent one of the most important medical innovations in human history. In the past three centuries, LAV have saved hundreds of millions of lives, and will continue to do so for many decades to come. Interestingly, the most successful LAVs, such as the smallpox vaccine, the measles vaccine, and the yellow fever vaccine, have been isolated and/or developed in a purely empirical manner without any understanding of the immunological mechanisms they trigger. Today, the mechanisms governing potent LAV immunogenicity and long-term induced protective immunity continue to be elusive, and therefore hamper the rational design of innovative vaccine strategies. A serious roadblock to understanding LAV-induced immunity has been the lack of suitable and cost-effective animal models that can accurately mimic human immune responses. In the last two decades, human-immune system mice (HIS mice), i.e., mice engrafted with components of the human immune system, have been instrumental in investigating the life-cycle and immune responses to multiple human-tropic pathogens. However, their use in LAV research has remained limited. Here, we discuss the strong potential of LAVs as tools to enhance our understanding of human immunity and review the past, current and future contributions of HIS mice to this endeavor.
Collapse
Affiliation(s)
| | - Florian Douam
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA;
| |
Collapse
|
32
|
Khosravi-Maharlooei M, Hoelzl M, Li HW, Madley RC, Waffarn EE, Danzl NM, Sykes M. Rapid thymectomy of NSG mice to analyze the role of native and grafted thymi in humanized mice. Eur J Immunol 2019; 50:138-141. [PMID: 31583677 DOI: 10.1002/eji.201948205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Accepted: 10/03/2019] [Indexed: 01/08/2023]
Abstract
We developed a rapid method to remove the native mouse thymus from NSG mice, which allowed us to compare the behavior of human immune cells in the presence or absence of human T cells in human immune system mice. Removing the native mouse thymus is critical for studies of human thymopiesis in grafted thymic tissue in humanized mice.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Markus Hoelzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Hao Wei Li
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Rachel C Madley
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA.,Department of Microbiology & Immunology, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Elizabeth E Waffarn
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Nichole M Danzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA.,Department of Microbiology & Immunology, Columbia University Medical Center, Columbia University, New York, NY, USA.,Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY, USA
| |
Collapse
|
33
|
Alves da Costa T, Lang J, Torres RM, Pelanda R. The development of human immune system mice and their use to study tolerance and autoimmunity. J Transl Autoimmun 2019; 2:100021. [PMID: 32743507 PMCID: PMC7388352 DOI: 10.1016/j.jtauto.2019.100021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
Autoimmune diseases evolve from complex interactions between the immune system and self-antigens and involve several genetic attributes, environmental triggers and diverse cell types. Research using experimental mouse models has contributed key knowledge on the mechanisms that underlie these diseases in humans, but differences between the mouse and human immune systems can and, at times, do undermine the translational significance of these findings. The use of human immune system (HIS) mice enables the utility of mouse models with greater relevance for human diseases. As the name conveys, these mice are reconstituted with mature human immune cells transferred directly from peripheral blood or via transplantation of human hematopoietic stem cells that nucleate the generation of a complex human immune system. The function of the human immune system in HIS mice has improved over the years with the stepwise development of better models. HIS mice exhibit key benefits of the murine animal model, such as small size, robust and rapid reproduction and ease of experimental manipulation. Importantly, HIS mice also provide an applicable in vivo setting that permit the investigation of the physiological and pathological functions of the human immune system and its response to novel treatments. With the gaining popularity of HIS mice in the last decade, the potential of this model has been exploited for research in basic science, infectious diseases, cancer, and autoimmunity. In this review we focus on the use of HIS mice in autoimmune studies to stimulate further development of these valuable models. Human immune system (HIS) mice bear components of the human immune system. HIS mice engraft with human blood or hematopoietic stem cells, and sometimes thymus. HIS mice are used to investigate development and function of the human immune system. Immunological tolerance and autoimmune responses can be studied in HIS mice. HIS models of autoimmunity vary in complexity and in ability to represent disease.
Collapse
Affiliation(s)
- Thiago Alves da Costa
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Raul M. Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA
- Corresponding author. University of Colorado School of Medicine, 12800 East 19th Avenue Mail Stop 8333, Aurora, CO, 80045-2508, USA.
| |
Collapse
|
34
|
Simpson JA, Brown ME. Making HIS mice more human-like. J Leukoc Biol 2019; 107:9-10. [PMID: 31682279 DOI: 10.1002/jlb.5ce1019-262r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 12/11/2022] Open
Abstract
Discussion on exhaustion/senescence marker profiles on human T cells in BRGSF-A2 humanized mice and how they resemble those in human samples; describes how this model fits into the humanized-mouse research field.
Collapse
|
35
|
Labarthe L, Henriquez S, Lambotte O, Di Santo JP, Le Grand R, Pflumio F, Arcangeli ML, Legrand N, Bourgeois C. Frontline Science: Exhaustion and senescence marker profiles on human T cells in BRGSF-A2 humanized mice resemble those in human samples. J Leukoc Biol 2019; 107:27-42. [PMID: 31378988 DOI: 10.1002/jlb.5hi1018-410rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
This work sought to confirm the human-like expression of exhaustion and senescence markers in a mouse model with a humanized immune system (HIS): the Balb/c Rag2KO IL2rgcKO SirpαNOD Flk2KO HLA-A2HHD (BRGSF-A2) mouse reconstituted with human CD34+ cord blood cells. With regard to senescence markers, the percentage of CD57+ T cells was higher in the bone marrow (BM) than in the spleen or blood. The same was true for KLRG1+ hCD8+ T cells. With regard to exhaustion markers, the percentage of programmed death 1 (PD-1+ ) T cells was higher in the BM than in the spleen or blood; the same was true for TIGIT+ hCD4+ cells. These tissue-specific differences were related to both higher proportions of memory T cells in BM and intrinsic differences in expression within the memory fraction. In blood samples from HIS mice and healthy human donors (HDs), we found that the percentage of KLRG1+ cells among hCD8+ T cells was lower in HIS compared to HDs. The opposite was true for CD4+ T cells. Unexpectedly, a high frequency of KLRG1+ cells was observed among naive T cells in HIS mice. CD57 expression on T cells was similar in blood samples from HIS mice and HDs. Likewise, PD-1 expression was similar in the two systems, although a relatively low proportion of HIS hCD4+ T cells expressed TIGIT. The BRGSF-A2 HIS mouse's exhaustion and senescence profile was tissue specific and relatively human like; hence, this mouse might be a valuable tool for determining the preclinical efficacy of immunotherapies.
Collapse
Affiliation(s)
- Laura Labarthe
- IDMIT Department, CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IBFJ, F-92265, Paris, France.,genOway Paris, F-92265, Fontenay-aux-Roses, France
| | - Soledad Henriquez
- IDMIT Department, CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IBFJ, F-92265, Paris, France
| | - Olivier Lambotte
- IDMIT Department, CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IBFJ, F-92265, Paris, France.,Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, F-94276, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, F-75015, Paris, France.,INSERM U1223, F-75015, Paris, France
| | - Roger Le Grand
- IDMIT Department, CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IBFJ, F-92265, Paris, France
| | - Françoise Pflumio
- IRCM, CEA-Université Paris 7-Université Paris Sud 11, INSERM U1274, Paris, France
| | | | | | - Christine Bourgeois
- IDMIT Department, CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IBFJ, F-92265, Paris, France
| |
Collapse
|
36
|
Abstract
Therapeutic protein drugs have significantly improved the management of many severe and chronic diseases. However, their development and optimal clinical application are complicated by the induction of unwanted immune responses. Therapeutic protein-induced antidrug antibodies can alter drug pharmacokinetics and pharmacodynamics leading to impaired efficacy and occasionally serious safety issues. There has been a growing interest over the past decade in developing methods to assess the risk of unwanted immunogenicity during preclinical drug development, with the aim to mitigate the risk during the molecular design phase, clinical development and when products reach the market. Here, we discuss approaches to therapeutic protein immunogenicity risk assessment, with attention to assays and in vivo models used to mitigate this risk.
Collapse
|
37
|
Shultz LD, Keck J, Burzenski L, Jangalwe S, Vaidya S, Greiner DL, Brehm MA. Humanized mouse models of immunological diseases and precision medicine. Mamm Genome 2019; 30:123-142. [PMID: 30847553 PMCID: PMC6610695 DOI: 10.1007/s00335-019-09796-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/02/2019] [Indexed: 12/25/2022]
Abstract
With the increase in knowledge resulting from the sequencing of the human genome, the genetic basis for the underlying differences in individuals, their diseases, and how they respond to therapies is starting to be understood. This has formed the foundation for the era of precision medicine in many human diseases that is beginning to be implemented in the clinic, particularly in cancer. However, preclinical testing of therapeutic approaches based on individual biology will need to be validated in animal models prior to translation into patients. Although animal models, particularly murine models, have provided significant information on the basic biology underlying immune responses in various diseases and the response to therapy, murine and human immune systems differ markedly. These fundamental differences may be the underlying reason why many of the positive therapeutic responses observed in mice have not translated directly into the clinic. There is a critical need for preclinical animal models in which human immune responses can be investigated. For this, many investigators are using humanized mice, i.e., immunodeficient mice engrafted with functional human cells, tissues, and immune systems. We will briefly review the history of humanized mice, the remaining limitations, approaches to overcome them and how humanized mouse models are being used as a preclinical bridge in precision medicine for evaluation of human therapies prior to their implementation in the clinic.
Collapse
Affiliation(s)
- Leonard D Shultz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - James Keck
- The Jackson Laboratory, 1650 Santa Ana Avenue, Sacramento, CA, 95838, USA
| | - Lisa Burzenski
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Sonal Jangalwe
- Diabetes Center of Excellence, The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Shantashri Vaidya
- Diabetes Center of Excellence, The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Dale L Greiner
- Diabetes Center of Excellence, The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Michael A Brehm
- Diabetes Center of Excellence, The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| |
Collapse
|
38
|
Chen Q, Wang J, Liu WN, Zhao Y. Cancer Immunotherapies and Humanized Mouse Drug Testing Platforms. Transl Oncol 2019; 12:987-995. [PMID: 31121491 PMCID: PMC6529825 DOI: 10.1016/j.tranon.2019.04.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy is a type of treatment that restores and stimulates human immune system to inhibit cancer growth or eradicate cancer. It serves as one of the latest systemic therapies, which has been approved to treat different types of cancer in patients. Nevertheless, the clinical response rate is unsatisfactory and the response observed is mostly a partial response in patients. Despite the continuous improvement and identification of novel cancer immunotherapy, there is a pressing need to establish a robust platform to evaluate the efficacy and safety of pre-clinical drugs, simulate the interaction between patients’ tumor and immune system, and predict patients’ responses to the treatment. In this review, we summarize the pros and cons of existing immuno-oncology assay platforms, especially the humanized mouse models for the screening of cancer immunotherapy drugs. In addition, various emerging trends and progress of utilizing humanized mouse models as the screening tool are discussed. Of note, humanized mouse models can also be used for further development of personalized precision medicines to treat cancer. Collectively, these highlight the significance of humanized mouse models as the important platform for the screening of next generation cancer immunotherapy in vivo.
Collapse
Affiliation(s)
- Qingfeng Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Jiaxu Wang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Wai Nam Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Yue Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|
39
|
Biermann M, Cai W, Lang D, Hermsen J, Profio L, Zhou Y, Czirok A, Isai DG, Napiwocki BN, Rodriguez AM, Brown ME, Woon MT, Shao A, Han T, Park D, Hacker TA, Crone WC, Burlingham WJ, Glukhov AV, Ge Y, Kamp TJ. Epigenetic Priming of Human Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Accelerates Cardiomyocyte Maturation. Stem Cells 2019; 37:910-923. [PMID: 31087611 DOI: 10.1002/stem.3021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) exhibit a fetal phenotype that limits in vitro and therapeutic applications. Strategies to promote cardiomyocyte maturation have focused interventions on differentiated hPSC-CMs, but this study tests priming of early cardiac progenitor cells (CPCs) with polyinosinic-polycytidylic acid (pIC) to accelerate cardiomyocyte maturation. CPCs were differentiated from hPSCs using a monolayer differentiation protocol with defined small molecule Wnt temporal modulation, and pIC was added during the formation of early CPCs. pIC priming did not alter the expression of cell surface markers for CPCs (>80% KDR+/PDGFRα+), expression of common cardiac transcription factors, or final purity of differentiated hPSC-CMs (∼90%). However, CPC differentiation in basal medium revealed that pIC priming resulted in hPSC-CMs with enhanced maturity manifested by increased cell size, greater contractility, faster electrical upstrokes, increased oxidative metabolism, and more mature sarcomeric structure and composition. To investigate the mechanisms of CPC priming, RNAseq revealed that cardiac progenitor-stage pIC modulated early Notch signaling and cardiomyogenic transcriptional programs. Chromatin immunoprecipitation of CPCs showed that pIC treatment increased deposition of the H3K9ac activating epigenetic mark at core promoters of cardiac myofilament genes and the Notch ligand, JAG1. Inhibition of Notch signaling blocked the effects of pIC on differentiation and cardiomyocyte maturation. Furthermore, primed CPCs showed more robust formation of hPSC-CMs grafts when transplanted to the NSGW mouse kidney capsule. Overall, epigenetic modulation of CPCs with pIC accelerates cardiomyocyte maturation enabling basic research applications and potential therapeutic uses. Stem Cells 2019;37:910-923.
Collapse
Affiliation(s)
- Mitch Biermann
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wenxuan Cai
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Di Lang
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jack Hermsen
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Luke Profio
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ying Zhou
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Dona G Isai
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Brett N Napiwocki
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Adriana M Rodriguez
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew E Brown
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marites T Woon
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Annie Shao
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tianxiao Han
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Donglim Park
- Department of Virology, Harvard University, Boston, Massachusetts, USA
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wendy C Crone
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
40
|
Mehler VJ, Burns C, Moore ML. Concise Review: Exploring Immunomodulatory Features of Mesenchymal Stromal Cells in Humanized Mouse Models. Stem Cells 2018; 37:298-305. [PMID: 30395373 PMCID: PMC6446739 DOI: 10.1002/stem.2948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/26/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
With their immunosuppressive features, human mesenchymal stromal cells (MSCs), sometimes also termed as mesenchymal stem cells, hold great potential as a cell-based therapy for various immune-mediated diseases. Indeed, MSCs have already been approved as a treatment for graft versus host disease. However, contradictory data from clinical trials and lack of conclusive proof of efficacy hinder the progress toward wider clinical use of MSCs and highlight the need for more relevant disease models. Humanized mice are increasingly used as models to study immune-mediated disease, as they simulate human immunobiology more closely than conventional murine models. With further advances in their resemblance to human immunobiology, it is very likely that humanized mice will be used more commonly as models to investigate MSCs with regard to their therapeutic safety and their immunomodulatory effect and its underlying mechanisms. Recent studies that explore the immunosuppressive features of MSCs in humanized mouse models will be discussed in this review. Stem Cells 2019;37:298-305.
Collapse
Affiliation(s)
- Vera J Mehler
- Endocrinology Section, Biotherapeutics, National Institute for Biological Standards and Control, South Mimms, United Kingdom.,Division of Infection and Immunity, University College London, London, United Kingdom
| | - Chris Burns
- Endocrinology Section, Biotherapeutics, National Institute for Biological Standards and Control, South Mimms, United Kingdom
| | - Melanie L Moore
- Endocrinology Section, Biotherapeutics, National Institute for Biological Standards and Control, South Mimms, United Kingdom
| |
Collapse
|
41
|
Morton JJ, Keysar SB, Perrenoud L, Chimed TS, Reisinger J, Jackson B, Le PN, Nieto C, Gomez K, Miller B, Gao D, Somerset H, Wang XJ, Jimeno A. Dual use of hematopoietic and mesenchymal stem cells enhances engraftment and immune cell trafficking in an allogeneic humanized mouse model of head and neck cancer. Mol Carcinog 2018; 57:1651-1663. [PMID: 30129680 DOI: 10.1002/mc.22887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022]
Abstract
In this report, we describe in detail the evolving procedures to optimize humanized mouse cohort generation, including optimal conditioning, choice of lineage for engraftment, threshold for successful engraftment, HNSCC tumor implantation, and immune and stroma cell analyses. We developed a dual infusion protocol of human hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stem cells (MSCs), leading to incremental human bone marrow engraftment, and exponential increase in mature peripheral human immune cells, and intratumor homing that includes a more complete lineage reconstitution. Additionally, we have identified practical rules to predict successful HSPC/MSC expansion, and a peripheral human cell threshold associated with bone marrow engraftment, both of which will optimize cohort generation and management. The tremendous advances in immune therapy in cancer have made the need for appropriate and standardized models more acute than ever, and therefore, we anticipate that this manuscript will have an immediate impact in cancer-related research. The need for more representative tools to investigate the human tumor microenvironment (TME) has led to the development of humanized mouse models. However, the difficulty of immune system engraftment and minimal human immune cell infiltration into implanted xenografts are major challenges. We have developed an improved method for generating mismatched humanized mice (mHM), using a dual infusion of human HSPCs and MSCs, isolated from cord blood and expanded in vitro. Engraftment with both HSPCs and MSCs produces mice with almost twice the percentage of human immune cells in their bone marrow, compared to mice engrafted with HSPCs alone, and yields 9- to 38-fold higher levels of mature peripheral human immune cells. We identified a peripheral mHM blood human B cell threshold that predicts an optimal degree of mouse bone marrow humanization. When head and neck squamous cell carcinoma (HNSCC) tumors are implanted on the flanks of HSPC-MSC engrafted mice, human T cells, B cells, and macrophages infiltrate the stroma of these tumors at 2- to 8-fold higher ratios. In dually HSPC-MSC engrafted mice we also more frequently observed additional types of immune cells, including regulatory T cells, cytotoxic T cells, and MDSCs. Higher humanization was associated with in vivo response to immune-directed therapy. The complex immune environment arising in tumors from dually HSPC-MSC engrafted mice better resembles that of the originating patient's tumor, suggesting an enhanced capability to accurately recapitulate a human TME.
Collapse
Affiliation(s)
- John J Morton
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Stephen B Keysar
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Loni Perrenoud
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Tugs-Saikhan Chimed
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Julie Reisinger
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Brian Jackson
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Phuong N Le
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Cera Nieto
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Karina Gomez
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Bettina Miller
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Dexiang Gao
- Department of Biostatistics and Informatics, School of Medicine, University of Colorado, Aurora, Colorado
| | - Hilary Somerset
- Department of Pathology, School of Medicine, University of Colorado, Aurora, Colorado
| | - Xiao-Jing Wang
- Department of Pathology, School of Medicine, University of Colorado, Aurora, Colorado.,Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, School of Medicine, University of Colorado, Aurora, Colorado.,Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado.,Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|