1
|
Glover H, Saßmannshausen T, Bertrand Q, Trabuco M, Slavov C, Bacchin A, Andres F, Kondo Y, Stipp R, Wranik M, Khusainov G, Carrillo M, Kekilli D, Nan J, Gonzalez A, Cheng R, Neidhart W, Weinert T, Leonarski F, Dworkowski F, Kepa M, Wachtveitl J, Hennig M, Standfuss J. Photoswitch dissociation from a G protein-coupled receptor resolved by time-resolved serial crystallography. Nat Commun 2024; 15:10837. [PMID: 39738009 DOI: 10.1038/s41467-024-55109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans. The binding and dissociation of ligands tunes the inherent conformational flexibility of these important drug targets towards distinct functional states. Here we show how to trigger and resolve protein-ligand interaction dynamics within the human adenosine A2A receptor. For this, we designed seven photochemical affinity switches derived from the anti-Parkinson's drug istradefylline. In a rational approach based on UV/Vis spectroscopy, time-resolved absorption spectroscopy, differential scanning fluorimetry and cryo-crystallography, we identified compounds suitable for time-resolved serial crystallography. Our analysis of millisecond-scale dynamics revealed how trans-to-cis isomerization shifts selected istradefylline derivatives within the binding pocket. Depending on the chemical nature of the ligand, interactions between extracellular loops 2 and 3, acting as a lid on the binding pocket, are disrupted and rearrangement of the orthosteric binding pocket is invoked upon ligand dissociation. This innovative approach provides insights into GPCR dynamics at the atomic level, offering potential for developing novel pharmaceuticals.
Collapse
Affiliation(s)
- Hannah Glover
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Torben Saßmannshausen
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | | | | | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
- Department of Chemistry, University of South Florida, Tampa, USA
| | | | - Fabio Andres
- leadXpro AG, Park Innovaare, Villigen PSI, Switzerland
| | - Yasushi Kondo
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Robin Stipp
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | | | | | | | - Demet Kekilli
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Jie Nan
- MaxIV Laboratory, Lund University, Lund, Sweden
| | | | - Robert Cheng
- leadXpro AG, Park Innovaare, Villigen PSI, Switzerland
| | | | | | | | | | - Michal Kepa
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | | | | |
Collapse
|
2
|
Barbosa ED, Ma Y, Clift HE, Olson LJ, Zhu L, Liu W. Structural Insights into Dopamine Receptor-Ligand Interactions: From Agonists to Antagonists. ACS Chem Neurosci 2024; 15:4123-4131. [PMID: 39485723 DOI: 10.1021/acschemneuro.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
This study explores the intricacies of dopamine receptor-ligand interactions, focusing on the D1R and D5R subtypes. Using molecular modeling techniques, we investigated the binding of the pan-agonist rotigotine, revealing a universal binding mode at the orthosteric binding pocket. Additionally, we analyze the stability of antagonist-receptor complexes with SKF83566 and SCH23390. By examining the impact of specific mutations on ligand-receptor interactions through computational simulations and thermostability assays, we gain insights into binding stability. Our research also delves into the structural and energetic aspects of antagonist binding to D1R and D5R in their inactive states. These findings enhance our understanding of dopamine receptor pharmacology and hold promise for drug development in central nervous system disorders, opening doors to future research and innovation in this field.
Collapse
MESH Headings
- Dopamine Agonists/pharmacology
- Dopamine Agonists/chemistry
- Humans
- Ligands
- Dopamine Antagonists/pharmacology
- Dopamine Antagonists/chemistry
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/agonists
- Tetrahydronaphthalenes/pharmacology
- Tetrahydronaphthalenes/chemistry
- Receptors, Dopamine D5/agonists
- Receptors, Dopamine D5/metabolism
- Thiophenes/pharmacology
- Thiophenes/chemistry
- Protein Binding/physiology
- Binding Sites
- Benzazepines/pharmacology
- Benzazepines/chemistry
- Models, Molecular
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
Collapse
Affiliation(s)
- Emmanuel D Barbosa
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Yuanyuan Ma
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Heather E Clift
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Linda J Olson
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
3
|
Mavridou V, King MS, Bazzone A, Springett R, Kunji ERS. Membrane potential stimulates ADP import and ATP export by the mitochondrial ADP/ATP carrier due to its positively charged binding site. SCIENCE ADVANCES 2024; 10:eadp7725. [PMID: 39485853 PMCID: PMC11529707 DOI: 10.1126/sciadv.adp7725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
The mitochondrial adenosine 5'-diphosphate (ADP)/adenosine 5'-triphosphate (ATP) carrier imports ADP into the mitochondrion and exports ATP to the cell. Here, we demonstrate that 3.3 positive charges are translocated with the negatively charged substrate in each transport step. They can be assigned to three positively charged residues of the central substrate-binding site and two asparagine/arginine pairs. In this way, the membrane potential stimulates not only the ATP4- export step, as a net -0.7 charge is transported, but also the ADP3- import step, as a net +0.3 charge is transported with the electric field. These positive charge movements also inhibit the import of ATP and export of ADP in the presence of a membrane potential, allowing these nucleotides to be maintained at high concentrations in the cytosol and mitochondrial matrix to drive the hydrolysis and synthesis of ATP, respectively. Thus, this is the mechanism by which the membrane potential drives adenine nucleotide exchange with high directional fluxes to fuel the cellular processes.
Collapse
Affiliation(s)
- Vasiliki Mavridou
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Martin S. King
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Andre Bazzone
- Nanion Technologies GmbH, Ganghoferstrasse 70A, D-80339 Munich, Germany
| | | | - Edmund R. S. Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| |
Collapse
|
4
|
You S, Nguyen T, Li-Ma C, Bollong MJ. Identification of Tunable, Environmentally Responsive Fluorogenic Dyes by High-Throughput Screening. ACS Chem Biol 2024; 19:2041-2049. [PMID: 39250827 DOI: 10.1021/acschembio.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Small molecule dyes remain essential biological tools, yet only a handful of environmentally responsive fluorogenic small molecules are available for routine characterization of protein state. Here, we report the development and execution of a high throughput screen to identify compounds that increase in fluorescence in response to binding of lipophilic sites of proteins. This effort yielded two small molecules that potently indicate the presence of a range of common proteins and outperform common dyes in differential scanning fluorimetry experiments. Structure activity relationship studies revealed that these two scaffolds can be tuned both for their quantum yields and emission wavelengths. This work affords a straightforward framework for the discovery of new fluorophores and adds two fluorogenic probes to the toolbox for studying protein state.
Collapse
Affiliation(s)
- Shaochen You
- Department of Chemistry, Scripps Research, San Diego, California 92037, United States
| | - Thu Nguyen
- Department of Chemistry, Scripps Research, San Diego, California 92037, United States
| | - Chloris Li-Ma
- Department of Chemistry, Scripps Research, San Diego, California 92037, United States
| | - Michael J Bollong
- Department of Chemistry, Scripps Research, San Diego, California 92037, United States
| |
Collapse
|
5
|
Wasilko DJ, Gerstenberger BS, Farley KA, Li W, Alley J, Schnute ME, Unwalla RJ, Victorino J, Crouse KK, Ding R, Sahasrabudhe PV, Vincent F, Frisbie RK, Dermenci A, Flick A, Choi C, Chinigo G, Mousseau JJ, Trujillo JI, Nuhant P, Mondal P, Lombardo V, Lamb D, Hogan BJ, Minhas GS, Segala E, Oswald C, Windsor IW, Han S, Rappas M, Cooke RM, Calabrese MF, Berstein G, Thorarensen A, Wu H. Structural basis for CCR6 modulation by allosteric antagonists. Nat Commun 2024; 15:7574. [PMID: 39217154 PMCID: PMC11365967 DOI: 10.1038/s41467-024-52045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The CC chemokine receptor 6 (CCR6) is a potential target for chronic inflammatory diseases. Previously, we reported an active CCR6 structure in complex with its cognate chemokine CCL20, revealing the molecular basis of CCR6 activation. Here, we present two inactive CCR6 structures in ternary complexes with different allosteric antagonists, CCR6/SQA1/OXM1 and CCR6/SQA1/OXM2. The oxomorpholine analogues, OXM1 and OXM2 are highly selective CCR6 antagonists which bind to an extracellular pocket and disrupt the receptor activation network. An energetically favoured U-shaped conformation in solution that resembles the bound form is observed for the active analogues. SQA1 is a squaramide derivative with close-in analogues reported as antagonists of chemokine receptors including CCR6. SQA1 binds to an intracellular pocket which overlaps with the G protein site, stabilizing a closed pocket that is a hallmark of inactive GPCRs. Minimal communication between the two allosteric pockets is observed, in contrast to the prevalent allosteric cooperativity model of GPCRs. This work highlights the versatility of GPCR antagonism by small molecules, complementing previous knowledge of CCR6 activation, and sheds light on drug discovery targeting CCR6.
Collapse
Affiliation(s)
| | | | | | - Wei Li
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | - Jennifer Alley
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | | | | | - Jorge Victorino
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Kimberly K Crouse
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | - Ru Ding
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | | | - Fabien Vincent
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | | | | | | | - Chulho Choi
- Medicine Design, Pfizer Inc., Groton, CT, USA
| | | | | | | | | | | | | | - Daniel Lamb
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
- Nxera Pharma UK Limited, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Barbara J Hogan
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
- Nxera Pharma UK Limited, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | | | - Elena Segala
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Christine Oswald
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Ian W Windsor
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Seungil Han
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Mathieu Rappas
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
- Nxera Pharma UK Limited, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Robert M Cooke
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | | | - Gabriel Berstein
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | | | - Huixian Wu
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA.
| |
Collapse
|
6
|
Meng X, Ford RC. Investigation of F508del CFTR unfolding and a search for stabilizing small molecules. Arch Biochem Biophys 2024; 758:110050. [PMID: 38876247 DOI: 10.1016/j.abb.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 06/16/2024]
Abstract
Mutation of phenylalanine at position 508 in the cystic fibrosis transmembrane conductance regulator (F508del CFTR) yields a protein unstable at physiological temperatures that is rapidly degraded in the cell. This mutation is present in about 90% of cystic fibrosis patients, hence there is great interest in compounds reversing its instability. We have previously reported the expression of the mutated protein at low temperature and its purification in detergent. Here we describe the use of the protein to screen compounds present in a library of Federal Drug Administration (FDA) - approved drugs and also in a small natural product library. The kinetics of unfolding of F508del CFTR at 37 °C were probed by the increase in solvent-exposed cysteine residues accessible to a fluorescent reporter molecule. This occurred in a bi-exponential manner with a major (≈60%) component of half-life around 5 min and a minor component of around 60 min. The faster kinetics match those observed for loss of channel activity of F508del CFTR in cells at 37 °C. Most compounds tested had no effect on the fluorescence increase, but some were identified that significantly slowed the kinetics. The general properties of these compounds, and any likely mechanisms for inducing stability in purified CFTR are discussed. These experimental data may be useful for artificial intelligence - aided design of CFTR-specific drugs and in the identification of stabilizing additives for membrane proteins (in general).
Collapse
Affiliation(s)
- Xin Meng
- University of Manchester, School of Biological Sciences, Oxford Road, Manchester, M13 9PL, UK; The Francis Crick Institute, Cellular Degradation Systems Lab, 1 Midland Road, London, NW1 1AT, UK
| | - Robert C Ford
- University of Manchester, School of Biological Sciences, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
7
|
Wu T, Yu JC, Suresh A, Gale-Day ZJ, Alteen MG, Woo AS, Millbern Z, Johnson OT, Carroll EC, Partch CL, Fourches D, Vinueza NR, Vocadlo DJ, Gestwicki JE. Protein-adaptive differential scanning fluorimetry using conformationally responsive dyes. Nat Biotechnol 2024:10.1038/s41587-024-02158-7. [PMID: 38744946 DOI: 10.1038/s41587-024-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/31/2024] [Indexed: 05/16/2024]
Abstract
Differential scanning fluorimetry (DSF) is a technique that reports protein thermal stability via the selective recognition of unfolded states by fluorogenic dyes. However, DSF applications remain limited by protein incompatibilities with existing DSF dyes. Here we overcome this obstacle with the development of a protein-adaptive DSF platform (paDSF) that combines a dye library 'Aurora' with a streamlined procedure to identify protein-dye pairs on demand. paDSF was successfully applied to 94% (66 of 70) of proteins, tripling the previous compatibility and delivering assays for 66 functionally and biochemically diverse proteins, including 10 from severe acute respiratory syndrome coronavirus 2. We find that paDSF can be used to monitor biological processes that were previously inaccessible, demonstrated for the interdomain allostery of O-GlcNAc transferase. The chemical diversity and varied selectivities of Aurora dyes suggest that paDSF functionality may be readily extended. paDSF is a generalizable tool to interrogate protein stability, dynamics and ligand binding.
Collapse
Affiliation(s)
- Taiasean Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Joshua C Yu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Arundhati Suresh
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Zachary J Gale-Day
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Matthew G Alteen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Amanda S Woo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Zoe Millbern
- Department of Textile Engineering, North Carolina State University, Raleigh, NC, USA
| | - Oleta T Johnson
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Emma C Carroll
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Carrie L Partch
- Department of Chemistry, University of California, Santa Cruz, CA, USA
| | - Denis Fourches
- Department of Textile Engineering, North Carolina State University, Raleigh, NC, USA
| | - Nelson R Vinueza
- Department of Textile Engineering, North Carolina State University, Raleigh, NC, USA
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA.
| |
Collapse
|
8
|
Khorn PA, Luginina AP, Pospelov VA, Dashevsky DE, Khnykin AN, Moiseeva OV, Safronova NA, Belousov AS, Mishin AV, Borshchevsky VI. Rational Design of Drugs Targeting G-Protein-Coupled Receptors: A Structural Biology Perspective. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:747-764. [PMID: 38831510 DOI: 10.1134/s0006297924040138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 06/05/2024]
Abstract
G protein-coupled receptors (GPCRs) play a key role in the transduction of extracellular signals to cells and regulation of many biological processes, which makes these membrane proteins one of the most important targets for pharmacological agents. A significant increase in the number of resolved atomic structures of GPCRs has opened the possibility of developing pharmaceuticals targeting these receptors via structure-based drug design (SBDD). SBDD employs information on the structure of receptor-ligand complexes to search for selective ligands without the need for an extensive high-throughput experimental ligand screening and can significantly expand the chemical space for ligand search. In this review, we describe the process of deciphering GPCR structures using X-ray diffraction analysis and cryoelectron microscopy as an important stage in the rational design of drugs targeting this receptor class. Our main goal was to present modern developments and key features of experimental methods used in SBDD of GPCR-targeting agents to a wide range of specialists.
Collapse
Affiliation(s)
- Polina A Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Aleksandra P Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Vladimir A Pospelov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Andrey N Khnykin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Olga V Moiseeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
- Scryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Nadezhda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Anatolii S Belousov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| | - Valentin I Borshchevsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, Dubna, Moscow Region, 141980, Russia
| |
Collapse
|
9
|
Qiu Y, Gao Y, Huang B, Bai Q, Zhao Y. Transport mechanism of presynaptic high-affinity choline uptake by CHT1. Nat Struct Mol Biol 2024; 31:701-709. [PMID: 38589607 DOI: 10.1038/s41594-024-01259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/19/2024] [Indexed: 04/10/2024]
Abstract
Choline is a vital nutrient and a precursor for the biosynthesis of essential metabolites, including acetylcholine (ACh), that play a central role in fetal development, especially in the brain. In cholinergic neurons, the high-affinity choline transporter (CHT1) provides an extraordinarily efficient reuptake mechanism to reutilize choline derived from intrasynaptical ACh hydrolysis and maintain ACh synthesis in the presynapse. Here, we determined structures of human CHT1 in three discrete states: the outward-facing state bound with the competitive inhibitor hemicholinium-3 (HC-3); the inward-facing occluded state bound with the substrate choline; and the inward-facing apo open state. Our structures and functional characterizations elucidate how the inhibitor and substrate are recognized. Moreover, our findings shed light on conformational changes when transitioning from an outward-facing to an inward-facing state and establish a framework for understanding the transport cycle, which relies on the stabilization of the outward-facing state by a short intracellular helix, IH1.
Collapse
Affiliation(s)
- Yunlong Qiu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiwei Gao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Huang
- Beijing StoneWise Technology Co Ltd., Beijing, China
| | - Qinru Bai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Gimenez LE, Martin C, Yu J, Hollanders C, Hernandez CC, Wu Y, Yao D, Han GW, Dahir NS, Wu L, Van der Poorten O, Lamouroux A, Mannes M, Zhao S, Tourwé D, Stevens RC, Cone RD, Ballet S. Novel Cocrystal Structures of Peptide Antagonists Bound to the Human Melanocortin Receptor 4 Unveil Unexplored Grounds for Structure-Based Drug Design. J Med Chem 2024; 67:2690-2711. [PMID: 38345933 DOI: 10.1021/acs.jmedchem.3c01822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Melanocortin 4 receptor (MC4-R) antagonists are actively sought for treating cancer cachexia. We determined the structures of complexes with PG-934 and SBL-MC-31. These peptides differ from SHU9119 by substituting His6 with Pro6 and inserting Gly10 or Arg10. The structures revealed two subpockets at the TM7-TM1-TM2 domains, separated by N2857.36. Two peptide series based on the complexed peptides led to an antagonist activity and selectivity SAR study. Most ligands retained the SHU9119 potency, but several SBL-MC-31-derived peptides significantly enhanced MC4-R selectivity over MC1-R by 60- to 132-fold. We also investigated MC4-R coupling to the K+ channel, Kir7.1. Some peptides activated the channel, whereas others induced channel closure independently of G protein coupling. In cell culture studies, channel activation correlated with increased feeding, while a peptide with Kir7.1 inhibitory activity reduced eating. These results highlight the potential for targeting the MC4-R:Kir7.1 complex for treating positive and restrictive eating disorders.
Collapse
Affiliation(s)
- Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Jing Yu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Charlie Hollanders
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Deqiang Yao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Gye Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Naima S Dahir
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Olivier Van der Poorten
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Arthur Lamouroux
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Morgane Mannes
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| |
Collapse
|
11
|
Gooran N, Kopra K. Fluorescence-Based Protein Stability Monitoring-A Review. Int J Mol Sci 2024; 25:1764. [PMID: 38339045 PMCID: PMC10855643 DOI: 10.3390/ijms25031764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Proteins are large biomolecules with a specific structure that is composed of one or more long amino acid chains. Correct protein structures are directly linked to their correct function, and many environmental factors can have either positive or negative effects on this structure. Thus, there is a clear need for methods enabling the study of proteins, their correct folding, and components affecting protein stability. There is a significant number of label-free methods to study protein stability. In this review, we provide a general overview of these methods, but the main focus is on fluorescence-based low-instrument and -expertise-demand techniques. Different aspects related to thermal shift assays (TSAs), also called differential scanning fluorimetry (DSF) or ThermoFluor, are introduced and compared to isothermal chemical denaturation (ICD). Finally, we discuss the challenges and comparative aspects related to these methods, as well as future opportunities and assay development directions.
Collapse
Affiliation(s)
| | - Kari Kopra
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland;
| |
Collapse
|
12
|
Hoare BL, Tippett DN, Kaur A, Cullum SA, Miljuš T, Koers EJ, Harwood CR, Dijon N, Holliday ND, Sykes DA, Veprintsev DB. ThermoBRET: A Ligand-Engagement Nanoscale Thermostability Assay Applied to GPCRs. Chembiochem 2024; 25:e202300459. [PMID: 37872746 DOI: 10.1002/cbic.202300459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Measurements of membrane protein thermostability reflect ligand binding. Current thermostability assays often require protein purification or rely on pre-existing radiolabelled or fluorescent ligands, limiting their application to established targets. Alternative methods, such as fluorescence-detection size exclusion chromatography thermal shift, detect protein aggregation but are not amenable to high-throughput screening. Here, we present a ThermoBRET method to quantify the relative thermostability of G protein coupled receptors (GPCRs), using cannabinoid receptors (CB1 and CB2 ) and the β2 -adrenoceptor (β2 AR) as model systems. ThermoBRET reports receptor unfolding, does not need labelled ligands and can be used with non-purified proteins. It uses Bioluminescence Resonance Energy Transfer (BRET) between Nanoluciferase (Nluc) and a thiol-reactive fluorescent dye that binds cysteines exposed by unfolding. We demonstrate that the melting point (Tm ) of Nluc-fused GPCRs can be determined in non-purified detergent solubilised membrane preparations or solubilised whole cells, revealing differences in thermostability for different solubilising conditions and in the presence of stabilising ligands. We extended the range of the assay by developing the thermostable tsNLuc by incorporating mutations from the fragments of split-Nluc (Tm of 87 °C versus 59 °C). ThermoBRET allows the determination of GPCR thermostability, which is useful for protein purification optimisation and drug discovery screening.
Collapse
Affiliation(s)
- Bradley L Hoare
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Current address, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - David N Tippett
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Current address, Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Amandeep Kaur
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Sean A Cullum
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Tamara Miljuš
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Eline J Koers
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Clare R Harwood
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Nicola Dijon
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Nicholas D Holliday
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - David A Sykes
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Dmitry B Veprintsev
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
13
|
Dong Y, Yu Z, Li Y, Huang B, Bai Q, Gao Y, Chen Q, Li N, He L, Zhao Y. Structural insight into the allosteric inhibition of human sodium-calcium exchanger NCX1 by XIP and SEA0400. EMBO J 2024; 43:14-31. [PMID: 38177313 PMCID: PMC10897212 DOI: 10.1038/s44318-023-00013-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
Sodium-calcium exchanger proteins influence calcium homeostasis in many cell types and participate in a wide range of physiological and pathological processes. Here, we elucidate the cryo-EM structure of the human Na+/Ca2+ exchanger NCX1.3 in the presence of a specific inhibitor, SEA0400. Conserved ion-coordinating residues are exposed on the cytoplasmic face of NCX1.3, indicating that the observed structure is stabilized in an inward-facing conformation. We show how regulatory calcium-binding domains (CBDs) assemble with the ion-translocation transmembrane domain (TMD). The exchanger-inhibitory peptide (XIP) is trapped within a groove between the TMD and CBD2 and predicted to clash with gating helices TMs1/6 at the outward-facing state, thus hindering conformational transition and promoting inactivation of the transporter. A bound SEA0400 molecule stiffens helix TM2ab and affects conformational rearrangements of TM2ab that are associated with the ion-exchange reaction, thus allosterically attenuating Ca2+-uptake activity of NCX1.3.
Collapse
Affiliation(s)
- Yanli Dong
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhuoya Yu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Huang
- Beijing StoneWise Technology Co Ltd., 15 Haidian street, Haidian district, Beijing, China
| | - Qinru Bai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiwei Gao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qihao Chen
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lingli He
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Zhao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Yu PW, Kao G, Dai Z, Nasertorabi F, Zhang Y. Rational design of humanized antibody inhibitors for cathepsin S. Arch Biochem Biophys 2024; 751:109849. [PMID: 38061628 PMCID: PMC10872949 DOI: 10.1016/j.abb.2023.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Cathepsin S (CTSS) is involved in pathogenesis of many human diseases. Inhibitors blocking its protease activity hold therapeutic potential. In comparison to small-molecule inhibitors, monoclonal antibodies capable of inhibiting CTSS enzymatic activity may possess advantageous pharmacological properties. Here we designed and produced inhibitory antibodies targeting human CTSS by genetically fusing the propeptide of procathepsin S (proCTSS) with antibodies in clinic. The resulting antibody fusions in full-length or fragment antigen-binding format could be stably expressed and potently inhibit CTSS proteolytic activity in high specificity. These fusion antibodies not only demonstrate a new approach for facile synthesis of antibody inhibitors against CTSS, but also represent novel anti-CTSS therapeutic candidates.
Collapse
Affiliation(s)
- Po-Wen Yu
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Guoyun Kao
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhefu Dai
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Fariborz Nasertorabi
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, USC Structure Biology Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
15
|
Wu T, Hornsby M, Zhu L, Yu JC, Shokat KM, Gestwicki JE. Protocol for performing and optimizing differential scanning fluorimetry experiments. STAR Protoc 2023; 4:102688. [PMID: 37943662 PMCID: PMC10663957 DOI: 10.1016/j.xpro.2023.102688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
Differential scanning fluorimetry (DSF) is a widely used technique for determining the apparent melting temperature (Tma) of a purified protein. Here, we present a protocol for performing and optimizing DSF experiments. We describe steps for designing and performing the experiment, analyzing data, and optimization. We provide benchmarks for typical Tmas and ΔTmas, standard assay conditions, and upper and lower limits of commonly altered experimental variables. We also detail common pitfalls of DSF and ways to avoid, identify, and overcome them.
Collapse
Affiliation(s)
- Taiasean Wu
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Hornsby
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 941583, USA
| | - Lawrence Zhu
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joshua C Yu
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 941583, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
16
|
Luginina A, Maslov I, Khorn P, Volkov O, Khnykin A, Kuzmichev P, Shevtsov M, Belousov A, Kapranov I, Dashevskii D, Kornilov D, Bestsennaia E, Hofkens J, Hendrix J, Gensch T, Cherezov V, Ivanovich V, Mishin A, Borshchevskiy V. Functional GPCR Expression in Eukaryotic LEXSY System. J Mol Biol 2023; 435:168310. [PMID: 37806553 DOI: 10.1016/j.jmb.2023.168310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
G protein-coupled receptors (GPCRs) form the largest superfamily of membrane proteins in the human genome, and represent one of the most important classes of drug targets. Their structural studies facilitate rational drug discovery. However, atomic structures of only about 20% of human GPCRs have been solved to date. Recombinant production of GPCRs for structural studies at a large scale is challenging due to their low expression levels and stability. Therefore, in this study, we explored the efficacy of the eukaryotic system LEXSY (Leishmania tarentolae) for GPCR production. We selected the human A2A adenosine receptor (A2AAR), as a model protein, expressed it in LEXSY, purified it, and compared with the same receptor produced in insect cells, which is the most popular expression system for structural studies of GPCRs. The A2AAR purified from both expression systems showed similar purity, stability, ligand-induced conformational changes and structural dynamics, with a remarkably higher protein yield in the case of LEXSY expression. Overall, our results suggest that LEXSY is a promising platform for large-scale production of GPCRs for structural studies.
Collapse
Affiliation(s)
- Aleksandra Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia; Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, Diepenbeek, Belgium; Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Polina Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | | | - Andrey Khnykin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Pavel Kuzmichev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Mikhail Shevtsov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Anatoliy Belousov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Ivan Kapranov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Dmitrii Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Daniil Kornilov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Ekaterina Bestsennaia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium; Max Planck Institute for Polymer Research, Mainz, Germany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, Diepenbeek, Belgium; Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Thomas Gensch
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Valentin Ivanovich
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia; Joint Institute for Nuclear Research, Dubna, Russia.
| |
Collapse
|
17
|
Becker P, Naughton F, Brotherton D, Pacheco-Gomez R, Beckstein O, Cameron AD. Mechanism of substrate binding and transport in BASS transporters. eLife 2023; 12:RP89167. [PMID: 37963091 PMCID: PMC10645422 DOI: 10.7554/elife.89167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
The bile acid sodium symporter (BASS) family transports a wide array of molecules across membranes, including bile acids in humans, and small metabolites in plants. These transporters, many of which are sodium-coupled, have been shown to use an elevator mechanism of transport, but exactly how substrate binding is coupled to sodium ion binding and transport is not clear. Here, we solve the crystal structure at 2.3 Å of a transporter from Neisseria meningitidis (ASBTNM) in complex with pantoate, a potential substrate of ASBTNM. The BASS family is characterised by two helices that cross-over in the centre of the protein in an arrangement that is intricately held together by two sodium ions. We observe that the pantoate binds, specifically, between the N-termini of two of the opposing helices in this cross-over region. During molecular dynamics simulations the pantoate remains in this position when sodium ions are present but is more mobile in their absence. Comparison of structures in the presence and absence of pantoate demonstrates that pantoate elicits a conformational change in one of the cross-over helices. This modifies the interface between the two domains that move relative to one another to elicit the elevator mechanism. These results have implications, not only for ASBTNM but for the BASS family as a whole and indeed other transporters that work through the elevator mechanism.
Collapse
Affiliation(s)
- Patrick Becker
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | - Fiona Naughton
- Department of Physics, Arizona State UniversityTempeUnited States
| | | | | | - Oliver Beckstein
- Department of Physics, Arizona State UniversityTempeUnited States
| | | |
Collapse
|
18
|
Barbosa E, Clift H, Olson L, Zhu L, Liu W. Structural Insights into Dopamine Receptor-Ligand Interactions: From Agonists to Antagonists. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565579. [PMID: 37961276 PMCID: PMC10635143 DOI: 10.1101/2023.11.03.565579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
This study explores the intricacies of dopamine receptor-ligand interactions, focusing on the D1R and D5R subtypes. Using molecular modeling techniques, we investigate the binding of the pan-agonist rotigotine, revealing a universal binding mode at the orthosteric binding pocket (OBP). Additionally, we analyze the stability of antagonist-receptor complexes with SKF83566 and SCH23390. By examining the impact of specific mutations on ligand-receptor interactions through computational simulations and thermostability assays, we gain insights into binding stability. Our research also delves into the structural and energetic aspects of antagonist binding to D1R and D5R in their inactive states. These findings enhance our understanding of dopamine receptor pharmacology and hold promise for drug development in central nervous system disorders, opening doors to future research and innovation in this field.
Collapse
|
19
|
Serwanja J, Brandstetter H, Schönauer E. Quantitative cross-linking via engineered cysteines to study inter-domain interactions in bacterial collagenases. STAR Protoc 2023; 4:102519. [PMID: 37605531 PMCID: PMC10458335 DOI: 10.1016/j.xpro.2023.102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023] Open
Abstract
Inter-domain movements act as important activity modulators in multi-domain proteins. Here, we present a protocol for inter-domain cross-linking via engineered cysteines. Using collagenase G (ColG) from Hathewaya histolytica as a model, we describe steps for the design, expression, purification, and cross-linking of the target protein. We detail a system to monitor the progress of the cross-linking reaction and to confirm the structural integrity of the purified cross-linked proteins. We anticipate this protocol to be readily adaptable to other multi-domain enzymes. For complete details on the use and execution of this protocol, please refer to Serwanja et al.1.
Collapse
Affiliation(s)
- Jamil Serwanja
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg 5020, Austria
| | - Hans Brandstetter
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg 5020, Austria
| | - Esther Schönauer
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg 5020, Austria.
| |
Collapse
|
20
|
Becker P, Naughton FB, Brotherton DH, Pacheco-Gomez R, Beckstein O, Cameron AD. Mechanism of substrate binding and transport in BASS transporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543391. [PMID: 37645971 PMCID: PMC10461908 DOI: 10.1101/2023.06.02.543391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The Bile Acid Sodium Symporter (BASS) family transports a wide array of molecules across membranes, including bile acids in humans, and small metabolites in plants. These transporters, many of which are sodium-coupled, have been shown to use an elevator mechanism of transport, but exactly how substrate binding is coupled to sodium ion binding and transport is not clear. Here we solve the crystal structure at 2.3 Å of a transporter from Neisseria Meningitidis (ASBTNM) in complex with pantoate, a potential substrate of ASBTNM. The BASS family is characterised by two helices that cross-over in the centre of the protein in an arrangement that is intricately held together by two sodium ions. We observe that the pantoate binds, specifically, between the N-termini of two of the opposing helices in this cross-over region. During molecular dynamics simulations the pantoate remains in this position when sodium ions are present but is more mobile in their absence. Comparison of structures in the presence and absence of pantoate demonstrates that pantoate elicits a conformational change in one of the cross-over helices. This modifies the interface between the two domains that move relative to one another to elicit the elevator mechanism. These results have implications, not only for ASBTNM but for the BASS family as a whole and indeed other transporters that work through the elevator mechanism.
Collapse
Affiliation(s)
- Patrick Becker
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K
| | | | - Deborah H. Brotherton
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K
| | | | - Oliver Beckstein
- Department of Physics, Arizona State University, Tempe, AZ 85287
| | - Alexander D. Cameron
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K
| |
Collapse
|
21
|
Tavoulari S, Sichrovsky M, Kunji ERS. Fifty years of the mitochondrial pyruvate carrier: New insights into its structure, function, and inhibition. Acta Physiol (Oxf) 2023; 238:e14016. [PMID: 37366179 PMCID: PMC10909473 DOI: 10.1111/apha.14016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
The mitochondrial pyruvate carrier (MPC) resides in the mitochondrial inner membrane, where it links cytosolic and mitochondrial metabolism by transporting pyruvate produced in glycolysis into the mitochondrial matrix. Due to its central metabolic role, it has been proposed as a potential drug target for diabetes, non-alcoholic fatty liver disease, neurodegeneration, and cancers relying on mitochondrial metabolism. Little is known about the structure and mechanism of MPC, as the proteins involved were only identified a decade ago and technical difficulties concerning their purification and stability have hindered progress in functional and structural analyses. The functional unit of MPC is a hetero-dimer comprising two small homologous membrane proteins, MPC1/MPC2 in humans, with the alternative complex MPC1L/MPC2 forming in the testis, but MPC proteins are found throughout the tree of life. The predicted topology of each protomer consists of an amphipathic helix followed by three transmembrane helices. An increasing number of inhibitors are being identified, expanding MPC pharmacology and providing insights into the inhibitory mechanism. Here, we provide critical insights on the composition, structure, and function of the complex and we summarize the different classes of small molecule inhibitors and their potential in therapeutics.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Maximilian Sichrovsky
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
22
|
Ray AP, Thakur N, Pour NG, Eddy MT. Dual mechanisms of cholesterol-GPCR interactions that depend on membrane phospholipid composition. Structure 2023; 31:836-847.e6. [PMID: 37236187 PMCID: PMC10330489 DOI: 10.1016/j.str.2023.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
Cholesterol is a critical component of mammalian cell membranes and an allosteric modulator of G protein-coupled receptors (GPCRs), but divergent views exist on the mechanisms by which cholesterol influences receptor functions. Leveraging the benefits of lipid nanodiscs, i.e., quantitative control of lipid composition, we observe distinct impacts of cholesterol in the presence and absence of anionic phospholipids on the function-related conformational dynamics of the human A2A adenosine receptor (A2AAR). Direct receptor-cholesterol interactions drive activation of agonist-bound A2AAR in membranes containing zwitterionic phospholipids. Intriguingly, the presence of anionic lipids attenuates cholesterol's impact through direct interactions with the receptor, highlighting a more complex role for cholesterol that depends on membrane phospholipid composition. Targeted amino acid replacements at two frequently predicted cholesterol interaction sites showed distinct impacts of cholesterol at different receptor locations, demonstrating the ability to delineate different roles of cholesterol in modulating receptor signaling and maintaining receptor structural integrity.
Collapse
Affiliation(s)
- Arka Prabha Ray
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Naveen Thakur
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Niloofar Gopal Pour
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Matthew T Eddy
- Department of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA.
| |
Collapse
|
23
|
Zítek J, King MS, Peña-Diaz P, Pyrihová E, King AC, Kunji ERS, Hampl V. The free-living flagellate Paratrimastix pyriformis uses a distinct mitochondrial carrier to balance adenine nucleotide pools. Arch Biochem Biophys 2023; 742:109638. [PMID: 37192692 PMCID: PMC10251735 DOI: 10.1016/j.abb.2023.109638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
Paratrimastix pyriformis is a free-living flagellate thriving in low-oxygen freshwater sediments. It belongs to the group Metamonada along with human parasites, such as Giardia and Trichomonas. Like other metamonads, P. pyriformis has a mitochondrion-related organelle (MRO) which in this protist is primarily involved in one-carbon folate metabolism. The MRO contains four members of the solute carrier family 25 (SLC25) responsible for the exchange of metabolites across the mitochondrial inner membrane. Here, we characterise the function of the adenine nucleotide carrier PpMC1 by thermostability shift and transport assays. We show that it transports ATP, ADP and, to a lesser extent, AMP, but not phosphate. The carrier is distinct in function and origin from both ADP/ATP carriers and ATP-Mg/phosphate carriers, and it most likely represents a distinct class of adenine nucleotide carriers.
Collapse
Affiliation(s)
- Justyna Zítek
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, 252 50, Czech Republic
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Priscila Peña-Diaz
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, 252 50, Czech Republic
| | - Eva Pyrihová
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom; University of Stavanger, Department of Chemistry, Bioscience, And Environmental Engineering, Richard Johnsens Gate 4, N-4021, Stavanger, Norway
| | - Alannah C King
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| | - Vladimír Hampl
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, 252 50, Czech Republic.
| |
Collapse
|
24
|
Amer M, Leka O, Jasko P, Frey D, Li X, Kammerer RA. A coiled-coil-based design strategy for the thermostabilization of G-protein-coupled receptors. Sci Rep 2023; 13:10159. [PMID: 37349348 PMCID: PMC10287670 DOI: 10.1038/s41598-023-36855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/11/2023] [Indexed: 06/24/2023] Open
Abstract
Structure elucidation of inactive-state GPCRs still mostly relies on X-ray crystallography. The major goal of our work was to create a new GPCR tool that would provide receptor stability and additional soluble surface for crystallization. Towards this aim, we selected the two-stranded antiparallel coiled coil as a domain fold that satisfies both criteria. A selection of antiparallel coiled coils was used for structure-guided substitution of intracellular loop 3 of the β3 adrenergic receptor. Unexpectedly, only the two GPCR variants containing thermostable coiled coils were expressed. We showed that one GPCR chimera is stable upon purification in detergent, retains ligand-binding properties, and can be crystallized. However, the quality of the crystals was not suitable for structure determination. By using two other examples, 5HTR2C and α2BAR, we demonstrate that our approach is generally suitable for the stabilization of GPCRs. To provide additional surface for promoting crystal contacts, we replaced in a structure-based approach the loop connecting the antiparallel coiled coil by T4L. We found that the engineered GPCR is even more stable than the coiled-coil variant. Negative-staining TEM revealed a homogeneous distribution of particles, indicating that coiled-coil-T4L receptor variants might also be promising candidate proteins for structure elucidation by cryo-EM. Our approach should be of interest for applications that benefit from stable GPCRs.
Collapse
Affiliation(s)
- Marwa Amer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Oneda Leka
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Piotr Jasko
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Daniel Frey
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Xiaodan Li
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland.
| |
Collapse
|
25
|
Fuss MF, Wieferig JP, Corey RA, Hellmich Y, Tascón I, Sousa JS, Stansfeld PJ, Vonck J, Hänelt I. Cyclic di-AMP traps proton-coupled K + transporters of the KUP family in an inward-occluded conformation. Nat Commun 2023; 14:3683. [PMID: 37344476 DOI: 10.1038/s41467-023-38944-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Cyclic di-AMP is the only known essential second messenger in bacteria and archaea, regulating different proteins indispensable for numerous physiological processes. In particular, it controls various potassium and osmolyte transporters involved in osmoregulation. In Bacillus subtilis, the K+/H+ symporter KimA of the KUP family is inactivated by c-di-AMP. KimA sustains survival at potassium limitation at low external pH by mediating potassium ion uptake. However, at elevated intracellular K+ concentrations, further K+ accumulation would be toxic. In this study, we reveal the molecular basis of how c-di-AMP binding inhibits KimA. We report cryo-EM structures of KimA with bound c-di-AMP in detergent solution and reconstituted in amphipols. By combining structural data with functional assays and molecular dynamics simulations we reveal how c-di-AMP modulates transport. We show that an intracellular loop in the transmembrane domain interacts with c-di-AMP bound to the adjacent cytosolic domain. This reduces the mobility of transmembrane helices at the cytosolic side of the K+ binding site and therefore traps KimA in an inward-occluded conformation.
Collapse
Affiliation(s)
- Michael F Fuss
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan-Philip Wieferig
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Yvonne Hellmich
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Igor Tascón
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Joana S Sousa
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- UCB Pharma, UCB Biopharma UK, Slough, SL1 3WE, UK
| | - Phillip J Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Ma C, Gong C. Considerations in production of the prokaryotic ZIP family transporters for structural and functional studies. Methods Enzymol 2023; 687:1-30. [PMID: 37666628 DOI: 10.1016/bs.mie.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Zinc ions play essential roles as components of enzymes and many other important biomolecules, and are associated with numerous diseases. The uptake of Zn2+ and other metal ions require a widely distributed transporter protein family called Zrt/Irt-like Proteins (ZIP family), the majority members of which tend to have eight transmembrane helices with both N- and C- termini located on the extracellular or periplasmic side. Their small sizes and dynamic conformations bring many difficulties in their production for structural studies either by crystallography or Cryo-EM. Here, we summarize the problems that may encounter at the various steps of processing the ZIP proteins from gene to structural and functional studies, and provide some solutions and examples from our and other labs for the cloning, expression, purification, stability screening, metal ion transport assays and structural studies of prokaryotic ZIP family transporters using Escherichia coli as a heterologous host.
Collapse
Affiliation(s)
- Cheng Ma
- Protein Facility, Zhejiang University School of Medicine, Hangzhou, P.R. China; The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, P.R. China.
| | - Caixia Gong
- The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, P.R. China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, Hangzhou, P.R. China.
| |
Collapse
|
27
|
Maslov I, Volkov O, Khorn P, Orekhov P, Gusach A, Kuzmichev P, Gerasimov A, Luginina A, Coucke Q, Bogorodskiy A, Gordeliy V, Wanninger S, Barth A, Mishin A, Hofkens J, Cherezov V, Gensch T, Hendrix J, Borshchevskiy V. Sub-millisecond conformational dynamics of the A 2A adenosine receptor revealed by single-molecule FRET. Commun Biol 2023; 6:362. [PMID: 37012383 PMCID: PMC10070357 DOI: 10.1038/s42003-023-04727-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
The complex pharmacology of G-protein-coupled receptors (GPCRs) is defined by their multi-state conformational dynamics. Single-molecule Förster Resonance Energy Transfer (smFRET) is well suited to quantify dynamics for individual protein molecules; however, its application to GPCRs is challenging. Therefore, smFRET has been limited to studies of inter-receptor interactions in cellular membranes and receptors in detergent environments. Here, we performed smFRET experiments on functionally active human A2A adenosine receptor (A2AAR) molecules embedded in freely diffusing lipid nanodiscs to study their intramolecular conformational dynamics. We propose a dynamic model of A2AAR activation that involves a slow (>2 ms) exchange between the active-like and inactive-like conformations in both apo and antagonist-bound A2AAR, explaining the receptor's constitutive activity. For the agonist-bound A2AAR, we detected faster (390 ± 80 µs) ligand efficacy-dependent dynamics. Our work establishes a general smFRET platform for GPCR investigations that can potentially be used for drug screening and/or mechanism-of-action studies.
Collapse
Affiliation(s)
- Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, Diepenbeek, Belgium
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | | | - Polina Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Philipp Orekhov
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Anastasiia Gusach
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Pavel Kuzmichev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Andrey Gerasimov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Vyatka State University, Kirov, Russia
| | - Aleksandra Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Quinten Coucke
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Valentin Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - Simon Wanninger
- Physical Chemistry, Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science (CIPSM) and Nanosystems Initiative München (NIM), Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Anders Barth
- Physical Chemistry, Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science (CIPSM) and Nanosystems Initiative München (NIM), Ludwig-Maximilians-Universität Munich, Munich, Germany
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, HZ, Delft, The Netherlands
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
- Max Plank Institute for Polymer Research, Mainz, Germany
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Thomas Gensch
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, Diepenbeek, Belgium.
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium.
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
- Joint Institute for Nuclear Research, Dubna, Russian Federation.
| |
Collapse
|
28
|
Thakur N, Ray AP, Sharp L, Jin B, Duong A, Pour NG, Obeng S, Wijesekara AV, Gao ZG, McCurdy CR, Jacobson KA, Lyman E, Eddy MT. Anionic phospholipids control mechanisms of GPCR-G protein recognition. Nat Commun 2023; 14:794. [PMID: 36781870 PMCID: PMC9925817 DOI: 10.1038/s41467-023-36425-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are embedded in phospholipids that strongly influence drug-stimulated signaling. Anionic lipids are particularly important for GPCR signaling complex formation, but a mechanism for this role is not understood. Using NMR spectroscopy, we explore the impact of anionic lipids on the function-related conformational equilibria of the human A2A adenosine receptor (A2AAR) in bilayers containing defined mixtures of zwitterionic and anionic phospholipids. Anionic lipids prime the receptor to form complexes with G proteins through a conformational selection process. Without anionic lipids, signaling complex formation proceeds through a less favorable induced fit mechanism. In computational models, anionic lipids mimic interactions between a G protein and positively charged residues in A2AAR at the receptor intracellular surface, stabilizing a pre-activated receptor conformation. Replacing these residues strikingly alters the receptor response to anionic lipids in experiments. High sequence conservation of the same residues among all GPCRs supports a general role for lipid-receptor charge complementarity in signaling.
Collapse
Affiliation(s)
- Naveen Thakur
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL, USA
| | - Arka P Ray
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL, USA
| | - Liam Sharp
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware, USA
| | - Beining Jin
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL, USA
| | - Alexander Duong
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL, USA
| | - Niloofar Gopal Pour
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL, USA
| | - Samuel Obeng
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Anuradha V Wijesekara
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL, USA
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, Florida, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL, USA.
| |
Collapse
|
29
|
Schmidt P, Vogel A, Schwarze B, Seufert F, Licha K, Wycisk V, Kilian W, Hildebrand PW, Mitschang L. Towards Probing Conformational States of Y2 Receptor Using Hyperpolarized 129Xe NMR. Molecules 2023; 28:molecules28031424. [PMID: 36771089 PMCID: PMC9919357 DOI: 10.3390/molecules28031424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
G protein-coupled receptors can adopt many different conformational states, each of them exhibiting different restraints towards downstream signaling pathways. One promising strategy to identify and quantify this conformational landscape is to introduce a cysteine at a receptor site sensitive to different states and label this cysteine with a probe for detection. Here, the application of NMR of hyperpolarized 129Xe for the detection of the conformational states of human neuropeptide Y2 receptor is introduced. The xenon trapping cage molecule cryptophane-A attached to a cysteine in extracellular loop 2 of the receptor facilitates chemical exchange saturation transfer experiments without and in the presence of native ligand neuropeptide Y. High-quality spectra indicative of structural states of the receptor-cage conjugate were obtained. Specifically, five signals could be assigned to the conjugate in the apo form. After the addition of NPY, one additional signal and subtle modifications in the persisting signals could be detected. The correlation of the spectroscopic signals and structural states was achieved with molecular dynamics simulations, suggesting frequent contact between the xenon trapping cage and the receptor surface but a preferred interaction with the bound ligand.
Collapse
Affiliation(s)
- Peter Schmidt
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Alexander Vogel
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Benedikt Schwarze
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Florian Seufert
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Kai Licha
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Virginia Wycisk
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Wolfgang Kilian
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
| | - Peter W. Hildebrand
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Lorenz Mitschang
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
- Correspondence:
| |
Collapse
|
30
|
Wu T, Yu JC, Suresh A, Gale-Day ZJ, Alteen MG, Woo AS, Millbern Z, Johnson OT, Carroll EC, Partch CL, Fourches D, Vinueza NR, Vocadlo DJ, Gestwicki JE. Conformationally responsive dyes enable protein-adaptive differential scanning fluorimetry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525251. [PMID: 36747624 PMCID: PMC9900766 DOI: 10.1101/2023.01.23.525251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Flexible in vitro methods alter the course of biological discoveries. Differential Scanning Fluorimetry (DSF) is a particularly versatile technique which reports protein thermal unfolding via fluorogenic dye. However, applications of DSF are limited by widespread protein incompatibilities with the available DSF dyes. Here, we enable DSF applications for 66 of 70 tested proteins (94%) including 10 from the SARS-CoV2 virus using a chemically diverse dye library, Aurora, to identify compatible dye-protein pairs in high throughput. We find that this protein-adaptive DSF platform (paDSF) not only triples the previous protein compatibility, but also fundamentally extends the processes observable by DSF, including interdomain allostery in O-GlcNAc Transferase (OGT). paDSF enables routine measurement of protein stability, dynamics, and ligand binding.
Collapse
Affiliation(s)
- Taiasean Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA, 94038, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco; San Francisco, CA, 94038, USA
| | - Joshua C. Yu
- Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA, 94038, USA
| | - Arundhati Suresh
- Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA, 94038, USA
| | - Zachary J. Gale-Day
- Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA, 94038, USA
| | - Matthew G. Alteen
- Department of Chemistry, Simon Fraser University; Burnaby, BC V5A 1S6, Canada
| | - Amanda S. Woo
- Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA, 94038, USA
| | - Zoe Millbern
- Department of Textile Engineering, North Carolina State University; Raleigh, NC 27695, USA
| | - Oleta T. Johnson
- Institute for Neurodegenerative Diseases, University of California, San Francisco; San Francisco, CA, 94038, USA
| | - Emma C. Carroll
- Institute for Neurodegenerative Diseases, University of California, San Francisco; San Francisco, CA, 94038, USA
| | - Carrie L. Partch
- Department of Chemistry, University of California, Santa Cruz; Santa Cruz, CA, 95064, USA
| | - Denis Fourches
- Department of Textile Engineering, North Carolina State University; Raleigh, NC 27695, USA
| | - Nelson R. Vinueza
- Department of Textile Engineering, North Carolina State University; Raleigh, NC 27695, USA
| | - David J. Vocadlo
- Department of Chemistry, Simon Fraser University; Burnaby, BC V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University; Burnaby, BC V5A 1S6, Canada
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA, 94038, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco; San Francisco, CA, 94038, USA
| |
Collapse
|
31
|
Thakur N, Ray AP, Sharp L, Jin B, Duong A, Pour NG, Obeng S, Wijesekara AV, Gao ZG, McCurdy CR, Jacobson KA, Lyman E, Eddy MT. Anionic Phospholipids Control Mechanisms of GPCR-G Protein Recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523010. [PMID: 36711594 PMCID: PMC9882065 DOI: 10.1101/2023.01.11.523010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
G protein-coupled receptors (GPCRs) are embedded in phospholipids that strongly influence drug-stimulated signaling. Anionic lipids are particularly important for GPCR signaling complex formation, but a mechanism for this role is not understood. Using NMR spectroscopy, we visualized the impact of anionic lipids on the function-related conformational equilibria of the human A 2A adenosine receptor (A 2A AR) in bilayers containing defined mixtures of zwitterionic and anionic phospholipids. Anionic lipids primed the receptor to form complexes with G proteins through a conformational selection process. Without anionic lipids, signaling complex formation proceeded through a less favorable induced fit mechanism. In computational models, anionic lipids mimicked interactions between a G protein and positively charged residues in A 2A AR at the receptor intracellular surface, stabilizing a pre-activated receptor conformation. Replacing these residues strikingly altered the receptor response to anionic lipids in experiments. High sequence conservation of the same residues among all GPCRs supports a general role for lipid-receptor charge complementarity in signaling.
Collapse
Affiliation(s)
- Naveen Thakur
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Arka P Ray
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Liam Sharp
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware
| | - Beining Jin
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Alexander Duong
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Niloofar Gopal Pour
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Samuel Obeng
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Anuradha V Wijesekara
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts & Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| |
Collapse
|
32
|
Dmitrieva DA, Kotova TV, Safronova NA, Sadova AA, Dashevskii DE, Mishin AV. Protein Design Strategies for the Structural–Functional Studies of G Protein-Coupled Receptors. BIOCHEMISTRY (MOSCOW) 2023; 88:S192-S226. [PMID: 37069121 DOI: 10.1134/s0006297923140110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are an important family of membrane proteins responsible for many physiological functions in human body. High resolution GPCR structures are required to understand their molecular mechanisms and perform rational drug design, as GPCRs play a crucial role in a variety of diseases. That is difficult to obtain for the wild-type proteins because of their low stability. In this review, we discuss how this problem can be solved by using protein design strategies developed to obtain homogeneous stabilized GPCR samples for crystallization and cryoelectron microscopy.
Collapse
Affiliation(s)
- Daria A Dmitrieva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Tatiana V Kotova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Nadezda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexandra A Sadova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| |
Collapse
|
33
|
Niebling S, Burastero O, García-Alai M. Biophysical Characterization of Membrane Proteins. Methods Mol Biol 2023; 2652:215-230. [PMID: 37093478 DOI: 10.1007/978-1-0716-3147-8_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Membrane proteins are responsible for a large variety of tasks in organisms and of particular interesting as drug targets. At the same time, they are notoriously difficult to work with and require a thorough characterization before proceeding with structural studies. Here, we present a biophysical pipeline to characterize membrane proteins focusing on the optimization of stability, aggregation behavior, and homogeneity. The pipeline shown here is built on three biophysical techniques: differential scanning fluorimetry using native protein fluorescence (nano differential scanning fluorimetry), dynamic light scattering, and mass photometry. For each of these techniques, we provide detailed protocols for performing experiments and data analysis.
Collapse
Affiliation(s)
- Stephan Niebling
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Osvaldo Burastero
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - María García-Alai
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany.
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany.
| |
Collapse
|
34
|
Gamage N, Cheruvara H, Harrison PJ, Birch J, Hitchman CJ, Olejnik M, Owens RJ, Quigley A. High-Throughput Production and Optimization of Membrane Proteins After Expression in Mammalian Cells. Methods Mol Biol 2023; 2652:79-118. [PMID: 37093471 DOI: 10.1007/978-1-0716-3147-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
High-quality protein samples are an essential requirement of any structural biology experiment. However, producing high-quality protein samples, especially for membrane proteins, is iterative and time-consuming. Membrane protein structural biology remains challenging due to low protein yields and high levels of instability especially when membrane proteins are removed from their native environments. Overcoming the twin problems of compositional and conformational instability requires an understanding of protein size, thermostability, and sample heterogeneity, while a parallelized approach enables multiple conditions to be analyzed simultaneously. We present a method that couples the high-throughput cloning of membrane protein constructs with the transient expression of membrane proteins in human embryonic kidney (HEK) cells and rapid identification of the most suitable conditions for subsequent structural biology applications. This rapid screening method is used routinely in the Membrane Protein Laboratory at Diamond Light Source to identify the most successful protein constructs and conditions while excluding those that will not work. The 96-well format is easily adaptable to enable the screening of constructs, pH, salts, encapsulation agents, and other additives such as lipids.
Collapse
Affiliation(s)
- Nadisha Gamage
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, UK
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, UK
| | - Harish Cheruvara
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, UK
| | - Peter J Harrison
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, UK
| | - James Birch
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, UK
| | - Charlie J Hitchman
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, UK
- Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Monika Olejnik
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, UK
| | - Raymond J Owens
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, UK
- The Wellcome Centre for Human Genetics, Division of Structural Biology, University of Oxford, Oxford, UK
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK.
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
35
|
Luo W, Yang M, Zhao Y, Wang H, Yang X, Zhang W, Zhao F, Zhao S, Tao H. Transition-Linker Containing Detergents for Membrane Protein Studies. Chemistry 2022; 28:e202202242. [PMID: 36053145 DOI: 10.1002/chem.202202242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 12/14/2022]
Abstract
It is a pressing need, but still challenging to explore the structure and function of membrane proteins (MPs). One of the main obstacles is the limited availability of matched detergents for the handling of specific MPs. We describe herein the design of new detergents by incorporation of a transition linker between the hydrophilic head and the hydrophobic tail. This design allows a gradual change of hydrophobicity between the outside and inside of micelles, in contrast to the abrupt switch in conventional detergents. Notably, many of these detergents assembled into micelles in while retaining low critical micelle concentrations. Meanwhile, thermal stabilizing evaluation identified superior detergents for representative MPs, including G protein-coupled receptors and a transporter protein. Among them, further improved the NMR study of MPs. We anticipate these that results will encourage future detergent expansion through new remodeling on the traditional detergent scaffold.
Collapse
Affiliation(s)
- Weiling Luo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China.,iHuman Institute, ShanghaiTech University, 201210, Shanghai, P. R. China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Meifang Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China
| | - Yitian Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China
| | - Huixia Wang
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Xiaodi Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China
| | - Wei Zhang
- College of Chemistry and Materials Science, Hebei Normal University, 050024, Shijiazhuang, P. R. China
| | - Fei Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, P. R. China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Houchao Tao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P. R. China
| |
Collapse
|
36
|
Yamagata A, Murata Y, Namba K, Terada T, Fukai S, Shirouzu M. Uptake mechanism of iron-phytosiderophore from the soil based on the structure of yellow stripe transporter. Nat Commun 2022; 13:7180. [PMID: 36424382 PMCID: PMC9691689 DOI: 10.1038/s41467-022-34930-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Calcareous soils cover one-third of all land and cause severe growth defects in plants due to the poor water solubility of iron at high pH. Poaceae species use a unique chelation strategy, whereby plants secrete a high-affinity metal chelator, known as phytosiderophores (mugineic acids), and reabsorb the iron-phytosiderophore complex by the yellow stripe 1/yellow stripe 1-like (YS1/YSL) transporter for efficient uptake of iron from the soil. Here, we present three cryo-electron microscopy structures of barley YS1 (HvYS1) in the apo state, in complex with an iron-phytosiderophore complex, Fe(III)-deoxymugineic acid (Fe(III)-DMA), and in complex with the iron-bound synthetic DMA analog (Fe(III)-PDMA). The structures reveal a homodimeric assembly mediated through an anti-parallel β-sheet interaction with cholesterol hemisuccinate. Each protomer adopts an outward open conformation, and Fe(III)-DMA is bound near the extracellular space in the central cavity. Fe(III)-PDMA occupies the same binding site as Fe(III)-DMA, demonstrating that PDMA can function as a potent fertilizer in an essentially identical manner to DMA. Our results provide a structural framework for iron-phytosiderophore recognition and transport by YS1/YSL transporters, which will enable the rational design of new, high-potency fertilizers.
Collapse
Affiliation(s)
- Atsushi Yamagata
- grid.508743.dLaboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa Japan
| | - Yoshiko Murata
- grid.505709.e0000 0004 4672 7432Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Kosuke Namba
- grid.267335.60000 0001 1092 3579Department of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shoumachi, Tokushima-shi, Tokushima, Japan
| | - Tohru Terada
- grid.26999.3d0000 0001 2151 536XDepartment of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo Japan
| | - Shuya Fukai
- grid.258799.80000 0004 0372 2033Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Mikako Shirouzu
- grid.508743.dLaboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa Japan
| |
Collapse
|
37
|
Recombinant Thaumatin-Like Protein (rTLP) and Chitinase (rCHI) from Vitis vinifera as Models for Wine Haze Formation. Molecules 2022; 27:molecules27196409. [PMID: 36234944 PMCID: PMC9573663 DOI: 10.3390/molecules27196409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Cross-linking net aggregates of thermolabile thaumatin-like proteins (TLPs) and chitinases (CHIs) are the primary source of haze in white wines. Although bentonite fining is still routinely used in winemaking, alternative methods to selectively remove haze proteins without affecting wine organoleptic properties are needed. The availability of pure TLPs and CHIs would facilitate the research for the identification of such technological advances. Therefore, we proposed the usage of recombinant TLP (rTLP) and CHI (rCHI), expressed by Komagataella phaffii, as haze-protein models, since they showed similar characteristics (aggregation potential, melting point, functionality, glycosylation levels and bentonite adsorption) to the native-haze proteins from Vitis vinifera. Hence, rTLP and rCHI can be applied to study haze formation mechanisms on a molecular level and to explore alternative fining methods by screening proteolytic enzymes and ideal adsorptive resins.
Collapse
|
38
|
Loss of Protein Stability and Function Caused by P228L Variation in NADPH-Cytochrome P450 Reductase Linked to Lower Testosterone Levels. Int J Mol Sci 2022; 23:ijms231710141. [PMID: 36077536 PMCID: PMC9456303 DOI: 10.3390/ijms231710141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Cytochrome P450 oxidoreductase (POR) is the redox partner of steroid and drug-metabolising cytochromes P450 located in the endoplasmic reticulum. Mutations in POR cause a broad range of metabolic disorders. The POR variant rs17853284 (P228L), identified by genome sequencing, has been linked to lower testosterone levels and reduced P450 activities. We expressed the POR wild type and the P228L variant in bacteria, purified the proteins, and performed protein stability and catalytic functional studies. Variant P228L affected the stability of the protein as evidenced by lower unfolding temperatures and higher sensitivity to urea denaturation. A significant decline in the rate of electron transfer to cytochrome c and thiazolyl blue tetrazolium (MTT) was observed with POR P228L, while activities of CYP3A4 were reduced by 25% and activities of CYP3A5 and CYP2C9 were reduced by more than 40% compared with WT POR. The 17,20 lyase activity of CYP17A1, responsible for the production of the main androgen precursor dehydroepiandrosterone, was reduced to 27% of WT in the presence of the P228L variant of POR. Based on in silico and in vitro studies, we predict that the change of proline to leucine may change the rigidity of the protein, causing conformational changes in POR, leading to altered electron transfer to redox partners. A single amino acid change can affect protein stability and cause a severe reduction in POR activity. Molecular characterisation of individual POR mutations is crucial for a better understanding of the impact on different redox partners of POR.
Collapse
|
39
|
Xue J, Zhang H, Zeng S. Integrate thermostabilized fusion protein apocytochrome b562RIL and N-glycosylation mutations: A novel approach to heterologous expression of human UDP-glucuronosyltransferase (UGT) 2B7. Front Pharmacol 2022; 13:965038. [PMID: 36034790 PMCID: PMC9412022 DOI: 10.3389/fphar.2022.965038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Human UDP-glucuronosyltransferase (UGT) 2B7 is a crucial phase II metabolic enzyme that transfers glucuronic acid from UDP-glucuronic acid (UDPGA) to endobiotic and xenobiotic substrates. Biophysical and biochemical investigations of UGT2B7 are hampered by the challenge of the integral membrane protein purification. This study focused on the expression and purification of recombinant UGT2B7 by optimizing the insertion sites for the thermostabilized fusion protein apocytochrome b562RIL (BRIL) and various mutations to improve the protein yields and homogeneity. Preparation of the recombinant proteins with high purity accelerated the measurement of pharmacokinetic parameters of UGT2B7. The dissociation constants (KD) of two classical substrates (zidovudine and androsterone) and two inhibitors (schisanhenol and hesperetin) of UGT2B7 were determined using the surface plasmon resonance spectroscopy (SPR) for the first time. Using negative-staining transmission electron microscopy (TEM), UGT2B7 protein particles were characterized, which could be useful for further exploring its three-dimensional structure. The methods described in this study could be broadly applied to other UGTs and are expected to provide the basis for the exploration of metabolic enzyme kinetics, the mechanisms of drug metabolisms and drug interactions, changes in pharmacokinetics, and pharmacodynamics studies in vitro.
Collapse
Affiliation(s)
- Jia Xue
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haitao Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Haitao Zhang, ; Su Zeng,
| | - Su Zeng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- *Correspondence: Haitao Zhang, ; Su Zeng,
| |
Collapse
|
40
|
Lyapina E, Marin E, Gusach A, Orekhov P, Gerasimov A, Luginina A, Vakhrameev D, Ergasheva M, Kovaleva M, Khusainov G, Khorn P, Shevtsov M, Kovalev K, Bukhdruker S, Okhrimenko I, Popov P, Hu H, Weierstall U, Liu W, Cho Y, Gushchin I, Rogachev A, Bourenkov G, Park S, Park G, Hyun HJ, Park J, Gordeliy V, Borshchevskiy V, Mishin A, Cherezov V. Structural basis for receptor selectivity and inverse agonism in S1P 5 receptors. Nat Commun 2022; 13:4736. [PMID: 35961984 PMCID: PMC9374744 DOI: 10.1038/s41467-022-32447-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
The bioactive lysophospholipid sphingosine-1-phosphate (S1P) acts via five different subtypes of S1P receptors (S1PRs) - S1P1-5. S1P5 is predominantly expressed in nervous and immune systems, regulating the egress of natural killer cells from lymph nodes and playing a role in immune and neurodegenerative disorders, as well as carcinogenesis. Several S1PR therapeutic drugs have been developed to treat these diseases; however, they lack receptor subtype selectivity, which leads to side effects. In this article, we describe a 2.2 Å resolution room temperature crystal structure of the human S1P5 receptor in complex with a selective inverse agonist determined by serial femtosecond crystallography (SFX) at the Pohang Accelerator Laboratory X-Ray Free Electron Laser (PAL-XFEL) and analyze its structure-activity relationship data. The structure demonstrates a unique ligand-binding mode, involving an allosteric sub-pocket, which clarifies the receptor subtype selectivity and provides a template for structure-based drug design. Together with previously published S1PR structures in complex with antagonists and agonists, our structure with S1P5-inverse agonist sheds light on the activation mechanism and reveals structural determinants of the inverse agonism in the S1PR family.
Collapse
Affiliation(s)
- Elizaveta Lyapina
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Egor Marin
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Anastasiia Gusach
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Philipp Orekhov
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | | | - Aleksandra Luginina
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Daniil Vakhrameev
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Margarita Ergasheva
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Margarita Kovaleva
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Georgii Khusainov
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- Division of Biology and Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, PSI, Switzerland
| | - Polina Khorn
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Mikhail Shevtsov
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Kirill Kovalev
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Sergey Bukhdruker
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Ivan Okhrimenko
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Petr Popov
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- iMolecule, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Hao Hu
- Department of Physics, Arizona State University, Tempe, AZ, 85281, USA
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ, 85281, USA
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yunje Cho
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Ivan Gushchin
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Andrey Rogachev
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- Joint Institute for Nuclear Research, Dubna, 141980, Russia
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Sehan Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Republic of Korea
| | - Gisu Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Republic of Korea
| | - Hyo Jung Hyun
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Republic of Korea
| | - Jaehyun Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Valentin Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, 38400, France
| | - Valentin Borshchevskiy
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
- Joint Institute for Nuclear Research, Dubna, 141980, Russia.
| | - Alexey Mishin
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
41
|
Zhao F, Zhu Z, Xie L, Luo F, Wang H, Qiu Y, Luo W, Zhou F, Xue D, Zhang Z, Hua T, Wu D, Liu Z, Le Z, Tao H. Two‐Dimensional Detergent Expansion Strategy for Membrane Protein Studies. Chemistry 2022; 28:e202201388. [DOI: 10.1002/chem.202201388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Fei Zhao
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Zhihao Zhu
- College of Chemistry Nanchang University Nanchang, Jiangxi Province 330031 China
| | - Linshan Xie
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Feng Luo
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Huixia Wang
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Yanli Qiu
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Weiling Luo
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fang Zhou
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Dongxiang Xue
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Zhihui Zhang
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Tian Hua
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Dong Wu
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Zhi‐Jie Liu
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Zhiping Le
- College of Chemistry Nanchang University Nanchang, Jiangxi Province 330031 China
| | - Houchao Tao
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- Shanghai Frontiers Science Center of TCM Chemical Biology Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| |
Collapse
|
42
|
Cavalieri R, Hazebroek MK, Cotrim CA, Lee Y, Kunji ERS, Jastroch M, Keipert S, Crichton PG. Activating ligands of Uncoupling protein 1 identified by rapid membrane protein thermostability shift analysis. Mol Metab 2022; 62:101526. [PMID: 35691529 PMCID: PMC9243162 DOI: 10.1016/j.molmet.2022.101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Uncoupling protein 1 (UCP1) catalyses mitochondrial proton leak in brown adipose tissue to facilitate nutrient oxidation for heat production, and may combat metabolic disease if activated in humans. During the adrenergic stimulation of brown adipocytes, free fatty acids generated from lipolysis activate UCP1 via an unclear interaction. Here, we set out to characterise activator binding to purified UCP1 to clarify the activation process, discern novel activators and the potential to target UCP1. METHODS We assessed ligand binding to purified UCP1 by protein thermostability shift analysis, which unlike many conventional approaches can inform on the binding of hydrophobic ligands to membrane proteins. A detailed activator interaction analysis and screening approach was carried out, supported by investigations of UCP1 activity in liposomes, isolated brown fat mitochondria and UCP1 expression-controlled cell lines. RESULTS We reveal that fatty acids and other activators influence UCP1 through a specific destabilising interaction, behaving as transport substrates that shift the protein to a less stable conformation of a transport cycle. Through the detection of specific stability shifts in screens, we identify novel activators, including the over-the-counter drug ibuprofen, where ligand analysis indicates that UCP1 has a relatively wide structural specificity for interacting molecules. Ibuprofen successfully induced UCP1 activity in liposomes, isolated brown fat mitochondria and UCP1-expressing HEK293 cells but not in cultured brown adipocytes, suggesting drug delivery differs in each cell type. CONCLUSIONS These findings clarify the nature of the activator-UCP1 interaction and demonstrate that the targeting of UCP1 in cells by approved drugs is in principle achievable as a therapeutic avenue, but requires variants with more effective delivery in brown adipocytes.
Collapse
Affiliation(s)
- Riccardo Cavalieri
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Marlou Klein Hazebroek
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Camila A Cotrim
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Yang Lee
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Keith Peters Building, CB2 0XY, United Kingdom
| | - Edmund R S Kunji
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Keith Peters Building, CB2 0XY, United Kingdom
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Paul G Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom.
| |
Collapse
|
43
|
Yen YC, Schafer CT, Gustavsson M, Eberle SA, Dominik PK, Deneka D, Zhang P, Schall TJ, Kossiakoff AA, Tesmer JJG, Handel TM. Structures of atypical chemokine receptor 3 reveal the basis for its promiscuity and signaling bias. SCIENCE ADVANCES 2022; 8:eabn8063. [PMID: 35857509 PMCID: PMC9278869 DOI: 10.1126/sciadv.abn8063] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/26/2022] [Indexed: 05/12/2023]
Abstract
Both CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) are activated by the chemokine CXCL12 yet evoke distinct cellular responses. CXCR4 is a canonical G protein-coupled receptor (GPCR), whereas ACKR3 is intrinsically biased for arrestin. The molecular basis for this difference is not understood. Here, we describe cryo-EM structures of ACKR3 in complex with CXCL12, a more potent CXCL12 variant, and a small-molecule agonist. The bound chemokines adopt an unexpected pose relative to those established for CXCR4 and observed in other receptor-chemokine complexes. Along with functional studies, these structures provide insight into the ligand-binding promiscuity of ACKR3, why it fails to couple to G proteins, and its bias toward β-arrestin. The results lay the groundwork for understanding the physiological interplay of ACKR3 with other GPCRs.
Collapse
Affiliation(s)
- Yu-Chen Yen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Christopher T. Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stefanie A. Eberle
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pawel K. Dominik
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Dawid Deneka
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Penglie Zhang
- ChemoCentryx Inc., 835 Industrial Rd., Suite 600, San Carlos, CA 94070, USA
| | - Thomas J. Schall
- ChemoCentryx Inc., 835 Industrial Rd., Suite 600, San Carlos, CA 94070, USA
| | - Anthony A. Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - John J. G. Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
44
|
Xu Y, Dang S. Recent Technical Advances in Sample Preparation for Single-Particle Cryo-EM. Front Mol Biosci 2022; 9:892459. [PMID: 35813814 PMCID: PMC9263182 DOI: 10.3389/fmolb.2022.892459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Cryo-sample preparation is a vital step in the process of obtaining high-resolution structures of macromolecules by using the single-particle cryo–electron microscopy (cryo-EM) method; however, cryo-sample preparation is commonly hampered by high uncertainty and low reproducibility. Specifically, the existence of air-water interfaces during the sample vitrification process could cause protein denaturation and aggregation, complex disassembly, adoption of preferred orientations, and other serious problems affecting the protein particles, thereby making it challenging to pursue high-resolution 3D reconstruction. Therefore, sample preparation has emerged as a critical research topic, and several new methods for application at various preparation stages have been proposed to overcome the aforementioned hurdles. Here, we summarize the methods developed for enhancing the quality of cryo-samples at distinct stages of sample preparation, and we offer insights for developing future strategies based on diverse viewpoints. We anticipate that cryo-sample preparation will no longer be a limiting step in the single-particle cryo-EM field as increasing numbers of methods are developed in the near future, which will ultimately benefit the entire research community.
Collapse
Affiliation(s)
- Yixin Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- *Correspondence: Shangyu Dang,
| |
Collapse
|
45
|
Mavridou V, King MS, Tavoulari S, Ruprecht JJ, Palmer SM, Kunji ERS. Substrate binding in the mitochondrial ADP/ATP carrier is a step-wise process guiding the structural changes in the transport cycle. Nat Commun 2022; 13:3585. [PMID: 35739110 PMCID: PMC9226169 DOI: 10.1038/s41467-022-31366-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/14/2022] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial ADP/ATP carriers import ADP into the mitochondrial matrix and export ATP to the cytosol to fuel cellular processes. Structures of the inhibited cytoplasmic- and matrix-open states have confirmed an alternating access transport mechanism, but the molecular details of substrate binding remain unresolved. Here, we evaluate the role of the solvent-exposed residues of the translocation pathway in the process of substrate binding. We identify the main binding site, comprising three positively charged and a set of aliphatic and aromatic residues, which bind ADP and ATP in both states. Additionally, there are two pairs of asparagine/arginine residues on opposite sides of this site that are involved in substrate binding in a state-dependent manner. Thus, the substrates are directed through a series of binding poses, inducing the conformational changes of the carrier that lead to their translocation. The properties of this site explain the electrogenic and reversible nature of adenine nucleotide transport.
Collapse
Affiliation(s)
- Vasiliki Mavridou
- grid.5335.00000000121885934Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY UK
| | - Martin S. King
- grid.5335.00000000121885934Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY UK
| | - Sotiria Tavoulari
- grid.5335.00000000121885934Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY UK
| | - Jonathan J. Ruprecht
- grid.5335.00000000121885934Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY UK
| | - Shane M. Palmer
- grid.5335.00000000121885934Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY UK
| | - Edmund R. S. Kunji
- grid.5335.00000000121885934Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
46
|
Serdiuk T, Manna M, Zhang C, Mari SA, Kulig W, Pluhackova K, Kobilka BK, Vattulainen I, Müller DJ. A cholesterol analog stabilizes the human β 2-adrenergic receptor nonlinearly with temperature. Sci Signal 2022; 15:eabi7031. [PMID: 35671340 PMCID: PMC10754352 DOI: 10.1126/scisignal.abi7031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In cell membranes, G protein-coupled receptors (GPCRs) interact with cholesterol, which modulates their assembly, stability, and conformation. Previous studies have shown how cholesterol modulates the structural properties of GPCRs at ambient temperature. Here, we characterized the mechanical, kinetic, and energetic properties of the human β2-adrenergic receptor (β2AR) in the presence and absence of the cholesterol analog cholesteryl hemisuccinate (CHS) at room temperature (25°C), at physiological temperature (37°C), and at high temperature (42°C). We found that CHS stabilized various structural regions of β2AR differentially, which changed nonlinearly with temperature. Thereby, the strongest effects were observed for structural regions that are important for receptor signaling. Moreover, at 37°C, but not at 25° or 42°C, CHS caused β2AR to increase and stabilize conformational substates to adopt to basal activity. These findings indicate that the nonlinear, temperature-dependent action of CHS in modulating the structural and functional properties of this GPCR is optimized for 37°C.
Collapse
Affiliation(s)
- Tetiana Serdiuk
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Moutusi Manna
- Applied Phycology and Biotechnology Division, CSIR–Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, gujarat, india
| | - Cheng Zhang
- Department of Cellular Physiology and Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stefania A. Mari
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland
| | - Kristyna Pluhackova
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- Cluster of Excellence SimTech, Stuttgart Center for Simulation Science, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Brian K. Kobilka
- Department of Cellular Physiology and Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland
- Computational Physics Laboratory, Tampere University, P. O. Box 692, FI-33014 Tampere, Finland
| | - Daniel J. Müller
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| |
Collapse
|
47
|
Abstract
γ-Aminobutyric acid (GABA) transporter 1 (GAT1)1 regulates neuronal excitation of the central nervous system by clearing the synaptic cleft of the inhibitory neurotransmitter GABA upon its release from synaptic vesicles. Elevating the levels of GABA in the synaptic cleft, by inhibiting GABA reuptake transporters, is an established strategy to treat neurological disorders, such as epilepsy2. Here we determined the cryo-electron microscopy structure of full-length, wild-type human GAT1 in complex with its clinically used inhibitor tiagabine3, with an ordered part of only 60 kDa. Our structure reveals that tiagabine locks GAT1 in the inward-open conformation, by blocking the intracellular gate of the GABA release pathway, and thus suppresses neurotransmitter uptake. Our results provide insights into the mixed-type inhibition of GAT1 by tiagabine, which is an important anticonvulsant medication. Its pharmacodynamic profile, confirmed by our experimental data, suggests initial binding of tiagabine to the substrate-binding site in the outward-open conformation, whereas our structure presents the drug stalling the transporter in the inward-open conformation, consistent with a two-step mechanism of inhibition4. The presented structure of GAT1 gives crucial insights into the biology and pharmacology of this important neurotransmitter transporter and provides blueprints for the rational design of neuromodulators, as well as moving the boundaries of what is considered possible in single-particle cryo-electron microscopy of challenging membrane proteins.
Collapse
|
48
|
Yeast-based directed-evolution for high-throughput structural stabilization of G protein-coupled receptors (GPCRs). Sci Rep 2022; 12:8657. [PMID: 35606532 PMCID: PMC9126886 DOI: 10.1038/s41598-022-12731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
The immense potential of G protein-coupled receptors (GPCRs) as targets for drug discovery is not fully realized due to the enormous difficulties associated with structure elucidation of these profoundly unstable membrane proteins. The existing methods of GPCR stability-engineering are cumbersome and low-throughput; in addition, the scope of GPCRs that could benefit from these techniques is limited. Here, we present a yeast-based screening platform for a single-step isolation of GRCR variants stable in the presence of short-chain detergents, a feature essential for their successful crystallization using vapor diffusion method. The yeast detergent-resistant cell wall presents a unique opportunity for compartmentalization, to physically link the receptor's phenotype to its encoding DNA, and thus enable discovery of stable GPCR variants with unprecedent efficiency. The scope of mutations identified by the method reveals a surprising amenability of the GPCR scaffold to stabilization, and suggests an intriguing possibility of amending the stability properties of GPCR by varying the structural status of the C-terminus.
Collapse
|
49
|
Kwan TOC, Kolek SA, Danson AE, Reis RI, Camacho IS, Shaw Stewart PD, Moraes I. Measuring Protein Aggregation and Stability Using High-Throughput Biophysical Approaches. Front Mol Biosci 2022; 9:890862. [PMID: 35651816 PMCID: PMC9149252 DOI: 10.3389/fmolb.2022.890862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Structure-function relationships of biological macromolecules, in particular proteins, provide crucial insights for fundamental biochemistry, medical research and early drug discovery. However, production of recombinant proteins, either for structure determination, functional studies, or to be used as biopharmaceutical products, is often hampered by their instability and propensity to aggregate in solution in vitro. Protein samples of poor quality are often associated with reduced reproducibility as well as high research and production expenses. Several biophysical methods are available for measuring protein aggregation and stability. Yet, discovering and developing means to improve protein behaviour and structure-function integrity remains a demanding task. Here, we discuss workflows that are made possible by adapting established biophysical methods to high-throughput screening approaches. Rapid identification and optimisation of conditions that promote protein stability and reduce aggregation will support researchers and industry to maximise sample quality, stability and reproducibility, thereby reducing research and development time and costs.
Collapse
Affiliation(s)
| | | | - Amy E. Danson
- National Physical Laboratory, Teddington, United Kingdom
| | - Rosana I. Reis
- National Physical Laboratory, Teddington, United Kingdom
| | | | - Patrick D. Shaw Stewart
- Douglas Instruments Ltd., Hungerford, United Kingdom
- *Correspondence: Patrick D. Shaw Stewart, ; Isabel Moraes,
| | - Isabel Moraes
- National Physical Laboratory, Teddington, United Kingdom
- *Correspondence: Patrick D. Shaw Stewart, ; Isabel Moraes,
| |
Collapse
|
50
|
Qing T, Liu J, Liu F, Mitchell DC, Beresis RT, Gordan JD. Methods to assess small molecule allosteric modulators of the STRAD pseudokinase. Methods Enzymol 2022; 667:427-453. [PMID: 35525550 DOI: 10.1016/bs.mie.2022.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
With the increased appreciation of the biological relevance of pseudokinase (PSK) allostery, the broadening of small molecule strategies to target PSK function is of particular importance. We and others have pursued the development of small molecule allosteric modulators of the STRAD pseudokinase by targeting its ATP binding pocket. The purpose of this effort is to modulate the function of the LKB1 tumor suppressor kinase, which exists in a trimer with the STRAD PSK and the adaptor protein MO25. Here we provide detailed guidance regarding the different methods we have used for medium throughput screening to identify STRAD ligands and measure their impact on LKB1 kinase activity. Our experience supports preferential use of direct measurements of LKB1 kinase activity, and demonstrates the limitations of indirect assessment methods in the development trans-acting allosteric modulators.
Collapse
Affiliation(s)
- Tingting Qing
- Chempartner Co, Ltd., Shanghai, China; Chempartner Co, Ltd., South San Francisco, CA, United States
| | - Jin Liu
- Chempartner Co, Ltd., Shanghai, China; Chempartner Co, Ltd., South San Francisco, CA, United States
| | - Fen Liu
- Chempartner Co, Ltd., Shanghai, China; Chempartner Co, Ltd., South San Francisco, CA, United States
| | - Dom C Mitchell
- Division of Hematology Oncology and Quantitative Biosciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Richard T Beresis
- Chempartner Co, Ltd., Shanghai, China; Chempartner Co, Ltd., South San Francisco, CA, United States
| | - John D Gordan
- Division of Hematology Oncology and Quantitative Biosciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States.
| |
Collapse
|