1
|
Twaddle NC, Silva CS, Beland FA, Kanungo J. Acetyl L-Carnitine Protects Zebrafish Embryos From Verapamil and Inorganic Arsenic-Induced Cardiotoxicity and Developmental Toxicity With No Effect on Supernumerary Motor Neuron Development. J Appl Toxicol 2025. [PMID: 40234040 DOI: 10.1002/jat.4788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
Verapamil (a P-glycoprotein inhibitor) and inorganic arsenic cotreatment has been shown to be toxic in chick cardiomyocytes. Previously, we have shown that sodium arsenite at 200 mg/L did not cause developmental toxicity or cardiotoxicity in zebrafish embryos. Here, we investigated the effect of verapamil and sodium arsenite cotreatment on the zebrafish embryos. Embryos at 5 h post-fertilization (hpf) were exposed to sodium arsenite (100-400 mg/L; 0.77-3.08 mM) in the presence or absence of 20 μM verapamil for 67 h. At 72 hpf, all the embryos treated with sodium arsenite or verapamil alone were alive, while only ~23% and ~17% survived in the groups cotreated with 20 μM verapamil and 100 mg/L or 200 mg/L arsenite, respectively. However, 10 μM of verapamil and 200 mg/L sodium arsenite cotreatment resulted in 100% embryo survival. Inductively coupled plasma mass spectrometry analysis showed that in the verapamil and sodium arsenite cotreated group, the internal arsenic concentration was significantly higher than in the group treated with only sodium arsenite, suggesting that verapamil inhibited arsenic efflux. Surprisingly, verapamil, a calcium channel blocker, reduced sodium arsenite-induced apoptosis but caused developmental toxicity and cardiotoxicity in the sodium arsenite cotreated embryos, without affecting arsenite-induced supernumerary motor neuron development. Furthermore, acetyl L-carnitine (ALCAR) completely abolished both developmental toxicity and cardiotoxicity induced by sodium arsenite and verapamil cotreatment. We show for the first time that ALCAR prevents toxicities induced by arsenic and verapamil cotreatment in zebrafish embryos, a vertebrate model for investigating chemical toxicity.
Collapse
Affiliation(s)
- Nathan C Twaddle
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Camila S Silva
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
2
|
Erofeeva N, Galstyan DS, Yang L, Strekalova T, Lim LW, de Abreu MS, Golushko NI, Stewart AM, Kalueff AV. Developing zebrafish models of Notch-related CNS pathologies. Neurosci Biobehav Rev 2025; 170:106059. [PMID: 39929383 DOI: 10.1016/j.neubiorev.2025.106059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Notch signaling is an evolutionarily conserved cellular pathway that regulates various stem cell functions, including fate determination, differentiation, proliferation, and apoptosis. This crucial signaling mechanism also plays an important role in the brain, regulating neurogenesis, cell differentiation, and homeostasis, whereas disrupted Notch signaling is linked to various neurodegenerative diseases and brain cancers. Here, we review the central nervous system (CNS) pathologies associated with aberrant Notch signaling, and summarize the available experimental (animal) models used to study these pathologies, with a special focus on zebrafish (Danio rerio). As genetic, pharmacological, and behavioral models in zebrafish have significantly advanced our understanding of Notch-related CNS disorders, future research is expected to further link Notch signaling to brain disorders and, eventually, lead to their more specific and targeted therapeuties.
Collapse
Affiliation(s)
- Natalia Erofeeva
- St. Petersburg State University, St Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St Petersburg, Russia
| | - Longen Yang
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Tatiana Strekalova
- Peoples Friendship University of Russia (RUDN University) and Department of Normal Physiology, Sechenov University, Moscow, Russia
| | - Lee Wei Lim
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory on Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; Western Caspian University, Baku, Azerbaijan.
| | - Nikita I Golushko
- Institute of Translational Biomedicine, St. Petersburg State University, St Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St Petersburg, Russia
| | - Adam Michael Stewart
- The International Zebrafish Neuroscience Research Consortium (ZNRC), New Orleans, USA
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St Petersburg, Russia; Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory on Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Neurobiology Program, Sirius University of Science and Technology, Sirius, Russia.
| |
Collapse
|
3
|
Li W, McCurdy S, Lopez-Ramirez MA, Lee HS, Ginsberg MH. Genetic inactivation of the β1 adrenergic receptor prevents cerebral cavernous malformations in zebrafish. eLife 2025; 13:RP99455. [PMID: 39991834 PMCID: PMC11849999 DOI: 10.7554/elife.99455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Previously, we showed that propranolol reduces experimental murine cerebral cavernous malformations (CCMs) and prevents embryonic caudal venous plexus (CVP) lesions in zebrafish that follow mosaic inactivation of ccm2 (Li et al., 2021). Because morpholino silencing of the β1 adrenergic receptor (adrb1) prevents the embryonic CVP lesion, we proposed that adrb1 plays a role in CCM pathogenesis. Here, we report that adrb1-/- zebrafish exhibited 86% fewer CVP lesions and 87% reduction of CCM lesion volume relative to wild type brood mates at 2dpf and 8-10 weeks stage, respectively. Treatment with metoprolol, a β1 selective antagonist, yielded a similar reduction in CCM lesion volume. Adrb1-/- zebrafish embryos exhibited reduced heart rate and contractility and reduced CVP blood flow. Similarly, slowing the heart and eliminating the blood flow in CVP by administration of 2,3-BDM suppressed the CVP lesion. In sum, our findings provide genetic and pharmacological evidence that the therapeutic effect of propranolol on CCM is achieved through β1 receptor antagonism.
Collapse
Affiliation(s)
- Wenqing Li
- Department of Medicine, University of California, San DiegoSan DiegoUnited States
| | - Sara McCurdy
- Department of Medicine, University of California, San DiegoSan DiegoUnited States
| | | | - Ho-Sup Lee
- Department of Medicine, University of California, San DiegoSan DiegoUnited States
| | - Mark H Ginsberg
- Department of Medicine, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
4
|
Takawale R, Singh D, Nikam VS. Cardiac physiological changes induced by cardiovascular drugs from different chemical classes in zebrafish mirrored in mice: A predictive tool for comprehensive risk assessment. Indian J Pharmacol 2025; 57:12-20. [PMID: 40324826 DOI: 10.4103/ijp.ijp_566_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 04/01/2025] [Indexed: 05/07/2025] Open
Abstract
OBJECTIVE Our study investigated the impact of various cardiovascular drug on the cardiac physiology of zebrafish embryos and validated these findings in mice. BACKGROUND Cardiotoxicity has significantly contributed to the high drug attrition rate over the last two decades, underscoring the cardiac risk assessment in drug discovery and development. Although regulatory authority's guidelines specified the cell-based assays for the safety assessment of drugs, the current requirements fall short due to a lack of in vivo biology. The use of zebrafish experimental system has surged in developmental and pathophysiological investigation due to their striking resemblance to mammals. Hence, we used the zebrafish model system for cardiovascular drug studies and validated it in the mice model. MATERIALS AND METHODS The zebrafish embryos of 72 hours post-fertilization (hpf) were exposed to different CVS drug and, recorded their heart rate, and further validated in mice. RESULTS We observed that exposure to amlodipine (a calcium channel blocker), atenolol (a class II antiarrhythmic), and amiodarone (a class III antiarrhythmic) led to dose-dependent reductions in heart rate in zebrafish embryos, with effects varying based on drug concentration and mechanism of action. Specifically, amiodarone treatment resulted in a dose-dependent decrease in heart rate (0.001-100 μM) and atrioventricular block starting at a 10 μM concentration. Each class of cardiovascular drug demonstrated unique cardiac effects in zebrafish embryos, reflecting similar patterns in mice treated with these drugs. CONCLUSIONS Our findings highlight the zebrafish model's utility for early-phase cardiac risk assessment in drug discovery due to its high throughput capabilities and other beneficial features.
Collapse
Affiliation(s)
- Rohan Takawale
- Department of Pharmacology, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | | | | |
Collapse
|
5
|
Kasuya G, Zempo B, Yamamoto Y, Ryu K, Ono F, Nakajo K. Identification of KCNE6, a new member of the KCNE family of potassium channel auxiliary subunits. Commun Biol 2024; 7:1662. [PMID: 39702752 DOI: 10.1038/s42003-024-07352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
The KCNE family (KCNE1-5) is a group of single transmembrane auxiliary subunits for the voltage-gated K+ channel KCNQ1. The KCNQ1-KCNE complexes are crucial for numerous physiological processes including ventricular repolarization and K+ recycling in epithelial cells. We identified a new member of the KCNE family, "KCNE6", from zebrafish. We found that KCNE6 is expressed in the zebrafish heart and is involved in cardiac excitability. When co-expressed with KCNQ1, KCNE6 produces a slowly activating current like the slow delayed-rectifier K+ current (IKs) induced by KCNE1, despite the fact that the KCNE6 amino acid sequence has the highest similarity to that of KCNE3, which forms a constitutively open channel with KCNQ1. The kcne6 nucleotide sequences exist throughout vertebrates, including humans, although only the KCNE6 proteins of lower vertebrates, up to marsupials, can modulate KCNQ1, and it has become a pseudogene in eutherians. Our findings will facilitate a better understanding of how the KCNE family has evolved to modulate KCNQ1.
Collapse
Affiliation(s)
- Go Kasuya
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Buntaro Zempo
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yasuhiro Yamamoto
- Department of Physiology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan
| | - Kaei Ryu
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Fumihito Ono
- Department of Physiology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan
| | - Koichi Nakajo
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
6
|
Li W, McCurdy S, Lopez-Ramirez MA, Lee HS, Ginsberg MH. Genetic Inactivation of the β1 adrenergic receptor prevents Cerebral Cavernous Malformations in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592554. [PMID: 38746306 PMCID: PMC11092766 DOI: 10.1101/2024.05.05.592554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Propranolol reduces experimental murine cerebral cavernous malformations (CCMs) and prevents embryonic caudal venous plexus (CVP) lesions in zebrafish that follow mosaic inactivation of ccm2. Because morpholino silencing of the β1 adrenergic receptor (adrb1) prevents the embryonic CVP lesion, we proposed that adrb1 plays a role in CCM pathogenesis. Here we report that adrb1 -/- zebrafish exhibited 86% fewer CVP lesions and 87% reduction of CCM lesion volume relative to wild type brood mates at 2dpf and 8-10 weeks stage, respectively. Treatment with metoprolol, a β1 selective antagonist, yielded a similar reduction in CCM lesion volume. Adrb1 -/- zebrafish embryos exhibited reduced heart rate and contractility and reduced CVP blood flow. Similarly, slowing the heart and eliminating the blood flow in CVP by administration of 2,3-BDM suppressed the CVP lesion. In sum, our findings provide genetic and pharmacological evidence that the therapeutic effect of propranolol on CCM is achieved through β1 receptor antagonism.
Collapse
Affiliation(s)
- Wenqing Li
- Department of Medicine, University of California San Diego, CA, USA
- To whom correspondence should be addressed
| | - Sara McCurdy
- Department of Medicine, University of California San Diego, CA, USA
| | | | - Ho-Sup Lee
- Department of Medicine, University of California San Diego, CA, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, CA, USA
| |
Collapse
|
7
|
Kim R, Heo Y, Yoon H, Park JW. Dechorionated zebrafish embryos improve evaluation of nanotoxicity. FRONTIERS IN TOXICOLOGY 2024; 6:1476110. [PMID: 39574544 PMCID: PMC11578979 DOI: 10.3389/ftox.2024.1476110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction In response to the growing need to evaluate nanomaterial (NM) toxicity and compliance with the "3Rs" principles (replacement, reduction, and refinement of animal experiments), zebrafish (Danio rerio) embryos have emerged as a promising alternative model for studies on NM toxicity. However, zebrafish embryos are surrounded by an acellular envelope, the chorion, which limits the permeability of NMs. The present study investigated the importance of dechorionated zebrafish embryos for evaluating NM toxicity. Methods We utilized confocal microscopy and field-emission scanning electron microscopy with energy-dispersive spectroscopy to observe the permeability of NMs into the embryonic body using 50-nm fluorescein 5 (6)-isothiocyanate-incorporated silica nanoparticles (FITC-SiO2NPs). We investigated the physiological effects of removing the chorion using pronase on zebrafish embryos. Nanotoxicity was compared depending on the presence or absence of the chorion in zebrafish embryos using the standardized method ISO/TS 22082:2020. Results The FITC-SiO2NPs were adsorbed onto the embryonic chorion; the Si content was higher in the chorion than in the embryonic body and higher in the intact zebrafish embryos than in the dechorionated ones. Dechorionated zebrafish embryos exhibited no negative physiological effects. The LC50 values of several NMs were lower in dechorionated embryos than those in intact ones. Conclusion Dechorionated zebrafish embryos exhibited greater sensitivity to NMs than usual. To the best of our knowledge, this is the first study to evaluate NM toxicity using a new standardized test method, ISO/TS 22082:2020, and could contribute towards the increased utility of dechorionated embryos as an alternative model for the evaluation of nanotoxicity.
Collapse
Affiliation(s)
- Rosa Kim
- Environmental Exposure and Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, Republic of Korea
| | - Yunwi Heo
- Environmental Exposure and Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hakwon Yoon
- Department of Biological Environment, Kangwon National University, Chuncheon, Republic of Korea
| | - June-Woo Park
- Environmental Exposure and Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
- Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
8
|
Vornanen M, Badr A, Haverinen J. Cardiac arrhythmias in fish induced by natural and anthropogenic changes in environmental conditions. J Exp Biol 2024; 227:jeb247446. [PMID: 39119881 DOI: 10.1242/jeb.247446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A regular heartbeat is essential for maintaining the homeostasis of the vertebrate body. However, environmental pollutants, oxygen deficiency and extreme temperatures can impair heart function in fish. In this Review, we provide an integrative view of the molecular origins of cardiac arrhythmias and their functional consequences, from the level of ion channels to cardiac electrical activity in living fish. First, we describe the current knowledge of the cardiac excitation-contraction coupling of fish, as the electrical activity of the heart and intracellular Ca2+ regulation act as a platform for cardiac arrhythmias. Then, we compile findings on cardiac arrhythmias in fish. Although fish can experience several types of cardiac arrhythmia under stressful conditions, the most typical arrhythmia in fish - both under heat stress and in the presence of toxic substances - is atrioventricular block, which is the inability of the action potential to progress from the atrium to the ventricle. Early and delayed afterdepolarizations are less common in fish hearts than in the hearts of endotherms, perhaps owing to the excitation-contraction coupling properties of the fish heart. In fish hearts, Ca2+-induced Ca2+ release from the sarcoplasmic reticulum plays a smaller role than Ca2+ influx through the sarcolemma. Environmental changes and ion channel toxins can induce arrhythmias in fish and weaken their tolerance to environmental stresses. Although different from endotherm hearts in many respects, fish hearts can serve as a translational model for studying human cardiac arrhythmias, especially for human neonates.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Ahmed Badr
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
- Department of Zoology, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | - Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
9
|
Kato S, Shindo A. Direct quantitative perturbations of physical parameters in vivo to elucidate vertebrate embryo morphogenesis. Curr Opin Cell Biol 2024; 90:102420. [PMID: 39182374 DOI: 10.1016/j.ceb.2024.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024]
Abstract
Physical parameters such as tissue interplay forces, luminal pressure, fluid flow, temperature, and electric fields are crucial regulators of embryonic morphogenesis. While significant attention has been given to cellular and molecular responses to these physical parameters, their roles in morphogenesis are not yet fully elucidated. This is largely due to a shortage of methods for spatiotemporal modulation and direct quantitative perturbation of physical parameters in embryos. Recent advancements addressing these challenges include microscopes equipped with devices to apply and adjust forces, direct perturbation of luminal pressure, and the application of micro-forces to targeted cells and cilia in vivo. These methods are critical for unveiling morphogenesis mechanisms, highlighting the importance of integrating molecular and physical approaches for a comprehensive understanding of morphogenesis.
Collapse
Affiliation(s)
- Soichiro Kato
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| | - Asako Shindo
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
10
|
Verkerk L, Verkerk AO, Wilders R. Zebrafish as a Model System for Brugada Syndrome. Rev Cardiovasc Med 2024; 25:313. [PMID: 39355588 PMCID: PMC11440409 DOI: 10.31083/j.rcm2509313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 10/03/2024] Open
Abstract
Brugada syndrome (BrS) is an inheritable cardiac arrhythmogenic disease, associated with an increased risk of sudden cardiac death. It is most common in males around the age of 40 and the prevalence is higher in Asia than in Europe and the United States. The pathophysiology underlying BrS is not completely understood, but several hypotheses have been proposed. So far, the best effective treatment is the implantation of an implantable cardioverter-defibrillator (ICD), but device-related complications are not uncommon. Therefore, there is an urgent need to improve diagnosis and risk stratification and to find new treatment options. To this end, research should further elucidate the genetic basis and pathophysiological mechanisms of BrS. Several experimental models are being used to gain insight into these aspects. The zebrafish (Danio rerio) is a widely used animal model for the study of cardiac arrhythmias, as its cardiac electrophysiology shows interesting similarities to humans. However, zebrafish have only been used in a limited number of studies on BrS, and the potential role of zebrafish in studying the mechanisms of BrS has not been reviewed. Therefore, the present review aims to evaluate zebrafish as an animal model for BrS. We conclude that zebrafish can be considered as a valuable experimental model for BrS research, not only for gene editing technologies, but also for screening potential BrS drugs.
Collapse
Affiliation(s)
- Leonie Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
11
|
Incardona JP, Linbo TL, Cameron JR, Scholz NL. Structure-activity relationships for alkyl-phenanthrenes support two independent but interacting synergistic models for PAC mixture potency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170544. [PMID: 38309367 DOI: 10.1016/j.scitotenv.2024.170544] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Multiple lines of evidence at whole animal, cellular and molecular levels implicate polycyclic aromatic compounds (PACs) with three rings as drivers of crude oil toxicity to developing fish. Phenanthrene (P0) and its alkylated homologs (C1- through C4-phenanthrenes) comprise the most prominent subfraction of tricyclic PACs in crude oils. Among this family, P0 has been studied intensively, with more limited detail available for the C4-phenanthrene 1-methyl-7-isopropyl-phenanthrene (1-M,7-IP, or retene). While both compounds are cardiotoxic, P0 impacts embryonic cardiac function and development through direct blockade of K+ and Ca2+ currents that regulate cardiomyocyte contractions. In contrast, 1-M,7-IP dysregulates aryl hydrocarbon receptor (AHR) activation in developing ventricular cardiomyocytes. Although no other compounds have been assessed in detail across the larger family of alkylated phenanthrenes, increasing alkylation might be expected to shift phenanthrene family member activity from K+/Ca2+ ion current blockade to AHR activation. Using embryos of two distantly related fish species, zebrafish and Atlantic haddock, we tested 14 alkyl-phenanthrenes in both acute and latent developmental cardiotoxicity assays. All compounds were cardiotoxic, and effects were resolved into impacts on multiple, highly specific aspects of heart development or function. Craniofacial defects were clearly linked to developmental cardiotoxicity. Based on these findings, we suggest a novel framework to delineate the developmental toxicity of petrogenic PAC mixtures in fish, which incorporates multi-mechanistic pathways that produce interactive synergism at the organ level. In addition, relationships among measured embryo tissue concentrations, cytochrome P4501A mRNA induction, and cardiotoxic responses suggest a two-compartment toxicokinetic model that independently predicts high potency of PAC mixtures through classical metabolic synergism. These two modes of synergism, specific to the sub-fraction of phenanthrenes, are sufficient to explain the high embryotoxic potency of crude oils, independent of as-yet unmeasured compounds in these complex environmental mixtures.
Collapse
Affiliation(s)
- John P Incardona
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA Fisheries, Seattle, WA, USA.
| | - Tiffany L Linbo
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA Fisheries, Seattle, WA, USA
| | - James R Cameron
- Saltwater, Inc., Under Contract to Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Nathaniel L Scholz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA Fisheries, Seattle, WA, USA
| |
Collapse
|
12
|
Verma SK, Nandi A, Sinha A, Patel P, Mohanty S, Jha E, Jena S, Kumari P, Ghosh A, Jerman I, Chouhan RS, Dutt A, Samal SK, Mishra YK, Varma RS, Panda PK, Kaushik NK, Singh D, Suar M. The posterity of Zebrafish in paradigm of in vivo molecular toxicological profiling. Biomed Pharmacother 2024; 171:116160. [PMID: 38237351 DOI: 10.1016/j.biopha.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
The aggrandised advancement in utility of advanced day-to-day materials and nanomaterials has raised serious concern on their biocompatibility with human and other biotic members. In last few decades, understanding of toxicity of these materials has been given the centre stage of research using many in vitro and in vivo models. Zebrafish (Danio rerio), a freshwater fish and a member of the minnow family has garnered much attention due to its distinct features, which make it an important and frequently used animal model in various fields of embryology and toxicological studies. Given that fertilization and development of zebrafish eggs take place externally, they serve as an excellent model organism for studying early developmental stages. Moreover, zebrafish possess a comparable genetic composition to humans and share almost 70% of their genes with mammals. This particular model organism has become increasingly popular, especially for developmental research. Moreover, it serves as a link between in vitro studies and in vivo analysis in mammals. It is an appealing choice for vertebrate research, when employing high-throughput methods, due to their small size, swift development, and relatively affordable laboratory setup. This small vertebrate has enhanced comprehension of pathobiology and drug toxicity. This review emphasizes on the recent developments in toxicity screening and assays, and the new insights gained about the toxicity of drugs through these assays. Specifically, the cardio, neural, and, hepatic toxicology studies inferred by applications of nanoparticles have been highlighted.
Collapse
Affiliation(s)
- Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, India.
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar, India; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | | | - Ealisha Jha
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Snehasmita Jena
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Puja Kumari
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno 61137, Czech Republic
| | - Aishee Ghosh
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Ivan Jerman
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Raghuraj Singh Chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, UNAM, CDMX, Mexico
| | - Shailesh Kumar Samal
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, Sønderborg DK-6400, Denmark
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea.
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, India.
| |
Collapse
|
13
|
Salgado-Almario J, Molina Y, Vicente M, Martínez-Sielva A, Rodríguez-García R, Vincent P, Domingo B, Llopis J. ERG potassium channels and T-type calcium channels contribute to the pacemaker and atrioventricular conduction in zebrafish larvae. Acta Physiol (Oxf) 2024; 240:e14075. [PMID: 38071417 DOI: 10.1111/apha.14075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 02/01/2024]
Abstract
AIM Bradyarrhythmias result from inhibition of automaticity, prolonged repolarization, or slow conduction in the heart. The ERG channels mediate the repolarizing current IKr in the cardiac action potential, whereas T-type calcium channels (TTCC) are involved in the sinoatrial pacemaker and atrioventricular conduction in mammals. Zebrafish have become a valuable research model for human cardiac electrophysiology and disease. Here, we investigate the contribution of ERG channels and TTCCs to the pacemaker and atrioventricular conduction in zebrafish larvae and determine the mechanisms causing atrioventricular block. METHODS Zebrafish larvae expressing ratiometric fluorescent Ca2+ biosensors in the heart were used to measure Ca2+ levels and rhythm in beating hearts in vivo, concurrently with contraction and hemodynamics. The atrioventricular delay (the time between the start of atrial and ventricular Ca2+ transients) was used to measure impulse conduction velocity and distinguished between slow conduction and prolonged refractoriness as the cause of the conduction block. RESULTS ERG blockers caused bradycardia and atrioventricular block by prolonging the refractory period in the atrioventricular canal and in working ventricular myocytes. In contrast, inhibition of TTCCs caused bradycardia and second-degree block (Mobitz type I) by slowing atrioventricular conduction. TTCC block did not affect ventricular contractility, despite being highly expressed in cardiomyocytes. Concomitant measurement of Ca2+ levels and ventricular size showed mechano-mechanical coupling: increased preload resulted in a stronger heart contraction in vivo. CONCLUSION ERG channels and TTCCs influence the heart rate and atrioventricular conduction in zebrafish larvae. The zebrafish lines expressing Ca2+ biosensors in the heart allow us to investigate physiological feedback mechanisms and complex arrhythmias.
Collapse
Affiliation(s)
- Jussep Salgado-Almario
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Yillcer Molina
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Manuel Vicente
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Antonio Martínez-Sielva
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Raúl Rodríguez-García
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Pierre Vincent
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Beatriz Domingo
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Juan Llopis
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
14
|
Genge CE, Muralidharan P, Kemp J, Hull CM, Yip M, Simpson K, Hunter DV, Claydon TW. Zebrafish cardiac repolarization does not functionally depend on the expression of the hERG1b-like transcript. Pflugers Arch 2024; 476:87-99. [PMID: 37934265 DOI: 10.1007/s00424-023-02875-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Zebrafish provide a translational model of human cardiac function. Their similar cardiac electrophysiology enables screening of human cardiac repolarization disorders, drug arrhythmogenicity, and novel antiarrhythmic therapeutics. However, while zebrafish cardiac repolarization is driven by delayed rectifier potassium channel current (IKr), the relative role of alternate channel transcripts is uncertain. While human ether-a-go-go-related-gene-1a (hERG1a) is the dominant transcript in humans, expression of the functionally distinct alternate transcript, hERG1b, modifies the electrophysiological and pharmacologic IKr phenotype. Studies of zebrafish IKr are frequently translated without consideration for the presence and impact of hERG1b in humans. Here, we performed phylogenetic analyses of all available KCNH genes from Actinopterygii (ray-finned fishes). Our findings confirmed zebrafish cardiac zkcnh6a as the paralog of human hERG1a (hKCNH2a), but also revealed evidence of a hERG1b (hKCNH2b)-like N-terminally truncated gene, zkcnh6b, in zebrafish. zkcnh6b is a teleost-specific variant that resulted from the 3R genome duplication. qRT-PCR showed dominant expression of zkcnh6a in zebrafish atrial and ventricular tissue, with low levels of zkcnh6b. Functional evaluation of zkcnh6b in a heterologous system showed no discernable function under the conditions tested, and no influence on zkcnh6a function during the zebrafish ventricular action potential. Our findings provide the first descriptions of the zkcnh6b gene, and show that, unlike in humans, zebrafish cardiac repolarization does not rely upon co-assembly of zERG1a/zERG1b. Given that hERG1b modifies IKr function and drug binding in humans, our findings highlight the need for consideration when translating hERG variant effects and toxicological screens in zebrafish, which lack a functional hERG1b-equivalent gene.
Collapse
Affiliation(s)
- Christine E Genge
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Padmapriya Muralidharan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Jake Kemp
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Christina M Hull
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Mandy Yip
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Kyle Simpson
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Diana V Hunter
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada
| | - Thomas W Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Burnaby, B.C, Canada.
| |
Collapse
|
15
|
Roney M, Issahaku AR, Aluwi MFFM. Virtual screening of pyrazole derivatives of usnic acid as new class of anti-hyperglycemic agents against PPARγ agonists. In Silico Pharmacol 2023; 11:36. [PMID: 37994367 PMCID: PMC10660966 DOI: 10.1007/s40203-023-00176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
The finest sources of therapeutic agents are natural products, and usnic acid is a secondary metabolite derived from lichen that has a wide range of biological actions, including anti-viral, anti-cancer, anti-bacterial, and anti-diabetic (hyperglycemia). Based on the hyperglycemia activity of UA, this work seeks to identify new anti-hyperglycemia medicines by virtual screening of pyrazole derivatives of UA. Seven hit compounds (Compounds 1, 5, 6, 7, 17, 18 and 33), which finally go through docking-based screening to produce the lead molecule, were identified by the physicochemical attributes, drug-likeliness, and ADMET prediction. The docking score for the chosen compounds containing PPARγ agonists ranged from -7.6 to -9.2 kcal/mol, whereas the docking goal for compounds 5, 6, and 7 was -9.2 kcal/mol. Based on the binding energy and bound amino acid residues as well as compared to the reference compound, compound-6 considered as lead compound. Furthermore, the MD simulation of 3CS8-Compound-6 and 3CS8-Rosiglitazone complexes were performed to verify the stability of these complexes and the binding posture acquired in docking experiments. The compound-6 had strong pharmacological characteristics, bound to the PPARγ agonist active site, and was expected to reduce the activity of the receptor, according to the virtual screening results. It must be justified to conduct both in-vitro and in-vivo experiments to examine the efficacy of this compound. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00176-y.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pahang Darul Makmur, Lebuhraya Tun Razak, Gambang, Kuantan, 26300 Malaysia
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Pahang Darul Makmur, Lebuhraya Tun Razak, Gambang, Kuantan, 26300 Malaysia
| | - Abdul Rashid Issahaku
- Department of Chemistry, University of the Free State, 205 Nelson Mandela Avenue, Bloemfontein, 9301 South Africa
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pahang Darul Makmur, Lebuhraya Tun Razak, Gambang, Kuantan, 26300 Malaysia
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Pahang Darul Makmur, Lebuhraya Tun Razak, Gambang, Kuantan, 26300 Malaysia
| |
Collapse
|
16
|
Teixidó E, Riera-Colomer C, Raldúa D, Pubill D, Escubedo E, Barenys M, López-Arnau R. First-Generation Synthetic Cathinones Produce Arrhythmia in Zebrafish Eleutheroembryos: A New Approach Methodology for New Psychoactive Substances Cardiotoxicity Evaluation. Int J Mol Sci 2023; 24:13869. [PMID: 37762171 PMCID: PMC10531093 DOI: 10.3390/ijms241813869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The increasing number of new psychoactive substances (NPS) entering the illicit drug market, especially synthetic cathinones, as well as the risk of cardiovascular complications, is intensifying the need to quickly assess their cardiotoxic potential. The present study aims to evaluate the cardiovascular toxicity and lethality induced by first-generation synthetic cathinones (mephedrone, methylone, and MDPV) and more classical psychostimulants (cocaine and MDMA) in zebrafish embryos using a new approach methodology (NAM). Zebrafish embryos at 4 dpf were exposed to the test drugs for 24 h to identify drug lethality. Drug-induced effects on ventricular and atrial heart rate after 2 h exposure were evaluated, and video recordings were properly analyzed. All illicit drugs displayed similar 24 h LC50 values. Our results indicate that all drugs are able to induce bradycardia, arrhythmia, and atrial-ventricular block (AV block), signs of QT interval prolongation. However, only MDPV induced a different rhythmicity change depending on the chamber and was the most potent bradycardia and AV block-inducing drug compared to the other tested compounds. In summary, our results strongly suggest that the NAM presented in this study can be used for screening NPS for their cardiotoxic effect and especially for their ability to prolong the QT intervals.
Collapse
Affiliation(s)
- Elisabet Teixidó
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety, University of Barcelona (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Clara Riera-Colomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Pharmacology Section, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Pharmacology Section, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Pharmacology Section, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Marta Barenys
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety, University of Barcelona (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Raul López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Pharmacology Section, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
17
|
Kawaguchi N, Nakanishi T. Animal Disease Models and Patient-iPS-Cell-Derived In Vitro Disease Models for Cardiovascular Biology-How Close to Disease? BIOLOGY 2023; 12:468. [PMID: 36979160 PMCID: PMC10045735 DOI: 10.3390/biology12030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023]
Abstract
Currently, zebrafish, rodents, canines, and pigs are the primary disease models used in cardiovascular research. In general, larger animals have more physiological similarities to humans, making better disease models. However, they can have restricted or limited use because they are difficult to handle and maintain. Moreover, animal welfare laws regulate the use of experimental animals. Different species have different mechanisms of disease onset. Organs in each animal species have different characteristics depending on their evolutionary history and living environment. For example, mice have higher heart rates than humans. Nonetheless, preclinical studies have used animals to evaluate the safety and efficacy of human drugs because no other complementary method exists. Hence, we need to evaluate the similarities and differences in disease mechanisms between humans and experimental animals. The translation of animal data to humans contributes to eliminating the gap between these two. In vitro disease models have been used as another alternative for human disease models since the discovery of induced pluripotent stem cells (iPSCs). Human cardiomyocytes have been generated from patient-derived iPSCs, which are genetically identical to the derived patients. Researchers have attempted to develop in vivo mimicking 3D culture systems. In this review, we explore the possible uses of animal disease models, iPSC-derived in vitro disease models, humanized animals, and the recent challenges of machine learning. The combination of these methods will make disease models more similar to human disease.
Collapse
Affiliation(s)
- Nanako Kawaguchi
- Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan;
| | | |
Collapse
|
18
|
Kokot M, Weiss M, Zdovc I, Senerovic L, Radakovic N, Anderluh M, Minovski N, Hrast M. Amide containing NBTI antibacterials with reduced hERG inhibition, retained antimicrobial activity against gram-positive bacteria and in vivo efficacy. Eur J Med Chem 2023; 250:115160. [PMID: 36753879 DOI: 10.1016/j.ejmech.2023.115160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Novel bacterial topoisomerase inhibitors (NBTIs) are new promising antimicrobials for the treatment of multidrug-resistant bacterial infections. In recent years, many new NBTIs have been discovered, however most of them struggle with the same issue - the balance between antibacterial activity and hERG-related toxicity. We started a new campaign by optimizing the previous series of NBTIs, followed by the design and synthesis of a new, amide-containing focused NBTI library to reduce hERG inhibition and maintain antibacterial activity against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). This optimization strategy yielded the lead compound 12 that exhibits potent antibacterial activity against Gram-positive bacteria, reduced hERG inhibition, no cardiotoxicity in zebrafish model, and a favorable in vivo efficacy in a neutropenic murine thigh infection model of MRSA infection.
Collapse
Affiliation(s)
- Maja Kokot
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia
| | - Matjaž Weiss
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia
| | - Irena Zdovc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Lidija Senerovic
- Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11 042, Belgrade, Serbia
| | - Natasa Radakovic
- Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11 042, Belgrade, Serbia
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia
| | - Nikola Minovski
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.
| | - Martina Hrast
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
19
|
A low-cost smartphone fluorescence microscope for research, life science education, and STEM outreach. Sci Rep 2023; 13:2722. [PMID: 36894527 PMCID: PMC9998573 DOI: 10.1038/s41598-023-29182-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/31/2023] [Indexed: 03/11/2023] Open
Abstract
Much of our understanding of cell and tissue development, structure, and function stems from fluorescence microscopy. The acquisition of colorful and glowing images engages and excites users ranging from seasoned microscopists to STEM students. Fluorescence microscopes range in cost from several thousand to several hundred thousand US dollars. Therefore, the use of fluorescence microscopy is typically limited to well-funded institutions and biotechnology companies, research core facilities, and medical laboratories, but is financially impractical at many universities and colleges, primary and secondary schools (K-12), and in science outreach settings. In this study, we developed and characterized components that when used in combination with a smartphone or tablet, perform fluorescence microscopy at a cost of less than $50 US dollars per unit. We re-purposed recreational LED flashlights and theater stage lighting filters to enable viewing of green and red fluorophores including EGFP, DsRed, mRFP, and mCherry on a simple-to-build frame made of wood and plexiglass. These devices, which we refer to as glowscopes, were capable of 10 µm resolution, imaging fluorescence in live specimens, and were compatible with all smartphone and tablet models we tested. In comparison to scientific-grade fluorescence microscopes, glowscopes may have limitations to sensitivity needed to detect dim fluorescence and the inability to resolve subcellular structures. We demonstrate capability of viewing fluorescence within zebrafish embryos, including heart rate, rhythmicity, and regional anatomy of the central nervous system. Due to the low cost of individual glowscope units, we anticipate this device can help to equip K-12, undergraduate, and science outreach classrooms with fleets of fluorescence microscopes that can engage students with hands-on learning activities.
Collapse
|
20
|
MacRae CA, Peterson RT. Zebrafish as a Mainstream Model for In Vivo Systems Pharmacology and Toxicology. Annu Rev Pharmacol Toxicol 2023; 63:43-64. [PMID: 36151053 DOI: 10.1146/annurev-pharmtox-051421-105617] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pharmacology and toxicology are part of a much broader effort to understand the relationship between chemistry and biology. While biomedicine has necessarily focused on specific cases, typically of direct human relevance, there are real advantages in pursuing more systematic approaches to characterizing how health and disease are influenced by small molecules and other interventions. In this context, the zebrafish is now established as the representative screenable vertebrate and, through ongoing advances in the available scale of genome editing and automated phenotyping, is beginning to address systems-level solutions to some biomedical problems. The addition of broader efforts to integrate information content across preclinical model organisms and the incorporation of rigorous analytics, including closed-loop deep learning, will facilitate efforts to create systems pharmacology and toxicology with the ability to continuously optimize chemical biological interactions around societal needs. In this review, we outline progress toward this goal.
Collapse
Affiliation(s)
- Calum A MacRae
- Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA;
| | | |
Collapse
|
21
|
Kitsiranuwat S, Suratanee A, Plaimas K. Integration of various protein similarities using random forest technique to infer augmented drug-protein matrix for enhancing drug-disease association prediction. Sci Prog 2022; 105:368504221109215. [PMID: 35801312 PMCID: PMC10358641 DOI: 10.1177/00368504221109215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Identifying new therapeutic indications for existing drugs is a major challenge in drug repositioning. Most computational drug repositioning methods focus on known targets. Analyzing multiple aspects of various protein associations provides an opportunity to discover underlying drug-associated proteins that can be used to improve the performance of the drug repositioning approaches. In this study, machine learning models were developed based on the similarities of diversified biological features, including protein interaction, topological network, sequence alignment, and biological function to predict protein pairs associating with the same drugs. The crucial set of features was identified, and the high performances of protein pair predictions were achieved with an area under the curve (AUC) value of more than 93%. Based on drug chemical structures, the drug similarity levels of the promising protein pairs were used to quantify the inferred drug-associated proteins. Furthermore, these proteins were employed to establish an augmented drug-protein matrix to enhance the efficiency of three existing drug repositioning techniques: a similarity constrained matrix factorization for the drug-disease associations (SCMFDD), an ensemble meta-paths and singular value decomposition (EMP-SVD) model, and a topology similarity and singular value decomposition (TS-SVD) technique. The results showed that the augmented matrix helped to improve the performance up to 4% more in comparison to the original matrix for SCMFDD and EMP-SVD, and about 1% more for TS-SVD. In summary, inferring new protein pairs related to the same drugs increase the opportunity to reveal missing drug-associated proteins that are important for drug development via the drug repositioning technique.
Collapse
Affiliation(s)
- Satanat Kitsiranuwat
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Advanced Virtual and Intelligent Computing (AVIC) center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
- Intelligent and Nonlinear Dynamic Innovations Research Center, Science and Technology Research Institute, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
22
|
Abstract
Cardiac arrhythmias are a significant cause of morbidity and mortality worldwide, accounting for 10% to 15% of all deaths. Although most arrhythmias are due to acquired heart disease, inherited channelopathies and cardiomyopathies disproportionately affect children and young adults. Arrhythmogenesis is complex, involving anatomic structure, ion channels and regulatory proteins, and the interplay between cells in the conduction system, cardiomyocytes, fibroblasts, and the immune system. Animal models of arrhythmia are powerful tools for studying not only molecular and cellular mechanism of arrhythmogenesis but also more complex mechanisms at the whole heart level, and for testing therapeutic interventions. This review summarizes basic and clinical arrhythmia mechanisms followed by an in-depth review of published animal models of genetic and acquired arrhythmia disorders.
Collapse
Affiliation(s)
- Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey Schmeckpeper
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
23
|
Pharmacological assessment of zebrafish-based cardiotoxicity models. Biomed Pharmacother 2022; 148:112695. [DOI: 10.1016/j.biopha.2022.112695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 02/02/2022] [Indexed: 01/03/2023] Open
|
24
|
Bowley G, Kugler E, Wilkinson R, Lawrie A, van Eeden F, Chico TJA, Evans PC, Noël ES, Serbanovic-Canic J. Zebrafish as a tractable model of human cardiovascular disease. Br J Pharmacol 2022; 179:900-917. [PMID: 33788282 DOI: 10.1111/bph.15473] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Mammalian models including non-human primates, pigs and rodents have been used extensively to study the mechanisms of cardiovascular disease. However, there is an increasing desire for alternative model systems that provide excellent scientific value while replacing or reducing the use of mammals. Here, we review the use of zebrafish, Danio rerio, to study cardiovascular development and disease. The anatomy and physiology of zebrafish and mammalian cardiovascular systems are compared, and we describe the use of zebrafish models in studying the mechanisms of cardiac (e.g. congenital heart defects, cardiomyopathy, conduction disorders and regeneration) and vascular (endothelial dysfunction and atherosclerosis, lipid metabolism, vascular ageing, neurovascular physiology and stroke) pathologies. We also review the use of zebrafish for studying pharmacological responses to cardiovascular drugs and describe several features of zebrafish that make them a compelling model for in vivo screening of compounds for the treatment cardiovascular disease. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc.
Collapse
Affiliation(s)
- George Bowley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Elizabeth Kugler
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, UK
| | - Rob Wilkinson
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Freek van Eeden
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Tim J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Emily S Noël
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
25
|
Gauvrit S, Bossaer J, Lee J, Collins MM. Modeling Human Cardiac Arrhythmias: Insights from Zebrafish. J Cardiovasc Dev Dis 2022; 9:jcdd9010013. [PMID: 35050223 PMCID: PMC8779270 DOI: 10.3390/jcdd9010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiac arrhythmia, or irregular heart rhythm, is associated with morbidity and mortality and is described as one of the most important future public health challenges. Therefore, developing new models of cardiac arrhythmia is critical for understanding disease mechanisms, determining genetic underpinnings, and developing new therapeutic strategies. In the last few decades, the zebrafish has emerged as an attractive model to reproduce in vivo human cardiac pathologies, including arrhythmias. Here, we highlight the contribution of zebrafish to the field and discuss the available cardiac arrhythmia models. Further, we outline techniques to assess potential heart rhythm defects in larval and adult zebrafish. As genetic tools in zebrafish continue to bloom, this model will be crucial for functional genomics studies and to develop personalized anti-arrhythmic therapies.
Collapse
|
26
|
Kurach Ł, Chłopaś-Konowałek A, Budzyńska B, Zawadzki M, Szpot P, Boguszewska-Czubara A. Etazene induces developmental toxicity in vivo Danio rerio and in silico studies of new synthetic opioid derivative. Sci Rep 2021; 11:24269. [PMID: 34931035 PMCID: PMC8688443 DOI: 10.1038/s41598-021-03804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/03/2021] [Indexed: 11/12/2022] Open
Abstract
Synthetic opioids are gaining more and more popularity among recreational users as well as regular abusers. One of such novel psychoactive substance, is etazene, which is the most popular opioid drug in the darknet market nowadays. Due to limited information available concerning its activity, we aimed to characterize its developmental toxicity, including cardiotoxicity with the use of in vivo Danio rerio and in silico tools. Moreover, we aimed, for the first time, to characterize the metabolite of etazene, which could become a potential marker of its use for future forensic analysis. The results of our study proved severe dose-dependent developmental toxicity of etazene (applied concentrations 10-300 µM), including an increase in mortality, developmental malformations, and serious cardiotoxic effects, as compared with well-known and used opioid-morphine (applied concentrations 1-50 mM). In silico findings indicate the high toxic potential of etazene which may lead to drug-drug interactions and accumulation of substances. Furthermore, phase I metabolite of etazene resulting from N-dealkylation reaction was identified, and therefore it should be considered as a target for toxicological screening. Nonetheless, the exact mechanism of observed effects in response to etazene should be further examined.
Collapse
Affiliation(s)
- Łukasz Kurach
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4A Chodzki Str., 20-093, Lublin, Poland.
| | | | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4A Chodzki Str., 20-093, Lublin, Poland
| | - Marcin Zawadzki
- Department of Forensic Medicine, Wroclaw Medical University, 4 J.Mikulicza-Radeckiego Str., 50-345, Wrocław, Poland
| | - Paweł Szpot
- Department of Forensic Medicine, Wroclaw Medical University, 4 J.Mikulicza-Radeckiego Str., 50-345, Wrocław, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodzki Str., 20-093, Lublin, Poland
| |
Collapse
|
27
|
Bauer B, Mally A, Liedtke D. Zebrafish Embryos and Larvae as Alternative Animal Models for Toxicity Testing. Int J Mol Sci 2021; 22:13417. [PMID: 34948215 PMCID: PMC8707050 DOI: 10.3390/ijms222413417] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Prerequisite to any biological laboratory assay employing living animals is consideration about its necessity, feasibility, ethics and the potential harm caused during an experiment. The imperative of these thoughts has led to the formulation of the 3R-principle, which today is a pivotal scientific standard of animal experimentation worldwide. The rising amount of laboratory investigations utilizing living animals throughout the last decades, either for regulatory concerns or for basic science, demands the development of alternative methods in accordance with 3R to help reduce experiments in mammals. This demand has resulted in investigation of additional vertebrate species displaying favourable biological properties. One prominent species among these is the zebrafish (Danio rerio), as these small laboratory ray-finned fish are well established in science today and feature outstanding biological characteristics. In this review, we highlight the advantages and general prerequisites of zebrafish embryos and larvae before free-feeding stages for toxicological testing, with a particular focus on cardio-, neuro, hepato- and nephrotoxicity. Furthermore, we discuss toxicokinetics, current advances in utilizing zebrafish for organ toxicity testing and highlight how advanced laboratory methods (such as automation, advanced imaging and genetic techniques) can refine future toxicological studies in this species.
Collapse
Affiliation(s)
- Benedikt Bauer
- Institute of Pharmacology and Toxicology, Julius-Maximilians-University, 97078 Würzburg, Germany; (B.B.); (A.M.)
| | - Angela Mally
- Institute of Pharmacology and Toxicology, Julius-Maximilians-University, 97078 Würzburg, Germany; (B.B.); (A.M.)
| | - Daniel Liedtke
- Institute of Human Genetics, Julius-Maximilians-University, 97074 Würzburg, Germany
| |
Collapse
|
28
|
Crotti L, Odening KE, Sanguinetti MC. Heritable arrhythmias associated with abnormal function of cardiac potassium channels. Cardiovasc Res 2021; 116:1542-1556. [PMID: 32227190 DOI: 10.1093/cvr/cvaa068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiomyocytes express a surprisingly large number of potassium channel types. The primary physiological functions of the currents conducted by these channels are to maintain the resting membrane potential and mediate action potential repolarization under basal conditions and in response to changes in the concentrations of intracellular sodium, calcium, and ATP/ADP. Here, we review the diversity and functional roles of cardiac potassium channels under normal conditions and how heritable mutations in the genes encoding these channels can lead to distinct arrhythmias. We briefly review atrial fibrillation and J-wave syndromes. For long and short QT syndromes, we describe their genetic basis, clinical manifestation, risk stratification, traditional and novel therapeutic approaches, as well as insights into disease mechanisms provided by animal and cellular models.
Collapse
Affiliation(s)
- Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, San Luca Hospital, Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany.,Institute of Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany.,Department of Cardiology, Translational Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland
| | - Michael C Sanguinetti
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
29
|
Saleem S, Kannan RR. Zebrafish: A Promising Real-Time Model System for Nanotechnology-Mediated Neurospecific Drug Delivery. NANOSCALE RESEARCH LETTERS 2021; 16:135. [PMID: 34424426 PMCID: PMC8382796 DOI: 10.1186/s11671-021-03592-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Delivering drugs to the brain has always remained a challenge for the research community and physicians. The blood-brain barrier (BBB) acts as a major hurdle for delivering drugs to specific parts of the brain and the central nervous system. It is physiologically comprised of complex network of capillaries to protect the brain from any invasive agents or foreign particles. Therefore, there is an absolute need for understanding of the BBB for successful therapeutic interventions. Recent research indicates the strong emergence of zebrafish as a model for assessing the permeability of the BBB, which is highly conserved in its structure and function between the zebrafish and mammals. The zebrafish model system offers a plethora of advantages including easy maintenance, high fecundity and transparency of embryos and larvae. Therefore, it has the potential to be developed as a model for analysing and elucidating the permeability of BBB to novel permeation technologies with neurospecificity. Nanotechnology has now become a focus area within the industrial and research community for delivering drugs to the brain. Nanoparticles are being developed with increased efficiency and accuracy for overcoming the BBB and delivering neurospecific drugs to the brain. The zebrafish stands as an excellent model system to assess nanoparticle biocompatibility and toxicity. Hence, the zebrafish model is indispensable for the discovery or development of novel technologies for neurospecific drug delivery and potential therapies for brain diseases.
Collapse
Affiliation(s)
- Suraiya Saleem
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, 600119, India
| | - Rajaretinam Rajesh Kannan
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, 600119, India.
| |
Collapse
|
30
|
Kompella SN, Brette F, Hancox JC, Shiels HA. Phenanthrene impacts zebrafish cardiomyocyte excitability by inhibiting IKr and shortening action potential duration. J Gen Physiol 2021; 153:e202012733. [PMID: 33475719 PMCID: PMC7829948 DOI: 10.1085/jgp.202012733] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/18/2020] [Indexed: 01/14/2023] Open
Abstract
Air pollution is an environmental hazard that is associated with cardiovascular dysfunction. Phenanthrene is a three-ringed polyaromatic hydrocarbon that is a significant component of air pollution and crude oil and has been shown to cause cardiac dysfunction in marine fishes. We investigated the cardiotoxic effects of phenanthrene in zebrafish (Danio rerio), an animal model relevant to human cardiac electrophysiology, using whole-cell patch-clamp of ventricular cardiomyocytes. First, we show that phenanthrene significantly shortened action potential duration without altering resting membrane potential or upstroke velocity (dV/dt). L-type Ca2+ current was significantly decreased by phenanthrene, consistent with the decrease in action potential duration. Phenanthrene blocked the hERG orthologue (zfERG) native current, IKr, and accelerated IKr deactivation kinetics in a dose-dependent manner. Furthermore, we show that phenanthrene significantly inhibits the protective IKr current envelope, elicited by a paired ventricular AP-like command waveform protocol. Phenanthrene had no effect on other IK. These findings demonstrate that exposure to phenanthrene shortens action potential duration, which may reduce refractoriness and increase susceptibility to certain arrhythmia triggers, such as premature ventricular contractions. These data also reveal a previously unrecognized mechanism of polyaromatic hydrocarbon cardiotoxicity on zfERG by accelerating deactivation and decreasing IKr protective current.
Collapse
Affiliation(s)
- Shiva N. Kompella
- Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Fabien Brette
- Institut National de la Santé et de la Recherche Médicale, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique, Bordeaux, France
- Institut Hospitalo-Universitaire Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Holly A. Shiels
- Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
31
|
Simpson KE, Venkateshappa R, Pang ZK, Faizi S, Tibbits GF, Claydon TW. Utility of Zebrafish Models of Acquired and Inherited Long QT Syndrome. Front Physiol 2021; 11:624129. [PMID: 33519527 PMCID: PMC7844309 DOI: 10.3389/fphys.2020.624129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 01/12/2023] Open
Abstract
Long-QT Syndrome (LQTS) is a cardiac electrical disorder, distinguished by irregular heart rates and sudden death. Accounting for ∼40% of cases, LQTS Type 2 (LQTS2), is caused by defects in the Kv11.1 (hERG) potassium channel that is critical for cardiac repolarization. Drug block of hERG channels or dysfunctional channel variants can result in acquired or inherited LQTS2, respectively, which are typified by delayed repolarization and predisposition to lethal arrhythmia. As such, there is significant interest in clear identification of drugs and channel variants that produce clinically meaningful perturbation of hERG channel function. While toxicological screening of hERG channels, and phenotypic assessment of inherited channel variants in heterologous systems is now commonplace, affordable, efficient, and insightful whole organ models for acquired and inherited LQTS2 are lacking. Recent work has shown that zebrafish provide a viable in vivo or whole organ model of cardiac electrophysiology. Characterization of cardiac ion currents and toxicological screening work in intact embryos, as well as adult whole hearts, has demonstrated the utility of the zebrafish model to contribute to the development of therapeutics that lack hERG-blocking off-target effects. Moreover, forward and reverse genetic approaches show zebrafish as a tractable model in which LQTS2 can be studied. With the development of new tools and technologies, zebrafish lines carrying precise channel variants associated with LQTS2 have recently begun to be generated and explored. In this review, we discuss the present knowledge and questions raised related to the use of zebrafish as models of acquired and inherited LQTS2. We focus discussion, in particular, on developments in precise gene-editing approaches in zebrafish to create whole heart inherited LQTS2 models and evidence that zebrafish hearts can be used to study arrhythmogenicity and to identify potential anti-arrhythmic compounds.
Collapse
Affiliation(s)
- Kyle E. Simpson
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Ravichandra Venkateshappa
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Zhao Kai Pang
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Shoaib Faizi
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Glen F. Tibbits
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Department of Cardiovascular Science, British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - Tom W. Claydon
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
32
|
Echeazarra L, Hortigón-Vinagre MP, Casis O, Gallego M. Adult and Developing Zebrafish as Suitable Models for Cardiac Electrophysiology and Pathology in Research and Industry. Front Physiol 2021; 11:607860. [PMID: 33519514 PMCID: PMC7838705 DOI: 10.3389/fphys.2020.607860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
The electrophysiological behavior of the zebrafish heart is very similar to that of the human heart. In fact, most of the genes that codify the channels and regulatory proteins required for human cardiac function have their orthologs in the zebrafish. The high fecundity, small size, and easy handling make the zebrafish embryos/larvae an interesting candidate to perform whole animal experiments within a plate, offering a reliable and low-cost alternative to replace rodents and larger mammals for the study of cardiac physiology and pathology. The employment of zebrafish embryos/larvae has widened from basic science to industry, being of particular interest for pharmacology studies, since the zebrafish embryo/larva is able to recapitulate a complete and integrated view of cardiac physiology, missed in cell culture. As in the human heart, IKr is the dominant repolarizing current and it is functional as early as 48 h post fertilization. Finally, genome editing techniques such as CRISPR/Cas9 facilitate the humanization of zebrafish embryos/larvae. These techniques allow one to replace zebrafish genes by their human orthologs, making humanized zebrafish embryos/larvae the most promising in vitro model, since it allows the recreation of human-organ-like environment, which is especially necessary in cardiac studies due to the implication of dynamic factors, electrical communication, and the paracrine signals in cardiac function.
Collapse
Affiliation(s)
- Leyre Echeazarra
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Maria Pura Hortigón-Vinagre
- Departamento de Bioquímica y Biología Molecular y Genética>, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Oscar Casis
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Mónica Gallego
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| |
Collapse
|
33
|
Sieliwonczyk E, Matchkov VV, Vandendriessche B, Alaerts M, Bakkers J, Loeys B, Schepers D. Inherited Ventricular Arrhythmia in Zebrafish: Genetic Models and Phenotyping Tools. Rev Physiol Biochem Pharmacol 2021; 184:33-68. [PMID: 34533615 DOI: 10.1007/112_2021_65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the last years, the field of inheritable ventricular arrhythmia disease modelling has changed significantly with a push towards the use of novel cellular cardiomyocyte based models. However, there is a growing need for new in vivo models to study the disease pathology at the tissue and organ level. Zebrafish provide an excellent opportunity for in vivo modelling of inheritable ventricular arrhythmia syndromes due to the remarkable similarity between their cardiac electrophysiology and that of humans. Additionally, many state-of-the-art methods in gene editing and electrophysiological phenotyping are available for zebrafish research. In this review, we give a comprehensive overview of the published zebrafish genetic models for primary electrical disorders and arrhythmogenic cardiomyopathy. We summarise and discuss the strengths and weaknesses of the different technical approaches for the generation of genetically modified zebrafish disease models, as well as the electrophysiological approaches in zebrafish phenotyping. By providing this detailed overview, we aim to draw attention to the potential of the zebrafish model for studying arrhythmia syndromes at the organ level and as a platform for personalised medicine and drug testing.
Collapse
Affiliation(s)
- Ewa Sieliwonczyk
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
| | - Vladimir V Matchkov
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Bert Vandendriessche
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Maaike Alaerts
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Jeroen Bakkers
- Hubrecht Institute for Developmental and Stem Cell Biology, Utrecht, The Netherlands
| | - Bart Loeys
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Dorien Schepers
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Laboratory for Molecular, Cellular and Network Excitability, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
34
|
Cameron LP, Tombari RJ, Lu J, Pell AJ, Hurley ZQ, Ehinger Y, Vargas MV, McCarroll MN, Taylor JC, Myers-Turnbull D, Liu T, Yaghoobi B, Laskowski LJ, Anderson EI, Zhang G, Viswanathan J, Brown BM, Tjia M, Dunlap LE, Rabow ZT, Fiehn O, Wulff H, McCorvy JD, Lein PJ, Kokel D, Ron D, Peters J, Zuo Y, Olson DE. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature 2020; 589:474-479. [PMID: 33299186 PMCID: PMC7874389 DOI: 10.1038/s41586-020-3008-z] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
The psychedelic alkaloid ibogaine has anti-addictive properties in both humans and animals.1 Unlike most substance use disorder (SUD) medications, anecdotal reports suggest that ibogaine possesses the potential to treat patients addicted to a variety of substances including opiates, alcohol, and psychostimulants. Like other psychedelic compounds, its therapeutic effects are long-lasting,2 which has been attributed to its ability to modify addiction-related neural circuitry through activation of neurotrophic factor signaling.3,4 However, several safety concerns have hindered the clinical development of ibogaine including its toxicity, hallucinogenic potential, and proclivity for inducing cardiac arrhythmias. Here, we apply the principles of function-oriented synthesis (FOS) to identify the key structural elements of its potential therapeutic pharmacophore, enabling us to engineer tabernanthalog (TBG)—a water soluble, non-hallucinogenic, non-toxic analog of ibogaine that can be prepared in a single step. TBG promoted structural neural plasticity, reduced alcohol- and heroin-seeking behavior, and produced antidepressant-like effects in rodents. This work demonstrates that through careful chemical design, it is possible to modify a psychedelic compound to produce a safer, non-hallucinogenic variant with therapeutic potential.
Collapse
Affiliation(s)
- Lindsay P Cameron
- Neuroscience Graduate Program, University of California, Davis, Davis, CA, USA
| | - Robert J Tombari
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alexander J Pell
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Zefan Q Hurley
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Yann Ehinger
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Matthew N McCarroll
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Jack C Taylor
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Douglas Myers-Turnbull
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.,Quantitative Biosciences Consortium, University of California, San Francisco, San Francisco, CA, USA
| | - Taohui Liu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Bianca Yaghoobi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Lauren J Laskowski
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Emilie I Anderson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Guoliang Zhang
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | | | - Brandon M Brown
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Michelle Tjia
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Lee E Dunlap
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Zachary T Rabow
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - David Kokel
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.,Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jamie Peters
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - David E Olson
- Department of Chemistry, University of California, Davis, Davis, CA, USA. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA. .,Center for Neuroscience, University of California, Davis, Davis, CA, USA. .,Delix Therapeutics, Inc., Palo Alto, CA, USA.
| |
Collapse
|
35
|
Functional evaluation of gene mutations in Long QT Syndrome: strength of evidence from in vitro assays for deciphering variants of uncertain significance. JOURNAL OF CONGENITAL CARDIOLOGY 2020. [DOI: 10.1186/s40949-020-00037-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Genetic screening is now commonplace for patients suspected of having inherited cardiac conditions. Variants of uncertain significance (VUS) in disease-associated genes pose problems for the diagnostician and reliable methods for evaluating VUS function are required. Although function is difficult to interrogate for some genes, heritable channelopathies have established mechanisms that should be amenable to well-validated evaluation techniques.
The cellular electrophysiology techniques of ‘voltage-’ and ‘patch-’ clamp have a long history of successful use and have been central to identifying both the roles of genes involved in different forms of congenital Long QT Syndrome (LQTS) and the mechanisms by which mutations lead to aberrant ion channel function underlying clinical phenotypes. This is particularly evident for KCNQ1, KCNH2 and SCN5A, mutations in which underlie > 90% of genotyped LQTS cases (the LQT1-LQT3 subtypes). Recent studies utilizing high throughput (HT) planar patch-clamp recording have shown it to discriminate effectively between rare benign and pathological variants, studied through heterologous expression of recombinant channels. In combination with biochemical methods for evaluating channel trafficking and supported by biophysical modelling, patch clamp also provides detailed mechanistic insight into the functional consequences of identified mutations. Whilst potentially powerful, patient-specific stem-cell derived cardiomyocytes and genetically modified animal models are currently not well-suited to high throughput VUS study.
Conclusion
The widely adopted 2015 American College of Medical Genetics (ACMG) and Association for Molecular Pathology (AMP) guidelines for the interpretation of sequence variants include the PS3 criterion for consideration of evidence from well-established in vitro or in vivo assays. The wealth of information on underlying mechanisms of LQT1-LQT3 and recent HT patch clamp data support consideration of patch clamp data together (for LQT1 and LQT2) with information from biochemical trafficking assays as meeting the PS3 criterion of well established assays, able to provide ‘strong’ evidence for functional pathogenicity of identified VUS.
Collapse
|
36
|
Nikam VS, Singh D, Takawale R, Ghante MR. Zebrafish: An emerging whole-organism screening tool in safety pharmacology. Indian J Pharmacol 2020; 52:505-513. [PMID: 33666192 PMCID: PMC8092182 DOI: 10.4103/ijp.ijp_482_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/14/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
During the last two decades, the development in drug discovery is slackening due to drug withdrawal from the market or reported to have postmarket safety events. The vital organ toxicities, especially cardiotoxicity, hepatotoxicity, pulmonary toxicity, and neurotoxicity are the major concerns for high drug attrition rates. The pharmaceutical industry is looking for high throughput, high content analysis based novel assays that would be fast, efficient, reproducible, and cost-effective; would address toxicity, the safety of lead molecules, and complement currently used cell-based assays in preclinical testing. The use of zebrafish, a vertebrate screening model, for preclinical testing is increasing owing to the number of advantages and striking similarities with the mammal. The zebrafish embryo development is fast and all vital organs such as the heart, liver, brain, pancreas, and kidneys in zebrafish are functional within 96-120hpf. The maintenance cost of zebrafish is reasonably low as compared to mammalian systems. Due to these features, zebrafish has arisen as a potential experimental screening model in lead identification and validation in the drug efficacy, toxicity, and safety evaluation. Numbers of drugs and chemicals are screened using zebrafish embryos, and results were found to show 100% concordance with mammalian screening data. The application of zebrafish, being a whole-organism screening model, would show a significant reduction in the cost and time required in the drug development process. The present challenge includes complete automation of the zebrafish screening model, i.e., from sorting, imaging of embryos to data analysis to accelerate the therapeutic target identification, and validation process.
Collapse
Affiliation(s)
- Vandana S. Nikam
- Department of Pharmacology, Sinhgad Technical Education Society's Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Deeksha Singh
- Department of Pharmacology, Sinhgad Technical Education Society's Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Rohan Takawale
- Department of Pharmacology, Sinhgad Technical Education Society's Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Minal R. Ghante
- Department of Pharmacology, Sinhgad Technical Education Society's Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
37
|
Okano K, Wang CH, Hong ZY, Hosokawa Y, Liau I. Selective induction of targeted cell death and elimination by near-infrared femtosecond laser ablation. Biochem Biophys Rep 2020; 24:100818. [PMID: 33083577 PMCID: PMC7554360 DOI: 10.1016/j.bbrep.2020.100818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/23/2023] Open
Abstract
The techniques for inducing the death of specific cells in tissue has attracted attention as new methodologies for studying cell function and tissue regeneration. In this study, we show that a sequential process of targeted cell death and removal can be triggered by short-term exposure of near-infrared femtosecond laser pulses. Kinetic analysis of the intracellular accumulation of trypan blue and the assay of caspase activity revealed that femtosecond laser pulses induced immediate disturbance of plasma membrane integrity followed by apoptosis-like cell death. Yet, adjacent cells showed no sign of membrane damage and no increased caspase activity. The laser-exposed cells eventually detached from the substrate after a delay of >54 min while adjacent cells remained intact. On the base of in vitro experiments, we applied the same approach to ablate targeted single cardiac cells of a live zebrafish heart. The ability of inducing targeted cell death with femtosecond laser pulses should find broad applications that benefit from precise cellular manipulation at the level of single cells in vivo and in vitro. Cell level dissection for studying cell function and tissue regeneration is proposed. Femtosecond laser induces apoptosis-like cell death at single cell level immediately. The dead culture cells shrank and eventually detach from a substrate over 1 h delay. Femtosecond laser ablates selected cells in translucent organs like zebra fish larva.
Collapse
Affiliation(s)
- Kazunori Okano
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan.,Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Chung-Han Wang
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Zhen-Yi Hong
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan.,Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ian Liau
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
38
|
Santoso F, Farhan A, Castillo AL, Malhotra N, Saputra F, Kurnia KA, Chen KHC, Huang JC, Chen JR, Hsiao CD. An Overview of Methods for Cardiac Rhythm Detection in Zebrafish. Biomedicines 2020; 8:E329. [PMID: 32899676 PMCID: PMC7554775 DOI: 10.3390/biomedicines8090329] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022] Open
Abstract
The heart is the most important muscular organ of the cardiovascular system, which pumps blood and circulates, supplying oxygen and nutrients to peripheral tissues. Zebrafish have been widely explored in cardiotoxicity research. For example, the zebrafish embryo has been used as a human heart model due to its body transparency, surviving several days without circulation, and facilitating mutant identification to recapitulate human diseases. On the other hand, adult zebrafish can exhibit the amazing regenerative heart muscle capacity, while adult mammalian hearts lack this potential. This review paper offers a brief description of the major methodologies used to detect zebrafish cardiac rhythm at both embryonic and adult stages. The dynamic pixel change method was mostly performed for the embryonic stage. Other techniques, such as kymography, laser confocal microscopy, artificial intelligence, and electrocardiography (ECG) have also been applied to study heartbeat in zebrafish embryos. Nevertheless, ECG is widely used for heartbeat detection in adult zebrafish since ECG waveforms' similarity between zebrafish and humans is prominent. High-frequency ultrasound imaging (echocardiography) and modern electronic sensor tag also have been proposed. Despite the fact that each method has its benefits and limitations, it is proved that zebrafish have become a promising animal model for human cardiovascular disease, drug pharmaceutical, and toxicological research. Using those tools, we conclude that zebrafish behaviors as an excellent small animal model to perform real-time monitoring for the developmental heart process with transparent body appearance, to conduct the in vivo cardiovascular performance and gene function assays, as well as to perform high-throughput/high content drug screening.
Collapse
Affiliation(s)
- Fiorency Santoso
- Master Program in Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (F.S.); (K.A.K.)
| | - Ali Farhan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Punjab 38000, Pakistan;
| | - Agnes L. Castillo
- Faculty of Pharmacy, The Graduate School and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1008, Philippines;
| | - Nemi Malhotra
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
| | - Ferry Saputra
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (F.S.); (K.A.K.)
| | - Kevin Adi Kurnia
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (F.S.); (K.A.K.)
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
| | - Jung-Ren Chen
- Department of Biological Science & Technology College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chung-Der Hsiao
- Master Program in Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (F.S.); (K.A.K.)
- Center of Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| |
Collapse
|
39
|
Zhao Y, James NA, Beshay AR, Chang EE, Lin A, Bashar F, Wassily A, Nguyen B, Nguyen TP. Adult zebrafish ventricular electrical gradients as tissue mechanisms of ECG patterns under baseline vs. oxidative stress. Cardiovasc Res 2020; 117:1891-1907. [PMID: 32735330 DOI: 10.1093/cvr/cvaa238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/29/2020] [Accepted: 07/24/2020] [Indexed: 12/27/2022] Open
Abstract
AIMS In mammalian ventricles, electrical gradients establish electrical heterogeneities as essential tissue mechanisms to optimize mechanical efficiency and safeguard electrical stability. Electrical gradients shape mammalian electrocardiographic patterns; disturbance of electrical gradients is proarrhythmic. The zebrafish heart is a popular surrogate model for human cardiac electrophysiology thanks to its remarkable recapitulation of human electrocardiogram and ventricular action potential features. Yet, zebrafish ventricular electrical gradients are largely unexplored. The goal of this study is to define the zebrafish ventricular electrical gradients that shape the QRS complex and T wave patterns at baseline and under oxidative stress. METHODS AND RESULTS We performed in vivo electrocardiography and ex vivo voltage-sensitive fluorescent epicardial and transmural optical mapping of adult zebrafish hearts at baseline and during acute H2O2 exposure. At baseline, apicobasal activation and basoapical repolarization gradients accounted for the polarity concordance between the QRS complex and T wave. During H2O2 exposure, differential regional impairment of activation and repolarization at the apex and base disrupted prior to baseline electrical gradients, resulting in either reversal or loss of polarity concordance between the QRS complex and T wave. KN-93, a specific calcium/calmodulin-dependent protein kinase II inhibitor (CaMKII), protected zebrafish hearts from H2O2 disruption of electrical gradients. The protection was complete if administered prior to oxidative stress exposure. CONCLUSIONS Despite remarkable apparent similarities, zebrafish and human ventricular electrocardiographic patterns are mirror images supported by opposite electrical gradients. Like mammalian ventricles, zebrafish ventricles are also susceptible to H2O2 proarrhythmic perturbation via CaMKII activation. Our findings suggest that the adult zebrafish heart may constitute a clinically relevant model to investigate ventricular arrhythmias induced by oxidative stress. However, the fundamental ventricular activation and repolarization differences between the two species that we demonstrated in this study highlight the potential limitations when extrapolating results from zebrafish experiments to human cardiac electrophysiology, arrhythmias, and drug toxicities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Thao P Nguyen
- The Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
40
|
Shi YP, Pang Z, Venkateshappa R, Gunawan M, Kemp J, Truong E, Chang C, Lin E, Shafaattalab S, Faizi S, Rayani K, Tibbits GF, Claydon VE, Claydon TW. The hERG channel activator, RPR260243, enhances protective IKr current early in the refractory period reducing arrhythmogenicity in zebrafish hearts. Am J Physiol Heart Circ Physiol 2020; 319:H251-H261. [PMID: 32559136 DOI: 10.1152/ajpheart.00038.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human ether-à-go-go related gene (hERG) K+ channels are important in cardiac repolarization, and their dysfunction causes prolongation of the ventricular action potential, long QT syndrome, and arrhythmia. As such, approaches to augment hERG channel function, such as activator compounds, have been of significant interest due to their marked therapeutic potential. Activator compounds that hinder channel inactivation abbreviate action potential duration (APD) but carry risk of overcorrection leading to short QT syndrome. Enhanced risk by overcorrection of the APD may be tempered by activator-induced increased refractoriness; however, investigation of the cumulative effect of hERG activator compounds on the balance of these effects in whole organ systems is lacking. Here, we have investigated the antiarrhythmic capability of a hERG activator, RPR260243, which primarily augments channel function by slowing deactivation kinetics in ex vivo zebrafish whole hearts. We show that RPR260243 abbreviates the ventricular APD, reduces triangulation, and steepens the slope of the electrical restitution curve. In addition, RPR260243 increases the post-repolarization refractory period. We provide evidence that this latter effect arises from RPR260243-induced enhancement of hERG channel-protective currents flowing early in the refractory period. Finally, the cumulative effect of RPR260243 on arrhythmogenicity in whole organ zebrafish hearts is demonstrated by the restoration of normal rhythm in hearts presenting dofetilide-induced arrhythmia. These findings in a whole organ model demonstrate the antiarrhythmic benefit of hERG activator compounds that modify both APD and refractoriness. Furthermore, our results demonstrate that targeted slowing of hERG channel deactivation and enhancement of protective currents may provide an effective antiarrhythmic approach.NEW & NOTEWORTHY hERG channel dysfunction causes long QT syndrome and arrhythmia. Activator compounds have been of significant interest due to their therapeutic potential. We used the whole organ zebrafish heart model to demonstrate the antiarrhythmic benefit of the hERG activator, RPR260243. The activator abbreviated APD and increased refractoriness, the combined effect of which rescued induced ventricular arrhythmia. Our findings show that the targeted slowing of hERG channel deactivation and enhancement of protective currents caused by the RPR260243 activator may provide an effective antiarrhythmic approach.
Collapse
Affiliation(s)
- Yu Patrick Shi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - ZhaoKai Pang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Ravichandra Venkateshappa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Marvin Gunawan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Jacob Kemp
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Elson Truong
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Cherlene Chang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Eric Lin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Sanam Shafaattalab
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Shoaib Faizi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Kaveh Rayani
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Glen F Tibbits
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Victoria E Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| | - Thomas W Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, British Columbia, Canada
| |
Collapse
|
41
|
Arman S, İşisağ Üçüncü S. Cardiac toxicity of acrolein exposure in embryonic zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22423-22433. [PMID: 32307682 DOI: 10.1007/s11356-020-08853-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Acrolein is a widely distributed pollutant produced from various sources such as industrial waste, organic combustion, and power plant emissions. It is also intentionally released into irrigation canals to control invasive aquatic plants. Zebrafish (Danio rerio) has a good reputation for being an attractive model organism for developmental and toxicological research. In this study, zebrafish embryos were exposed to acrolein to investigate the cardiotoxic effects. The 96-h LC50 (median lethal concentration) value of acrolein was determined as 654.385 μg/L. Then, the embryos were treated with the sublethal experimental concentrations of acrolein (1, 4, 16, 64, and 256 μg/L) for 96 h. Embryos were examined at 48, 72, and 96 h post-fertilization (hpf). Acrolein affected the cardiac morphology and function of the embryos. Sinus venosus-bulbus arteriosus (SV-BA) distance of 64 μg/L and 256 μg/L acrolein groups was elongated compared with the control samples. Immunostaining with MF20 antibody clearly exhibited that the atrium positioned posterior to the ventricle which indicated cardiac looping inhibition. Histological preparations also showed the mispositioning and the lumens of the chambers narrowed. Acrolein-induced increased heart rate was noted in the 4, 16, 64, and 256 μg/L treatment groups. Taken together, these results indicated that acrolein disrupted the heart development and cardiac function in zebrafish, suggesting that its water-borne risks should be considered seriously.
Collapse
Affiliation(s)
- Sezgi Arman
- Department of Biology, Faculty of Arts and Sciences, Sakarya University, 54050, Serdivan, Sakarya, Turkey.
| | - Sema İşisağ Üçüncü
- Department of Biology, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
42
|
Song J, Eghan K, Lee S, Park JS, Yoon S, Pimtong W, Kim WK. A Phenotypic and Genotypic Evaluation of Developmental Toxicity of Polyhexamethylene Guanidine Phosphate Using Zebrafish Embryo/Larvae. TOXICS 2020; 8:E33. [PMID: 32370250 PMCID: PMC7355787 DOI: 10.3390/toxics8020033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022]
Abstract
Polyhexamethylene guanidine-phosphate (PHMG-P), a guanidine-based cationic antimicrobial polymer, is an effective antimicrobial biocide, potent even at low concentrations. Due to its resilient bactericidal properties, it has been used extensively in consumer products. It was safely used until its use in humidifiers led to a catastrophic event in South Korea. Epidemiological studies have linked the use of PHMG-P as a humidifier disinfectant to pulmonary fibrosis. However, little is known about its harmful impacts other than pulmonary fibrosis. Thus, we applied a zebrafish embryo/larvae model to evaluate developmental and cardiotoxic effects and transcriptome changes using RNA-sequencing. Zebrafish embryos were exposed to 0.1, 0.2, 0.3, 0.4, 0.5, 1, and 2 mg/L of PHMG-P from 3 h to 96 h post fertilization. 2 mg/L of PHMG-P resulted in total mortality and an LC50 value at 96 h was determined at 1.18 mg/L. Significant developmental changes were not observed but the heart rate of zebrafish larvae was significantly altered. In transcriptome analysis, immune and inflammatory responses were significantly affected similarly to those in epidemiological studies. Our qPCR analysis (Itgb1b, TNC, Arg1, Arg2, IL-1β, Serpine-1, and Ptgs2b) also confirmed this following a 96 h exposure to 0.4 mg/L of PHMG-P. Based on our results, PHMG-P might induce lethal and cardiotoxic effects in zebrafish, and crucial transcriptome changes were linked to immune and inflammatory response.
Collapse
Affiliation(s)
- Jeongah Song
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup 56212, Korea;
| | - Kojo Eghan
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea; (K.E.); (S.L.); (J.-S.P.); (S.Y.)
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea
| | - Sangwoo Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea; (K.E.); (S.L.); (J.-S.P.); (S.Y.)
| | - Jong-Su Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea; (K.E.); (S.L.); (J.-S.P.); (S.Y.)
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea; (K.E.); (S.L.); (J.-S.P.); (S.Y.)
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea
| | - Wittaya Pimtong
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Woo-Keun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea; (K.E.); (S.L.); (J.-S.P.); (S.Y.)
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
43
|
Monteiro DA, Taylor EW, McKenzie DJ, Rantin FT, Kalinin AL. Interactive effects of mercury exposure and hypoxia on ECG patterns in two Neotropical freshwater fish species: Matrinxã, Brycon amazonicus and traíra, Hoplias malabaricus. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:375-388. [PMID: 32166694 DOI: 10.1007/s10646-020-02186-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Hypoxia and mercury contamination often co-occur in tropical freshwater ecosystems, but the interactive effects of these two stressors on fish populations are poorly known. The effects of mercury (Hg) on recorded changes in the detailed form of the electrocardiogram (ECG) during exposure to progressive hypoxia were investigated in two Neotropical freshwater fish species, matrinxã, Brycon amazonicus and traíra, Hoplias malabaricus. Matrinxã were exposed to a sublethal concentration of 0.1 mg L-1 of HgCl2 in water for 96 h. Traíra were exposed to dietary doses of Hg by being fed over a period of 30 days with juvenile matrinxãs previously exposed to HgCl2, resulting in a dose of 0.45 mg of total Hg per fish, each 96 h. Both species showed a bradycardia in progressive hypoxia. Hg exposure impaired cardiac electrical excitability, leading to first-degree atrioventricular block, plus profound extension of the ventricular action potential (AP) plateau. Moreover, there was the development of cardiac arrhythmias and anomalies such as occasional absence of QRS complexes, extra systoles, negative Q-, R- and S-waves (QRS complex), and T wave inversion, especially in hypoxia below O2 partial pressures (PO2) of 5.3 kPa. Sub-chronic dietary Hg exposure induced intense bradycardia in normoxia in traira, plus lengthening of ventricular AP duration coupled with prolonged QRS intervals. This indicates slower ventricular AP conduction during ventricular depolarization. Overall, the data indicate that both acute waterborne and sub-chronic dietary exposure (trophic level transfer), at sublethal concentrations of mercury, cause damage in electrical stability and rhythm of the heartbeat, leading to myocardial dysfunction, which is further intensified during hypoxia. These changes could lead to impaired cardiac output, with consequences for swimming ability, foraging capacity, and hence growth and/or reproductive performance.
Collapse
Affiliation(s)
- Diana A Monteiro
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil.
| | - Edwin W Taylor
- School of Biological Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - David J McKenzie
- UMR Marbec, CNRS - IRD - Ifremer - University of Montpellier, Montpellier, France
| | - Francisco T Rantin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Ana L Kalinin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| |
Collapse
|
44
|
Shrestha R, Lieberth J, Tillman S, Natalizio J, Bloomekatz J. Using Zebrafish to Analyze the Genetic and Environmental Etiologies of Congenital Heart Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:189-223. [PMID: 32304074 DOI: 10.1007/978-981-15-2389-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Congenital heart defects (CHDs) are among the most common human birth defects. However, the etiology of a large proportion of CHDs remains undefined. Studies identifying the molecular and cellular mechanisms that underlie cardiac development have been critical to elucidating the origin of CHDs. Building upon this knowledge to understand the pathogenesis of CHDs requires examining how genetic or environmental stress changes normal cardiac development. Due to strong molecular conservation to humans and unique technical advantages, studies using zebrafish have elucidated both fundamental principles of cardiac development and have been used to create cardiac disease models. In this chapter we examine the unique toolset available to zebrafish researchers and how those tools are used to interrogate the genetic and environmental contributions to CHDs.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Jaret Lieberth
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Savanna Tillman
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Joseph Natalizio
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | | |
Collapse
|
45
|
Automated high-throughput heartbeat quantification in medaka and zebrafish embryos under physiological conditions. Sci Rep 2020; 10:2046. [PMID: 32029752 PMCID: PMC7005164 DOI: 10.1038/s41598-020-58563-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023] Open
Abstract
Accurate quantification of heartbeats in fish models is an important readout to study cardiovascular biology, disease states and pharmacology. However, dependence on anaesthesia, laborious sample orientation or requirement for fluorescent reporters have hampered the use of high-throughput heartbeat analysis. To overcome these limitations, we established an efficient screening assay employing automated label-free heart rate determination of randomly oriented, non-anesthetized medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos in microtiter plates. Automatically acquired bright-field data feeds into an easy-to-use HeartBeat software with graphical user interface for automated quantification of heart rate and rhythm. Sensitivity of the assay was demonstrated by profiling heart rates during entire embryonic development. Our analysis revealed rapid adaption of heart rates to temperature changes, which has implications for standardization of experimental layout. The assay allows scoring of multiple embryos per well enabling a throughput of >500 embryos per 96-well plate. In a proof of principle screen for compound testing, we captured concentration-dependent effects of nifedipine and terfenadine over time. Our novel assay permits large-scale applications ranging from phenotypic screening, interrogation of gene functions to cardiovascular drug development.
Collapse
|
46
|
Cantanhêde SM, Hamoy M, Montag LFDA, Amado LL. Electrophysiological responses in Amazonian fish species Bryconops caudomaculatus (Osteichthyes: Characiformes) as biomarkers of xenobiotic toxicity. Comp Biochem Physiol C Toxicol Pharmacol 2020; 228:108653. [PMID: 31683014 DOI: 10.1016/j.cbpc.2019.108653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 01/04/2023]
Abstract
Sublethal exposures to environmental pollutants may cause changes in physiological parameters. Thus, knowledge of basal physiological rates of the species and the development of methods to quantify these rates are extremely important. Considering the scarcity of cardiac and muscle physiological studies in native Amazonian fish species and that no evaluation of electrophysiological responses by exposure to a stressor has been reported in Bryconops caudomaculatus, the aim of this study was to develop techniques of electromyographic and electrocardiographic recordings of normal responses, during toxicity induction and short-term recovery. A total of 9 animals were used, divided into two groups: control group (n = 4) and treated group (n = 5), with records lasting 5 min. The results showed that the basal electromyographic records indicate that the studied species has a very intense swimming activity, whereas the basal cardiac parameters clearly showed the patterns in P wave tracing, QRS complex, T wave and Q-T and R-R intervals. During exposure to the stressor, muscle activity ceased presenting intense decrease and myorelaxant effect expected. Electrocardiographic responses confirmed cardiotoxicity with intense bradycardia, ventricular bigeminism, prolongation of QRS complex duration and cardiac arrhythmias, indicating cardiac dysfunction. It was concluded that the electrophysiological responses are excellent biomarkers and showed the susceptibility of the species to the tested substance. In addition, the electrocardiogram and the electromyogram are excellent techniques to reflect the degree of environmental stress when organisms are exposed to toxic substances in the environment.
Collapse
Affiliation(s)
- Sildiane Martins Cantanhêde
- Programa de Pós-graduação em Ecologia Aquática e Pesca, Universidade Federal do Pará, Belém, PA, Brazil; Laboratório de Ecotoxicologia e Laboratório de Pesquisas em Monitoramento Ambiental Marinho, Universidade Federal do Pará, Belém, PA, Brazil
| | - Moisés Hamoy
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Luciano Fogaça de Assis Montag
- Programa de Pós-graduação em Ecologia Aquática e Pesca, Universidade Federal do Pará, Belém, PA, Brazil; Laboratório de Ecologia e Conservação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Lílian Lund Amado
- Programa de Pós-graduação em Ecologia Aquática e Pesca, Universidade Federal do Pará, Belém, PA, Brazil; Laboratório de Ecotoxicologia e Laboratório de Pesquisas em Monitoramento Ambiental Marinho, Universidade Federal do Pará, Belém, PA, Brazil.
| |
Collapse
|
47
|
Huang NC, Lee CM, Hsu SH. Effective naked plasmid DNA delivery into stem cells by microextrusion-based transient-transfection system for in situ cardiac repair. Cytotherapy 2020; 22:70-81. [PMID: 32007417 DOI: 10.1016/j.jcyt.2019.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND AIMS Combining the use of transfection reagents and physical methods can markedly improve the efficiency of gene delivery; however, such methods often cause cell damage. Additionally, naked plasmids without any vector or physical stimulation are difficult to deliver into stem cells. In this study, we demonstrate a simple and rapid method to simultaneously facilitate efficient in situ naked gene delivery and form a bioactive hydrogel scaffold. METHODS Transfecting naked GATA binding protein 4 (GATA4) plasmids into human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) by co-extruding naked plasmids and hUC-MSCs with a biomimetic and negatively charged water-based biodegradable thermo-responsive polyurethane (PU) hydrogel through a microextrusion-based transient-transfection system can upregulate the other cardiac marker genes. RESULTS The PU hydrogels with optimized physicochemical properties (such as hard-soft segment composition, size, hardness and thermal gelation) induced GATA4-transfected hUC-MSCs to express the cardiac marker proteins and then differentiated into cardiomyocyte-like cells in 15 days. We further demonstrated that GATA4-transfected hUC-MSCs in PU hydrogel were capable of in situ revival of heart function in zebrafish in 30 days. CONCLUSIONS Our results suggest that hUC-MSCs and naked plasmids encapsulated in PU hydrogels might represent a new strategy for in situ tissue therapy using the microextrusion-based transient-transfection system described here. This transfection system is simple, effective and safer than conventional technologies.
Collapse
Affiliation(s)
- Nien-Chi Huang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Chii-Ming Lee
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, R.O.C
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.; Center of Tissue Engineering and 3D Printing, National Taiwan University, Taipei, Taiwan, R.O.C.; Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, R.O.C..
| |
Collapse
|
48
|
Marris CR, Kompella SN, Miller MR, Incardona JP, Brette F, Hancox JC, Sørhus E, Shiels HA. Polyaromatic hydrocarbons in pollution: a heart-breaking matter. J Physiol 2020; 598:227-247. [PMID: 31840250 PMCID: PMC7003748 DOI: 10.1113/jp278885] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 01/17/2023] Open
Abstract
Air pollution is associated with detrimental effects on human health, including decreased cardiovascular function. However, the causative mechanisms behind these effects have yet to be fully elucidated. Here we review the current epidemiological, clinical and experimental evidence linking pollution with cardiovascular dysfunction. Our focus is on particulate matter (PM) and the associated low molecular weight polycyclic aromatic hydrocarbons (PAHs) as key mediators of cardiotoxicity. We begin by reviewing the growing epidemiological evidence linking air pollution to cardiovascular dysfunction in humans. We next address the pollution-based cardiotoxic mechanisms first identified in fish following the release of large quantities of PAHs into the marine environment from point oil spills (e.g. Deepwater Horizon). We finish by discussing the current state of mechanistic knowledge linking PM and PAH exposure to mammalian cardiovascular patho-physiologies such as atherosclerosis, cardiac hypertrophy, arrhythmias, contractile dysfunction and the underlying alterations in gene regulation. Our aim is to show conservation of toxicant pathways and cellular targets across vertebrate hearts to allow a broad framework of the global problem of cardiotoxic pollution to be established. AhR; Aryl hydrocarbon receptor. Dark lines indicate topics discussed in this review. Grey lines indicate topics reviewed elsewhere.
Collapse
Affiliation(s)
- C. R. Marris
- Division of Cardiovascular SciencesFaculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - S. N. Kompella
- Division of Cardiovascular SciencesFaculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - M. R. Miller
- BHF Centre for Cardiovascular ScienceQueens Medical Research InstituteThe University of EdinburghEdinburghUK
| | - J. P. Incardona
- Environmental and Fisheries Sciences DivisionNorthwest Fisheries Science CenterNational Oceanic and Atmospheric AdministrationSeattleWA98112USA
| | - F. Brette
- INSERMCentre de Recherche Cardio‐Thoracique de BordeauxU1045BordeauxFrance
- Université de BordeauxCentre de Recherche Cardio‐ThoraciqueU1045BordeauxFrance
- IHU LirycElectrophysiology and Heart Modeling InstituteFondation Bordeaux UniversitéPessac‐BordeauxFrance
| | - J. C. Hancox
- School of PhysiologyPharmacology and NeuroscienceBristol Heart InstituteUniversity of BristolBristolBS2 8HWUK
| | - E. Sørhus
- Institute of Marine ResearchPO Box 1870 Nordes NO‐5871BergenNorway
| | - H. A. Shiels
- Division of Cardiovascular SciencesFaculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
49
|
Li X, Xiong D, Ding G, Fan Y, Ma X, Wang C, Xiong Y, Jiang X. Exposure to water-accommodated fractions of two different crude oils alters morphology, cardiac function and swim bladder development in early-life stages of zebrafish. CHEMOSPHERE 2019; 235:423-433. [PMID: 31272002 DOI: 10.1016/j.chemosphere.2019.06.199] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
The present study investigated the developmental toxicity of water-accommodated fractions (WAFs) of Oman crude oil (OCO) and Merey crude oil (MCO) on zebrafish (Danio rerio) in early-life stages (ELS). Based on total petroleum hydrocarbons (TPH), LC50 values manifested that OCO WAF was 1.2-fold more lethal to zebrafish embryos than MCO WAF. As for hatching rate, EC50 value for OCO WAF was 5.7-fold lower than that for MCO WAF. To evaluate the sublethal morphological effects, semi-quantitative extended general morphological score (GMS) and general teratogenic score (GTS) systems were adopted. The GMS and GTS scores indicated that the WAFs caused remarkable developmental delay and high frequencies of malformation in a dose-dependent manner. Additionally, OCO and MCO WAFs exposure exhibited severe bradycardia (reduced heart rate) and overt reduction of stroke volume, with a concomitant decrease in the cardiac output. Meanwhile, the WAFs also induced dose-dependent down-regulated expressions of several key functional genes of excitation-contraction coupling in cardiomyocytes, including ryr2, atp2a2a, atp2a2b, ncx1h, and kcnh2. For key gene markers of swim bladder development, results showed that high dose of TPH induced significant down-regulation of hb9 and anxa5 with no obvious change of acta2, suggesting that the WAFs could affect the specification and development of epithelium and outer mesothelium of swim bladder in zebrafish ELS. A strong negative relationship between the failure of swim bladder inflation and cardiac dysfunction via cardiac output was found. All these findings provide novel insights into the complicated mechanisms of the developmental toxicity of crude oil on fish in ELS.
Collapse
Affiliation(s)
- Xishan Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Youmei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xinrui Ma
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Chengyan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yijun Xiong
- Biological Chemistry & Statistics, Grinnell College, IA, 50112, USA
| | - Xi Jiang
- China Railway No.9 Group Fourth Engineering Co., Ltd, Shenyang, 110013, China
| |
Collapse
|
50
|
Hull CM, Genge CE, Hobbs Y, Rayani K, Lin E, Gunawan M, Shafaattalab S, Tibbits GF, Claydon TW. Investigating the utility of adult zebrafish ex vivo whole hearts to pharmacologically screen hERG channel activator compounds. Am J Physiol Regul Integr Comp Physiol 2019; 317:R921-R931. [PMID: 31664867 DOI: 10.1152/ajpregu.00190.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is significant interest in the potential utility of small-molecule activator compounds to mitigate cardiac arrhythmia caused by loss of function of hERG1a voltage-gated potassium channels. Zebrafish (Danio rerio) have been proposed as a cost-effective, high-throughput drug-screening model to identify compounds that cause hERG1a dysfunction. However, there are no reports on the effects of hERG1a activator compounds in zebrafish and consequently on the utility of the model to screen for potential gain-of-function therapeutics. Here, we examined the effects of hERG1a blocker and types 1 and 2 activator compounds on isolated zkcnh6a (zERG3) channels in the Xenopus oocyte expression system as well as action potentials recorded from ex vivo adult zebrafish whole hearts using optical mapping. Our functional data from isolated zkcnh6a channels show that under the conditions tested, these channels are blocked by hERG1a channel blockers (dofetilide and terfenadine), and activated by type 1 (RPR260243) and type 2 (NS1643, PD-118057) hERG1a activators with higher affinity than hKCNH2a channels (except NS1643), with differences accounted for by different biophysical properties in the two channels. In ex vivo zebrafish whole hearts, two of the three hERG1a activators examined caused abbreviation of the action potential duration (APD), whereas hERG1a blockers caused APD prolongation. These data represent, to our knowledge, the first pharmacological characterization of isolated zkcnh6a channels and the first assessment of hERG enhancing therapeutics in zebrafish. Our findings lead us to suggest that the zebrafish ex vivo whole heart model serves as a valuable tool in the screening of hKCNH2a blocker and activator compounds.
Collapse
Affiliation(s)
- Christina M Hull
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christine E Genge
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yuki Hobbs
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kaveh Rayani
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Eric Lin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Marvin Gunawan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sanam Shafaattalab
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Glen F Tibbits
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tom W Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|