1
|
Ghosh J, Rupanty NS, Noor T, Asif TR, Islam T, Reukov V. Functional coatings for textiles: advancements in flame resistance, antimicrobial defense, and self-cleaning performance. RSC Adv 2025; 15:10984-11022. [PMID: 40201212 PMCID: PMC11976222 DOI: 10.1039/d5ra01429h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
The continuous evolution of textile technologies has led to innovative functional coatings that enhance protective textiles by integrating flame retardancy, antimicrobial efficacy, and self-cleaning properties. These multifunctional coatings address the growing demand for high-performance materials in healthcare, military, and industrial applications. This study reviews advancements in coating techniques, including dip-coating, spray-coating, sol-gel processes, and layer-by-layer assembly, highlighting their effectiveness in imparting durability, thermal stability, and biological activity to textile substrates. The incorporation of bioactive materials such as chitosan, silver nanoparticles, and plant-derived antimicrobials has demonstrated enhanced pathogen resistance and prolonged fabric functionality. Furthermore, recent developments in phosphorus-based flame retardants and photocatalytic self-cleaning agents, including titanium dioxide and silica nanoparticles, have contributed to the sustainability of functional textiles by reducing environmental impact. Challenges remain in achieving compatibility among diverse functional components while maintaining mechanical integrity and user comfort. Scalability and cost-efficiency also present barriers to commercialization, necessitating cross-disciplinary collaboration among material scientists, engineers, and regulatory experts. Future research should focus on biodegradable alternatives, smart-responsive coatings, and advanced nanomaterial integration to enhance the longevity and eco-friendliness of protective textiles. As industry standards shift towards sustainability, functional coatings are poised to redefine textile applications, offering tailored solutions that balance safety, performance, and environmental responsibility. This review underscores the transformative potential of multifunctional textile coatings and their role in advancing next-generation protective fabrics.
Collapse
Affiliation(s)
- Joyjit Ghosh
- Department of Textiles, Merchandising, and Interiors, University of Georgia Athens Georgia 30602 USA
| | - Nishat Sarmin Rupanty
- Department of Textile Engineering, Ahsanullah University of Science and Technology Dhaka 1208 Bangladesh
| | - Tasneem Noor
- Department of Textile Engineering, Ahsanullah University of Science and Technology Dhaka 1208 Bangladesh
| | - Tanvir Rahman Asif
- Department of Textile Engineering, Ahsanullah University of Science and Technology Dhaka 1208 Bangladesh
| | - Tarikul Islam
- Department of Textiles, Merchandising, and Interiors, University of Georgia Athens Georgia 30602 USA
- Department of Textile Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Vladimir Reukov
- Department of Textiles, Merchandising, and Interiors, University of Georgia Athens Georgia 30602 USA
| |
Collapse
|
2
|
Rotter A, Varamogianni-Mamatsi D, Zvonar Pobirk A, Gosenca Matjaž M, Cueto M, Díaz-Marrero AR, Jónsdóttir R, Sveinsdóttir K, Catalá TS, Romano G, Aslanbay Guler B, Atak E, Berden Zrimec M, Bosch D, Deniz I, Gaudêncio SP, Grigalionyte-Bembič E, Klun K, Zidar L, Coll Rius A, Baebler Š, Lukić Bilela L, Rinkevich B, Mandalakis M. Marine cosmetics and the blue bioeconomy: From sourcing to success stories. iScience 2024; 27:111339. [PMID: 39650733 PMCID: PMC11625311 DOI: 10.1016/j.isci.2024.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
As the global population continues to grow, so does the demand for longer, healthier lives and environmentally responsible choices. Consumers are increasingly drawn to naturally sourced products with proven health and wellbeing benefits. The marine environment presents a promising yet underexplored resource for the cosmetics industry, offering bioactive compounds with the potential for safe and biocompatible ingredients. This manuscript provides a comprehensive overview of the potential of marine organisms for cosmetics production, highlighting marine-derived compounds and their applications in skin/hair/oral-care products, cosmeceuticals and more. It also lays down critical safety considerations and addresses the methodologies for sourcing marine compounds, including harvesting, the biorefinery concept, use of systems biology for enhanced product development, and the relevant regulatory landscape. The review is enriched by three case studies: design of macroalgal skincare products in Iceland, establishment of a microalgal cosmetics spin-off in Italy, and the utilization of marine proteins for cosmeceutical applications.
Collapse
Affiliation(s)
- Ana Rotter
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Alenka Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Ana R. Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Rósa Jónsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
| | - Kolbrún Sveinsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Teresa S. Catalá
- Global Society Institute, Wälderhaus, am Inselpark 19, 21109 Hamburg, Germany
- Organization for Science, Education and Global Society GmbH, am Inselpark 19, 21109 Hamburg, Germany
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn - Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy
| | - Bahar Aslanbay Guler
- Faculty of Engineering Department of Bioengineering, Ege University, Izmir 35100, Turkey
| | - Eylem Atak
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | | | - Daniel Bosch
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Irem Deniz
- Faculty of Engineering Department of Bioengineering, Manisa Celal Bayar University, Manisa 45119, Turkey
| | - Susana P. Gaudêncio
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, Blue Biotechnology and Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | | | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Luen Zidar
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Anna Coll Rius
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, Haifa 3102201, Israel
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| |
Collapse
|
3
|
Trinh TTK, Myung SK, Tran TH, Choi KS. Use of Antiperspirant Products and Risk of Breast Cancer: A Meta-Analysis of Case-Control Studies. Cancer Invest 2024; 42:782-792. [PMID: 39324502 DOI: 10.1080/07357907.2024.2405864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/06/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Although several observational studies have reported a link between the use of underarm cosmetic products and the risk of breast cancer, the findings remain inconsistent. This study aimed to investigate these associations using a meta-analysis of observational studies. In the meta-analysis of seven case-control studies, we found no association between the use of underarm antiperspirants or deodorants and the risk of breast cancer (OR = 0.96, 95%CI 0.78-1.17; I2 = 60.0%). Further prospective cohort studies that provide a higher level of evidence are warranted to confirm our findings.
Collapse
Affiliation(s)
- Thao Thi Kim Trinh
- Department of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
| | - Seung-Kwon Myung
- Department of Cancer AI & Digital Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
- Cancer Epidemiology Branch, Division of Cancer Data Science, Research Institute, National Cancer Center, Goyang, South Korea
- Department of Family Medicine, Center for Cancer Prevention and Detection, Hospital, National Cancer Center, Goyang, South Korea
| | - Tien Hoang Tran
- Department of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
| | - Kui Son Choi
- Department of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
- National Cancer Control Institute, National Cancer Center, Goyang, South Korea
| |
Collapse
|
4
|
Flórez González SJ, Stashenko EE, Ocazionez RE, Vinardell MP, Fuentes JL. In vitro Safety Assessment of Extracts and Compounds From Plants as Sunscreen Ingredients. Int J Toxicol 2024; 43:243-252. [PMID: 38183303 DOI: 10.1177/10915818231225661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
This work investigated the safety of extracts obtained from plants growing in Colombia, which have previously shown UV-filter/antigenotoxic properties. The compounds in plant extracts obtained by the supercritical fluid (CO2) extraction method were identified using gas chromatography coupled to mass spectrometry (GC/MS) analysis. Cytotoxicity measured as cytotoxic concentration 50% (CC50) and genotoxicity of the plant extracts and some compounds were studied in human fibroblasts using the trypan blue exclusion assay and the Comet assay, respectively. The extracts from Pipper eriopodon and Salvia aratocensis species and the compound trans-β-caryophyllene were clearly cytotoxic to human fibroblasts. Conversely, Achyrocline satureioides, Chromolaena pellia, and Lippia origanoides extracts were relatively less cytotoxic with CC50 values of 173, 184, and 89 μg/mL, respectively. The C. pellia and L. origanoides extracts produced some degree of DNA breaks at cytotoxic concentrations. The cytotoxicity of the studied compounds was as follows, with lower CC50 values representing the most cytotoxic compounds: resveratrol (91 μM) > pinocembrin (144 μM) > quercetin (222 μM) > titanium dioxide (704 μM). Quercetin was unique among the compounds assayed in being genotoxic to human fibroblasts. Our work indicates that phytochemicals can be cytotoxic and genotoxic, demonstrating the need to establish safe concentrations of these extracts for their potential use in cosmetics.
Collapse
Affiliation(s)
- Silvia Juliana Flórez González
- Laboratorio de Microbiología y Mutagénesis Ambiental (LMMA), Grupo de Investigación en Microbiología y Genética, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Elena E Stashenko
- Centro de Investigación en Biomoléculas (CIBIMOL), Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
- Centro de Cromatografía y Espectrometría de Masas (CROM-MASS), Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Raquel Elvira Ocazionez
- Centro de Cromatografía y Espectrometría de Masas (CROM-MASS), Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - María Pilar Vinardell
- Departamento de Bioquímica y Fisiología, Facultad de Farmacia y Ciencias de la Alimentación, Universitat de Barcelona, Barcelona 08028, Spain
| | - Jorge Luis Fuentes
- Laboratorio de Microbiología y Mutagénesis Ambiental (LMMA), Grupo de Investigación en Microbiología y Genética, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
- Centro de Investigación en Biomoléculas (CIBIMOL), Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| |
Collapse
|
5
|
Dong Y, Qiao Y, Yuan Y, Wang H, Sun L, Ren C. Rapid and visual detection of benzoyl peroxide in cosmetics by a colorimetric method. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Ruohonen J. A review of product safety regulations in the European Union. INTERNATIONAL CYBERSECURITY LAW REVIEW 2022; 3:345-366. [PMID: 37520588 PMCID: PMC9204684 DOI: 10.1365/s43439-022-00057-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
Abstract
Product safety has been a concern in Europe ever since the early 1960s. Despite the long and relatively stable historical lineage of product safety regulations, new technologies, changes in the world economy, and other major transformations have in recent years again brought product safety to the forefront of policy debates. As reforms are also underway, there is a motivation to review the complex safety policy framework in the European Union (EU). Thus, building on deliberative policy analysis and an interpretative literature review, this paper reviews the safety policy for nonfood consumer products in the EU. The review covers the historical background and the main laws, administration and enforcement, standardization and harmonization, laws enacted for specific products, notifications delivered by national safety authorities, recalls of dangerous products, and the liability of these. Based on the review and analysis of these themes and the associated literature, some current policy challenges are further discussed.
Collapse
|
7
|
Chemical Characterization and Bioactivity of Commercial Essential Oils and Hydrolates Obtained from Portuguese Forest Logging and Thinning. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113572. [PMID: 35684509 PMCID: PMC9181877 DOI: 10.3390/molecules27113572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Essential oils (EOs) and hydrolates (Hds) are natural sources of biologically active ingredients with broad applications in the cosmetic industry. In this study, nationally produced (mainland Portugal and Azores archipelago) EOs (11) and Hds (7) obtained from forest logging and thinning of Eucalyptus globulus, Pinus pinaster, Pinus pinea and Cryptomeria japonica, were chemically evaluated, and their bioactivity and sensorial properties were assessed. EOs and Hd volatiles (HdVs) were analyzed by GC-FID and GC-MS. 1,8-Cineole was dominant in E. globulus EOs and HdVs, and α- and β-pinene in P. pinaster EOs. Limonene and α-pinene led in P. pinea and C. japonica EOs, respectively. P. pinaster and C. japonica HVs were dominated by α-terpineol and terpinen-4-ol, respectively. The antioxidant activity was determined by DPPH, ORAC and ROS. C. japonica EO showed the highest antioxidant activity, whereas one of the E. globulus EOs showed the lowest. Antimicrobial activity results revealed different levels of efficacy for Eucalyptus and Pinus EOs while C. japonica EO showed no antimicrobial activity against the selected strains. The perception and applicability of emulsions with 0.5% of EOs were evaluated through an in vivo sensory study. C. japonica emulsion, which has a fresh and earthy odour, was chosen as the most pleasant fragrance (60%), followed by P. pinea emulsion (53%). In summary, some of the studied EOs and Hds showed antioxidant and antimicrobial activities and they are possible candidates to address the consumers demand for more sustainable and responsibly sourced ingredients.
Collapse
|
8
|
Sun M, Xiong L, Li L, Chen Y, Tang J, Hua W, Mao Y. Digital Divide in Online Education During the COVID-19 Pandemic: A Cosmetic Course From the View of the Regional Socioeconomic Distribution. Front Public Health 2022; 9:796210. [PMID: 35047475 PMCID: PMC8761946 DOI: 10.3389/fpubh.2021.796210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives: During the pandemic, quarantine has led to the lockdown of many physical educational institutions. Thus, massive open online courses (MOOCs) have become a more common choice for participants. MOOCs are often flagged as supplemental methods to educational disparities caused by regional socioeconomic distribution. However, dissenters argue that MOOCs can exacerbate the digital divide. This study aimed to compare the participants' performance before and after the outbreak of COVID-19, analyze the impact of the epidemic on online education of cosmetic dermatology from the view of the regional socioeconomic distribution, and investigate whether MOOCs exacerbate the digital divide in the COVID-19 epidemic. Methods: The study was conducted in participants of the MOOC course Appreciation and Analysis of Cosmetics from January 2018 to December 2020. Based on the platform data and official socioeconomic statistics, correlation of multivariate analysis was used to determine the factors related to the number of total participants. A panel regression model and stepwise least squares regression analysis (STEPLS) were employed to further analyze the relationship between GDP, population, number of college students and number of total participants in different years in the eastern, central and western regions of China. Results: The number of total participants in 2020 surged 82.02% compared with that in 2019. Completion rates were generally stable in 2018 and 2019 before the COVID-19 pandemic and significantly decreased in 2020 after the outbreak of the pandemic. GDP was the most important socioeconomic factor that determined the total number of participants and it was positively related to the total number of participants before and after the outbreak of the pandemic. The number of college students was unrelated to the total number of participants before the epidemic, and after the outbreak of COVID-19 in 2020, the number became positively related in all regions of China. Conclusions: This study shows that the epidemic pushes more people to choose MOOCs to study cosmetic dermatology, and online education could exacerbate rather than reduce disparities that are related to regional and socioeconomic status in the cosmetic field in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Mengmeng Sun
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lidan Xiong
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Chen
- Department of Cardiology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Tang
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Hua
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Mao
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Yeoman AM, Heeley-Hill AC, Shaw M, Andrews SJ, Lewis AC. Inhalation of VOCs from facial moisturizers and the influence of dose proximity. INDOOR AIR 2022; 32:e12948. [PMID: 34816489 DOI: 10.1111/ina.12948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Volatile organic compound (VOC) emissions from personal care products (PCPs) contribute to poor indoor air quality. Exposure to indoor VOCs is typically determined through ambient concentration measurements; however, for some PCPs the proximity of use to the nose and mouth may lead to disproportionately large inhaled doses. In this paper, we quantify emission factors for six common PCP ingredient VOCs (ethanol, 2-propanol, benzyl alcohol, 1,3-butanediol, t-butyl alcohol, and the grouping of monoterpenes as limonene) from 16 facial day-moisturizers using headspace analysis and selected ion flow-tube mass spectrometry. A wide range of emissions rates were observed across the range of products tested (e.g., ethanol 3.3-6.9 × 102 µg s-1 g[product]-1 , limonene 1.3 × 10-1 -4.1 × 10-1 µg s-1 g[product]-1 ). We use a mannequin head with reconstructed nose and mouth airways to sample VOCs from facial application at typical respiration volumes. A single facial application of moisturizer can lead to a much larger inhaled VOC dose than would be inhaled from typical indoor ambient air over 24 h (e.g., limonene up to ~×16 greater via facial application, ethanol up to ~×300). Emissions from facially applied PCPs typically decayed to background concentrations over periods ranging from 5 to 150 min.
Collapse
Affiliation(s)
- Amber M Yeoman
- Wolfson Atmospheric Chemistry Laboratories, University of York, York, UK
| | | | - Marvin Shaw
- National Centre for Atmospheric Science, University of York, York, UK
| | - Stephen J Andrews
- National Centre for Atmospheric Science, University of York, York, UK
| | - Alastair C Lewis
- National Centre for Atmospheric Science, University of York, York, UK
| |
Collapse
|
10
|
Kitte SA, Bushira FA, Li H, Jin Y. Surface Bonding Enhanced Self-Co-Reactant Electrogenerated Chemiluminescence for Sensitive and Selective Detection of Thioglycolic Acid in Cosmetics. Chemistry 2021; 28:e202103724. [PMID: 34904284 DOI: 10.1002/chem.202103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/05/2022]
Abstract
Thioglycolic acid (TGA) is an organic compound widely used in cosmetics that cause a variety of health problems when overexposed to it. So far many attempts have been made to develop methods for TGA detection, but most of them need sophisticated instrumentations and are a little bit complicated. Therefore, a simple, cheap and sensitive detection method of TGA is highly desired. Herein, we demonstrated for the first time an Au-S bonding amplified, highly sensitive electrochemiluminescence (ECL) sensing method for TGA detection using tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy) 3 2+ ) as a luminophore and TGA as a self-co-reactant, via an anodic reaction at the Au electrode surface. Due to different molecular coordination environments of the TGA at the electrode surface, the ECL signal intensity of the developed ECL system gives much higher ECL signal in borate buffer than phosphate buffer of the same pH. Under the optimized experimental conditions, the ECL intensity has a direct relationship with the concentration of TGA in the range of 0.03 μM to 300 μM and a limit of detection of 0.013 µM (3σ/ m ). The reported ECL system has further been applied for the detection of TGA in cosmetics with acceptable recoveries.
Collapse
Affiliation(s)
- Shimeles Addisu Kitte
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Electroanalytical Chemistry, CHINA
| | - Fuad Abduro Bushira
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Electroanalytical Chemistry, CHINA
| | - Haijuan Li
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Electroanalytical Chemistry, CHINA
| | | |
Collapse
|
11
|
Iliopoulos F, Chapman A, Lane ME. A comparison of the in vitro permeation of 3-O-ethyl-l-ascorbic acid in human skin and in a living skin equivalent (LabSkin™). Int J Cosmet Sci 2020; 43:107-112. [PMID: 33238056 DOI: 10.1111/ics.12675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The safety assessment of personal care products often entails determining dermal absorption of their ingredients. Such experiments are typically performed in human or animal skin in vitro; however, ethical and safety considerations are associated with obtaining these tissues. Several human skin equivalent models (HSEs) have been developed as alternatives to human tissue. The barrier function of such models however, is normally less developed than human skin. Here, we examine the permeability of the HSE LabSkinTM to a model compound, 3-O-ethyl-l-ascorbic acid (EA) compared with human skin. METHODS Skin uptake and permeation of EA was investigated in vitro using heat-separated human epidermis and LabSkinTM . Finite dose (5 μL cm-2 ) Franz-diffusion studies were conducted using 2 % (w/w) EA in a ternary solvent mixture comprising propylene glycol (PG), propylene glycol monolaurate (PGML), and isopropyl myristate (IPM). These excipients are commonly used in cosmetic products and they have been reported to promote permeation of EA in a different model, namely porcine skin. RESULTS Permeation of EA through LabSkinTM was evident from 2 h; however, EA permeation in human skin was not detected until 5 h. Similar amounts of EA permeated through the two membranes at time points 8, 10, 12 and 24 h (p > 0.05). The cumulative amounts of EA delivered through LabSkinTM at 24 h were 41.3 ± 2.0 µg cm-2 , corresponding to 55.1 ± 1.8 % of the applied dose. Similar amounts permeated across human skin, 49.4 ± 4.1 µg cm-2 , accounting for 58.0 ± 4.2 % of the dose applied (p > 0.05). CONCLUSION The permeation of EA in LabSkinTM compared well with results for human epidermis in terms of the permeation profiles and the cumulative amounts of EA that permeated. The data suggest that the skin barrier of the two models was similar with regard to their overall permeability to the hydrophilic active EA. The findings are promising for the use of LabSkinTM as a surrogate for human skin in permeability testing. Future studies will focus on exploring the reproducibility and robustness of LabSkinTM for delivery of other actives that span a range of physicochemical properties.
Collapse
|
12
|
Spectral diagnosis of health hazardous toxins in face foundation powders using laser induced breakdown spectroscopy and inductively coupled plasma-optical emission spectroscopy (ICP-OES). Talanta 2020; 217:121007. [DOI: 10.1016/j.talanta.2020.121007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022]
|
13
|
Safety Assessment of Nano-Hydroxyapatite as an Oral Care Ingredient according to the EU Cosmetics Regulation. COSMETICS 2018. [DOI: 10.3390/cosmetics5030053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hydroxyapatite nanoparticles (HAP-NP) are incorporated in oral care products such as toothpastes and mouthwashes to treat dental sensitivity or to promote enamel remineralisation. Despite the good performance of HAP-NP in this application, it is important to ensure its safety for consumers. For that reason, the Scientific Committee on Consumer Safety (SCCS) evaluated the safety of HAP-NP as an oral care ingredient, but the issued opinion was not completely conclusive and the SCCS recommended that additional tests should be performed. Here, we used a commercially available human gingival epithelium (HGE) as a non-animal alternative and MTT cell viability, LDH activity, and IL-1alpha production were evaluated after 3.1% HAP-NP treatment for 10 min, 1 h, and 3 h. Moreover, the absorption of HAP-NP in the gingival tissue was assessed by transmission electron microscopy (TEM) analysis. Finally, the dissolution behaviour of HAP-NP in simulated gastric fluid was also investigated. No deleterious effect was observed for HGE tissues incubated with HAP-NP for all time-points and parameters evaluated. Moreover, a complete dissolution of 3.1% HAP-NP in simulated gastric fluid was observed after 7.5 min at 37 °C. In conclusion, our results evidence the safety of HAP-NP for oral care products with the use of an in vitro replacement alternative for human gingival epithelium and a simulated gastric fluid assay.
Collapse
|
14
|
Zhang Q, Li J, Middleton A, Bhattacharya S, Conolly RB. Bridging the Data Gap From in vitro Toxicity Testing to Chemical Safety Assessment Through Computational Modeling. Front Public Health 2018; 6:261. [PMID: 30255008 PMCID: PMC6141783 DOI: 10.3389/fpubh.2018.00261] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022] Open
Abstract
Chemical toxicity testing is moving steadily toward a human cell and organoid-based in vitro approach for reasons including scientific relevancy, efficiency, cost, and ethical rightfulness. Inferring human health risk from chemical exposure based on in vitro testing data is a challenging task, facing various data gaps along the way. This review identifies these gaps and makes a case for the in silico approach of computational dose-response and extrapolation modeling to address many of the challenges. Mathematical models that can mechanistically describe chemical toxicokinetics (TK) and toxicodynamics (TD), for both in vitro and in vivo conditions, are the founding pieces in this regard. Identifying toxicity pathways and in vitro point of departure (PoD) associated with adverse health outcomes requires an understanding of the molecular key events in the interacting transcriptome, proteome, and metabolome. Such an understanding will in turn help determine the sets of sensitive biomarkers to be measured in vitro and the scope of toxicity pathways to be modeled in silico. In vitro data reporting both pathway perturbation and chemical biokinetics in the culture medium serve to calibrate the toxicity pathway and virtual tissue models, which can then help predict PoDs in response to chemical dosimetry experienced by cells in vivo. Two types of in vitro to in vivo extrapolation (IVIVE) are needed. (1) For toxic effects involving systemic regulations, such as endocrine disruption, organism-level adverse outcome pathway (AOP) models are needed to extrapolate in vitro toxicity pathway perturbation to in vivo PoD. (2) Physiologically-based toxicokinetic (PBTK) modeling is needed to extrapolate in vitro PoD dose metrics into external doses for expected exposure scenarios. Linked PBTK and TD models can explore the parameter space to recapitulate human population variability in response to chemical insults. While challenges remain for applying these modeling tools to support in vitro toxicity testing, they open the door toward population-stratified and personalized risk assessment.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Jin Li
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | - Alistair Middleton
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | - Sudin Bhattacharya
- Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Rory B Conolly
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Durham, NC, United States
| |
Collapse
|
15
|
Safety assessment of starch-based personal care products: Nanocapsules and pickering emulsions. Toxicol Appl Pharmacol 2018; 342:14-21. [PMID: 29407772 DOI: 10.1016/j.taap.2018.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/08/2018] [Accepted: 01/25/2018] [Indexed: 11/20/2022]
Abstract
The safety profile of the ingredients used in topical dosage forms and its evaluation is an issue of utmost importance. A suitable equilibrium between safety and efficacy is crucial before promoting a dermatological product. The aim of this work was to assess the safety and biological effects of starch-based vehicles (St-BV) used in such products. The hazard, exposure and dose-response assessment were used to characterize the risk of each ingredient. The EpiSkin™ assay and human repeat insult patch tests were performed to compare the theoretical safety assessment to in vitro and in vivo data. The efficacy of the St-BV was studied using biophysical measurements in human volunteers during 28 days, showing that all ingredients and their combinations were safe for the consumer. Tissue viability determined using the EpiSkin™ testing reached values between 84.0 ± 5.0% and 98.0 ± 8.6% after application of St-BV, which were considered as non-irritant to the skin. These observations were confirmed by the in vivo studies where the St-BV did not induce any sensitization on the volunteers, being safe for human use. Moreover, St-BV increased skin hydration and microcirculation, emerging as an attractive alternative to chemical raw materials.
Collapse
|
16
|
Development and validation of a high-throughput transcriptomic biomarker to address 21st century genetic toxicology needs. Proc Natl Acad Sci U S A 2017; 114:E10881-E10889. [PMID: 29203651 PMCID: PMC5754797 DOI: 10.1073/pnas.1714109114] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Standard in vitro assays to assess genotoxicity frequently generate positive results that are subsequently found to be irrelevant for in vivo carcinogenesis and human cancer risk assessment. Currently used follow-up methods, such as animal testing, are expensive and time-consuming, and the development of approaches enabling more accurate mechanism-based risk assessment is essential. We developed an in vitro transcriptomic biomarker-based approach that provides a robust biomarker reflecting stress-signaling responses. The biomarker correctly identifies the vast majority of irrelevant genotoxicity results from in vitro chromosome damage assays. TGx-DDI, a multigene biomarker for DNA damage-inducing agents, is the first biomarker that not only shows convincing interlaboratory and intralaboratory reproducibility, but also performs accurately in a system suitable for high-throughput screening. Interpretation of positive genotoxicity findings using the current in vitro testing battery is a major challenge to industry and regulatory agencies. These tests, especially mammalian cell assays, have high sensitivity but suffer from low specificity, leading to high rates of irrelevant positive findings (i.e., positive results in vitro that are not relevant to human cancer hazard). We developed an in vitro transcriptomic biomarker-based approach that provides biological relevance to positive genotoxicity assay data, particularly for in vitro chromosome damage assays, and propose its application for assessing the relevance of the in vitro positive results to carcinogenic hazard. The transcriptomic biomarker TGx-DDI (previously known as TGx-28.65) readily distinguishes DNA damage-inducing (DDI) agents from non-DDI agents. In this study, we demonstrated the ability of the biomarker to classify 45 test agents across a broad set of chemical classes as DDI or non-DDI. Furthermore, we assessed the biomarker’s utility in derisking known irrelevant positive agents and evaluated its performance across analytical platforms. We correctly classified 90% (9 of 10) of chemicals with irrelevant positive findings in in vitro chromosome damage assays as negative. We developed a standardized experimental and analytical protocol for our transcriptomics biomarker, as well as an enhanced application of TGx-DDI for high-throughput cell-based genotoxicity testing using nCounter technology. This biomarker can be integrated in genetic hazard assessment as a follow-up to positive chromosome damage findings. In addition, we propose how it might be used in chemical screening and assessment. This approach offers an opportunity to significantly improve risk assessment and reduce cost.
Collapse
|
17
|
Hartmann S, Klaschka U. Interested consumers' awareness of harmful chemicals in everyday products. ENVIRONMENTAL SCIENCES EUROPE 2017; 29:29. [PMID: 29214119 PMCID: PMC5698398 DOI: 10.1186/s12302-017-0127-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Everyday products can contain a multitude of harmful substances unnoticed by most consumers, because established risk communication channels reach only part of the society. The question is, whether at least interested and informed consumers are able to use risk communication tools and assess harmful chemicals in products. RESULTS An online survey investigated the awareness of 1030 consumers on harmful substances in everyday items. Participating consumers' education level, knowledge in chemistry, and motivation were above society's average. Although a large number of responses showed that survey participants were familiar with several aspects of the issue, the results revealed that knowledge in chemistry helped, but was not enough. Many participants assumed that products with an eco-label, natural personal care products, products without hazard pictograms or products produced in the European Union would not contain harmful substances. Most participants indicated to use hazard pictograms, information on the packaging, reports in the media, and environmental and consumer organizations as information sources, while information by authorities and manufacturers were not named frequently and did not receive high confidence. Smartphone applications were not indicated by many participants as information sources. The information sources most trusted were environmental and consumer organizations, hazard pictograms, and lists of ingredients on the containers. The declared confidence in certain risk communication instruments did not always correspond to the use frequencies indicated. Nearly all participants considered legislators as responsible for the reduction of harmful substances in consumer products. CONCLUSIONS Misconceptions about harmful substances in products can be dangerous for the personal health and the environment. The survey indicates that motivation, educational level, and chemical expertise do not automatically provide an appropriate understanding of harmful substances in products. If well-informed consumers are not sufficiently capable to use risk information elements as revealed in this study, then this will be even more the case for the general public. Consumer awareness should be stipulated by an improved information strategy about chemical risks in consumer products with an extensive participation of the target groups and by more efforts by authorities and manufactures to build trust and to provide easily understandable information.
Collapse
Affiliation(s)
| | - Ursula Klaschka
- University of Applied Sciences Ulm, Prittwitzstr. 10, 89075 Ulm, Germany
| |
Collapse
|
18
|
Skin Whitening Cosmetics: Feedback and Challenges in the Development of Natural Skin Lighteners. COSMETICS 2016. [DOI: 10.3390/cosmetics3040036] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
19
|
Allen CHG, Koutsoukas A, Cortés-Ciriano I, Murrell DS, Malliavin TE, Glen RC, Bender A. Improving the prediction of organism-level toxicity through integration of chemical, protein target and cytotoxicity qHTS data. Toxicol Res (Camb) 2016; 5:883-894. [PMID: 30090397 PMCID: PMC6062365 DOI: 10.1039/c5tx00406c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/01/2016] [Indexed: 12/29/2022] Open
Abstract
Prediction of compound toxicity is essential because covering the vast chemical space requiring safety assessment using traditional experimentally-based, resource-intensive techniques is impossible. However, such prediction is nontrivial due to the complex causal relationship between compound structure and in vivo harm. Protein target annotations and in vitro experimental outcomes encode relevant bioactivity information complementary to chemicals' structures. This work tests the hypothesis that utilizing three complementary types of data will afford predictive models that outperform traditional models built using fewer data types. A tripartite, heterogeneous descriptor set for 367 compounds was comprised of (a) chemical descriptors, (b) protein target descriptors generated using an algorithm trained on 190 000 ligand-protein interactions from ChEMBL, and (c) descriptors derived from in vitro cell cytotoxicity dose-response data from a panel of human cell lines. 100 random forests classification models for predicting rat LD50 were built using every combination of descriptors. Successive integration of data types improved predictive performance; models built using the full dataset had an average external correct classification rate of 0.82, compared to 0.73-0.80 for models built using two data types and 0.67-0.78 for models built using one. Pairwise comparisons of models trained on the same data showed that including a third data domain on top of chemistry improved average correct classification rate by 1.4-2.4 points, with p-values <0.01. Additionally, the approach enhanced the models' applicability domains and proved useful for generating novel mechanism hypotheses. The use of tripartite heterogeneous bioactivity datasets is a useful technique for improving toxicity prediction. Both protein target descriptors - which have the practical value of being derived in silico - and cytotoxicity descriptors derived from experiment are suitable contributors to such datasets.
Collapse
Affiliation(s)
- Chad H G Allen
- Centre for Molecular Informatics , Department of Chemistry , Lensfield Road , Cambridge CB2 1EW , UK . ; Tel: +44 (0)1223 762983
| | - Alexios Koutsoukas
- Centre for Molecular Informatics , Department of Chemistry , Lensfield Road , Cambridge CB2 1EW , UK . ; Tel: +44 (0)1223 762983
| | - Isidro Cortés-Ciriano
- Unité de Bioinformatique Structurale , Institut Pasteur and CNRS UMR 3528 , Structural Biology and Chemistry Department , Paris , France
| | - Daniel S Murrell
- Centre for Molecular Informatics , Department of Chemistry , Lensfield Road , Cambridge CB2 1EW , UK . ; Tel: +44 (0)1223 762983
| | - Thérèse E Malliavin
- Unité de Bioinformatique Structurale , Institut Pasteur and CNRS UMR 3528 , Structural Biology and Chemistry Department , Paris , France
| | - Robert C Glen
- Centre for Molecular Informatics , Department of Chemistry , Lensfield Road , Cambridge CB2 1EW , UK . ; Tel: +44 (0)1223 762983
- Department of Surgery and Cancer , Faculty of Medicine , Imperial College London , Sir Alexander Fleming Building , South Kensington Campus , London SW7 2AZ , UK
| | - Andreas Bender
- Centre for Molecular Informatics , Department of Chemistry , Lensfield Road , Cambridge CB2 1EW , UK . ; Tel: +44 (0)1223 762983
| |
Collapse
|
20
|
Mangiatordi GF, Alberga D, Altomare CD, Carotti A, Catto M, Cellamare S, Gadaleta D, Lattanzi G, Leonetti F, Pisani L, Stefanachi A, Trisciuzzi D, Nicolotti O. Mind the Gap! A Journey towards Computational Toxicology. Mol Inform 2016; 35:294-308. [PMID: 27546034 DOI: 10.1002/minf.201501017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/23/2016] [Indexed: 11/11/2022]
Abstract
Computational methods have advanced toxicology towards the development of target-specific models based on a clear cause-effect rationale. However, the predictive potential of these models presents strengths and weaknesses. On the good side, in silico models are valuable cheap alternatives to in vitro and in vivo experiments. On the other, the unconscious use of in silico methods can mislead end-users with elusive results. The focus of this review is on the basic scientific and regulatory recommendations in the derivation and application of computational models. Attention is paid to examine the interplay between computational toxicology and drug discovery and development. Avoiding the easy temptation of an overoptimistic future, we report our view on what can, or cannot, realistically be done. Indeed, studies of safety/toxicity represent a key element of chemical prioritization programs carried out by chemical industries, and primarily by pharmaceutical companies.
Collapse
Affiliation(s)
- Giuseppe Felice Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Domenico Alberga
- Dipartimento Interateneo di Fisica 'M.Merlin', Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Cosimo Damiano Altomare
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Angelo Carotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Saverio Cellamare
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Domenico Gadaleta
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Gianluca Lattanzi
- Dipartimento Interateneo di Fisica 'M.Merlin', Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Angela Stefanachi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|
21
|
Park SK, Kwon JH. The fate of two isothiazolinone biocides, 5-chloro-2-methylisothiazol-3(2H)-one (CMI) and 2-methylisothiazol-3(2H)-one (MI), in liquid air fresheners and assessment of inhalation exposure. CHEMOSPHERE 2016; 144:2270-2276. [PMID: 26598996 DOI: 10.1016/j.chemosphere.2015.10.136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/27/2015] [Accepted: 10/31/2015] [Indexed: 06/05/2023]
Abstract
There exist public concerns regarding the two most widely used isothiazolinones (5-chloro-2-methylisothiazol-3(2H)-one (CMI) and 2-methylisothiazol-3(2H)-one (MI)) in various consumer products because they cause allergic responses in dermatitis and are potentially harmful when inhaled. Hydrolysis and photolysis tests for CMI and MI at pH 4, 7, and 9 were performed to evaluate their stability. While MI did not degrade under the test conditions, CMI slightly degraded at pH 9 via hydrolysis and at pH 4 via photolysis. To better understand human exposure to MI and CMI during the use of consumer products, the vaporization rates of MI and CMI from two commercial air fresheners were quantified in a custom-made chamber. The evaporation of MI was almost negligible over 7 d, whereas a significant amount of CMI evaporated over the same period. Because the volume of air freshener decreases over time due to evaporation of water, the MI concentration in the product increased by a factor of 1.8-2.2. The air concentration of CMI was predicted using a ConsExpo model using a fixed weight fraction (model 1) and a new model that reflects changes in the concentrations of active ingredients and the product volume over time (model 2). The concentration determined using model 1 reached a steady-state value of 0.032 µg L(-1), whereas that predicted using model 2 increased consistently. Inhalation exposure was also assessed using two exposure scenarios: a room and a car. Both calculated values of margin of exposure were much higher than 300, indicating a negligible inhalation risk.
Collapse
Affiliation(s)
- Seon-Kyung Park
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
22
|
Safford B, Api AM, Barratt C, Comiskey D, Daly EJ, Ellis G, McNamara C, O'Mahony C, Robison S, Smith B, Thomas R, Tozer S. Use of an aggregate exposure model to estimate consumer exposure to fragrance ingredients in personal care and cosmetic products. Regul Toxicol Pharmacol 2015; 72:673-82. [PMID: 26071898 DOI: 10.1016/j.yrtph.2015.05.017] [Citation(s) in RCA: 1691] [Impact Index Per Article: 169.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 11/26/2022]
Abstract
Ensuring the toxicological safety of fragrance ingredients used in personal care and cosmetic products is essential in product development and design, as well as in the regulatory compliance of the products. This requires an accurate estimation of consumer exposure which, in turn, requires an understanding of consumer habits and use of products. Where ingredients are used in multiple product types, it is important to take account of aggregate exposure in consumers using these products. This publication investigates the use of a newly developed probabilistic model, the Creme RIFM model, to estimate aggregate exposure to fragrance ingredients using the example of 2-phenylethanol (PEA). The output shown demonstrates the utility of the model in determining systemic and dermal exposure to fragrances from individual products, and aggregate exposure. The model provides valuable information not only for risk assessment, but also for risk management. It should be noted that data on the concentrations of PEA in products used in this article were obtained from limited sources and not the standard, industry wide surveys typically employed by the fragrance industry and are thus presented here to illustrate the output and utility of the newly developed model. They should not be considered an accurate representation of actual exposure to PEA.
Collapse
Affiliation(s)
- B Safford
- B-Safe Toxicology Consulting, 31 Hayway, Rushden, Northants NN10 6AG, United Kingdom
| | - A M Api
- Research Institute for Fragrance Materials, 50 Tice Boulevard, Woodcliff Lake, NJ 07677, United States.
| | - C Barratt
- Unilever, Safety and Environmental Assurance Centre, Colworth Park, Sharnbrook, Beds MK44 1LQ, United Kingdom
| | - D Comiskey
- Creme Global Ltd, The Tower, Trinity Enterprise Centre, Grand Canal Quay, Dublin 2, Ireland
| | - E J Daly
- Creme Global Ltd, The Tower, Trinity Enterprise Centre, Grand Canal Quay, Dublin 2, Ireland
| | - G Ellis
- Givaudan International S.A., 5 chemin de la parfumerie, CH1214 Vernier, Switzerland
| | - C McNamara
- Creme Global Ltd, The Tower, Trinity Enterprise Centre, Grand Canal Quay, Dublin 2, Ireland
| | - C O'Mahony
- Creme Global Ltd, The Tower, Trinity Enterprise Centre, Grand Canal Quay, Dublin 2, Ireland
| | - S Robison
- The Procter and Gamble Company, Mason Business Center, 8700 Mason Montgomery Rd, Mason, OH 45040, United States
| | - B Smith
- Firmenich Inc., P.O. Box 5880, Princeton, NJ 08543, United States
| | - R Thomas
- Creme Global Ltd, The Tower, Trinity Enterprise Centre, Grand Canal Quay, Dublin 2, Ireland
| | - S Tozer
- Procter&Gamble, Surrey TW20 9NW, United Kingdom
| |
Collapse
|
23
|
Toropov AA, Toropova AP, Pizzo F, Lombardo A, Gadaleta D, Benfenati E. CORAL: model for no observed adverse effect level (NOAEL). Mol Divers 2015; 19:563-75. [PMID: 25850638 PMCID: PMC4487358 DOI: 10.1007/s11030-015-9587-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/21/2015] [Indexed: 02/07/2023]
Abstract
The in vivo repeated dose toxicity (RDT) test is intended to provide information on the possible risk caused by repeated exposure to a substance over a limited period of time. The measure of the RDT is the no observed adverse effect level (NOAEL) that is the dose at which no effects are observed, i.e., this endpoint indicates the safety level for a substance. The need to replace in vivo tests, as required by some European Regulations (registration, evaluation authorization and restriction of chemicals) is leading to the searching for reliable alternative methods such as quantitative structure-activity relationships (QSAR). Considering the complexity of the RDT endpoint, for which data quality is limited and depends anyway on the study design, the development of QSAR for this endpoint is an attractive task. Starting from a dataset of 140 organic compounds with NOAEL values related to oral short term toxicity in rats, we developed a QSAR model based on optimal descriptors calculated with simplified molecular input-line entry systems and the graph of atomic orbitals by the Monte Carlo method, using CORAL software. Three different splits into the training, calibration, and validation sets are studied. The mechanistic interpretation of these models in terms of molecular fragment with positive or negative contributions to the endpoint is discussed. The probabilistic definition for the domain of applicability is suggested.
Collapse
Affiliation(s)
- Andrey A Toropov
- Laboratory of Environmental Chemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20159, Milan, Italy,
| | | | | | | | | | | |
Collapse
|
24
|
Silveira JEPS, Pereda MCV, Nogueira C, Dieamant G, Cesar CKM, Assanome KM, Silva MS, Torello CO, Queiroz MLS, Eberlin S. Preliminary safety assessment of C-8 xylitol monoester and xylitol phosphate esters. Int J Cosmet Sci 2015; 38:41-51. [PMID: 26193758 DOI: 10.1111/ics.12262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Most of the cosmetic compounds with preservative properties available in the market pose some risks concerning safety, such as the possibility of causing sensitization. Due to the fact that there are few options, the proper development of new molecules with this purpose is needed. Xylitol is a natural sugar, and the antimicrobial properties of xylitol-derived compounds have already been described in the literature. C-8 xylitol monoester and xylitol phosphate esters may be useful for the development of skincare products. As an initial screen for safety of chemicals, the combination of in silico methods and in vitro testing can aid in prioritizing resources in toxicological investigations while reducing the ethical and monetary costs that are related to animal and human testing. This study was designed to evaluate the safety of C-8 xylitol monoester and xylitol phosphate esters regarding carcinogenicity, mutagenicity, skin and eye irritation/corrosion and sensitization through alternative methods. METHODS For the initial safety assessment, quantitative structure-activity relationship methodology was used. The prediction of the parameters carcinogenicity/mutagenicity, skin and eye irritation/corrosion and sensitization was generated from the chemical structure. The analysis also comprised physical-chemical properties, Cramer rules, threshold of toxicological concern and Michael reaction. In silico results of candidate molecules were compared to 19 compounds with preservative properties that are available in the market. Additionally, in vitro tests (Ames test for mutagenicity, cytotoxicity and phototoxicity tests and hen's egg test--chorioallantoic membrane for irritation) were performed to complement the evaluation. RESULTS In silico evaluation of both molecules presented no structural alerts related to eye and skin irritation, corrosion and sensitization, but some alerts for micronucleus and carcinogenicity were detected. However, by comparison, C-8 xylitol monoester, xylitol phosphate esters showed similar or better results than the compounds available in the market. Concerning experimental data, phototoxicity and mutagenicity results were negative. As expected for compounds with preservative activity, xylitol-derived substances presented positive result in cytotoxicity test. In hen's egg test, both molecules were irritants. CONCLUSION Our results suggested that xylitol-derived compounds appear to be suitable candidates for preservative systems in cosmetics.
Collapse
Affiliation(s)
- J E P S Silveira
- Department of Pharmacology/Hemocenter, Faculty of Medical Science, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - M C V Pereda
- Research and Development Department, Chemyunion Química Ltda, Sorocaba, SP, Brazil
| | - C Nogueira
- Research and Development Department, Chemyunion Química Ltda, Sorocaba, SP, Brazil
| | - G Dieamant
- Department of Pharmacology/Hemocenter, Faculty of Medical Science, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - C K M Cesar
- Research and Development Department, Chemyunion Química Ltda, Sorocaba, SP, Brazil
| | | | - M S Silva
- Department of Pharmacology/Hemocenter, Faculty of Medical Science, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - C O Torello
- Department of Pharmacology/Hemocenter, Faculty of Medical Science, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - M L S Queiroz
- Department of Pharmacology/Hemocenter, Faculty of Medical Science, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - S Eberlin
- Department of Pharmacology/Hemocenter, Faculty of Medical Science, State University of Campinas (Unicamp), Campinas, SP, Brazil
| |
Collapse
|
25
|
Daly P, Moran G. Safety assessment of a novel active ingredient, acetyl aspartic acid, according to the EU Cosmetics Regulation and the Scientific Committee on Consumer Safety guidelines. Int J Cosmet Sci 2015; 37 Suppl 1:21-7. [PMID: 26114401 DOI: 10.1111/ics.12257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/17/2015] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Acetyl aspartic acid (A-A-A) was proposed as a new novel active ingredient for use in cosmetics. The safety of A-A-A was assessed by following an in-house-developed 'New Ingredient Testing Strategy', which was designed in accordance with the Scientific Committee on Consumer Safety (SCCS) notes of guidance and the requirements of Annex I of the EU Cosmetics Regulation. The aim of the project was to determine whether A-A-A was safe for use in cosmetics and to determine a maximum permitted safe level in the formulations. METHODS A literature review was conducted, consulting over 40 different information sources. This highlighted a number of gaps which required testing data. A-A-A was tested for phototoxicity according to OECD test guideline 432, skin irritation according to OECD test guideline 439 and eye irritation according to OECD test guideline 437. Dermal absorption of A-A-A was measured according to OECD test guideline 428 and was used to calculate the margin of safety (MoS). Finally, A-A-A was tested in a human repeat insult patch test (HRIPT) and a 14-day in-use tolerance study. RESULTS A-A-A was non-phototoxic and was non-irritating to skin and eyes in in vitro testing. Dermal absorption was calculated to be 5%. The MoS for A-A-A was 351, at a level of 5%, for all cosmetic product types, indicating no systemic safety toxicity concern. A-A-A at 5% under occlusive patch on a panel of 50 adult volunteers induced no skin irritation or allergic reaction in the HRIPT study. Finally, repeated application of A-A-A to the periocular area, twice per day for 14 days, in 21 female volunteers, demonstrated that 1% A-A-A was well tolerated following dermatological and ophthalmological assessment in a cosmetic formulation. CONCLUSION A-A-A was assessed as safe by the cosmetic safety assessor for use in cosmetics at a level of 5% in all cosmetic product types, in line with the requirements of the EU Cosmetics Regulation and in accordance with the SCCS notes of guidance.
Collapse
Affiliation(s)
- P Daly
- Oriflame R&D Ltd, Bray Business Park, Kilruddery, Bray, Co Wicklow, Ireland
| | - G Moran
- Oriflame R&D Ltd, Bray Business Park, Kilruddery, Bray, Co Wicklow, Ireland
| |
Collapse
|
26
|
High-definition optical coherence tomography intrinsic skin ageing assessment in women: a pilot study. Arch Dermatol Res 2015; 307:705-20. [PMID: 26066511 PMCID: PMC4572052 DOI: 10.1007/s00403-015-1575-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/19/2015] [Accepted: 05/14/2015] [Indexed: 11/06/2022]
Abstract
Several non-invasive two-dimensional techniques with different lateral resolution and measurable depth range have proved to be useful in assessing and quantifying morphological changes in skin ageing. Among these, only in vivo microscopy techniques permit histometric measurements in vivo. Qualitative and quantitative assessment of chronological (intrinsic) age-related (IAR) morphological changes of epidermis, dermo-epidermal junction (DEJ), papillary dermis (PD), papillary-reticular dermis junction and reticular
dermis (RD) have been performed by high-definition optical coherence tomography in real time 3-D. HD-OCT images were taken at the internal site of the right upper arm. Qualitative HD-OCT IAR descriptors were reported at skin surface, at epidermal layer, DEJ, PD and upper RD. Quantitative evaluation of age-related compaction and backscattered intensity or brightness of different skin layers was performed by using the plugin plot z-axis profile of ImageJ® software permitting intensity assessment of HD-OCT (DICOM) images (3-D images). Analysis was in blind from all clinical information. Sixty, fair-skinned (Fitzpatrick types I–III) healthy females were analysed retrospectively in this study. The subjects belonged to three age groups: twenty in group I aged 20–39, twenty in group II aged 40–59 and twenty in group III aged 60–79. Only intrinsic ageing in women has been studied. Significant age-related qualitative and quantitative differences could be noticed. IAR changes in dermal matrix fibers morphology/organisation and in microvasculature were observed. The brightness and compaction of the different skin layers increased significantly with intrinsic skin ageing. The depth of visibility of fibers in RD increased significantly in the older age group. In conclusion, HD-OCT allows 3-D in vivo and real time qualitative and quantitative assessment of chronological (intrinsic) age-related morphological skin changes at high resolution from skin surface to a depth of the superficial reticular dermis.
Collapse
|
27
|
Esteki M, Nouroozi S, Shahsavari Z. A fast and direct spectrophotometric method for the simultaneous determination of methyl paraben and hydroquinone in cosmetic products using successive projections algorithm. Int J Cosmet Sci 2015; 38:25-34. [DOI: 10.1111/ics.12241] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/03/2015] [Indexed: 11/29/2022]
Affiliation(s)
- M. Esteki
- Department of Chemistry; University of Zanjan; Zanjan 45195-313 Iran
| | - S. Nouroozi
- Department of Chemistry; University of Zanjan; Zanjan 45195-313 Iran
| | - Z. Shahsavari
- Department of Chemistry; University of Zanjan; Zanjan 45195-313 Iran
| |
Collapse
|
28
|
Exposure method development for risk assessment to cosmetic products using a standard composition. Food Chem Toxicol 2014; 68:108-16. [DOI: 10.1016/j.fct.2014.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/18/2014] [Accepted: 03/06/2014] [Indexed: 11/21/2022]
|
29
|
Probabilistic assessment of exposure to nail cosmetics in French consumers. Food Chem Toxicol 2014; 66:36-43. [PMID: 24447976 DOI: 10.1016/j.fct.2014.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 12/27/2022]
Abstract
The aim of this study was to assess probabilistic exposure to nail cosmetics in French consumers. The exposure assessment was performed with base coat, polish, top coat and remover. This work was done for adult and child consumers. Dermal, inhalation and oral routes were taken into account for varnishes. Exposure evaluation was performed for the inhalation route with polish remover. The main route of exposure to varnishes was the ungual route. Inhalation was the secondary route of exposure, followed by dermal and oral routes. Polish contributed most to exposure, regardless of the route of exposure. For this nail product, P50 and P95 values by ungual route were respectively equal to 1.74 mg(kg bw week)(-1) and 8.55 mg(kg bw week)(-1) for women aged 18-34 years. Exposure to polish by inhalation route was equal to 0.70 mg(kg bw week)(-1) (P50) and 5.27 mg(kg bw week)(-1) (P95). P50 and P95 values by inhalation route were respectively equal to 0.08 mg(kg bw week)(-1) and 1.14 mg(kg bw week)(-1) for consumers aged 18-34 years exposed to polish remover. This work provided current exposure data for nail cosmetics, and a basis for future toxicological studies of the uptake of substances contained in nail cosmetics in order to assess systemic exposure.
Collapse
|
30
|
Lemper M, Snykers S, Vanhaecke T, De Paepe K, Rogiers V. Current Status of Healthy Human Skin Models: Can Histone Deacetylase Inhibitors Potentially Improve the Present Replacement Models? Skin Pharmacol Physiol 2014; 27:36-46. [DOI: 10.1159/000351363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 03/24/2013] [Indexed: 11/19/2022]
|
31
|
Lemper M, De Paepe K, Rogiers V. Practical problems encountered during the cultivation of an open-source reconstructed human epidermis model on a polycarbonate membrane and protein quantification. Skin Pharmacol Physiol 2013; 27:106-12. [PMID: 24335349 DOI: 10.1159/000351814] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 05/07/2013] [Indexed: 11/19/2022]
Abstract
During recent years, the importance of in vitro technology in skin research has increased significantly. A variety of skin culture models have been developed and commercialized. In this respect, the availability of reconstructed human epidermis (RHE) equivalents represents a significant improvement compared to the use of monolayer cultures. However, when an in-house RHE model is being developed, researchers might encounter some difficulties during cultivation. The scope of this paper is to report our experiences and practical problems with the development of a three-dimensional RHE model cultured on a polycarbonate membrane. Some important issues including cell density, the use of lysing enzymes, culture media, cell storage and viability, cell confluency and protein extraction are reported and optional solutions are given.
Collapse
Affiliation(s)
- M Lemper
- Department of Toxicology, Dermato-Cosmetology and Pharmacognosy, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | |
Collapse
|
32
|
Berthele H, Sella O, Lavarde M, Mielcarek C, Pense-Lheritier AM, Pirnay S. Determination of the influence of factors (ethanol, pH and a(w) ) on the preservation of cosmetics using experimental design. Int J Cosmet Sci 2013; 36:54-61. [PMID: 24117694 DOI: 10.1111/ics.12094] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 09/15/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Ethanol, pH and water activity are three well-known parameters that can influence the preservation of cosmetic products. With the new constraints regarding the antimicrobial effectiveness and the restrictive use of preservatives, a D-optimal design was set up to evaluate the influence of these three parameters on the microbiological conservation. METHODS To monitor the effectiveness of the different combination of these set parameters, a challenge test in compliance with the International standard ISO 11930: 2012 was implemented. The formulations established in our study could support wide variations of ethanol concentration, pH values and glycerin concentration without noticeable effects on the stability of the products. RESULTS In the conditions of the study, determining the value of a single parameter, with the tested concentration, could not guarantee microbiological conservation. However, a high concentration of ethanol associated with an extreme pH could inhibit bacteria growth from the first day (D0). Besides, it appears that despite an aw above 0.6 (even 0.8) and without any preservatives incorporated in formulas, it was possible to guarantee the microbiological stability of the cosmetic product when maintaining the right combination of the selected parameters. CONCLUSION Following the analysis of the different values obtained during the experimentation, there seems to be a correlation between the aw and the selected parameters aforementioned. An application of this relationship could be to define the aw of cosmetic products by using the formula, thus avoiding the evaluation of this parameter with a measuring device.
Collapse
Affiliation(s)
- H Berthele
- EXPERTOX Agency and Laboratory, 14 rue Godefroy Cavaignac, 75011, Paris, France.,Ecole de Biologie Industrielle (EBI), 32 Bd du port, 95094, Cergy, France
| | - O Sella
- Ecole de Biologie Industrielle (EBI), 32 Bd du port, 95094, Cergy, France
| | - M Lavarde
- Ecole de Biologie Industrielle (EBI), 32 Bd du port, 95094, Cergy, France
| | - C Mielcarek
- Ecole de Biologie Industrielle (EBI), 32 Bd du port, 95094, Cergy, France
| | | | - S Pirnay
- EXPERTOX Agency and Laboratory, 14 rue Godefroy Cavaignac, 75011, Paris, France
| |
Collapse
|
33
|
Raposo S, Salgado A, Gonçalves L, Pinto PC, Urbano M, Ribeiro HM. Safety assessment and biological effects of a new cold processed SilEmulsion for dermatological purpose. BIOMED RESEARCH INTERNATIONAL 2013; 2013:181634. [PMID: 24294598 PMCID: PMC3835651 DOI: 10.1155/2013/181634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/19/2013] [Accepted: 08/29/2013] [Indexed: 11/17/2022]
Abstract
It is of crucial importance to evaluate the safety profile of the ingredients used in dermatological emulsions. A suitable equilibrium between safety and efficacy is a pivotal concern before the marketing of a dermatological product. The aim was to assess the safety and biological effects of a new cold processed silicone-based emulsion (SilEmulsion). The hazard, exposure, and dose-response assessment were used to characterize the risk for each ingredient. EpiSkin assay and human repeat insult patch tests were performed to compare the theoretical safety assessment to in vitro and in vivo data. The efficacy of the SilEmulsion was studied using biophysical measurements in human volunteers during 21 days. According to the safety assessment of the ingredients, 1,5-pentanediol was an ingredient of special concern since its margin of safety was below the threshold of 100 (36.53). EpiSkin assay showed that the tissue viability after the application of the SilEmulsion was 92 ± 6% and, thus considered nonirritant to the skin. The human studies confirmed that the SilEmulsion was not a skin irritant and did not induce any sensitization on the volunteers, being safe for human use. Moreover, biological effects demonstrated that the SilEmulsion increased both the skin hydration and skin surface lipids.
Collapse
Affiliation(s)
- Sara Raposo
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Laboratório Edol Produtos Farmacêuticos S.A., Estrada Casal Canas Lote 6, 2790-007 Carnaxide, Portugal
| | - Ana Salgado
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Pedro C. Pinto
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Manuela Urbano
- Laboratório Edol Produtos Farmacêuticos S.A., Estrada Casal Canas Lote 6, 2790-007 Carnaxide, Portugal
| | - Helena M. Ribeiro
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
34
|
Vinken M, Landesmann B, Goumenou M, Vinken S, Shah I, Jaeschke H, Willett C, Whelan M, Rogiers V. Development of an Adverse Outcome Pathway From Drug-Mediated Bile Salt Export Pump Inhibition to Cholestatic Liver Injury. Toxicol Sci 2013; 136:97-106. [DOI: 10.1093/toxsci/kft177] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
35
|
Miranda-Vilela AL, Botelho AJ, Muehlmann LA. An overview of chemical straightening of human hair: technical aspects, potential risks to hair fibre and health and legal issues. Int J Cosmet Sci 2013; 36:2-11. [DOI: 10.1111/ics.12093] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- A. L. Miranda-Vilela
- Department of Genetics and Morphology; Institute of Biological Sciences; University of Brasilia; Brasilia DF Brazil
- Nanodynamics Consulting and Innovation Ltd; University of Brasilia; Brasilia DF Brazil
| | | | - L. A. Muehlmann
- Nanodynamics Consulting and Innovation Ltd; University of Brasilia; Brasilia DF Brazil
| |
Collapse
|
36
|
Adverse outcome pathways: hype or hope? Arch Toxicol 2013; 88:1-2. [DOI: 10.1007/s00204-013-1093-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
|
37
|
Assessment of the predictive capacity of the 3T3 Neutral Red Uptake cytotoxicity test method to identify substances not classified for acute oral toxicity (LD50>2000mg/kg): Results of an ECVAM validation study. Regul Toxicol Pharmacol 2013; 65:344-65. [DOI: 10.1016/j.yrtph.2012.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 09/21/2012] [Accepted: 11/26/2012] [Indexed: 11/24/2022]
|
38
|
An application of enterprise systems in quality management of products. INFORMATION TECHNOLOGY & MANAGEMENT 2012. [DOI: 10.1007/s10799-012-0141-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Mueller D, Müller-Vieira U, Biemel KM, Tascher G, Nüssler AK, Noor F. Biotransformation of diclofenac and effects on the metabolome of primary human hepatocytes upon repeated dose exposure. Eur J Pharm Sci 2012; 45:716-724. [PMID: 22330146 DOI: 10.1016/j.ejps.2012.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/13/2011] [Accepted: 01/30/2012] [Indexed: 11/29/2022]
Abstract
In vitro repeated dose testing for the assessment of chronic drug-induced effects is a huge challenge in preclinical pharmaceutical drug development. Chronic toxicity results in discontinuation of therapy or post-marketing withdrawal of drugs despite in vivo preclinical screening. In case of hepatotoxicity, due to limited long term viability and functionality of primary hepatocytes, chronic hepatic effects are difficult to detect. In this study, we maintained primary human hepatocytes in a serum-free cultivation medium for more than 3 weeks and analyzed physiology, viability and drug metabolizing capacities of the hepatocytes. Moreover, we assessed acute (24 h) diclofenac toxicity in a range of (10-1000 μM) concentrations. The chronic (9 repeated doses) toxicity at one clinically relevant and another higher concentration (6.4 and 100 μM) was also tested. We investigated phase I and II metabolism of diclofenac upon repeated dose exposure and analyzed effects on the cellular exometabolome. Acute 24 h assessment revealed toxicity only for the highest tested concentration (1 mM). Upon repeated dose exposure, toxic effects were observed even at a low, clinically relevant concentration (6.4 μM). Biotransformation pathways were active for 3 weeks and diclofenac-acylglucuronide was detected as the predominant metabolite. Dose dependent diclofenac-induced effects on exometabolome, such as on the production of lactate and 3-hydroxybutyric acid as well as glucose and galactose metabolism, were observed upon nine repeated doses. Summarizing, we show that repeated dose testing on long-term functional cultures of primary human hepatocytes may be included for the assessment of long term toxic effects in preclinical screening and can potentially help replace/reduce in vivo animal testing.
Collapse
Affiliation(s)
- Daniel Mueller
- Biochemical Engineering Institute, Campus A 1.5, Saarland University, D-66123 Saarbruecken, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Lambrechts N, Nelissen I, Van Tendeloo V, Witters H, Van Den Heuvel R, Hooyberghs J, Schoeters G. Functionality and specificity of gene markers for skin sensitization in dendritic cells. Toxicol Lett 2011; 203:106-10. [DOI: 10.1016/j.toxlet.2011.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/10/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
|
41
|
Pellegrini M, Marchei E, Pacifici R, Rotolo MC, Pichini S. Advances in the analysis of non-allowed pharmacologically active substances in cosmetic products. J Pharm Biomed Anal 2011; 55:842-7. [DOI: 10.1016/j.jpba.2011.01.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/25/2011] [Accepted: 01/31/2011] [Indexed: 02/03/2023]
|
42
|
Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, Bal-Price A, Benfenati E, Bernauer U, Bessems J, Bois FY, Boobis A, Brandon E, Bremer S, Broschard T, Casati S, Coecke S, Corvi R, Cronin M, Daston G, Dekant W, Felter S, Grignard E, Gundert-Remy U, Heinonen T, Kimber I, Kleinjans J, Komulainen H, Kreiling R, Kreysa J, Leite SB, Loizou G, Maxwell G, Mazzatorta P, Munn S, Pfuhler S, Phrakonkham P, Piersma A, Poth A, Prieto P, Repetto G, Rogiers V, Schoeters G, Schwarz M, Serafimova R, Tähti H, Testai E, van Delft J, van Loveren H, Vinken M, Worth A, Zaldivar JM. Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 2011; 85:367-485. [PMID: 21533817 DOI: 10.1007/s00204-011-0693-2] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/03/2011] [Indexed: 01/09/2023]
Abstract
The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9 years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7 years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated.
Collapse
Affiliation(s)
- Sarah Adler
- Centre for Documentation and Evaluation of Alternatives to Animal Experiments (ZEBET), Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sedykh A, Zhu H, Tang H, Zhang L, Richard A, Rusyn I, Tropsha A. Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:364-70. [PMID: 20980217 PMCID: PMC3060000 DOI: 10.1289/ehp.1002476] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 10/27/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND Quantitative high-throughput screening (qHTS) assays are increasingly being used to inform chemical hazard identification. Hundreds of chemicals have been tested in dozens of cell lines across extensive concentration ranges by the National Toxicology Program in collaboration with the National Institutes of Health Chemical Genomics Center. OBJECTIVES Our goal was to test a hypothesis that dose-response data points of the qHTS assays can serve as biological descriptors of assayed chemicals and, when combined with conventional chemical descriptors, improve the accuracy of quantitative structure-activity relationship (QSAR) models applied to prediction of in vivo toxicity end points. METHODS We obtained cell viability qHTS concentration-response data for 1,408 substances assayed in 13 cell lines from PubChem; for a subset of these compounds, rodent acute toxicity half-maximal lethal dose (LD50) data were also available. We used the k nearest neighbor classification and random forest QSAR methods to model LD50 data using chemical descriptors either alone (conventional models) or combined with biological descriptors derived from the concentration-response qHTS data (hybrid models). Critical to our approach was the use of a novel noise-filtering algorithm to treat qHTS data. RESULTS Both the external classification accuracy and coverage (i.e., fraction of compounds in the external set that fall within the applicability domain) of the hybrid QSAR models were superior to conventional models. CONCLUSIONS Concentration-response qHTS data may serve as informative biological descriptors of molecules that, when combined with conventional chemical descriptors, may considerably improve the accuracy and utility of computational approaches for predicting in vivo animal toxicity end points.
Collapse
Affiliation(s)
- Alexander Sedykh
- Laboratory for Molecular Modeling, Division of Medicinal Chemistry and Natural Products and
| | - Hao Zhu
- Laboratory for Molecular Modeling, Division of Medicinal Chemistry and Natural Products and
| | - Hao Tang
- Laboratory for Molecular Modeling, Division of Medicinal Chemistry and Natural Products and
| | - Liying Zhang
- Laboratory for Molecular Modeling, Division of Medicinal Chemistry and Natural Products and
| | - Ann Richard
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Ivan Rusyn
- Department of Environmental Sciences and Engineering, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Medicinal Chemistry and Natural Products and
- Address correspondence to A. Tropsha, 327 Beard Hall, University of North Carolina–Chapel Hill, Chapel Hill, NC 27599-7568 USA. Telephone: (919) 966-2955. Fax: (919) 966-0204. E-mail:
| |
Collapse
|
44
|
Safety assessment of personal care products/cosmetics and their ingredients. Toxicol Appl Pharmacol 2009; 243:239-59. [PMID: 20005888 DOI: 10.1016/j.taap.2009.12.001] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 11/27/2009] [Accepted: 12/02/2009] [Indexed: 02/01/2023]
Abstract
We attempt to review the safety assessment of personal care products (PCP) and ingredients that are representative and pose complex safety issues. PCP are generally applied to human skin and mainly produce local exposure, although skin penetration or use in the oral cavity, on the face, lips, eyes and mucosa may also produce human systemic exposure. In the EU, US and Japan, the safety of PCP is regulated under cosmetic and/or drug regulations. Oxidative hair dyes contain arylamines, the most chemically reactive ingredients of PCP. Although arylamines have an allergic potential, taking into account the high number of consumers exposed, the incidence and prevalence of hair dye allergy appears to be low and stable. A recent (2001) epidemiology study suggested an association of oxidative hair dye use and increased bladder cancer risk in consumers, although this was not confirmed by subsequent or previous epidemiologic investigations. The results of genetic toxicity, carcinogenicity and reproductive toxicity studies suggest that modern hair dyes and their ingredients pose no genotoxic, carcinogenic or reproductive risk. Recent reports suggest that arylamines contained in oxidative hair dyes are N-acetylated in human or mammalian skin resulting in systemic exposure to traces of detoxified, i.e. non-genotoxic, metabolites, whereas human hepatocytes were unable to transform hair dye arylamines to potentially carcinogenic metabolites. An expert panel of the International Agency on Research of Cancer (IARC) concluded that there is no evidence for a causal association of hair dye exposure with an elevated cancer risk in consumers. Ultraviolet filters have important benefits by protecting the consumer against adverse effects of UV radiation; these substances undergo a stringent safety evaluation under current international regulations prior to their marketing. Concerns were also raised about the safety of solid nanoparticles in PCP, mainly TiO(2) and ZnO in sunscreens. However, current evidence suggests that these particles are non-toxic, do not penetrate into or through normal or compromised human skin and, therefore, pose no risk to human health. The increasing use of natural plant ingredients in personal care products raised new safety issues that require novel approaches to their safety evaluation similar to those of plant-derived food ingredients. For example, the Threshold of Toxicological Concern (TTC) is a promising tool to assess the safety of substances present at trace levels as well as minor ingredients of plant-derived substances. The potential human systemic exposure to PCP ingredients is increasingly estimated on the basis of in vitro skin penetration data. However, new evidence suggests that the in vitro test may overestimate human systemic exposure to PCP ingredients due to the absence of metabolism in cadaver skin or misclassification of skin residues that, in vivo, remain in the stratum corneum or hair follicle openings, i.e. outside the living skin. Overall, today's safety assessment of PCP and their ingredients is not only based on science, but also on their respective regulatory status as well as other issues, such as the ethics of animal testing. Nevertheless, the record shows that today's PCP are safe and offer multiple benefits to quality of life and health of the consumer. In the interest of all stakeholders, consumers, regulatory bodies and producers, there is an urgent need for an international harmonization on the status and safety requirements of these products and their ingredients.
Collapse
|