1
|
Choi GW, Kang DW, Kim JH, Cho SJ, Lee YB, Kwon IH, Cho HY. Sex, age, and species differences of perfluorooctanoic acid modeled by flow- versus permeability-limited physiologically-based pharmacokinetic models. Toxicology 2024; 505:153806. [PMID: 38642821 DOI: 10.1016/j.tox.2024.153806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
This study aimed to investigate sex, age, and species differences of perfluorooctanoic acid (PFOA) using physiologically-based pharmacokinetic (PBPK) models in rats and humans. PBPK models were generally developed as either flow- or permeability-limited models. The flow-limited model is cost-effective and allows for human PK prediction through simple allometric scaling, while the permeability-limited model can incorporate detailed information on the disposition process through in vitro-in vivo extrapolation (IVIVE). PFOA was administered via oral or intravenous administration with 5 mg/kg in male and female rats of different ages and the data was used to develop the PBPK models. Our results showed that both models successfully captured sex differences in rats, while only the flow-limited model with male rats and the permeability-limited model with both male and female rats provided comparable predictions in the human clinical study. More than the flow-limited model, the permeability-limited model effectively explained sex differences in rats and species differences through IVIVE. Additionally, the ontogeny-based mechanistic description of PFOA disposition enabled the interpretation of age- and sex-dependent pharmacokinetics. Although the flow-limited PBPK model lacked mechanistic interpretability compared to the permeability-limited model, it demonstrated reliable human prediction through simple allometric scaling. In conclusion, the permeability PBPK model could interpret age, sex, and species differences and it could improve the accuracy of human prediction.
Collapse
Affiliation(s)
- Go-Wun Choi
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Dong Wook Kang
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Ju Hee Kim
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Seok-Jin Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong‑ro, Buk‑Gu, Gwangju 61186, Republic of Korea
| | - In-Ho Kwon
- College of Pharmacy, Chonnam National University, 77 Yongbong‑ro, Buk‑Gu, Gwangju 61186, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| |
Collapse
|
2
|
Abudahab S, Slattum PW, Price ET, McClay JL. Epigenetic regulation of drug metabolism in aging: utilizing epigenetics to optimize geriatric pharmacotherapy. Pharmacogenomics 2024; 25:41-54. [PMID: 38126340 PMCID: PMC10794944 DOI: 10.2217/pgs-2023-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
We explore the relationship between epigenetic aging and drug metabolism. We review current evidence for changes in drug metabolism in normal aging, followed by a description of how epigenetic modifications associated with age can regulate the expression and functionality of genes. In particular, we focus on the role of epigenome-wide studies of human and mouse liver in understanding these age-related processes with respect to xenobiotic processing. We highlight genes encoding drug metabolizing enzymes and transporters revealed to be affected by epigenetic aging in these studies. We conclude that substantial evidence exists for epigenetic aging impacting drug metabolism and transport genes, but more work is needed. We further highlight the promise of pharmacoepigenetics applied to enhancing drug safety in older adults.
Collapse
Affiliation(s)
- Sara Abudahab
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Patricia W Slattum
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Virginia Center on Aging, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Elvin T Price
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Joseph L McClay
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
3
|
Butranova OI, Ushkalova EA, Zyryanov SK, Chenkurov MS, Baybulatova EA. Pharmacokinetics of Antibacterial Agents in the Elderly: The Body of Evidence. Biomedicines 2023; 11:1633. [PMID: 37371728 DOI: 10.3390/biomedicines11061633] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Infections are important factors contributing to the morbidity and mortality among elderly patients. High rates of consumption of antimicrobial agents by the elderly may result in increased risk of toxic reactions, deteriorating functions of various organs and systems and leading to the prolongation of hospital stay, admission to the intensive care unit, disability, and lethal outcome. Both safety and efficacy of antibiotics are determined by the values of their plasma concentrations, widely affected by physiologic and pathologic age-related changes specific for the elderly population. Drug absorption, distribution, metabolism, and excretion are altered in different extents depending on functional and morphological changes in the cardiovascular system, gastrointestinal tract, liver, and kidneys. Water and fat content, skeletal muscle mass, nutritional status, use of concomitant drugs are other determinants of pharmacokinetics changes observed in the elderly. The choice of a proper dosing regimen is essential to provide effective and safe antibiotic therapy in terms of attainment of certain pharmacodynamic targets. The objective of this review is to perform a structure of evidence on the age-related changes contributing to the alteration of pharmacokinetic parameters in the elderly.
Collapse
Affiliation(s)
- Olga I Butranova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena A Ushkalova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Sergey K Zyryanov
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- State Budgetary Institution of Healthcare of the City of Moscow "City Clinical Hospital No. 24 of the Moscow City Health Department", Pistzovaya Srt. 10, 127015 Moscow, Russia
| | - Mikhail S Chenkurov
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Elena A Baybulatova
- Department of General and Clinical Pharmacology, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| |
Collapse
|
4
|
TAN D, WANG J, ZHANG Q, QIN L, WANG Y, HE Y. The role of organic anion transport protein 1a4 in drug delivery and diseases: a review. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | | | - Lin QIN
- Zunyi Medical University, China
| | - Yuhe WANG
- Affiliated Hospital of Zunyi Medical University
| | - Yuqi HE
- Zunyi Medical University, China
| |
Collapse
|
5
|
Kobayashi T, Takeba Y, Ohta Y, Ootaki M, Kida K, Watanabe M, Iiri T, Matsumoto N. Prenatal glucocorticoid administration enhances bilirubin metabolic capacity and increases Ugt1a and Abcc2 gene expression via glucocorticoid receptor and PXR in rat fetal liver. J Obstet Gynaecol Res 2022; 48:1591-1606. [PMID: 35445507 DOI: 10.1111/jog.15235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 02/22/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
AIM Jaundice is especially common in premature infant born before 35 weeks. Because the premature infant liver is not fully developed at birth it may be incomplete the bilirubin metabolism. The purpose was to evaluate the metabolism and the excretion of bilirubin in the premature infant rat liver following prenatal glucocorticoid (GC) administration. METHODS Dexamethasone (DEX) was administered subcutaneously to pregnant Wistar rats for two consecutive days on gestational days 17 and 19. The fetus were delivered by cesarean section in gestational days 19 and 21. The mRNA levels and protein levels of bilirubin-metabolic enzymes and transporters in the fetal liver tissues were analyzed using RT-PCR immunohistochemistry staining and ELISA, respectively. We evaluated that the effect of bilirubin-metabolic enzymes in the primary fetal rat hepatocytes treated with DEX after pretreated with glucocorticoid receptor (GR, Nr3c1) and Pxr (Nr1i2) siRNA. RESULTS Ugt1a1 and Bsep (Abcb11) mRNA levels were significantly increased in the fetuses by prenatal GC administration. The mRNA levels of nuclear transcription factors Nr1i2, Car (Nr1i3), and Rxrα (Nr2b1) were also significantly increased in the fetuses by prenatal GC administration. In addition, DEX increased Nr1i2, Ugt1a1, and Abcc2 (Mrp2) mRNA levels in the primary fetal hepatocytes. The Nr3c1 or Nr1i2 siRNA-mediated knockdown suppressed the increases of Ugt1a1, and Abcc2 mRNA levels induced by DEX, indicating that DEX are mediated by GC receptor and PXR in primary fetal hepatocytes. CONCLUSIONS These results suggest that prenatal GC administration increases bilirubin-metabolic ability, in the premature liver, which may prevent jaundice in neonates.
Collapse
Affiliation(s)
- Tsukasa Kobayashi
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Yuki Ohta
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Masanori Ootaki
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Keisuke Kida
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Minoru Watanabe
- Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine, Kawasaki, Kanagawa, Japan
| | - Taroh Iiri
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Naoki Matsumoto
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| |
Collapse
|
6
|
Hunt NJ, McCourt PAG, Kuncic Z, Le Couteur DG, Cogger VC. Opportunities and Challenges for Nanotherapeutics for the Aging Population. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.832524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanotherapeutics utilize the properties of nanomaterials to alter the pharmacology of the drugs and therapies being transported, leading to changes in their biological disposition (absorption, distribution, cellular uptake, metabolism and elimination) and ultimately, their pharmacological effect. This provides an opportunity to optimize the pharmacology of drugs, particularly for those that are dependent on hepatic action. Old age is associated with changes in many pharmacokinetic processes which tend to impair drug efficacy and increase risk of toxicity. While these age-related changes are drug-specific they could be directly addressed using nanotechnology and precision targeting. The benefits of nanotherapeutics needs to be balanced against toxicity, with future use in humans dependent upon the gathering of information about the clearance and long-term safety of nanomaterials.
Collapse
|
7
|
Weyrich A, Frericks M, Eichenlaub M, Schneider S, Hofmann T, Van Cruchten S, van Ravenzwaay B. Ontogeny of renal, hepatic, and placental expression of ATP-binding cassette and solute carrier transporters in the rat and the rabbit. Reprod Toxicol 2022; 107:1-9. [PMID: 34757165 DOI: 10.1016/j.reprotox.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 02/08/2023]
Abstract
Species differences in developmental toxicity can be due to varying expression of xenobiotic transporters. Hence, knowledge on the ontogeny of these transporters, especially in human, rat and rabbit, is pivotal. Two superfamilies of transporters, the ATP-binding cassette (ABC) and the solute carrier (SLC) transporters, are well known for their role in the absorption, distribution and/or elimination of xenobiotics and endogenous substances. The aim of this study was to compare the expression levels of these xenobiotic transporters in liver, kidney and placenta of man, Wistar rat and New Zealand White rabbit during pre- and postnatal development. For this purpose, qPCR experiments were performed for rat and rabbit tissues and the gene expression profiles were compared with literature data from man, rat and rabbit. Data analysis showed large differences in transporter expression in development and between species. These results can be used to better understand developmental toxicity findings in non-clinical species and their relevance for man.
Collapse
Affiliation(s)
- Anastasia Weyrich
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany.
| | - Markus Frericks
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Michael Eichenlaub
- Bioscience Research, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Steffen Schneider
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Thomas Hofmann
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Steven Van Cruchten
- Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Bennard van Ravenzwaay
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| |
Collapse
|
8
|
Lei Z, Wu H, Yang Y, Hu Q, Lei Y, Liu W, Nie Y, Yang L, Zhang X, Yang C, Lin T, Tong F, Zhu J, Guo J. Dihydroartemisinin improves hypercholesterolemia in ovariectomized mice via enhancing vectorial transport of cholesterol and bile acids from blood to bile. Bioorg Med Chem 2022; 53:116520. [PMID: 34847494 DOI: 10.1016/j.bmc.2021.116520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
The increase of concentrations of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in the serum of postmenopausal women is the important risk factor of the high morbidity of cardiovascular diseases of old women worldwide. To test the anti-hypercholesterolemia function of dihydroartemisinin (DHA) in postmenopausal women, ovariectomized (OVX) mice were generated, and DHA were administrated to OVX mice for 4 weeks. The blood and liver tissues were collected for biochemical and histological tests respectively. The mRNA and protein expression levels of genes related to metabolism and transport of cholesterol, bile acid and fatty acid in the liver or ileum were checked through qPCR and western blot. DHA could significantly reduce the high concentrations of TC and LDL-C in the serum and the lipid accumulation in the liver of ovariectomized mice. The expression of ABCG5/8 was reduced in liver of OVX mice, and DHA could up-regulate the expression of them. Genes of transport proteins for bile salt transport from blood to bile, including Slc10a1, Slco1b2 and Abcb11, were also significantly up-regulated by DHA. DHA also down-regulated the expression of Slc10a2 in the ileum of OVX mice to reduce the absorption of bile salts. Genes required for fatty acid synthesis and uptake, such as Fasn and CD36, were reduced in the liver of OVX mice, and DHA administration could significantly up-regulate the expression of them. These results demonstrated that DHA could improve hypercholesterolemia in OVX mice through enhancing the vectorial transport of cholesterol and bile acid from blood to bile.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China.
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Nong-Lin-Xia Road 19(#), Yue-Xiu District, Guangzhou 510080, PR China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Lanxiang Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Xueying Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Changyuan Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Jiamin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
TAN D, CUI J, QIN L, CHEN L, WANG Y, ZHANG Q, HE Y. The role of OATP1A1 in cholestasis and drug-induced toxicity: a systematic review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.70722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Jinguo CUI
- Baodi Clinical College of Tianjin Medical University, China
| | - Lin QIN
- Zunyi Medical University, China
| | - Li CHEN
- Zunyi Medical University, China
| | - Yuhe WANG
- Affiliated Hospital of Zunyi Medical University, China
| | | | - Yuqi HE
- Zunyi Medical University, China
| |
Collapse
|
10
|
Matsunaga K, Fukunaga S, Abe J, Takeuchi H, Kitamoto S, Tomigahara Y. Comparative hepatotoxicity of a herbicide, epyrifenacil, in humans and rodents by comparing the dynamics and kinetics of its causal metabolite. JOURNAL OF PESTICIDE SCIENCE 2021; 46:333-341. [PMID: 34908893 PMCID: PMC8640676 DOI: 10.1584/jpestics.d21-026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
A new herbicide, epyrifenacil (S-3100), inhibits protoporphyrinogen oxidase (PPO) in plants. Repeated administration of epyrifenacil in laboratory animals led to some toxicological changes related to PPO inhibition, e.g., hepatotoxicity caused by porphyrin accumulation and anemia caused by the inhibition of heme biosynthesis. In vitro studies revealed that an ester-cleaved metabolite, S-3100-CA, is predominant in mammals, exhibits PPO-inhibitory activity, and thus is the cause of epyrifenacil-induced toxicity. To assess the human risk, the effects of species differences on the dynamics (PPO inhibition) and kinetics (liver uptake) of epyrifenacil were evaluated separately. The results of in vitro assays revealed an approximately tenfold weaker inhibition of PPO by S-3100-CA in humans than in rodents and six- to thirteen-fold less hepatic uptake of S-3100-CA in humans than in mice. Finally, it was suggested that humans are less sensitive to the toxicity of epyrifenacil than are rodents, although further mechanistic research is highly anticipated.
Collapse
Affiliation(s)
- Kohei Matsunaga
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1–98 Kasugade-Naka, Konohana-ku, Osaka 554–8558, Japan
| | - Satoki Fukunaga
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1–98 Kasugade-Naka, Konohana-ku, Osaka 554–8558, Japan
| | - Jun Abe
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1–98 Kasugade-Naka, Konohana-ku, Osaka 554–8558, Japan
| | - Hayato Takeuchi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1–98 Kasugade-Naka, Konohana-ku, Osaka 554–8558, Japan
| | - Sachiko Kitamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1–98 Kasugade-Naka, Konohana-ku, Osaka 554–8558, Japan
| | - Yoshitaka Tomigahara
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1–98 Kasugade-Naka, Konohana-ku, Osaka 554–8558, Japan
| |
Collapse
|
11
|
Sakurai K, Abe J, Hirasawa K, Takeuchi H, Kitamoto S. Absorption, Distribution, Metabolism, and Excretion of a New Herbicide, Epyrifenacil, in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13190-13199. [PMID: 34723485 DOI: 10.1021/acs.jafc.1c04167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The metabolic fate of a newly developed herbicide, epyrifenacil, (ethyl[(3-{2-chloro-4-fluoro-5-[3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl]phenoxy}pyridin-2-yl)oxy]acetate, S-3100), in rats was determined using 14C-labeled epyrifenacil. When it was administered orally to rats at 1 mg/kg, around 73-74% of the dose was absorbed, metabolized, and mainly excreted into feces within 48 h. The elimination of radioactivity in plasma and tissues was rapid, suggesting that exposure of epyrifenacil and metabolites is small. Metabolite analysis revealed that epyrifenacil was rapidly ester-cleaved to M1 and then mainly excreted into bile or further metabolized. No parent was detected in plasma, tissues, and urine. Remarkably, M1 was mainly distributed in the liver (at a concentration of 70-112 times higher than in plasma at a low dose). Furthermore, a significant sex-related difference was observed in urinary excretion of M1. Considering the above observations with those in the literature, the organic anion-transporting polypeptide (OATP) likely plays a role on the active transport of M1 in the liver and kidney.
Collapse
Affiliation(s)
- Kengo Sakurai
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Limited, 1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Jun Abe
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Limited, 1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Kota Hirasawa
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Limited, 1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Hayato Takeuchi
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Limited, 1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Sachiko Kitamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Limited, 1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
12
|
Tu Y, Wang L, Rong Y, Tam V, Yin T, Gao S, Singh R, Hu M. Hepatoenteric recycling is a new disposition mechanism for orally administered phenolic drugs and phytochemicals in rats. eLife 2021; 10:e58820. [PMID: 34196607 PMCID: PMC8248983 DOI: 10.7554/elife.58820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Many orally administered phenolic drugs undergo enterohepatic recycling (EHR), presumably mediated by the hepatic phase II enzymes. However, the disposition of extrahepatically generated phase II metabolites is unclear. This paper aims to determine the new roles of liver and intestine in the disposition of oral phenolics. Sixteen representative phenolics were tested using direct portal vein infusion and/or intestinal perfusion. The results showed that certain glucuronides were efficiently recycled by liver. OATP1B1/1B3/2B1 were the responsible uptake transporters. Hepatic uptake is the rate-limiting step in hepatic recycling. Our findings showed that the disposition of many oral phenolics is mediated by intestinal glucuronidation and hepatic recycling. A new disposition mechanism 'Hepatoenteric Recycling (HER)", where intestine is the metabolic organ and liver is the recycling organ, was revealed. Further investigations focusing on HER should help interpret how intestinal aliments or co-administered drugs that alter gut enzymes (e.g. UGTs) expression/activities will impact the disposition of phenolics.
Collapse
Affiliation(s)
- Yifan Tu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| | - Lu Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| | - Yi Rong
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| | - Vincent Tam
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| | - Song Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas Southern UniversityHoustonUnited States
| | - Rashim Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| |
Collapse
|
13
|
van Groen BD, Nicolaï J, Kuik AC, Van Cruchten S, van Peer E, Smits A, Schmidt S, de Wildt SN, Allegaert K, De Schaepdrijver L, Annaert P, Badée J. Ontogeny of Hepatic Transporters and Drug-Metabolizing Enzymes in Humans and in Nonclinical Species. Pharmacol Rev 2021; 73:597-678. [PMID: 33608409 DOI: 10.1124/pharmrev.120.000071] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The liver represents a major eliminating and detoxifying organ, determining exposure to endogenous compounds, drugs, and other xenobiotics. Drug transporters (DTs) and drug-metabolizing enzymes (DMEs) are key determinants of disposition, efficacy, and toxicity of drugs. Changes in their mRNA and protein expression levels and associated functional activity between the perinatal period until adulthood impact drug disposition. However, high-resolution ontogeny profiles for hepatic DTs and DMEs in nonclinical species and humans are lacking. Meanwhile, increasing use of physiologically based pharmacokinetic (PBPK) models necessitates availability of underlying ontogeny profiles to reliably predict drug exposure in children. In addition, understanding of species similarities and differences in DT/DME ontogeny is crucial for selecting the most appropriate animal species when studying the impact of development on pharmacokinetics. Cross-species ontogeny mapping is also required for adequate translation of drug disposition data in developing nonclinical species to humans. This review presents a quantitative cross-species compilation of the ontogeny of DTs and DMEs relevant to hepatic drug disposition. A comprehensive literature search was conducted on PubMed Central: Tables and graphs (often after digitization) in original manuscripts were used to extract ontogeny data. Data from independent studies were standardized and normalized before being compiled in graphs and tables for further interpretation. New insights gained from these high-resolution ontogeny profiles will be indispensable to understand cross-species differences in maturation of hepatic DTs and DMEs. Integration of these ontogeny data into PBPK models will support improved predictions of pediatric hepatic drug disposition processes. SIGNIFICANCE STATEMENT: Hepatic drug transporters (DTs) and drug-metabolizing enzymes (DMEs) play pivotal roles in hepatic drug disposition. Developmental changes in expression levels and activities of these proteins drive age-dependent pharmacokinetics. This review compiles the currently available ontogeny profiles of DTs and DMEs expressed in livers of humans and nonclinical species, enabling robust interpretation of age-related changes in drug disposition and ultimately optimization of pediatric drug therapy.
Collapse
Affiliation(s)
- B D van Groen
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - J Nicolaï
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - A C Kuik
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - S Van Cruchten
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - E van Peer
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - A Smits
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - S Schmidt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - S N de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - K Allegaert
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - L De Schaepdrijver
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - P Annaert
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| | - J Badée
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (B.D.v.G., K.A.); Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N.); Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (A.C.K.); Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium (S.V.C.); Fendigo sa/nvbv, An Alivira Group Company, Brussels, Belgium (E.v.P.); Department of Development and Regeneration KU Leuven, Leuven, Belgium (A.S.); Neonatal intensive care unit, University Hospitals Leuven, Leuven, Belgium (A.S.); Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida (S.S.); Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (S.N.d.W.); Departments of Development and Regeneration and of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (K.A.); Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (K.A.); Nonclinical Safety, Janssen R&D, Beerse, Belgium (L.D.S.); Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (P.A.); and Department of PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland (J.B.)
| |
Collapse
|
14
|
Population pharmacokinetic approach for evaluation of treosulfan and its active monoepoxide disposition in plasma and brain on the basis of a rat model. Pharmacol Rep 2020; 72:1297-1309. [PMID: 32474888 PMCID: PMC7550288 DOI: 10.1007/s43440-020-00115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 10/28/2022]
Abstract
PURPOSE Efficacy of treosulfan, used in the treatment of marrow disorders, depends on the activity of its monoepoxy-(EBDM) and diepoxy compounds. The study aimed to describe the pharmacokinetics of treosulfan and EBDM in the rat plasma and brain by means of mixed-effects modelling. METHODS The study had a one-animal-per-sample design and included ninty-six 10-week-old Wistar rats of both sexes. Treosulfan and EBDM concentrations in the brain and plasma were measured by an HPLC-MS/MS method. The population pharmacokinetic model was established in NONMEM software with a first-order estimation method with interaction. RESULTS One-compartment pharmacokinetic model best described changes in the concentrations of treosulfan in plasma, and EBDM concentrations in plasma and in the brain. Treosulfan concentrations in the brain followed a two-compartment model. Both treosulfan and EBDM poorly penetrated the blood-brain barrier (ratio of influx and efflux clearances through the blood-brain barrier was 0.120 and 0.317 for treosulfan and EBDM, respectively). Treosulfan plasma clearance was significantly lower in male rats than in females (0.273 L/h/kg vs 0.419 L/h/kg). CONCLUSIONS The developed population pharmacokinetic model is the first that allows the prediction of treosulfan and EBDM concentrations in rat plasma and brain. These results provide directions for future studies on treosulfan regarding the contribution of transport proteins or the development of a physiological-based model.
Collapse
|
15
|
Xu SF, Hu AL, Xie L, Liu JJ, Wu Q, Liu J. Age-associated changes of cytochrome P450 and related phase-2 gene/proteins in livers of rats. PeerJ 2019; 7:e7429. [PMID: 31396457 PMCID: PMC6681801 DOI: 10.7717/peerj.7429] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/07/2019] [Indexed: 12/16/2022] Open
Abstract
Cytochrome P450s (CYPs) are phase-I metabolic enzymes playing important roles in drug metabolism, dietary chemicals and endogenous molecules. Age is a key factor influencing P450s expression. Thus, age-related changes of CYP 1–4 families and bile acid homeostasis-related CYPs, the corresponding nuclear receptors and a few phase-II genes were examined. Livers from male Sprague-Dawley rats at fetus (−2 d), neonates (1, 7, and 14 d), weanling (21 d), puberty (28 and 35 d), adulthood (60 and 180 d), and aging (540 and 800 d) were collected and subjected to qPCR analysis. Liver proteins from 14, 28, 60, 180, 540 and 800 days of age were also extracted for selected protein analysis by western blot. In general, there were three patterns of their expression: Some of the drug-metabolizing enzymes and related nuclear receptors were low in fetal and neonatal stage, increased with liver maturation and decreased quickly at aging (AhR, Cyp1a1, Cyp2b1, Cyp2b2, Cyp3a1, Cyp3a2, Ugt1a2); the majority of P450s (Cyp1a2, Cyp2c6, Cyp2c11, Cyp2d2, Cyp2e1, CAR, PXR, FXR, Cyp7a1, Cyp7b1. Cyp8b1, Cyp27a1, Ugt1a1, Sult1a1, Sult1a2) maintained relatively high levels throughout the adulthood, and decreased at 800 days of age; and some had an early peak between 7 and 14 days (CAR, PXR, PPARα, Cyp4a1, Ugt1a2). The protein expression of CYP1A2, CYP2B1, CYP2E1, CYP3A1, CYP4A1, and CYP7A1 corresponded the trend of mRNA changes. In summary, this study characterized three expression patterns of 16 CYPs, five nuclear receptors, and four phase-II genes during development and aging in rat liver, adding to our understanding of age-related CYP expression changes and age-related disorders.
Collapse
Affiliation(s)
- Shang-Fu Xu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - An-Ling Hu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Lu Xie
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jia-Jia Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qin Wu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
16
|
Abstract
OBJECTIVES Glutathione S-transferases (GSTs) are phase-II metabolic enzymes playing important roles in drug metabolism, anti-oxidative stress and anti-aging. Age is a key factor influencing GSTs expression. Thus, age-related changes of 10 GSTs were examined. METHODS Livers from male Sprague-Dawley rats at fetus (-2 d), neonates (1, 7, 14 and 21 d), puberty (28 and 35 d), adulthood (60 and 180 d), and aging (540 and 800 d), were collected and subjected to qPCR analysis. Liver proteins from 14, 28, 60, 180, 540 and 800 d were also extracted for selected protein analysis by Western-blot. RESULTS The expression of GSTA1 and GSTP1 increased over the life span and the expression of GSTA4, GSTO1 and GSTZ1 gradually increased until adulthood, and slightly decreased at 800 days. The expression of GSTM1, GSTM3, GSTT1, GSTT2 and GSTK1 gradually increased until adulthood, but significantly decreased during aging of 540 and 800 days. There is a small peak at 7-14 d for GSTA1, GSTP1 and GSTZ1. The protein expression of GSTA1, GSTM1 and GSTP1 followed the trend of mRNA changes. DISCUSSION This study characterized three expression patterns of 10 GSTs during development and aging in rat liver, adding to our understanding of anti-aging role of GSTs.
Collapse
Affiliation(s)
- Shangfu Xu
- a Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine , Zunyi Medical University , Zunyi , People's Republic of China.,b Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica , Shanghai University of Traditional Chinese Medicine , Shanghai , People's Republic of China
| | - Dongshun Hou
- a Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine , Zunyi Medical University , Zunyi , People's Republic of China
| | - Jie Liu
- a Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine , Zunyi Medical University , Zunyi , People's Republic of China
| | - Lili Ji
- b Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica , Shanghai University of Traditional Chinese Medicine , Shanghai , People's Republic of China
| |
Collapse
|
17
|
Brzica H, Abdullahi W, Reilly BG, Ronaldson PT. Sex-specific differences in organic anion transporting polypeptide 1a4 (Oatp1a4) functional expression at the blood-brain barrier in Sprague-Dawley rats. Fluids Barriers CNS 2018; 15:25. [PMID: 30208928 PMCID: PMC6136214 DOI: 10.1186/s12987-018-0110-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background Targeting endogenous blood–brain barrier (BBB) transporters such as organic anion transporting polypeptide 1a4 (Oatp1a4) can facilitate drug delivery for treatment of neurological diseases. Advancement of Oatp targeting for optimization of CNS drug delivery requires characterization of sex-specific differences in BBB expression and/or activity of this transporter. Methods In this study, we investigated sex differences in Oatp1a4 functional expression at the BBB in adult and prepubertal (i.e., 6-week-old) Sprague–Dawley rats. We also performed castration or ovariectomy surgeries to assess the role of gonadal hormones on Oatp1a4 protein expression and transport activity at the BBB. Slco1a4 (i.e., the gene encoding Oatp1a4) mRNA expression and Oatp1a4 protein expression in brain microvessels was determined using quantitative real-time PCR and western blot analysis, respectively. Oatp transport function at the BBB was determined via in situ brain perfusion using [3H]taurocholate and [3H]atorvastatin as probe substrates. Data were expressed as mean ± SD and analyzed via one-way ANOVA followed by the post hoc Bonferroni t-test. Results Our results showed increased brain microvascular Slco1a4 mRNA and Oatp1a4 protein expression as well as increased brain uptake of [3H]taurocholate and [3H]atorvastatin in female rats as compared to males. Oatp1a4 expression at the BBB was enhanced in castrated male animals but was not affected by ovariectomy in female animals. In prepubertal rats, no sex-specific differences in brain microvascular Oatp1a4 expression were observed. Brain accumulation of [3H]taurocholate in male rats was increased following castration as compared to controls. In contrast, there was no difference in [3H]taurocholate brain uptake between ovariectomized and control female rats. Conclusions These novel data confirm sex-specific differences in BBB Oatp1a4 functional expression, findings that have profound implications for treatment of CNS diseases. Studies are ongoing to fully characterize molecular pathways that regulate sex differences in Oatp1a4 expression and activity.
Collapse
Affiliation(s)
- Hrvoje Brzica
- Department of Pharmacology, College of Medicine, University of Arizona, P.O. Box 245050, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5050, USA
| | - Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona, P.O. Box 245050, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5050, USA
| | - Bianca G Reilly
- Department of Pharmacology, College of Medicine, University of Arizona, P.O. Box 245050, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5050, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, P.O. Box 245050, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5050, USA.
| |
Collapse
|
18
|
Xu SF, Ji LL, Wu Q, Li J, Liu J. Ontogeny and aging of Nrf2 pathway genes in livers of rats. Life Sci 2018; 203:99-104. [PMID: 29689272 DOI: 10.1016/j.lfs.2018.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/22/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
Abstract
The Nrf2/Keap1 antioxidant system plays important roles in protecting against oxidative stress and toxic stimuli, which may vary in infants, elderly, and females. AIM The constitutive expression of the Nrf2 genes during development and aging in both sexes would help our understanding of the Nrf2/Keap1 pathway in toxicological studies. MAIN METHODS Sprague Dawley rat livers were collected at 11 age points from prenatal (-2 d), neonatal (1, 7, 14 and 21 d), at puberty (28 and 35 d), at adulthood (60 and 180 d), to aging (540 and 800 d) from both sexes. Total RNA and proteins were extracted for real-time RT-PCR and Western-blot analysis. KEY FINDINGS The abundant mRNA expression was in the order of Nrf2, Gclm, Nqo1, Gclc, Ho-1, and Keap1. The expression of these genes except Gclc was high in fetal livers, decreased at birth, reached the first peak at 7 days of age, and gradually decreased to adult levels till 180 days of age. All these genes remained high at 540 days of age, but declined at 800 days of age, with more increases with Nqo1 and Ho-1. Females had lower fetal, neonatal, and aged levels than males. Protein expressions of Nrf2, Nqo1, Ho-1, GCLC and GCLM agree with mRNA analysis. SIGNIFICANCE This study characterized the age- and sex-related changes of Nrf2-related gene/proteins in livers of rats, and higher expressions in newborns and aged rats could cope with increased oxidative stress in infants and elderly.
Collapse
Affiliation(s)
- Shang-Fu Xu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China; The MOE Key Lab for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Li Ji
- The MOE Key Lab for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Wu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
| | - Jin Li
- Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, China
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
19
|
Segarra I, Modamio P, Fernández C, Mariño EL. Sex-Divergent Clinical Outcomes and Precision Medicine: An Important New Role for Institutional Review Boards and Research Ethics Committees. Front Pharmacol 2017; 8:488. [PMID: 28785221 PMCID: PMC5519571 DOI: 10.3389/fphar.2017.00488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022] Open
Abstract
The efforts toward individualized medicine have constantly increased in an attempt to improve treatment options. These efforts have led to the development of small molecules which target specific molecular pathways involved in cancer progression. We have reviewed preclinical studies of sunitinib that incorporate sex as a covariate to explore possible sex-based differences in pharmacokinetics and drug–drug interactions (DDI) to attempt a relationship with published clinical outputs. We observed that covariate sex is lacking in most clinical outcome reports and suggest a series of ethic-based proposals to improve research activities and identify relevant different sex outcomes. We propose a deeper integration of preclinical, clinical, and translational research addressing statistical and clinical significance jointly; to embed specific sex-divergent endpoints to evaluate possible gender differences objectively during all stages of research; to pay greater attention to sex-divergent outcomes in polypharmacy scenarios, DDI and bioequivalence studies; the clear reporting of preclinical and clinical findings regarding sex-divergent outcomes; as well as to encourage the active role of scientists and the pharmaceutical industry to foster a new scientific culture through their research programs, practice, and participation in editorial boards and Institutional Ethics Review Boards (IRBs) and Research Ethics Committees (RECs). We establish the IRB/REC as the centerpiece for the implementation of these proposals. We suggest the expansion of its competence to follow up clinical trials to ensure that sex differences are addressed and recognized; to engage in data monitoring committees to improve clinical research cooperation and ethically address those potential clinical outcome differences between male and female patients to analyze their social and clinical implications in research and healthcare policies.
Collapse
Affiliation(s)
- Ignacio Segarra
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Pilar Modamio
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Cecilia Fernández
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Eduardo L Mariño
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| |
Collapse
|
20
|
Zhang BB, Li WK, Hou WY, Luo Y, Shi JZ, Li C, Wei LX, Liu J. Zuotai and HgS differ from HgCl 2 and methyl mercury in Hg accumulation and toxicity in weanling and aged rats. Toxicol Appl Pharmacol 2017; 331:76-84. [PMID: 28536007 DOI: 10.1016/j.taap.2017.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022]
Abstract
Mercury sulfides are used in Ayurvedic medicines, Tibetan medicines, and Chinese medicines for thousands of years and are still used today. Cinnabar (α-HgS) and metacinnabar (β-HgS) are different from mercury chloride (HgCl2) and methylmercury (MeHg) in their disposition and toxicity. Whether such scenario applies to weanling and aged animals is not known. To address this question, weanling (21d) and aged (450d) rats were orally given Zuotai (54% β-HgS, 30mg/kg), HgS (α-HgS, 30mg/kg), HgCl2 (34.6mg/kg), or MeHg (MeHgCl, 3.2mg/kg) for 7days. Accumulation of Hg in kidney and liver, and the toxicity-sensitive gene expressions were examined. Animal body weight gain was decreased by HgCl2 and to a lesser extent by MeHg, but unaltered after Zuotai and HgS. HgCl2 and MeHg produced dramatic tissue Hg accumulation, increased kidney (kim-1 and Ngal) and liver (Ho-1) injury-sensitive gene expressions, but such changes are absent or mild after Zuotai and HgS. Aged rats were more susceptible than weanling rats to Hg toxicity. To examine roles of transporters in Hg accumulation, transporter gene expressions were examined. The expression of renal uptake transporters Oat1, Oct2, and Oatp4c1 and hepatic Oatp2 was decreased, while the expression of renal efflux transporter Mrp2, Mrp4 and Mdr1b was increased following HgCl2 and MeHg, but unaffected by Zuotai and HgS. Thus, Zuotai and HgS differ from HgCl2 and MeHg in producing tissue Hg accumulation and toxicity, and aged rats are more susceptible than weanling rats. Transporter expression could be adaptive means to reduce tissue Hg burden.
Collapse
Affiliation(s)
- Bin-Bin Zhang
- Key Lab for Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wen-Kai Li
- Key Lab for Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wei-Yu Hou
- Key Lab for Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ya Luo
- School of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Jing-Zhen Shi
- Guiyang Traditional Medical College, Guiyang 550004, China
| | - Cen Li
- Key Lab of Pharmacology and Safety Evaluation of Tibetan Medicine in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Li-Xin Wei
- Key Lab of Pharmacology and Safety Evaluation of Tibetan Medicine in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Jie Liu
- Key Lab for Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
21
|
Murray M, Zhou F. Trafficking and other regulatory mechanisms for organic anion transporting polypeptides and organic anion transporters that modulate cellular drug and xenobiotic influx and that are dysregulated in disease. Br J Pharmacol 2017; 174:1908-1924. [PMID: 28299773 DOI: 10.1111/bph.13785] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 12/25/2022] Open
Abstract
Organic anion transporters (OATs) and organic anion-transporting polypeptides (OATPs), encoded by a number of solute carrier (SLC)22A and SLC organic anion (SLCO) genes, mediate the absorption and distribution of drugs and other xenobiotics. The regulation of OATs and OATPs is complex, comprising both transcriptional and post-translational mechanisms. Plasma membrane expression is required for cellular substrate influx by OATs/OATPs. Thus, interest in post-translational regulatory processes, including membrane targeting, endocytosis, recycling and degradation of transporter proteins, is increasing because these are critical for plasma membrane expression. After being synthesized, transporters undergo N-glycosylation in the endoplasmic reticulum and Golgi apparatus and are delivered to the plasma membrane by vesicular transport. Their expression at the cell surface is maintained by de novo synthesis and recycling, which occurs after clathrin- and/or caveolin-dependent endocytosis of existing protein. Several studies have shown that phosphorylation by signalling kinases is important for the internalization and recycling processes, although the transporter protein does not appear to be directly phosphorylated. After internalization, transporters that are targeted for degradation undergo ubiquitination, most likely on intracellular loop residues. Epigenetic mechanisms, including methylation of gene regulatory regions and transcription from alternate promoters, are also significant in the regulation of certain SLC22A/SLCO genes. The membrane expression of OATs/OATPs is dysregulated in disease, which affects drug efficacy and detoxification. Several transporters are expressed in the cytoplasmic subcompartment in disease states, which suggests that membrane targeting/internalization/recycling may be impaired. This article focuses on recent developments in OAT and OATP regulation, their dysregulation in disease and the significance for drug therapy.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
22
|
Chew CC, Ng S, Chee YL, Koo TW, Liew MH, Chee ELC, Modamio P, Fernández C, Mariño EL, Segarra I. Diclofenac sex-divergent drug-drug interaction with Sunitinib: pharmacokinetics and tissue distribution in male and female mice. Invest New Drugs 2017; 35:399-411. [DOI: 10.1007/s10637-017-0447-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
|
23
|
Ontogeny, aging, and gender-related changes in hepatic multidrug resistant protein genes in rats. Life Sci 2017; 170:108-114. [DOI: 10.1016/j.lfs.2016.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/16/2016] [Accepted: 11/23/2016] [Indexed: 12/26/2022]
|
24
|
Sunitinib-paracetamol sex-divergent pharmacokinetics and tissue distribution drug-drug interaction in mice. Invest New Drugs 2017; 35:145-157. [DOI: 10.1007/s10637-016-0415-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022]
|
25
|
Xu YJ, Wang Y, Lu YF, Xu SF, Wu Q, Liu J. Age-associated differences in transporter gene expression in kidneys of male rats. Mol Med Rep 2016; 15:474-482. [DOI: 10.3892/mmr.2016.5970] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 10/18/2016] [Indexed: 11/06/2022] Open
|
26
|
Segarra I, Modamio P, Fernández C, Mariño EL. Sunitinib Possible Sex-Divergent Therapeutic Outcomes. Clin Drug Investig 2016; 36:791-9. [PMID: 27318944 DOI: 10.1007/s40261-016-0428-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sunitinib is a tyrosine kinase inhibitor used for the treatment of renal cell carcinoma and metastatic brain tumors. Preclinical pharmacokinetic studies have shown higher sunitinib hepatic and brain exposure in female mice and higher sunitinib kidney concentrations in male mice. We explored whether sex-divergent tissue pharmacokinetics may anticipate sex-divergent therapeutic and toxicology responses in male and female patients. The review of the available scientific literature identified case reports, case series reports, clinical trials, and other studies associating sex with sunitinib outcomes. The results suggest male patients may respond better to renal cell carcinoma treatment and female patients may have better brain tumor treatment outcomes but a higher incidence of adverse events. Although more high-quality evidence is needed, these results, as anticipated by the preclinical data, may indicate possible sunitinib sex-divergent therapeutic outcomes in patients. In addition, we propose the systematic analysis of sex-based outcomes in clinical trial reports and their inclusion and review in the ethics committees and review boards to prevent, amongst others, patient burden in upcoming clinical trials.
Collapse
Affiliation(s)
- Ignacio Segarra
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avn. Joan XXIII, s/n, Barcelona, 08028, Spain.
| | - Pilar Modamio
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avn. Joan XXIII, s/n, Barcelona, 08028, Spain
| | - Cecilia Fernández
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avn. Joan XXIII, s/n, Barcelona, 08028, Spain
| | - Eduardo L Mariño
- Clinical Pharmacy and Pharmacotherapy Unit, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Avn. Joan XXIII, s/n, Barcelona, 08028, Spain
| |
Collapse
|
27
|
Xu SF, Wu Q, Zhang BB, Li H, Xu YS, Du YZ, Wei LX, Liu J. Comparison of mercury sulfides with mercury chloride and methylmercury on hepatic P450, phase-2 and transporter gene expression in mice. J Trace Elem Med Biol 2016; 37:37-43. [PMID: 27473830 DOI: 10.1016/j.jtemb.2016.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/02/2016] [Accepted: 06/06/2016] [Indexed: 12/25/2022]
Abstract
Zuotai (mainly β-HgS) and Zhusha (also called as cinnabar, mainly α-HgS) are used in traditional medicines in combination with herbs or even drugs in the treatment of various disorders, while mercury chloride (HgCl2) and methylmercury (MeHg) do not have known medical values but are highly toxic. This study aimed to compare the effects of mercury sulfides with HgCl2 and MeHg on hepatic drug processing gene expression. Mice were orally administrated with Zuotai (β-HgS, 30mg/kg), α-HgS (HgS, 30mg/kg), HgCl2 (33.6mg/kg), or MeHg (3.1mg/kg) for 7days, and the expression of genes related to phase-1 drug metabolism (P450), phase-2 conjugation, and phase-3 (transporters) genes were examined. The mercurials at the dose and duration used in the study did not have significant effects on the expression of cytochrome P450 1-4 family genes and the corresponding nuclear receptors, except for a slight increase in PPARα and Cyp4a10 by HgCl2. The expressions of UDP-glucuronosyltransferase and sulfotransferase were increased by HgCl2 and MeHg, but not by Zuotai and HgS. HgCl2 decreased the expression of organic anion transporter (Oatp1a1), but increased Oatp1a4. Both HgCl2 and MeHg increased the expression of multidrug resistance-associated protein genes (Mrp1, Mrp2, Mrp3, and Mrp4). Zuotai and HgS had little effects on these transporter genes. In conclusion, Zuotai and HgS are different from HgCl2 and MeHg in hepatic drug processing gene expression; suggesting that chemical forms of mercury not only affect their disposition and toxicity, but also affect their effects on the expression of hepatic drug processing genes.
Collapse
Affiliation(s)
- S F Xu
- Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Q Wu
- Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - B B Zhang
- Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - H Li
- Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Y S Xu
- Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Y Z Du
- Northwest Plateau Institute of biology of Chinese Academy of Sciences, Xining, China
| | - L X Wei
- Northwest Plateau Institute of biology of Chinese Academy of Sciences, Xining, China
| | - J Liu
- Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, China.
| |
Collapse
|
28
|
Sunitinib DDI with paracetamol, diclofenac, mefenamic acid and ibuprofen shows sex-divergent effects on the tissue uptake and distribution pattern of sunitinib in mice. Cancer Chemother Pharmacol 2016; 78:709-18. [PMID: 27495788 DOI: 10.1007/s00280-016-3120-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/28/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE Pharmacokinetic interaction of sunitinib with diclofenac, paracetamol, mefenamic acid and ibuprofen was evaluated due to their P450 mediated metabolism and OATP1B1, OATP1B3, ABCB1, ABCG2 transporters overlapping features. METHODS Male and female mice were administered 6 sunitinib doses (60 mg/kg) PO every 12 h and 30 min before the last dose were administered vehicle (control groups), 250 mg/kg paracetamol, 30 mg/kg diclofenac, 50 mg/kg mefenamic acid or 30 mg/kg ibuprofen (study groups), euthanized 6 h post last administration and sunitinib plasma, liver, kidney, brain concentrations analyzed. RESULTS Ibuprofen halved sunitinib plasma concentration in female mice (p < 0.01) and showed 59 % lower concentration than male mice (p < 0.05). Diclofenac and paracetamol female mice showed 45 and 25 % higher plasma concentrations than male mice which were 27 % lower in mefenamic acid female mice. Paracetamol increased 2.2 (p < 0.05) liver and 1.4-fold (p < 0.05) kidney sunitinib concentrations in male mice that were lower in female mice (p < 0.01, p < 0.001, respectively). Ibuprofen increased 2.9-fold (p < 0.01) liver concentration in male mice that were higher than in female mice (p < 0.001). Female control mice had 35 % higher sunitinib brain concentration than male mice but the concentration decreased 37, 33, 10 and 57 % in the diclofenac, paracetamol, mefenamic acid and ibuprofen (p < 0.001), respectively. Tissue-plasma concentrations correlations were nonsignificant in control, paracetamol, mefenamic acid and ibuprofen groups but was significant in the diclofenac group in male mice (liver, brain) and female mice (liver, kidney). CONCLUSIONS These results portray gender-based sunitinib pharmacokinetic differences and NSAIDs selective effects on male or female mice, with potential clinical translatability.
Collapse
|