1
|
Zhao S, Jiang X, Li N, Wang T. SLMO transfers phosphatidylserine between the outer and inner mitochondrial membrane in Drosophila. PLoS Biol 2024; 22:e3002941. [PMID: 39680501 DOI: 10.1371/journal.pbio.3002941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Phospholipids are critical building blocks of mitochondria, and proper mitochondrial function and architecture rely on phospholipids that are primarily transported from the endoplasmic reticulum (ER). Here, we show that mitochondrial form and function rely on synthesis of phosphatidylserine (PS) in the ER through phosphatidylserine synthase (PSS), trafficking of PS from ER to mitochondria (and within mitochondria), and the conversion of PS to phosphatidylethanolamine (PE) by phosphatidylserine decarboxylase (PISD) in the inner mitochondrial membrane (IMM). Using a forward genetic screen in Drosophila, we found that Slowmo (SLMO) specifically transfers PS from the outer mitochondrial membrane (OMM) to the IMM within the inner boundary membrane (IBM) domain. Thus, SLMO is required for shaping mitochondrial morphology, but its putative conserved binding partner, dTRIAP, is not. Importantly, SLMO's role in maintaining mitochondrial morphology is conserved in humans via the SLMO2 protein and is independent of mitochondrial dynamics. Our results highlight the importance of a conserved PSS-SLMO-PISD pathway in maintaining the structure and function of mitochondria.
Collapse
Affiliation(s)
- Siwen Zhao
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuguang Jiang
- National Institute of Biological Sciences, Beijing, China
| | - Ning Li
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Feng L, Li B, Yong SS, Wen X, Tian Z. The emerging role of exercise in Alzheimer's disease: Focus on mitochondrial function. Ageing Res Rev 2024; 101:102486. [PMID: 39243893 DOI: 10.1016/j.arr.2024.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by memory impairment and cognitive dysfunction, which eventually leads to the disability and mortality of older adults. Although the precise mechanisms by which age promotes the development of AD remains poorly understood, mitochondrial dysfunction plays a central role in the development of AD. Currently, there is no effective treatment for this debilitating disease. It is well accepted that exercise exerts neuroprotective effects by ameliorating mitochondrial dysfunction in the neurons of AD, which involves multiple mechanisms, including mitochondrial dynamics, biogenesis, mitophagy, transport, and signal transduction. In addition, exercise promotes mitochondria communication with other organelles in AD neurons, which should receive more attentions in the future.
Collapse
Affiliation(s)
- Lili Feng
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China.
| | - Bowen Li
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China
| | - Su Sean Yong
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China
| | - Xu Wen
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China.
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
3
|
Tábara LC, Segawa M, Prudent J. Molecular mechanisms of mitochondrial dynamics. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00785-1. [PMID: 39420231 DOI: 10.1038/s41580-024-00785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Mitochondria not only synthesize energy required for cellular functions but are also involved in numerous cellular pathways including apoptosis, calcium homoeostasis, inflammation and immunity. Mitochondria are dynamic organelles that undergo cycles of fission and fusion, and these transitions between fragmented and hyperfused networks ensure mitochondrial function, enabling adaptations to metabolic changes or cellular stress. Defects in mitochondrial morphology have been associated with numerous diseases, highlighting the importance of elucidating the molecular mechanisms regulating mitochondrial morphology. Here, we discuss recent structural insights into the assembly and mechanism of action of the core mitochondrial dynamics proteins, such as the dynamin-related protein 1 (DRP1) that controls division, and the mitofusins (MFN1 and MFN2) and optic atrophy 1 (OPA1) driving membrane fusion. Furthermore, we provide an updated view of the complex interplay between different proteins, lipids and organelles during the processes of mitochondrial membrane fusion and fission. Overall, we aim to present a valuable framework reflecting current perspectives on how mitochondrial membrane remodelling is regulated.
Collapse
Affiliation(s)
- Luis-Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Mayuko Segawa
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Larrañaga-SanMiguel A, Bengoa-Vergniory N, Flores-Romero H. Crosstalk between mitochondria-ER contact sites and the apoptotic machinery as a novel health meter. Trends Cell Biol 2024:S0962-8924(24)00185-5. [PMID: 39379268 DOI: 10.1016/j.tcb.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) function as transient signaling platforms that regulate essential cellular functions. MERCS are enriched in specific proteins and lipids that connect mitochondria and the ER together and modulate their activities. Dysregulation of MERCS is associated with several human pathologies including Alzheimer's disease (AD), Parkinson's disease (PD), and cancer. BCL-2 family proteins can locate at MERCS and control essential cellular functions such as calcium signaling and autophagy in addition to their role in mitochondrial apoptosis. Moreover, the BCL-2-mediated apoptotic machinery was recently found to trigger cGAS-STING pathway activation and a proinflammatory response, a recognized hallmark of these diseases that requires mitochondria-ER interplay. This review underscores the pivotal role of MERCS in regulating essential cellular functions, focusing on their crosstalk with BCL-2 family proteins, and discusses how their dysregulation is linked to disease.
Collapse
Affiliation(s)
| | - Nora Bengoa-Vergniory
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Hector Flores-Romero
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
5
|
Pang M, Yu L, Li X, Lu C, Xiao C, Liu Y. A promising anti-tumor targeting on ERMMDs mediated abnormal lipid metabolism in tumor cells. Cell Death Dis 2024; 15:562. [PMID: 39098929 PMCID: PMC11298533 DOI: 10.1038/s41419-024-06956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
The investigation of aberrations in lipid metabolism within tumor has become a burgeoning field of study that has garnered significant attention in recent years. Lipids can serve as a potent source of highly energetic fuel to support the rapid growth of neoplasia, in where the ER-mitochondrial membrane domains (ERMMDs) provide an interactive network for facilitating communication between ER and mitochondria as well as their intermembrane space and adjunctive proteins. In this review, we discuss fatty acids (FAs) anabolic and catabolic metabolism, as well as how CPT1A-VDAC-ACSL clusters on ERMMDs participate in FAs transport, with a major focus on ERMMDs mediated collaborative loop of FAO, Ca2+ transmission in TCA cycle and OXPHOS process. Here, we present a comprehensive perspective on the regulation of aberrant lipid metabolism through ERMMDs conducted tumor physiology might be a promising and potential target for tumor starvation therapy.
Collapse
Affiliation(s)
- Mingshi Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
6
|
Boone C, Lewis SC. Bridging lipid metabolism and mitochondrial genome maintenance. J Biol Chem 2024; 300:107498. [PMID: 38944117 PMCID: PMC11326895 DOI: 10.1016/j.jbc.2024.107498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Mitochondria are the nexus of cellular energy metabolism and major signaling hubs that integrate information from within and without the cell to implement cell function. Mitochondria harbor a distinct polyploid genome, mitochondrial DNA (mtDNA), that encodes respiratory chain components required for energy production. MtDNA mutation and depletion have been linked to obesity and metabolic syndrome in humans. At the cellular and subcellular levels, mtDNA synthesis is coordinated by membrane contact sites implicated in lipid transfer from the endoplasmic reticulum, tying genome maintenance to lipid storage and homeostasis. Here, we examine the relationship between mtDNA and lipid trafficking, the influence of lipotoxicity on mtDNA integrity, and how lipid metabolism may be disrupted in primary mtDNA disease.
Collapse
Affiliation(s)
- Casadora Boone
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | - Samantha C Lewis
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA; Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.
| |
Collapse
|
7
|
Preminger N, Schuldiner M. Beyond fission and fusion-Diving into the mysteries of mitochondrial shape. PLoS Biol 2024; 22:e3002671. [PMID: 38949997 PMCID: PMC11216622 DOI: 10.1371/journal.pbio.3002671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
Mitochondrial shape and network formation have been primarily associated with the well-established processes of fission and fusion. However, recent research has unveiled an intricate and multifaceted landscape of mitochondrial morphology that extends far beyond the conventional fission-fusion paradigm. These less-explored dimensions harbor numerous unresolved mysteries. This review navigates through diverse processes influencing mitochondrial shape and network formation, highlighting the intriguing complexities and gaps in our understanding of mitochondrial architecture. The exploration encompasses various scales, from biophysical principles governing membrane dynamics to molecular machineries shaping mitochondria, presenting a roadmap for future research in this evolving field.
Collapse
Affiliation(s)
- Noga Preminger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Lo CH, Liu Z, Chen S, Lin F, Berneshawi AR, Yu CQ, Koo EB, Kowal TJ, Ning K, Hu Y, Wang WJ, Liao YJ, Sun Y. Primary cilia formation requires the Leigh syndrome-associated mitochondrial protein NDUFAF2. J Clin Invest 2024; 134:e175560. [PMID: 38949024 PMCID: PMC11213510 DOI: 10.1172/jci175560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/10/2024] [Indexed: 07/02/2024] Open
Abstract
Mitochondria-related neurodegenerative diseases have been implicated in the disruption of primary cilia function. Mutation in an intrinsic mitochondrial complex I component NDUFAF2 has been identified in Leigh syndrome, a severe inherited mitochondriopathy. Mutations in ARMC9, which encodes a basal body protein, cause Joubert syndrome, a ciliopathy with defects in the brain, kidney, and eye. Here, we report a mechanistic link between mitochondria metabolism and primary cilia signaling. We discovered that loss of NDUFAF2 caused both mitochondrial and ciliary defects in vitro and in vivo and identified NDUFAF2 as a binding partner for ARMC9. We also found that NDUFAF2 was both necessary and sufficient for cilia formation and that exogenous expression of NDUFAF2 rescued the ciliary and mitochondrial defects observed in cells from patients with known ARMC9 deficiency. NAD+ supplementation restored mitochondrial and ciliary dysfunction in ARMC9-deficient cells and zebrafish and ameliorated the ocular motility and motor deficits of a patient with ARMC9 deficiency. The present results provide a compelling mechanistic link, supported by evidence from human studies, between primary cilia and mitochondrial signaling. Importantly, our findings have significant implications for the development of therapeutic approaches targeting ciliopathies.
Collapse
Affiliation(s)
- Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Zhiquan Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Siyu Chen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Frank Lin
- Department of Medicine, Stanford University, Palo Alto, California, USA
| | - Andrew R. Berneshawi
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Charles Q. Yu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Euna B. Koo
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Tia J. Kowal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, College of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Y. Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
- Palo Alto Veterans Administration, Palo Alto, California, USA
- Stanford Maternal and Child Health Research Institute and
- BioX, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
9
|
Dadsena S, Cuevas Arenas R, Vieira G, Brodesser S, Melo MN, García-Sáez AJ. Lipid unsaturation promotes BAX and BAK pore activity during apoptosis. Nat Commun 2024; 15:4700. [PMID: 38830851 PMCID: PMC11148036 DOI: 10.1038/s41467-024-49067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
BAX and BAK are proapoptotic members of the BCL2 family that directly mediate mitochondrial outer membrane permeabilition (MOMP), a central step in apoptosis execution. However, the molecular architecture of the mitochondrial apoptotic pore remains a key open question and especially little is known about the contribution of lipids to MOMP. By performing a comparative lipidomics analysis of the proximal membrane environment of BAK isolated in lipid nanodiscs, we find a significant enrichment of unsaturated species nearby BAK and BAX in apoptotic conditions. We then demonstrate that unsaturated lipids promote BAX pore activity in model membranes, isolated mitochondria and cellular systems, which is further supported by molecular dynamics simulations. Accordingly, the fatty acid desaturase FADS2 not only enhances apoptosis sensitivity, but also the activation of the cGAS/STING pathway downstream mtDNA release. The correlation of FADS2 levels with the sensitization to apoptosis of different lung and kidney cancer cell lines by co-treatment with unsaturated fatty acids supports the relevance of our findings. Altogether, our work provides an insight on how local lipid environment affects BAX and BAK function during apoptosis.
Collapse
Affiliation(s)
- Shashank Dadsena
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Rodrigo Cuevas Arenas
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584CG, Utrecht, The Netherlands
| | - Gonçalo Vieira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Susanne Brodesser
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany.
- Department of Membrane Dynamics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Castellaneta A, Losito I, Porcelli V, Barile S, Maresca A, Del Dotto V, Losacco V, Guadalupi LS, Calvano CD, Chan DC, Carelli V, Palmieri L, Cataldi TRI. Lipidomics reveals the reshaping of the mitochondrial phospholipid profile in cells lacking OPA1 and mitofusins. J Lipid Res 2024; 65:100563. [PMID: 38763493 PMCID: PMC11225846 DOI: 10.1016/j.jlr.2024.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
Depletion or mutations of key proteins for mitochondrial fusion, like optic atrophy 1 (OPA1) and mitofusins 1 and 2 (Mfn 1 and 2), are known to significantly impact the mitochondrial ultrastructure, suggesting alterations of their membranes' lipid profiles. In order to make an insight into this issue, we used hydrophilic interaction liquid chromatography coupled with electrospray ionization-high resolution MS to investigate the mitochondrial phospholipid (PL) profile of mouse embryonic fibroblasts knocked out for OPA1 and Mfn1/2 genes. One hundred sixty-seven different sum compositions were recognized for the four major PL classes of mitochondria, namely phosphatidylcholines (PCs, 63), phosphatidylethanolamines (55), phosphatidylinositols (21), and cardiolipins (28). A slight decrease in the cardiolipin/PC ratio was found for Mfn1/2-knockout mitochondria. Principal component analysis and hierarchical cluster analysis were subsequently used to further process hydrophilic interaction liquid chromatography-ESI-MS data. A progressive decrease in the incidence of alk(en)yl/acyl species in PC and phosphatidylethanolamine classes and a general increase in the incidence of unsaturated acyl chains across all the investigated PL classes was inferred in OPA1 and Mfn1/2 knockouts compared to WT mouse embryonic fibroblasts. These findings suggest a reshaping of the PL profile consistent with the changes observed in the mitochondrial ultrastructure when fusion proteins are absent. Based on the existing knowledge on the metabolism of mitochondrial phospholipids, we propose that fusion proteins, especially Mfns, might influence the PL transfer between the mitochondria and the endoplasmic reticulum, likely in the context of mitochondria-associated membranes.
Collapse
Affiliation(s)
- Andrea Castellaneta
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Ilario Losito
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy; Centro Interdipartimentale SMART- Università degli Studi di Bari Aldo Moro, Bari, Italy.
| | - Vito Porcelli
- Dipartimento di Bioscienze, Biotecnologie e Ambiente - Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Serena Barile
- Dipartimento di Bioscienze, Biotecnologie e Ambiente - Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Valentina Del Dotto
- Dipartimento di Scienze Biomediche e Neuromotorie, Università degli Studi di Bologna, Bologna, Italy
| | - Valentina Losacco
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy
| | | | - Cosima Damiana Calvano
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy; Centro Interdipartimentale SMART- Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; Dipartimento di Scienze Biomediche e Neuromotorie, Università degli Studi di Bologna, Bologna, Italy
| | - Luigi Palmieri
- Dipartimento di Bioscienze, Biotecnologie e Ambiente - Università degli Studi di Bari Aldo Moro, Bari, Italy; CNR-Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica- Università degli Studi di Bari Aldo Moro, Bari, Italy; Centro Interdipartimentale SMART- Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
11
|
Tong L, Chen Z, Li Y, Wang X, Yang C, Li Y, Zhu Y, Lu Y, Liu Q, Xu N, Shao S, Wu L, Zhang P, Wu G, Wu X, Chen X, Fang J, Jia R, Xu T, Li B, Zheng L, Liu J, Tong X. Transketolase promotes MAFLD by limiting inosine-induced mitochondrial activity. Cell Metab 2024; 36:1013-1029.e5. [PMID: 38547864 DOI: 10.1016/j.cmet.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/10/2024] [Accepted: 03/06/2024] [Indexed: 05/12/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has a global prevalence of about 25% and no approved therapy. Using metabolomic and proteomic analyses, we identified high expression of hepatic transketolase (TKT), a metabolic enzyme of the pentose phosphate pathway, in human and mouse MAFLD. Hyperinsulinemia promoted TKT expression through the insulin receptor-CCAAT/enhancer-binding protein alpha axis. Utilizing liver-specific TKT overexpression and knockout mouse models, we demonstrated that TKT was sufficient and required for MAFLD progression. Further metabolic flux analysis revealed that Tkt deletion increased hepatic inosine levels to activate the protein kinase A-cAMP response element binding protein cascade, promote phosphatidylcholine synthesis, and improve mitochondrial function. Moreover, insulin induced hepatic TKT to limit inosine-dependent mitochondrial activity. Importantly, N-acetylgalactosamine (GalNAc)-siRNA conjugates targeting hepatic TKT showed promising therapeutic effects on mouse MAFLD. Our study uncovers how hyperinsulinemia regulates TKT-orchestrated inosine metabolism and mitochondrial function and provides a novel therapeutic strategy for MAFLD prevention and treatment.
Collapse
Affiliation(s)
- Lingfeng Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhangbing Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yangyang Li
- Unit of Immune and Metabolic Regulation, School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Xinxia Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Changjie Yang
- Department of Liver Surgery, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yakui Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yemin Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Qi Liu
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Nannan Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sijia Shao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lifang Wu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ping Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guangyu Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoyu Wu
- Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiaosong Chen
- Department of Liver Surgery, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200032, China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Tianle Xu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liang Zheng
- Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Synvida Biotechnology Co., Ltd, Shanghai, China.
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
12
|
Xiao T, English AM, Wilson ZN, Maschek J, Cox JE, Hughes AL. The phospholipids cardiolipin and phosphatidylethanolamine differentially regulate MDC biogenesis. J Cell Biol 2024; 223:e202302069. [PMID: 38497895 PMCID: PMC10949074 DOI: 10.1083/jcb.202302069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Cells utilize multiple mechanisms to maintain mitochondrial homeostasis. We recently characterized a pathway that remodels mitochondria in response to metabolic alterations and protein overload stress. This remodeling occurs via the formation of large membranous structures from the mitochondrial outer membrane called mitochondrial-derived compartments (MDCs), which are eventually released from mitochondria and degraded. Here, we conducted a microscopy-based screen in budding yeast to identify factors that regulate MDC formation. We found that two phospholipids, cardiolipin (CL) and phosphatidylethanolamine (PE), differentially regulate MDC biogenesis. CL depletion impairs MDC biogenesis, whereas blocking mitochondrial PE production leads to constitutive MDC formation. Additionally, in response to metabolic MDC activators, cellular and mitochondrial PE declines, and overexpressing mitochondrial PE synthesis enzymes suppress MDC biogenesis. Altogether, our data indicate a requirement for CL in MDC biogenesis and suggest that PE depletion may stimulate MDC formation downstream of MDC-inducing metabolic stress.
Collapse
Affiliation(s)
- Tianyao Xiao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alyssa M. English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Zachary N. Wilson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - J.Alan. Maschek
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integration. Physiology, University of Utah College of Health, Salt Lake City, UT, USA
| | - James E. Cox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
| | - Adam L. Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
13
|
Huang Y, Ji W, Zhang J, Huang Z, Ding A, Bai H, Peng B, Huang K, Du W, Zhao T, Li L. The involvement of the mitochondrial membrane in drug delivery. Acta Biomater 2024; 176:28-50. [PMID: 38280553 DOI: 10.1016/j.actbio.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Treatment effectiveness and biosafety are critical for disease therapy. Bio-membrane modification facilitates the homologous targeting of drugs in vivo by exploiting unique antibodies or antigens, thereby enhancing therapeutic efficacy while ensuring biosafety. To further enhance the precision of disease treatment, future research should shift focus from targeted cellular delivery to targeted subcellular delivery. As the cellular powerhouses, mitochondria play an indispensable role in cell growth and regulation and are closely involved in many diseases (e.g., cancer, cardiovascular, and neurodegenerative diseases). The double-layer membrane wrapped on the surface of mitochondria not only maintains the stability of their internal environment but also plays a crucial role in fundamental biological processes, such as energy generation, metabolite transport, and information communication. A growing body of evidence suggests that various diseases are tightly related to mitochondrial imbalance. Moreover, mitochondria-targeted strategies hold great potential to decrease therapeutic threshold dosage, minimize side effects, and promote the development of precision medicine. Herein, we introduce the structure and function of mitochondrial membranes, summarize and discuss the important role of mitochondrial membrane-targeting materials in disease diagnosis/treatment, and expound the advantages of mitochondrial membrane-assisted drug delivery for disease diagnosis, treatment, and biosafety. This review helps readers understand mitochondria-targeted therapies and promotes the application of mitochondrial membranes in drug delivery. STATEMENT OF SIGNIFICANCE: Bio-membrane modification facilitates the homologous targeting of drugs in vivo by exploiting unique antibodies or antigens, thereby enhancing therapeutic efficacy while ensuring biosafety. Compared to cell-targeted treatment, targeting of mitochondria for drug delivery offers higher efficiency and improved biosafety and will promote the development of precision medicine. As a natural material, the mitochondrial membrane exhibits excellent biocompatibility and can serve as a carrier for mitochondria-targeted delivery. This review provides an overview of the structure and function of mitochondrial membranes and explores the potential benefits of utilizing mitochondrial membrane-assisted drug delivery for disease treatment and biosafety. The aim of this review is to enhance readers' comprehension of mitochondrial targeted therapy and to advance the utilization of mitochondrial membrane in drug delivery.
Collapse
Affiliation(s)
- Yinghui Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Wenhui Ji
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ze Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China; Future Display Institute in Xiamen, Xiamen 361005, China
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen 361005, China
| | - Wei Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Tingting Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China; Future Display Institute in Xiamen, Xiamen 361005, China.
| |
Collapse
|
14
|
Makio T, Simmen T. Not So Rare: Diseases Based on Mutant Proteins Controlling Endoplasmic Reticulum-Mitochondria Contact (MERC) Tethering. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241261228. [PMID: 39070058 PMCID: PMC11273598 DOI: 10.1177/25152564241261228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/30/2024]
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs), also called endoplasmic reticulum (ER)-mitochondria contact sites (ERMCS), are the membrane domains, where these two organelles exchange lipids, Ca2+ ions, and reactive oxygen species. This crosstalk is a major determinant of cell metabolism, since it allows the ER to control mitochondrial oxidative phosphorylation and the Krebs cycle, while conversely, it allows the mitochondria to provide sufficient ATP to control ER proteostasis. MERC metabolic signaling is under the control of tethers and a multitude of regulatory proteins. Many of these proteins have recently been discovered to give rise to rare diseases if their genes are mutated. Surprisingly, these diseases share important hallmarks and cause neurological defects, sometimes paired with, or replaced by skeletal muscle deficiency. Typical symptoms include developmental delay, intellectual disability, facial dysmorphism and ophthalmologic defects. Seizures, epilepsy, deafness, ataxia, or peripheral neuropathy can also occur upon mutation of a MERC protein. Given that most MERC tethers and regulatory proteins have secondary functions, some MERC protein-based diseases do not fit into this categorization. Typically, however, the proteins affected in those diseases have dominant functions unrelated to their roles in MERCs tethering or their regulation. We are discussing avenues to pharmacologically target genetic diseases leading to MERC defects, based on our novel insight that MERC defects lead to common characteristics in rare diseases. These shared characteristics of MERCs disorders raise the hope that they may allow for similar treatment options.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Lee RG, Rudler DL, Raven SA, Peng L, Chopin A, Moh ESX, McCubbin T, Siira SJ, Fagan SV, DeBono NJ, Stentenbach M, Browne J, Rackham FF, Li J, Simpson KJ, Marcellin E, Packer NH, Reid GE, Padman BS, Rackham O, Filipovska A. Quantitative subcellular reconstruction reveals a lipid mediated inter-organelle biogenesis network. Nat Cell Biol 2024; 26:57-71. [PMID: 38129691 DOI: 10.1038/s41556-023-01297-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023]
Abstract
The structures and functions of organelles in cells depend on each other but have not been systematically explored. We established stable knockout cell lines of peroxisomal, Golgi and endoplasmic reticulum genes identified in a whole-genome CRISPR knockout screen for inducers of mitochondrial biogenesis stress, showing that defects in peroxisome, Golgi and endoplasmic reticulum metabolism disrupt mitochondrial structure and function. Our quantitative total-organelle profiling approach for focussed ion beam scanning electron microscopy revealed in unprecedented detail that specific organelle dysfunctions precipitate multi-organelle biogenesis defects, impair mitochondrial morphology and reduce respiration. Multi-omics profiling showed a unified proteome response and global shifts in lipid and glycoprotein homeostasis that are elicited when organelle biogenesis is compromised, and that the resulting mitochondrial dysfunction can be rescued with precursors for ether-glycerophospholipid metabolic pathways. This work defines metabolic and morphological interactions between organelles and how their perturbation can cause disease.
Collapse
Affiliation(s)
- Richard G Lee
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Danielle L Rudler
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Samuel A Raven
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Liuyu Peng
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Anaëlle Chopin
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Edward S X Moh
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, Australia
- ARC Centre of Excellence in Synthetic Biology, The University of Queensland, Queensland, Australia
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Samuel V Fagan
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Nicholas J DeBono
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Maike Stentenbach
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Jasmin Browne
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Filip F Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Ji Li
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Kaylene J Simpson
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, Australia
- ARC Centre of Excellence in Synthetic Biology, The University of Queensland, Queensland, Australia
| | - Nicolle H Packer
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Benjamin S Padman
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Aleksandra Filipovska
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia.
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia.
| |
Collapse
|
16
|
Mueller-Schuessele SJ, Leterme S, Michaud M. Plastid Transient and Stable Interactions with Other Cell Compartments. Methods Mol Biol 2024; 2776:107-134. [PMID: 38502500 DOI: 10.1007/978-1-0716-3726-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Plastids are organelles delineated by two envelopes playing important roles in different cellular processes such as energy production or lipid biosynthesis. To regulate their biogenesis and their function, plastids have to communicate with other cellular compartments. This communication can be mediated by metabolites, signaling molecules, and by the establishment of direct contacts between the plastid envelope and other organelles such as the endoplasmic reticulum, mitochondria, peroxisomes, plasma membrane, and the nucleus. These interactions are highly dynamic and respond to different biotic and abiotic stresses. However, the mechanisms involved in the formation of plastid-organelle contact sites and their functions are still far from being understood. In this chapter, we summarize our current knowledge about plastid contact sites and their role in the regulation of plastid biogenesis and function.
Collapse
Affiliation(s)
| | - Sébastien Leterme
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France.
| |
Collapse
|
17
|
Feng Z, Zhang X, Zhou J, Li Q, Chu L, Di G, Xu Z, Chen Q, Wang M, Jiang X, Xia H, Chen X. An in vitro-transcribed circular RNA targets the mitochondrial inner membrane cardiolipin to ablate EIF4G2 +/PTBP1 + pan-adenocarcinoma. NATURE CANCER 2024; 5:30-46. [PMID: 37845485 DOI: 10.1038/s43018-023-00650-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/07/2023] [Indexed: 10/18/2023]
Abstract
In vitro-transcribed (IVT) mRNA has arisen as a rapid method for the production of nucleic acid drugs. Here, we have constructed an oncolytic IVT mRNA that utilizes human rhinovirus type 2 (HRV2) internal ribosomal entry sites (IRESs) to selectively trigger translation in cancer cells with high expression of EIF4G2 and PTBP1. The oncolytic effect was provided by a long hGSDMDc .825 T>A/c.884 A>G-F1LCT mutant mRNA sequence with mitochondrial inner membrane cardiolipin targeting toxicity that triggers mitophagy. Utilizing the permuted intron-exon (PIE) splicing circularization strategy and lipid nanoparticle (LNP) encapsulation reduced immunogenicity of the mRNA and enabled delivery to eukaryotic cells in vivo. Engineered HRV2 IRESs-GSDMDp.D275E/E295G-F1LCT circRNA-LNPs (GSDMDENG circRNA) successfully inhibited EIF4G2+/PTBP1+ pan-adenocarcinoma xenografts growth. Importantly, in a spontaneous tumor model with abnormal EIF4G2 and PTBP1 caused by KRAS G12D mutation, GSDMDENG circRNA significantly prevented the occurrence of pancreatic, lung and colon adenocarcinoma, improved the survival rate and induced persistent KRAS G12D tumor antigen-specific cytotoxic T lymphocyte responses.
Collapse
Affiliation(s)
- Zunyong Feng
- The Translational Research Institute for Neurological Disorders & Interdisciplinary Research Center of Neuromedicine and Chemical Biology of Wannan Medical College, Department of Neurosurgery, Department of Intensive Care Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Zhongda Hospital, School of Medicine & School of Biological Sciences and Medical Engineering, Advanced Institute for Life and Health & Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University, Nanjing, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Proteos, Singapore, Singapore
| | - Xuanbo Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Proteos, Singapore, Singapore
| | - Jing Zhou
- Department of Anatomy, School of Basic Medicine & School of Medical Imageology, Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, China
| | - Qiang Li
- Department of Anatomy, School of Basic Medicine & School of Medical Imageology, Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, China
| | - Liuxi Chu
- Zhongda Hospital, School of Medicine & School of Biological Sciences and Medical Engineering, Advanced Institute for Life and Health & Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University, Nanjing, China
| | - Guangfu Di
- The Translational Research Institute for Neurological Disorders & Interdisciplinary Research Center of Neuromedicine and Chemical Biology of Wannan Medical College, Department of Neurosurgery, Department of Intensive Care Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Zhengyuan Xu
- Department of Anatomy, School of Basic Medicine & School of Medical Imageology, Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, China
| | - Qun Chen
- The Translational Research Institute for Neurological Disorders & Interdisciplinary Research Center of Neuromedicine and Chemical Biology of Wannan Medical College, Department of Neurosurgery, Department of Intensive Care Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Ming Wang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders & Interdisciplinary Research Center of Neuromedicine and Chemical Biology of Wannan Medical College, Department of Neurosurgery, Department of Intensive Care Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China.
| | - Hongping Xia
- Zhongda Hospital, School of Medicine & School of Biological Sciences and Medical Engineering, Advanced Institute for Life and Health & Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University, Nanjing, China.
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Proteos, Singapore, Singapore.
| |
Collapse
|
18
|
Sengupta S, Levy DL. Organelle Communication with the Nucleus. Results Probl Cell Differ 2024; 73:3-23. [PMID: 39242372 PMCID: PMC11409190 DOI: 10.1007/978-3-031-62036-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Compartmentalization of cellular components is critical to the spatiotemporal and environmental regulation of biochemical activities inside a cell, ensures the proper division of cellular labor and resources, and increases the efficiency of metabolic processes. However, compartmentalization also poses a challenge as organelles often need to communicate across these compartments to complete reaction pathways. These communication signals are often critical aspects of the cellular response to changing environmental conditions. A central signaling hub in the cell, the nucleus communicates with mitochondria, lysosomes, the endoplasmic reticulum, and the Golgi body to ensure optimal organellar and cellular performance. Here we review different mechanisms by which these organelles communicate with the nucleus, focusing on anterograde and retrograde signaling of mitochondria, localization-based signaling of lysosomes, the unfolded protein response of the endoplasmic reticulum, and evidence for nucleus-Golgi signaling. We also include a brief overview of some less well-characterized mechanisms of communication between non-nuclear organelles.
Collapse
Affiliation(s)
- Sourabh Sengupta
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
19
|
Atici AE, Crother TR, Noval Rivas M. Mitochondrial quality control in health and cardiovascular diseases. Front Cell Dev Biol 2023; 11:1290046. [PMID: 38020895 PMCID: PMC10657886 DOI: 10.3389/fcell.2023.1290046] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are one of the primary causes of mortality worldwide. An optimal mitochondrial function is central to supplying tissues with high energy demand, such as the cardiovascular system. In addition to producing ATP as a power source, mitochondria are also heavily involved in adaptation to environmental stress and fine-tuning tissue functions. Mitochondrial quality control (MQC) through fission, fusion, mitophagy, and biogenesis ensures the clearance of dysfunctional mitochondria and preserves mitochondrial homeostasis in cardiovascular tissues. Furthermore, mitochondria generate reactive oxygen species (ROS), which trigger the production of pro-inflammatory cytokines and regulate cell survival. Mitochondrial dysfunction has been implicated in multiple CVDs, including ischemia-reperfusion (I/R), atherosclerosis, heart failure, cardiac hypertrophy, hypertension, diabetic and genetic cardiomyopathies, and Kawasaki Disease (KD). Thus, MQC is pivotal in promoting cardiovascular health. Here, we outline the mechanisms of MQC and discuss the current literature on mitochondrial adaptation in CVDs.
Collapse
Affiliation(s)
- Asli E. Atici
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Timothy R. Crother
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
20
|
Lin Y, Ran L, Du X, Yang H, Wu Y. Oxysterol-Binding Protein: new insights into lipid transport functions and human diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159365. [PMID: 37455011 DOI: 10.1016/j.bbalip.2023.159365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Oxysterol-binding protein (OSBP) mediates lipid exchange between organelles at membrane contact sites, thereby regulating lipid dynamics and homeostasis. How OSBP's lipid transfer function impacts health and disease remain to be elucidated. In this review, we first summarize the structural characteristics and lipid transport functions of OSBP, and then focus on recent progresses linking OSBP with fatty liver disease, diabetes, lysosome-related diseases, cancer and viral infections, with the aim of discovering novel therapeutic strategies for common human diseases.
Collapse
Affiliation(s)
- Yani Lin
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China
| | - Liyuan Ran
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China; Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW 2052, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Yingjie Wu
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China; Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning 116044, China; Department of Molecular Pathobiology, New York University College of Dentistry, New York 10010, USA.
| |
Collapse
|
21
|
Fucho R, Solsona-Vilarrasa E, Torres S, Nuñez S, Insausti-Urkia N, Edo A, Calvo M, Bosch A, Martin G, Enrich C, García-Ruiz C, Fernandez-Checa JC. Zonal expression of StARD1 and oxidative stress in alcoholic-related liver disease. J Lipid Res 2023; 64:100413. [PMID: 37473919 PMCID: PMC10448177 DOI: 10.1016/j.jlr.2023.100413] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
Alcoholic-related liver disease (ALD) is one of the leading causes of chronic liver disease and morbidity. Unfortunately, the pathogenesis of ALD is still incompletely understood. StARD1 has emerged as a key player in other etiologies of chronic liver disease, and alcohol-induced liver injury exhibits zonal distribution. Here, we report that StARD1 is predominantly expressed in perivenous (PV) zone of liver sections from mice-fed chronic and acute-on-chronic ALD models compared to periportal (PP) area and is observed as early as 10 days of alcohol feeding. Ethanol and chemical hypoxia induced the expression of StARD1 in isolated primary mouse hepatocytes. The zonal-dependent expression of StARD1 resulted in the accumulation of cholesterol in mitochondria and increased lipid peroxidation in PV hepatocytes compared to PP hepatocytes, effects that were abrogated in PV hepatocytes upon hepatocyte-specific Stard1 KO mice. Transmission electron microscopy indicated differential glycogen and lipid droplets content between PP and PV areas, and alcohol feeding decreased glycogen content in both areas while increased lipid droplets content preferentially in PV zone. Moreover, transmission electron microscopy revealed that mitochondria from PV zone exhibited reduced length with respect to PP area, and alcohol feeding increased mitochondrial number, particularly, in PV zone. Extracellular flux analysis indicated lower maximal respiration and spared respiratory capacity in control PV hepatocytes that were reversed upon alcohol feeding. These findings reveal a differential morphology and functional activity of mitochondria between PP and PV hepatocytes following alcohol feeding and that StARD1 may play a key role in the zonal-dependent liver injury characteristic of ALD.
Collapse
Affiliation(s)
- Raquel Fucho
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Estel Solsona-Vilarrasa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Susana Nuñez
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Naroa Insausti-Urkia
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Albert Edo
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain
| | - Maria Calvo
- Advanced Optical Microscopy-Clinic Campus, Scientific and Technological Center, University of Barcelona, Barcelona, Spain
| | - Anna Bosch
- Advanced Optical Microscopy-Clinic Campus, Scientific and Technological Center, University of Barcelona, Barcelona, Spain
| | - Gemma Martin
- Advanced Optical Microscopy-Clinic Campus, Scientific and Technological Center, University of Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Unit of Cell Biology, Departament of Biomedicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; Center of Biomedical Research CELLEX, Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain.
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBEREHD, Madrid, Spain; Department of Medicine, Keck School of Division of Gastrointestinal and Liver Disease, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Wu H, Chen W, Chen Z, Li X, Wang M. Novel tumor therapy strategies targeting endoplasmic reticulum-mitochondria signal pathways. Ageing Res Rev 2023; 88:101951. [PMID: 37164161 DOI: 10.1016/j.arr.2023.101951] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/13/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Organelles form tight connections through membrane contact sites, thereby cooperating to regulate homeostasis and cell function. Among them, the contact between endoplasmic reticulum (ER), the main intracellular calcium storage organelles, and mitochondria has been recognized for decades, and its main roles in the ion and lipid transport, ROS signaling, membrane dynamic changes and cellular metabolism are basically determined. At present, many tumor chemotherapeutic drugs rely on ER-mitochondrial calcium signal to function, but the mechanism of targeting resident molecules at the mitochondria-associated endoplasmic reticulum membranes (MAM) to sensitize traditional chemotherapy and the new tumor therapeutic targets identified based on the signal pathways on the MAM have not been thoroughly discussed. In this review, we highlight the key roles of various signaling pathways at the ER-mitochondria contact site in tumorigenesis and focus on novel anticancer therapy strategies targeting potential targets at this contact site.
Collapse
Affiliation(s)
- Hongzheng Wu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wanxin Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenni Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
23
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Schuettpelz J, Janer A, Antonicka H, Shoubridge EA. The role of the mitochondrial outer membrane protein SLC25A46 in mitochondrial fission and fusion. Life Sci Alliance 2023; 6:e202301914. [PMID: 36977595 PMCID: PMC10052876 DOI: 10.26508/lsa.202301914] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Mutations in SLC25A46 underlie a wide spectrum of neurodegenerative diseases associated with alterations in mitochondrial morphology. We established an SLC25A46 knock-out cell line in human fibroblasts and studied the pathogenicity of three variants (p.T142I, p.R257Q, and p.E335D). Mitochondria were fragmented in the knock-out cell line and hyperfused in all pathogenic variants. The loss of SLC25A46 led to abnormalities in the mitochondrial cristae ultrastructure that were not rescued by the expression of the variants. SLC25A46 was present in discrete puncta at mitochondrial branch points and tips of mitochondrial tubules, co-localizing with DRP1 and OPA1. Virtually, all fission/fusion events were demarcated by a SLC25A46 focus. SLC25A46 co-immunoprecipitated with the fusion machinery, and loss of function altered the oligomerization state of OPA1 and MFN2. Proximity interaction mapping identified components of the ER membrane, lipid transfer proteins, and mitochondrial outer membrane proteins, indicating that it is present at interorganellar contact sites. SLC25A46 loss of function led to altered mitochondrial lipid composition, suggesting that it may facilitate interorganellar lipid flux or play a role in membrane remodeling associated with mitochondrial fusion and fission.
Collapse
Affiliation(s)
- Jana Schuettpelz
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Alexandre Janer
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Hana Antonicka
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Eric A Shoubridge
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
25
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
26
|
Fang JM, Basu S, Phu J, Nieh MP, LoTurco JJ. Cellular Localization, Aggregation, and Cytotoxicity of Bicelle-Quantum Dot Nanocomposites. ACS APPLIED BIO MATERIALS 2023; 6:566-577. [PMID: 36739562 DOI: 10.1021/acsabm.2c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bicelles are discoidal lipid nanoparticles (LNPs) in which the planar bilayer and curved rim are, respectively, composed of long- and short-chain lipids. Bicellar LNPs have a hydrophobic core, allowing hydrophobic molecules and large molecular complexes such as quantum dots (QDs) to be encapsulated. In this study, CdSe/ZnS QDs were encapsulated in bicelles made of dipalmitoyl phosphatidylcholine, dihexanoyl phosphatidylcholine, dipalmitoyl phosphatidylglycerol, and distearoyl phosphatidylethanolamine conjugated with polyethylene glycerol amine 2000 to form a well-defined bicelle-QD nanocomplex (known as NANO2-QD or bicelle-QD). The bicelle-QD was then incubated with Hek293t cells and HeLa cells for different periods of time to determine changes in their cellular localization. Bicelle-QDs readily penetrated Hek293t cell membranes within 15 min of incubation, localized to the cytoplasm, and associated with mitochondria and intracellular vesicles. After 1 h, the bicelle-QDs enter the cell nucleus. Large aggregates form throughout the cell after 2 h and QDs are nearly absent from the nucleus by 4 h. Previous reports have demonstrated that CdSe/ZnS QDs can be toxic to cells, and we have found that encapsulating QDs in bicelles can attenuate but did not eliminate cytotoxicity. The present research outcome demonstrates the time-resolved pathway of bicelle-encapsulated QDs in Hek293t cells, morphological evolution in cells over time, and cytotoxicity of the bicelle-QDs, providing important insight into the potential application of the nanocomplex for cellular imaging.
Collapse
Affiliation(s)
- Justin M Fang
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut06269, United States
| | - Sayan Basu
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut06269, United States
| | - Jak Phu
- Department of Biomedical Engineering, SUNY Stony Brook University, Stony Brook, New York11794, United States
| | - Mu-Ping Nieh
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut06269, United States.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut06269, United States.,Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut06269, United States
| | - Joseph J LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut06269, United States
| |
Collapse
|
27
|
Ancajas CF, Alam S, Alves DS, Zhou Y, Wadsworth NM, Cassilly CD, Ricks TJ, Carr AJ, Reynolds TB, Barrera FN, Best MD. Cellular Labeling of Phosphatidylserine Using Clickable Serine Probes. ACS Chem Biol 2023; 18:377-384. [PMID: 36745020 DOI: 10.1021/acschembio.2c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phosphatidylserine (PS) is a key lipid that plays important roles in disease-related biological processes, and therefore, the means to track PS in live cells are invaluable. Herein, we describe the metabolic labeling of PS in Saccharomyces cerevisiae cells using analogues of serine, a PS precursor, derivatized with azide moieties at either the amino (N-l-SerN3) or carbonyl (C-l-SerN3) groups. The conservative click tag modification enabled these compounds to infiltrate normal lipid biosynthetic pathways, thereby producing tagged PS molecules as supported by mass spectrometry studies, thin-layer chromatography (TLC) analysis, and further derivatization with fluorescent reporters via click chemistry to enable imaging in yeast cells. This approach shows strong prospects for elucidating the complex biosynthetic and trafficking pathways involving PS.
Collapse
Affiliation(s)
- Christelle F Ancajas
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Shahrina Alam
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Daiane S Alves
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yue Zhou
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Nicholas M Wadsworth
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Chelsi D Cassilly
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tanei J Ricks
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Adam J Carr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Michael D Best
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
28
|
Lysophospholipids and branched chain amino acids are associated with aging: a metabolomics-based study of Chinese adults. Eur J Med Res 2023; 28:58. [PMID: 36732870 PMCID: PMC9893616 DOI: 10.1186/s40001-023-01021-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Aging is an inevitable process associated with impairments in multiple organ systems, which increases the risk of comorbidity and disability, and reduces the health-span. Metabolomics is a powerful tool in aging research, which can reflect the characteristics of aging at the level of terminal metabolism, and may contribute to the exploration of aging mechanisms and the formulation of anti-aging strategies. METHODS To identify possible biomarkers and pathways associated with aging using untargeted metabolomics methods, we performed liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics profiling on serum samples from 32 older adults and 32 sex-matched young controls. RESULTS Metabolite profiling could distinguish the two groups. Among the 349 metabolites identified, 80-including lysophospholipids whose levels gradually decline-are possible candidate aging biomarkers. Valine, leucine and isoleucine degradation and biosynthesis were important pathways in aging, with reduced levels of L-isoleucine (r = - 0.30, p = 0.017) and L-leucine (r = - 0.32, p = 0.010) observed in older adults. CONCLUSIONS We preliminarily revealed the metabolite changes associated with aging in Chinese adults. Decreases in mitochondrial membrane-related lysophospholipids and dysfunction of branched-chain amino acid metabolism were determined to be the characteristics and promising research targets for aging.
Collapse
|
29
|
Chiu DC, Baskin JM. Organelle-Selective Membrane Labeling through Phospholipase D-Mediated Transphosphatidylation. JACS AU 2022; 2:2703-2713. [PMID: 36590261 PMCID: PMC9795463 DOI: 10.1021/jacsau.2c00419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The specialized functions of eukaryotic organelles have motivated chemical approaches for their selective tagging and visualization. Here, we develop chemoenzymatic tools using metabolic labeling of abundant membrane lipids for selective visualization of organelle compartments. Synthetic choline analogues with three N-methyl substituents replaced with 2-azidoethyl and additional alkyl groups enabled the generation of corresponding derivatives of phosphatidylcholine (PC), a ubiquitous and abundant membrane phospholipid. Subsequent bioorthogonal tagging via the strain-promoted azide-alkyne cycloaddition (SPAAC) with a single cyclooctyne-fluorophore reagent enabled differential labeling of the endoplasmic reticulum, the Golgi complex, mitochondria, and lysosomes depending upon the substitution pattern at the choline ammonium center. Key to the success of this strategy was the harnessing of both the organic cation transporter OCT1 to enable cytosolic delivery of these cationic metabolic probes and endogenous phospholipase D enzymes for rapid, one-step metabolic conversion of the choline analogues to the desired lipid products. Detailed analysis of the trafficking kinetics of both the SPAAC-tagged fluorescent PC analogues and their non-fluorescent, azide-containing precursors revealed that the latter exhibit time-dependent differences in organelle selectivity, suggesting their use as probes for visualizing intracellular lipid transport pathways. By contrast, the stable localizations of the fluorescent PC analogues will allow applications not only for organelle-selective imaging but also for local modulation of physiological events with organelle-level precision by tethering of bioactive small molecules, via click chemistry, within defined subcellular membrane environments.
Collapse
Affiliation(s)
- Din-Chi Chiu
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M. Baskin
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
30
|
Xu L, Qiu Y, Wang X, Shang W, Bai J, Shi K, Liu H, Liu JP, Wang L, Tong C. ER-mitochondrial contact protein Miga regulates autophagy through Atg14 and Uvrag. Cell Rep 2022; 41:111583. [DOI: 10.1016/j.celrep.2022.111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 08/10/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
|
31
|
Bar-Peled L, Kory N. Principles and functions of metabolic compartmentalization. Nat Metab 2022; 4:1232-1244. [PMID: 36266543 PMCID: PMC10155461 DOI: 10.1038/s42255-022-00645-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/24/2022] [Indexed: 01/20/2023]
Abstract
Metabolism has historically been studied at the levels of whole cells, whole tissues and whole organisms. As a result, our understanding of how compartmentalization-the spatial and temporal separation of pathways and components-shapes organismal metabolism remains limited. At its essence, metabolic compartmentalization fulfils three important functions or 'pillars': establishing unique chemical environments, providing protection from reactive metabolites and enabling the regulation of metabolic pathways. However, how these pillars are established, regulated and maintained at both the cellular and systemic levels remains unclear. Here we discuss how the three pillars are established, maintained and regulated within the cell and discuss the consequences of dysregulation of metabolic compartmentalization in human disease. Organelles are increasingly emerging as 'command-and-control centres' and the increased understanding of metabolic compartmentalization is revealing new aspects of metabolic homeostasis, with this knowledge being translated into therapies for the treatment of cancer and certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Liron Bar-Peled
- Center for Cancer Research, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Nora Kory
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
32
|
ORP5/8 and MIB/MICOS link ER-mitochondria and intra-mitochondrial contacts for non-vesicular transport of phosphatidylserine. Cell Rep 2022; 40:111364. [PMID: 36130504 DOI: 10.1016/j.celrep.2022.111364] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/10/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are dynamic organelles essential for cell survival whose structural and functional integrity rely on selective and regulated transport of lipids from/to the endoplasmic reticulum (ER) and across the mitochondrial intermembrane space. As they are not connected by vesicular transport, the exchange of lipids between ER and mitochondria occurs at membrane contact sites. However, the mechanisms and proteins involved in these processes are only beginning to emerge. Here, we show that the main physiological localization of the lipid transfer proteins ORP5 and ORP8 is at mitochondria-associated ER membrane (MAM) subdomains, physically linked to the mitochondrial intermembrane space bridging (MIB)/mitochondrial contact sites and cristae junction organizing system (MICOS) complexes that bridge the two mitochondrial membranes. We also show that ORP5/ORP8 mediate non-vesicular transport of phosphatidylserine (PS) lipids from the ER to mitochondria by cooperating with the MIB/MICOS complexes. Overall our study reveals a physical and functional link between ER-mitochondria contacts involved in lipid transfer and intra-mitochondrial membrane contacts maintained by the MIB/MICOS complexes.
Collapse
|
33
|
Tábara LC, Al-Salmi F, Maroofian R, Al-Futaisi AM, Al-Murshedi F, Kennedy J, Day JO, Courtin T, Al-Khayat A, Galedari H, Mazaheri N, Protasoni M, Johnson M, Leslie JS, Salter CG, Rawlins LE, Fasham J, Al-Maawali A, Voutsina N, Charles P, Harrold L, Keren B, Kunji ERS, Vona B, Jelodar G, Sedaghat A, Shariati G, Houlden H, Crosby AH, Prudent J, Baple EL. TMEM63C mutations cause mitochondrial morphology defects and underlie hereditary spastic paraplegia. Brain 2022; 145:3095-3107. [PMID: 35718349 PMCID: PMC9473353 DOI: 10.1093/brain/awac123] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/10/2022] [Accepted: 03/13/2022] [Indexed: 02/02/2023] Open
Abstract
The hereditary spastic paraplegias (HSP) are among the most genetically diverse of all Mendelian disorders. They comprise a large group of neurodegenerative diseases that may be divided into 'pure HSP' in forms of the disease primarily entailing progressive lower-limb weakness and spasticity, and 'complex HSP' when these features are accompanied by other neurological (or non-neurological) clinical signs. Here, we identified biallelic variants in the transmembrane protein 63C (TMEM63C) gene, encoding a predicted osmosensitive calcium-permeable cation channel, in individuals with hereditary spastic paraplegias associated with mild intellectual disability in some, but not all cases. Biochemical and microscopy analyses revealed that TMEM63C is an endoplasmic reticulum-localized protein, which is particularly enriched at mitochondria-endoplasmic reticulum contact sites. Functional in cellula studies indicate a role for TMEM63C in regulating both endoplasmic reticulum and mitochondrial morphologies. Together, these findings identify autosomal recessive TMEM63C variants as a cause of pure and complex HSP and add to the growing evidence of a fundamental pathomolecular role of perturbed mitochondrial-endoplasmic reticulum dynamics in motor neurone degenerative diseases.
Collapse
Affiliation(s)
- Luis Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of
Cambridge, Cambridge CB2 0XY, UK
| | - Fatema Al-Salmi
- Level 4, RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford)
NHS Foundation Trust, University of Exeter Medical School,
Exeter EX2 5DW, UK
| | - Reza Maroofian
- UCL Queen Square Institute of Neurology, University College
London, London WC1E 6BT, UK
| | - Amna Mohammed Al-Futaisi
- Genetic and Developmental Medicine Clinic, Department of Genetics, College
of Medicine and Health Sciences, Sultan Qaboos University Hospital,
Muscat 123, Oman
| | - Fathiya Al-Murshedi
- Genetic and Developmental Medicine Clinic, Department of Genetics, College
of Medicine and Health Sciences, Sultan Qaboos University Hospital,
Muscat 123, Oman
| | - Joanna Kennedy
- Level 4, RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford)
NHS Foundation Trust, University of Exeter Medical School,
Exeter EX2 5DW, UK
- Clinical Genetics, University Hospitals Bristol,
Bristol BS2 8EG, UK
| | - Jacob O Day
- Level 4, RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford)
NHS Foundation Trust, University of Exeter Medical School,
Exeter EX2 5DW, UK
- Faculty of Health, University of Plymouth,
Plymouth PL4 8AA, UK
| | - Thomas Courtin
- Département de génétique, Hôpital Pitié-Salpêtrière, Assistance
Publique-Hôpitaux de Paris, 75019 Paris, Sorbonne
Université, France
| | - Aisha Al-Khayat
- Department of Biology, College of Science, Sultan Qaboos
University, Muscat, Oman
| | - Hamid Galedari
- Department of Genetics, Faculty of Science, Shahid Chamran University of
Ahvaz, Ahvaz, Iran
| | - Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of
Ahvaz, Ahvaz, Iran
| | - Margherita Protasoni
- Medical Research Council Mitochondrial Biology Unit, University of
Cambridge, Cambridge CB2 0XY, UK
| | - Mark Johnson
- Medical Research Council Mitochondrial Biology Unit, University of
Cambridge, Cambridge CB2 0XY, UK
| | - Joseph S Leslie
- Level 4, RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford)
NHS Foundation Trust, University of Exeter Medical School,
Exeter EX2 5DW, UK
| | - Claire G Salter
- Level 4, RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford)
NHS Foundation Trust, University of Exeter Medical School,
Exeter EX2 5DW, UK
| | - Lettie E Rawlins
- Level 4, RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford)
NHS Foundation Trust, University of Exeter Medical School,
Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital
(Heavitree), Exeter EX1 2ED, UK
| | - James Fasham
- Level 4, RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford)
NHS Foundation Trust, University of Exeter Medical School,
Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital
(Heavitree), Exeter EX1 2ED, UK
| | - Almundher Al-Maawali
- Genetic and Developmental Medicine Clinic, Department of Genetics, College
of Medicine and Health Sciences, Sultan Qaboos University Hospital,
Muscat 123, Oman
| | - Nikol Voutsina
- Level 4, RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford)
NHS Foundation Trust, University of Exeter Medical School,
Exeter EX2 5DW, UK
| | - Perrine Charles
- Département de génétique, Hôpital Pitié-Salpêtrière, Assistance
Publique-Hôpitaux de Paris, 75019 Paris, Sorbonne
Université, France
| | - Laura Harrold
- Level 4, RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford)
NHS Foundation Trust, University of Exeter Medical School,
Exeter EX2 5DW, UK
| | - Boris Keren
- Département de génétique, Hôpital Pitié-Salpêtrière, Assistance
Publique-Hôpitaux de Paris, 75019 Paris, Sorbonne
Université, France
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of
Cambridge, Cambridge CB2 0XY, UK
| | - Barbara Vona
- Department of Otolaryngology-Head and Neck Surgery, Tübingen Hearing
Research Centre, Eberhard Karls University Tübingen,
Tübingen, Germany
| | - Gholamreza Jelodar
- Pediatric Neurology, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran
| | - Alireza Sedaghat
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur
University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Shariati
- Department of Medical Genetic, Faculty of Medicine, Ahvaz Jundishapur,
University of Medical Sciences, Ahvaz, Iran
| | - Henry Houlden
- UCL Queen Square Institute of Neurology, University College
London, London WC1E 6BT, UK
| | - Andrew H Crosby
- Level 4, RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford)
NHS Foundation Trust, University of Exeter Medical School,
Exeter EX2 5DW, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of
Cambridge, Cambridge CB2 0XY, UK
| | - Emma L Baple
- Level 4, RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford)
NHS Foundation Trust, University of Exeter Medical School,
Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital
(Heavitree), Exeter EX1 2ED, UK
| |
Collapse
|
34
|
Zhang Y, Zhou Q, Lu L, Zhao C, Zhang H, Liu R, Pu Y, Yin L. Integrating Transcriptomics and Free Fatty Acid Profiling Analysis Reveal Cu Induces Shortened Lifespan and Increased Fat Accumulation and Oxidative Damage in C. elegans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5297342. [PMID: 36017239 PMCID: PMC9398846 DOI: 10.1155/2022/5297342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
Nowadays, human beings are exposed to Cu in varieties of environmental mediums, resulting in health risks needing urgent attention. Our research found that Cu shortened lifespan and induced aging-related phenotypes of Caenorhabditis elegans (C. elegans). Transcriptomics data showed differential expression genes induced by Cu were mainly involved in regulation of metabolism and longevity, especially in fatty acid metabolism. Quantitative detection of free fatty acid by GC/MS further found that Cu upregulated free fatty acids of C. elegans. A mechanism study confirmed that Cu promoted the fat accumulation in nematodes, which was owing to disorder of fatty acid desaturase and CoA synthetase, endoplasmic reticulum unfolded protein response (UPRER), mitochondrial membrane potential, and unfolded protein response (UPRmt). In addition, Cu activated oxidative stress and prevented DAF-16 translocating into nuclear with a concomitant reduction in the expression of environmental stress-related genes. Taken together, the research suggested that Cu promoted aging and induced fat deposition and oxidative damage.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Qian Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lu Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
35
|
Li YJ, Fahrmann JF, Aftabizadeh M, Zhao Q, Tripathi SC, Zhang C, Yuan Y, Ann D, Hanash S, Yu H. Fatty acid oxidation protects cancer cells from apoptosis by increasing mitochondrial membrane lipids. Cell Rep 2022; 39:110870. [PMID: 35649368 DOI: 10.1016/j.celrep.2022.110870] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
Overcoming resistance to chemotherapies remains a major unmet need for cancers, such as triple-negative breast cancer (TNBC). Therefore, mechanistic studies to provide insight for drug development are urgently needed to overcome TNBC therapy resistance. Recently, an important role of fatty acid β-oxidation (FAO) in chemoresistance has been shown. But how FAO might mitigate tumor cell apoptosis by chemotherapy is unclear. Here, we show that elevated FAO activates STAT3 by acetylation via elevated acetyl-coenzyme A (CoA). Acetylated STAT3 upregulates expression of long-chain acyl-CoA synthetase 4 (ACSL4), resulting in increased phospholipid synthesis. Elevating phospholipids in mitochondrial membranes leads to heightened mitochondrial integrity, which in turn overcomes chemotherapy-induced tumor cell apoptosis. Conversely, in both cultured tumor cells and xenograft tumors, enhanced cancer cell apoptosis by inhibiting ASCL4 or specifically targeting acetylated-STAT3 is associated with a reduction in phospholipids within mitochondrial membranes. This study demonstrates a critical mechanism underlying tumor cell chemoresistance.
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | - Johannes Francois Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Maryam Aftabizadeh
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Qianqian Zhao
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Yuan Yuan
- Department of PS Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - David Ann
- Department of Diabetes Complications and Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| |
Collapse
|
36
|
Murata M, Kanamori R, Kitao T, Kubori T, Nagai H, Tagaya M, Arasaki K. Requirement of phosphatidic acid binding for distribution of bacterial protein targeting syntaxin 17. J Cell Sci 2022; 135:274561. [DOI: 10.1242/jcs.259538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
A gram-negative bacterium, Legionella pneumophila is known to manipulate the host cellular functions. In these manipulations, bacterial proteins called Legionella effectors that L. pneumophila secretes into the host cytosol are necessary. A Legionella effector, Lpg1137, was identified as a serine protease responsible for degradation of syntaxin 17 (Stx17). However, how Lpg1137 can specifically recognize and degrade Stx17 remains unknown. Given that Stx17 is localized in the ER/mitochondria-associated membrane (MAM)/mitochondria, Lpg1137 likely distributes to these compartments to recognize Stx17. Here we show that the C-terminal region of Lpg1137 binds to phosphatidic acid (PA), a MAM/mitochondria-enriched phospholipid, and that this binding is required for the correct intracellular distribution of Lpg1137. Two basic residues in the C-terminal region are required for PA binding and their mutation causes mislocalization of Lpg1137. This mutant fails to degrade Stx17 while retaining a protease activity. Taken together, our data reveal that Lpg1137 utilizes PA for its distribution to the membranous compartments in which Stx17 is localized.
Collapse
Affiliation(s)
- Misaki Murata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Riku Kanamori
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Tomoe Kitao
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan
- G-CHAIN, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan
- G-CHAIN, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
37
|
Elovl2-Ablation Leads to Mitochondrial Membrane Fatty Acid Remodeling and Reduced Efficiency in Mouse Liver Mitochondria. Nutrients 2022; 14:nu14030559. [PMID: 35276915 PMCID: PMC8838343 DOI: 10.3390/nu14030559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/02/2023] Open
Abstract
The fatty acid elongase elongation of very long-chain fatty acids protein 2 (ELOVL2) controls the elongation of polyunsaturated fatty acids (PUFA) producing precursors for omega-3, docosahexaenoic acid (DHA), and omega-6, docosapentaenoic acid (DPAn-6) in vivo. Expectedly, Elovl2-ablation drastically reduced the DHA and DPAn-6 in liver mitochondrial membranes. Unexpectedly, however, total PUFAs levels decreased further than could be explained by Elovl2 ablation. The lipid peroxidation process was not involved in PUFAs reduction since malondialdehyde-lysine (MDAL) and other oxidative stress biomarkers were not enhanced. The content of mitochondrial respiratory chain proteins remained unchanged. Still, membrane remodeling was associated with the high voltage-dependent anion channel (VDAC) and adenine nucleotide translocase 2 (ANT2), a possible reflection of the increased demand on phospholipid transport to the mitochondria. Mitochondrial function was impaired despite preserved content of the respiratory chain proteins and the absence of oxidative damage. Oligomycin-insensitive oxygen consumption increased, and coefficients of respiratory control were reduced by 50%. The mitochondria became very sensitive to fatty acid-induced uncoupling and permeabilization, where ANT2 is involved. Mitochondrial volume and number of peroxisomes increased as revealed by transmission electron microscopy. In conclusion, the results imply that endogenous DHA production is vital for the normal function of mouse liver mitochondria and could be relevant not only for mice but also for human metabolism.
Collapse
|
38
|
Yang Z, Wang L, Yang C, Pu S, Guo Z, Wu Q, Zhou Z, Zhao H. Mitochondrial Membrane Remodeling. Front Bioeng Biotechnol 2022; 9:786806. [PMID: 35059386 PMCID: PMC8763711 DOI: 10.3389/fbioe.2021.786806] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondria are key regulators of many important cellular processes and their dysfunction has been implicated in a large number of human disorders. Importantly, mitochondrial function is tightly linked to their ultrastructure, which possesses an intricate membrane architecture defining specific submitochondrial compartments. In particular, the mitochondrial inner membrane is highly folded into membrane invaginations that are essential for oxidative phosphorylation. Furthermore, mitochondrial membranes are highly dynamic and undergo constant membrane remodeling during mitochondrial fusion and fission. It has remained enigmatic how these membrane curvatures are generated and maintained, and specific factors involved in these processes are largely unknown. This review focuses on the current understanding of the molecular mechanism of mitochondrial membrane architectural organization and factors critical for mitochondrial morphogenesis, as well as their functional link to human diseases.
Collapse
Affiliation(s)
- Ziyun Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, High-Tech Development Zone, Chengdu, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Ziqi Guo
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China.,Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Dudek J, Maack C. Mechano-energetic aspects of Barth syndrome. J Inherit Metab Dis 2022; 45:82-98. [PMID: 34423473 DOI: 10.1002/jimd.12427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
Energy-demanding organs like the heart are strongly dependent on oxidative phosphorylation in mitochondria. Oxidative phosphorylation is governed by the respiratory chain located in the inner mitochondrial membrane. The inner mitochondrial membrane is the only cellular membrane with significant amounts of the phospholipid cardiolipin, and cardiolipin was found to directly interact with a number of essential protein complexes, including respiratory chain complexes I to V. An inherited defect in the biogenesis of cardiolipin causes Barth syndrome, which is associated with cardiomyopathy, skeletal myopathy, neutropenia and growth retardation. Energy conversion is dependent on reducing equivalents, which are replenished by oxidative metabolism in the Krebs cycle. Cardiolipin deficiency in Barth syndrome also affects Krebs cycle activity, metabolite transport and mitochondrial morphology. During excitation-contraction coupling, calcium (Ca2+ ) released from the sarcoplasmic reticulum drives sarcomeric contraction. At the same time, Ca2+ influx into mitochondria drives the activation of Krebs cycle dehydrogenases and the regeneration of reducing equivalents. Reducing equivalents are essential not only for energy conversion, but also for maintaining a redox buffer, which is required to detoxify reactive oxygen species (ROS). Defects in CL may also affect Ca2+ uptake into mitochondria and thereby hamper energy supply and demand matching, but also detoxification of ROS. Here, we review the impact of cardiolipin deficiency on mitochondrial function in Barth syndrome and discuss potential therapeutic strategies.
Collapse
Affiliation(s)
- Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
40
|
Egea PF. Mechanisms of Non-Vesicular Exchange of Lipids at Membrane Contact Sites: Of Shuttles, Tunnels and, Funnels. Front Cell Dev Biol 2021; 9:784367. [PMID: 34912813 PMCID: PMC8667587 DOI: 10.3389/fcell.2021.784367] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic cells are characterized by their exquisite compartmentalization resulting from a cornucopia of membrane-bound organelles. Each of these compartments hosts a flurry of biochemical reactions and supports biological functions such as genome storage, membrane protein and lipid biosynthesis/degradation and ATP synthesis, all essential to cellular life. Acting as hubs for the transfer of matter and signals between organelles and throughout the cell, membrane contacts sites (MCSs), sites of close apposition between membranes from different organelles, are essential to cellular homeostasis. One of the now well-acknowledged function of MCSs involves the non-vesicular trafficking of lipids; its characterization answered one long-standing question of eukaryotic cell biology revealing how some organelles receive and distribute their membrane lipids in absence of vesicular trafficking. The endoplasmic reticulum (ER) in synergy with the mitochondria, stands as the nexus for the biosynthesis and distribution of phospholipids (PLs) throughout the cell by contacting nearly all other organelle types. MCSs create and maintain lipid fluxes and gradients essential to the functional asymmetry and polarity of biological membranes throughout the cell. Membrane apposition is mediated by proteinaceous tethers some of which function as lipid transfer proteins (LTPs). We summarize here the current state of mechanistic knowledge of some of the major classes of LTPs and tethers based on the available atomic to near-atomic resolution structures of several "model" MCSs from yeast but also in Metazoans; we describe different models of lipid transfer at MCSs and analyze the determinants of their specificity and directionality. Each of these systems illustrate fundamental principles and mechanisms for the non-vesicular exchange of lipids between eukaryotic membrane-bound organelles essential to a wide range of cellular processes such as at PL biosynthesis and distribution, lipid storage, autophagy and organelle biogenesis.
Collapse
Affiliation(s)
- Pascal F Egea
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
41
|
Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases. Front Cell Dev Biol 2021; 9:774989. [PMID: 34858991 PMCID: PMC8631538 DOI: 10.3389/fcell.2021.774989] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular remodeling occurs in cardiomyocytes, collagen meshes, and vascular beds in the progress of cardiac insufficiency caused by a variety of cardiac diseases such as chronic ischemic heart disease, chronic overload heart disease, myocarditis, and myocardial infarction. The morphological changes that occur as a result of remodeling are the critical pathological basis for the occurrence and development of serious diseases and also determine morbidity and mortality. Therefore, the inhibition of remodeling is an important approach to prevent and treat heart failure and other related diseases. The endoplasmic reticulum (ER) and mitochondria are tightly linked by ER-mitochondria contacts (ERMCs). ERMCs play a vital role in different signaling pathways and provide a satisfactory structural platform for the ER and mitochondria to interact and maintain the normal function of cells, mainly by involving various cellular life processes such as lipid metabolism, calcium homeostasis, mitochondrial function, ER stress, and autophagy. Studies have shown that abnormal ERMCs may promote the occurrence and development of remodeling and participate in the formation of a variety of cardiovascular remodeling-associated diseases. This review focuses on the structure and function of the ERMCs, and the potential mechanism of ERMCs involved in cardiovascular remodeling, indicating that ERMCs may be a potential target for new therapeutic strategies against cardiovascular remodeling-induced diseases.
Collapse
Affiliation(s)
- Yu Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinrong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya Wen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sixuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Lu
- Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Xu
- Jinan Tianqiao People's Hospital, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
42
|
Lacombe ML, Lamarche F, De Wever O, Padilla-Benavides T, Carlson A, Khan I, Huna A, Vacher S, Calmel C, Desbourdes C, Cottet-Rousselle C, Hininger-Favier I, Attia S, Nawrocki-Raby B, Raingeaud J, Machon C, Guitton J, Le Gall M, Clary G, Broussard C, Chafey P, Thérond P, Bernard D, Fontaine E, Tokarska-Schlattner M, Steeg P, Bièche I, Schlattner U, Boissan M. The mitochondrially-localized nucleoside diphosphate kinase D (NME4) is a novel metastasis suppressor. BMC Biol 2021; 19:228. [PMID: 34674701 PMCID: PMC8529772 DOI: 10.1186/s12915-021-01155-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Mitochondrial nucleoside diphosphate kinase (NDPK-D, NME4, NM23-H4) is a multifunctional enzyme mainly localized in the intermembrane space, bound to the inner membrane. Results We constructed loss-of-function mutants of NDPK-D, lacking either NDP kinase activity or membrane interaction and expressed mutants or wild-type protein in cancer cells. In a complementary approach, we performed depletion of NDPK-D by RNA interference. Both loss-of-function mutations and NDPK-D depletion promoted epithelial-mesenchymal transition and increased migratory and invasive potential. Immunocompromised mice developed more metastases when injected with cells expressing mutant NDPK-D as compared to wild-type. This metastatic reprogramming is a consequence of mitochondrial alterations, including fragmentation and loss of mitochondria, a metabolic switch from respiration to glycolysis, increased ROS generation, and further metabolic changes in mitochondria, all of which can trigger pro-metastatic protein expression and signaling cascades. In human cancer, NME4 expression is negatively associated with markers of epithelial-mesenchymal transition and tumor aggressiveness and a good prognosis factor for beneficial clinical outcome. Conclusions These data demonstrate NME4 as a novel metastasis suppressor gene, the first localizing to mitochondria, pointing to a role of mitochondria in metastatic dissemination. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01155-5.
Collapse
Affiliation(s)
- Marie-Lise Lacombe
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Frederic Lamarche
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | | | - Alyssa Carlson
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, USA
| | - Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Anda Huna
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Sophie Vacher
- Unit of Pharmacogenetics, Department of Genetics, Curie Institute, Paris, France
| | - Claire Calmel
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Céline Desbourdes
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Cécile Cottet-Rousselle
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Isabelle Hininger-Favier
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Stéphane Attia
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Béatrice Nawrocki-Raby
- Reims Champagne Ardenne University, INSERM, P3Cell UMR-S 1250, SFR CAP-SANTE, Reims, France
| | - Joël Raingeaud
- INSERM U1279, Gustave Roussy Institute, Villejuif, France
| | - Christelle Machon
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Jérôme Guitton
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Morgane Le Gall
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Guilhem Clary
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Cedric Broussard
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Philippe Chafey
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Patrice Thérond
- AP-HP, CHU Bicêtre, Laboratory of Biochemistry, Le Kremlin-Bicêtre Hospital, Le Kremlin-Bicêtre, France.,EA7537, Paris Saclay University, Châtenay-Malabry, France
| | - David Bernard
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Eric Fontaine
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Malgorzata Tokarska-Schlattner
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Patricia Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Ivan Bièche
- Unit of Pharmacogenetics, Department of Genetics, Curie Institute, Paris, France
| | - Uwe Schlattner
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), Institut Universitaire de France (IUF), Grenoble, France.
| | - Mathieu Boissan
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France. .,AP-HP, Laboratory of Biochemistry and Hormonology, Tenon Hospital, Paris, France.
| |
Collapse
|
43
|
Lourenço AB, Artal-Sanz M. The Mitochondrial Prohibitin (PHB) Complex in C. elegans Metabolism and Ageing Regulation. Metabolites 2021; 11:metabo11090636. [PMID: 34564452 PMCID: PMC8472356 DOI: 10.3390/metabo11090636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
The mitochondrial prohibitin (PHB) complex, composed of PHB-1 and PHB-2, is an evolutionarily conserved context-dependent modulator of longevity. This extremely intriguing phenotype has been linked to alterations in mitochondrial function and lipid metabolism. The true biochemical function of the mitochondrial PHB complex remains elusive, but it has been shown to affect membrane lipid composition. Recent work, using large-scale biochemical approaches, has highlighted a broad effect of PHB on the C. elegans metabolic network. Collectively, the biochemical data support the notion that PHB modulates, at least partially, worm longevity through the moderation of fat utilisation and energy production via the mitochondrial respiratory chain. Herein, we review, in a systematic manner, recent biochemical insights into the impact of PHB on the C. elegans metabolome.
Collapse
Affiliation(s)
- Artur B. Lourenço
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Carretera de Utrera Km 1, 41013 Seville, Spain
- Correspondence: (A.B.L.); (M.A.-S.)
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Carretera de Utrera Km 1, 41013 Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain
- Correspondence: (A.B.L.); (M.A.-S.)
| |
Collapse
|
44
|
Lu M, Ward E, van Tartwijk FW, Kaminski CF. Advances in the study of organelle interactions and their role in neurodegenerative diseases enabled by super-resolution microscopy. Neurobiol Dis 2021; 159:105475. [PMID: 34390833 DOI: 10.1016/j.nbd.2021.105475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022] Open
Abstract
From the first illustrations of neuronal morphology by Ramón y Cajal to the recent three-dimensional reconstruction of synaptic connections, the development of modern neuroscience has greatly benefited from breakthroughs in imaging technology. This also applies specifically to the study of neurodegenerative diseases. Much of the research into these diseases relies on the direct visualisation of intracellular structures and their dynamics in degenerating neural cells, which cannot be fully resolved by diffraction-limited microscopes. Progress in the field has therefore been closely linked to the development of super-resolution imaging methods. Their application has greatly advanced our understanding of disease mechanisms, ranging from the structural progression of protein aggregates to defects in organelle morphology. Recent super-resolution studies have specifically implicated the disruption of inter-organelle interactions in multiple neurodegenerative diseases. In this article, we describe some of the key super-resolution techniques that have contributed to this field. We then discuss work to visualise changes in the structure and dynamics of organelles and associated dysfunctions. Finally, we consider what future developments in imaging technology may further our knowledge of these processes.
Collapse
Affiliation(s)
- Meng Lu
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Edward Ward
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Francesca W van Tartwijk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Clemens F Kaminski
- Cambridge Infinitus Research Centre, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK.
| |
Collapse
|
45
|
Williams EP, Bachvaroff TR, Place AR. A Global Approach to Estimating the Abundance and Duplication of Polyketide Synthase Domains in Dinoflagellates. Evol Bioinform Online 2021; 17:11769343211031871. [PMID: 34345159 PMCID: PMC8283056 DOI: 10.1177/11769343211031871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Many dinoflagellate species make toxins in a myriad of different molecular configurations but the underlying chemistry in all cases is presumably via modular synthases, primarily polyketide synthases. In many organisms modular synthases occur as discrete synthetic genes or domains within a gene that act in coordination thus forming a module that produces a particular fragment of a natural product. The modules usually occur in tandem as gene clusters with a syntenic arrangement that is often predictive of the resultant structure. Dinoflagellate genomes however are notoriously complex with individual genes present in many tandem repeats and very few synthetic modules occurring as gene clusters, unlike what has been seen in bacteria and fungi. However, modular synthesis in all organisms requires a free thiol group that acts as a carrier for sequential synthesis called a thiolation domain. We scanned 47 dinoflagellate transcriptomes for 23 modular synthase domain models and compared their abundance among 10 orders of dinoflagellates as well as their co-occurrence with thiolation domains. The total count of domain types was quite large with over thirty-thousand identified, 29 000 of which were in the core dinoflagellates. Although there were no specific trends in domain abundance associated with types of toxins, there were readily observable lineage specific differences. The Gymnodiniales, makers of long polyketide toxins such as brevetoxin and karlotoxin had a high relative abundance of thiolation domains as well as multiple thiolation domains within a single transcript. Orders such as the Gonyaulacales, makers of small polyketides such as spirolides, had fewer thiolation domains but a relative increase in the number of acyl transferases. Unique to the core dinoflagellates, however, were thiolation domains occurring alongside tetratricopeptide repeats that facilitate protein-protein interactions, especially hexa and hepta-repeats, that may explain the scaffolding required for synthetic complexes capable of making large toxins. Clustering analysis for each type of domain was also used to discern possible origins of duplication for the multitude of single domain transcripts. Single domain transcripts frequently clustered with synonymous domains from multi-domain transcripts such as the BurA and ZmaK like genes as well as the multi-ketosynthase genes, sometimes with a large degree of apparent gene duplication, while fatty acid synthesis genes formed distinct clusters. Surprisingly the acyl-transferases and ketoreductases involved in fatty acid synthesis (FabD and FabG, respectively) were found in very large clusters indicating an unprecedented degree of gene duplication for these genes. These results demonstrate a complex evolutionary history of core dinoflagellate modular synthases with domain specific duplications throughout the lineage as well as clues to how large protein complexes can be assembled to synthesize the largest natural products known.
Collapse
Affiliation(s)
- Ernest P Williams
- Institute of Marine and Environmental Technologies, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Tsvetan R Bachvaroff
- Institute of Marine and Environmental Technologies, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Allen R Place
- Institute of Marine and Environmental Technologies, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| |
Collapse
|
46
|
Lourenço AB, Rodríguez-Palero MJ, Doherty MK, Cabrerizo Granados D, Hernando-Rodríguez B, Salas JJ, Venegas-Calerón M, Whitfield PD, Artal-Sanz M. The Mitochondrial PHB Complex Determines Lipid Composition and Interacts With the Endoplasmic Reticulum to Regulate Ageing. Front Physiol 2021; 12:696275. [PMID: 34276415 PMCID: PMC8281979 DOI: 10.3389/fphys.2021.696275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic disorders are frequently associated with physiological changes that occur during ageing. The mitochondrial prohibitin complex (PHB) is an evolutionary conserved context-dependent modulator of longevity, which has been linked to alterations in lipid metabolism but which biochemical function remains elusive. In this work we aimed at elucidating the molecular mechanism by which depletion of mitochondrial PHB shortens the lifespan of wild type animals while it extends that of insulin signaling receptor (daf-2) mutants. A liquid chromatography coupled with mass spectrometry approach was used to characterize the worm lipidome of wild type and insulin deficient animals upon PHB depletion. Toward a mechanistic interpretation of the insights coming from this analysis, we used a combination of biochemical, microscopic, and lifespan analyses. We show that PHB depletion perturbed glycerophospholipids and glycerolipids pools differently in short- versus long-lived animals. Interestingly, PHB depletion in otherwise wild type animals induced the endoplasmic reticulum (ER) unfolded protein response (UPR), which was mitigated in daf-2 mutants. Moreover, depletion of DNJ-21, which functionally interacts with PHB in mitochondria, mimicked the effect of PHB deficiency on the UPRER and on the lifespan of wild type and insulin signaling deficient mutants. Our work shows that PHB differentially modulates lipid metabolism depending on the worm’s metabolic status and provides evidences for a new link between PHB and ER homeostasis in ageing regulation.
Collapse
Affiliation(s)
- Artur B Lourenço
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - María Jesús Rodríguez-Palero
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Mary K Doherty
- Division of Biomedical Science, University of the Highlands and Islands, Inverness, United Kingdom
| | - David Cabrerizo Granados
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Blanca Hernando-Rodríguez
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Universidad Pablo de Olavide, Seville, Spain
| | | | - Phillip D Whitfield
- Division of Biomedical Science, University of the Highlands and Islands, Inverness, United Kingdom
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
47
|
Mitochondrial DNA Heteroplasmy as an Informational Reservoir Dynamically Linked to Metabolic and Immunological Processes Associated with COVID-19 Neurological Disorders. Cell Mol Neurobiol 2021; 42:99-107. [PMID: 34117968 PMCID: PMC8196276 DOI: 10.1007/s10571-021-01117-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022]
Abstract
Mitochondrial DNA (mtDNA) heteroplasmy is the dynamically determined co-expression of wild type (WT) inherited polymorphisms and collective time-dependent somatic mutations within individual mtDNA genomes. The temporal expression and distribution of cell-specific and tissue-specific mtDNA heteroplasmy in healthy individuals may be functionally associated with intracellular mitochondrial signaling pathways and nuclear DNA gene expression. The maintenance of endogenously regulated tissue-specific copy numbers of heteroplasmic mtDNA may represent a sensitive biomarker of homeostasis of mitochondrial dynamics, metabolic integrity, and immune competence. Myeloid cells, monocytes, macrophages, and antigen-presenting dendritic cells undergo programmed changes in mitochondrial metabolism according to innate and adaptive immunological processes. In the central nervous system (CNS), the polarization of activated microglial cells is dependent on strategically programmed changes in mitochondrial function. Therefore, variations in heteroplasmic mtDNA copy numbers may have functional consequences in metabolically competent mitochondria in innate and adaptive immune processes involving the CNS. Recently, altered mitochondrial function has been demonstrated in the progression of coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Accordingly, our review is organized to present convergent lines of empirical evidence that potentially link expression of mtDNA heteroplasmy by functionally interactive CNS cell types to the extent and severity of acute and chronic post-COVID-19 neurological disorders.
Collapse
|
48
|
The Role of Mitochondrial Quality Control in Cardiac Ischemia/Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5543452. [PMID: 34211627 PMCID: PMC8211512 DOI: 10.1155/2021/5543452] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
A healthy mitochondrial network produces a large amount of ATP and biosynthetic intermediates to provide sufficient energy for myocardium and maintain normal cell metabolism. Mitochondria form a dynamic and interconnected network involved in various cellular metabolic signaling pathways. As mitochondria are damaged, controlling mitochondrial quantity and quality is activated by changing their morphology and tube network structure, mitophagy, and biogenesis to replenish a healthy mitochondrial network to preserve cell function. There is no doubt that mitochondrial dysfunction has become a key factor in many diseases. Ischemia/reperfusion (IR) injury is a pathological manifestation of various heart diseases. Cardiac ischemia causes temporary tissue and organelle damage. Although reperfusion is essential to compensate for nutrient deficiency, blood flow restoration inconsequently further kills the previously ischemic cardiomyocytes. To date, dysfunctional mitochondria and disturbed mitochondrial quality control have been identified as critical IR injury mechanisms. Many researchers have detected abnormal mitochondrial morphology and mitophagy, as well as aberrant levels and activity of mitochondrial biogenesis factors in the IR injury model. Although mitochondrial damage is well-known in myocardial IR injury, the causal relationship between abnormal mitochondrial quality control and IR injury has not been established. This review briefly describes the molecular mechanisms of mitochondrial quality control, summarizes our current understanding of the complex role of mitochondrial quality control in IR injury, and finally speculates on the possibility of targeted control of mitochondria and the methods available to mitigate IR injury.
Collapse
|
49
|
Yeo HK, Park TH, Kim HY, Jang H, Lee J, Hwang GS, Ryu SE, Park SH, Song HK, Ban HS, Yoon HJ, Lee BI. Phospholipid transfer function of PTPIP51 at mitochondria-associated ER membranes. EMBO Rep 2021; 22:e51323. [PMID: 33938112 DOI: 10.15252/embr.202051323] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 02/24/2021] [Accepted: 03/22/2021] [Indexed: 01/08/2023] Open
Abstract
In eukaryotic cells, mitochondria are closely tethered to the endoplasmic reticulum (ER) at sites called mitochondria-associated ER membranes (MAMs). Ca2+ ion and phospholipid transfer occurs at MAMs to support diverse cellular functions. Unlike those in yeast, the protein complexes involved in phospholipid transfer at MAMs in humans have not been identified. Here, we determine the crystal structure of the tetratricopeptide repeat domain of PTPIP51 (PTPIP51_TPR), a mitochondrial protein that interacts with the ER-anchored VAPB protein at MAMs. The structure of PTPIP51_TPR shows an archetypal TPR fold, and an electron density map corresponding to an unidentified lipid-like molecule probably derived from the protein expression host is found in the structure. We reveal functions of PTPIP51 in phospholipid binding/transfer, particularly of phosphatidic acid, in vitro. Depletion of PTPIP51 in cells reduces the mitochondrial cardiolipin level. Additionally, we confirm that the PTPIP51-VAPB interaction is mediated by the FFAT-like motif of PTPIP51 and the MSP domain of VAPB. Our findings suggest that PTPIP51 is a phospholipid transfer protein with a MAM-tethering function.
Collapse
Affiliation(s)
- Hyun Ku Yeo
- Research Institute, National Cancer Center, Goyang-si, Korea
| | - Tae Hyun Park
- Research Institute, National Cancer Center, Goyang-si, Korea.,Department of Bioengineering, Hanyang University, Seoul, Korea
| | - Hee Yeon Kim
- Research Institute, National Cancer Center, Goyang-si, Korea
| | - Hyonchol Jang
- Research Institute, National Cancer Center, Goyang-si, Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Korea
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea.,Department of Chemistry and Nano Science, Ewha Womans University, Seoul, Korea
| | - Seong Eon Ryu
- Department of Bioengineering, Hanyang University, Seoul, Korea
| | - Si Hoon Park
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Hyun Seung Ban
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Byung Il Lee
- Research Institute, National Cancer Center, Goyang-si, Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Korea
| |
Collapse
|
50
|
Carrard J, Gallart-Ayala H, Infanger D, Teav T, Wagner J, Knaier R, Colledge F, Streese L, Königstein K, Hinrichs T, Hanssen H, Ivanisevic J, Schmidt-Trucksäss A. Metabolic View on Human Healthspan: A Lipidome-Wide Association Study. Metabolites 2021; 11:metabo11050287. [PMID: 33946321 PMCID: PMC8146132 DOI: 10.3390/metabo11050287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
As ageing is a major risk factor for the development of non-communicable diseases, extending healthspan has become a medical and societal necessity. Precise lipid phenotyping that captures metabolic individuality could support healthspan extension strategies. This study applied ‘omic-scale lipid profiling to characterise sex-specific age-related differences in the serum lipidome composition of healthy humans. A subset of the COmPLETE-Health study, composed of 73 young (25.2 ± 2.6 years, 43% female) and 77 aged (73.5 ± 2.3 years, 48% female) clinically healthy individuals, was investigated, using an untargeted liquid chromatography high-resolution mass spectrometry approach. Compared to their younger counterparts, aged females and males exhibited significant higher levels in 138 and 107 lipid species representing 15 and 13 distinct subclasses, respectively. Percentage of difference ranged from 5.8% to 61.7% (females) and from 5.3% to 46.0% (males), with sphingolipid and glycerophophospholipid species displaying the greatest amplitudes. Remarkably, specific sphingolipid and glycerophospholipid species, previously described as cardiometabolically favourable, were found elevated in aged individuals. Furthermore, specific ether-glycerophospholipid and lyso-glycerophosphocholine species displayed higher levels in aged females only, revealing a more favourable lipidome evolution in females. Altogether, age determined the circulating lipidome composition, while lipid species analysis revealed additional findings that were not observed at the subclass level.
Collapse
Affiliation(s)
- Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, CH-1005 Lausanne, Switzerland; (H.G.-A.); (T.T.)
| | - Denis Infanger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Tony Teav
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, CH-1005 Lausanne, Switzerland; (H.G.-A.); (T.T.)
| | - Jonathan Wagner
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Raphael Knaier
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Flora Colledge
- Division of Sports Science, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland;
| | - Lukas Streese
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Karsten Königstein
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Timo Hinrichs
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Henner Hanssen
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, CH-1005 Lausanne, Switzerland; (H.G.-A.); (T.T.)
- Correspondence: (J.I.); (A.S.-T.)
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
- Correspondence: (J.I.); (A.S.-T.)
| |
Collapse
|