1
|
Hashemi M, Fard AA, Pakshad B, Asheghabadi PS, Hosseinkhani A, Hosseini AS, Moradi P, Mohammadbeygi Niye M, Najafi G, Farahzadi M, Khoushab S, Taheriazam A, Farahani N, Mohammadi M, Daneshi S, Nabavi N, Entezari M. Non-coding RNAs and regulation of the PI3K signaling pathway in lung cancer: Recent insights and potential clinical applications. Noncoding RNA Res 2025; 11:1-21. [PMID: 39720352 PMCID: PMC11665378 DOI: 10.1016/j.ncrna.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Lung cancer (LC) is one of the most common causes of cancer-related death worldwide. It has been demonstrated that the prognosis of current drug treatments is affected by a variety of factors, including late stage, tumor recurrence, inaccessibility to appropriate treatments, and, most importantly, chemotherapy resistance. Non-coding RNAs (ncRNAs) contribute to tumor development, with some acting as tumor suppressors and others as oncogenes. The phosphoinositide 3-kinase (PI3Ks)/AKT serine/threonine kinase pathway is one of the most important common targets of ncRNAs in cancer, which is widely applied to modulate the cell cycle and a variety of biological processes, including cell growth, mobility survival, metabolic activity, and protein production. Discovering the biology of ncRNA-PI3K/AKT signaling may lead to advances in cancer diagnosis and treatment. As a result, we investigated the expression and role of PI3K/AKT-related ncRNAs in clinical characteristics of lung cancer, as well as their functions as potential biomarkers in lung cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Asal Abolghasemi Fard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bita Pakshad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pezhman Shafiei Asheghabadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amineh Hosseinkhani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atena Sadat Hosseini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parham Moradi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Mohammadbeygi Niye
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazal Najafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohadeseh Farahzadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Ashadul Sk M, K H, Matada GSP, Pal R, B V M, Mounika S, E H, M P V, D A. Current developments in PI3K-based anticancer agents: Designing strategies, biological activity, selectivity, structure-activity correlation, and docking insight. Bioorg Chem 2024; 154:108011. [PMID: 39662340 DOI: 10.1016/j.bioorg.2024.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
The phospatidylinositol-3 kinase (PI3K) pathway is a critical intracellular signalling mechanism that is changed or amplified in a variety of cancers, including breast, gastric, ovarian, colorectal, prostate, glioma, and endometrial. PI3K signalling is important for cancer cell survival, angiogenesis, and metastasis, making it a promising therapeutic target. The PI3K kinases in their different isoforms, namely α, β, δ, and γ, encode PIK3CA, PIK3CB, PIK3CD, and PIK3CG genes. Specific gene mutation or overexpression of the protein is responsible for the therapeutic failure of current therapeutics. There are several current and completed clinical trials using PI3K inhibitors (pan, isoform-specific, and dual PI3K/mTOR) to develop effective PI3K inhibitors capable of overcoming resistance to existing drugs. However, the bulk of these inhibitors have had their indications revoked or voluntarily withdrawn due to concerns about their harmful consequences. Several inhibitors containing medicinally privileged scaffolds like thiazole, triazine, benzimidazole, podophyllotoxin, pyridine, quinazoline, thieno-triazole, pyrimidine, triazole, benzofuran, imidazo-pyridazine, oxazole, coumarin, and azepine derivatives have been explored to target the PI3K pathway and/or a specific isoform in the current overview. This article reviews the structure, biological activities, and clinical status of PI3K inhibitors. It focuses on the development techniques, docking insight, and structure-activity connections of PI3K-based inhibitors. The findings provide useful insights and future approaches for the development of promising PI3K-based inhibitors.
Collapse
Affiliation(s)
- Md Ashadul Sk
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Hemalatha K
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.
| | - Manjushree B V
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - S Mounika
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Haripriya E
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Viji M P
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Anjan D
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| |
Collapse
|
3
|
Jiang X, Tian L, Ren W, Li C, Hu X, Ge Y, Cheng L, Shi X, Jia Z. Cloning and Identification of Common Carp ( Cyprinus carpio) PI3KC3 and Its Expression in Response to CyHV-3 Infection. Curr Issues Mol Biol 2024; 46:11714-11728. [PMID: 39451576 PMCID: PMC11506267 DOI: 10.3390/cimb46100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are a class of key regulatory factors in eukaryotes that can inhibit viral replication by influencing autophagy. Currently, cyprinid herpesvirus 3 (CyHV-3) poses a serious threat to common carp culture. However, PI3K has not yet been identified in common carp. In this study, full-length PI3KC3 from common carp (CcPI3KC3), consisting of an open reading frame (ORF) of 2664 bp encoding a polypeptide of 887 amino acids, with a predicted molecular mass of 101.19 kDa and a theoretical isoelectric point (pI) of 5.97, was cloned. The amino acid and nucleotide sequences of CcPI3KC3 displayed high similarity to yellow catfish's (Tachysurus fulvidraco) PI3KC3. The tissue expression profile revealed that the mRNA levels of CcPI3KC3 in the liver, spleen, and head kidney were significantly greater than those in the brain, heart, intestines, gills, eyes, testes, and ovaries of common carp. We compared the expression patterns of CcPI3KC3 between "Longke-11" mirror carp (CyHV-3-resistant carp) and German mirror carp (non-resistant to CyHV-3) at different times (0, 48, 96, 144 h, 192, 240, 288 h post-infection (hpi)) after CyHV-3 infection. The results revealed that CcPI3KC3 mRNA expression significantly increased in the early infection stage. In the CyHV-3-resistant mirror carp variety, the relative expression of CcPI3KC3 was significantly greater at 48, 96, and 144 hpi compared with the nonbreeding strain groups after infection (p < 0.001). These results indicate that the full-length CcPI3KC3 sequence was successfully cloned from common carp for the first time, and it might play an important role in the immune system of common carp against CyHV-3 infection. This study provides a theoretical basis for the molecular mechanism of CyHV-3 resistance.
Collapse
Affiliation(s)
- Xiaona Jiang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Lijing Tian
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Wanying Ren
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Chitao Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Xuesong Hu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Yanlong Ge
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Lei Cheng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Xiaodan Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Zhiying Jia
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| |
Collapse
|
4
|
Jia Y, He P, Ma X, Lv K, Liu Y, Xu Y. PIK3IP1: structure, aberration, function, and regulation in diseases. Eur J Pharmacol 2024; 977:176753. [PMID: 38897445 DOI: 10.1016/j.ejphar.2024.176753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) pathway, controlling diverse functions in cells, is one of the most frequently dysregulated pathways in cancer. Several negative regulators have been reported to intricately constrain the overactivation of PI3K pathway. Phosphatidylinoinosidine-3-kinase interacting protein 1 (PIK3IP1), as a unique transmembrane protein, is a newly discovered negative regulator of PI3K pathway. PIK3IP1 negatively regulates PI3K activity by directly binding to the p110 catalytic subunit of PI3K. It has been reported that PIK3IP1 is frequently low expressed in tumors and autoimmune diseases. In tumor cells and impaired cardiomyocyte, PIK3IP1 inhibits cell proliferation and survival. Consistently, the expression of PIK3IP1 is related with the condition of cancer. In addition, PIK3IP1 inhibits the inflammatory response and immune function via maintaining the quiescent state of immune cells. Thus, low expression of PIK3IP1 represents the severe condition of autoimmune diseases. PIK3IP1 is regulated by transcription factors, epigenetic factors or micro-RNAs to facilitate its normal function in different cellular contexts. This review integrates the total findings on PIK3IP1 in different disease, and summaries the structure, biological functions and regulatory mechanisms of PIK3IP1.
Collapse
Affiliation(s)
- Yingjie Jia
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengxing He
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xubin Ma
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Kaili Lv
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yichao Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Li P, Ma X, Gu X. The essential roles of lncRNAs/PI3K/AKT axis in gastrointestinal tumors. Front Cell Dev Biol 2024; 12:1442193. [PMID: 39161590 PMCID: PMC11330846 DOI: 10.3389/fcell.2024.1442193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
The role of long noncoding RNA (lncRNA) in tumors, particularly in gastrointestinal tumors, has gained significant attention. Accumulating evidence underscores the interaction between various lncRNAs and diverse molecular pathways involved in cancer progression. One such pivotal pathway is the PI3K/AKT pathway, which serves as a crucial intracellular mechanism maintaining the balance among various cellular physiological processes for normal cell growth and survival. Frequent dysregulation of the PI3K/AKT pathway in cancer, along with aberrant activation, plays a critical role in driving tumorigenesis. LncRNAs modulate the PI3K/AKT signaling pathway through diverse mechanisms, primarily by acting as competing endogenous RNA to regulate miRNA expression and associated genes. This interaction significantly influences fundamental biological behaviors such as cell proliferation, metastasis, and drug resistance. Abnormal expression of numerous lncRNAs in gastrointestinal tumors often correlates with clinical outcomes and pathological features in patients with cancer. Additionally, these lncRNAs influence the sensitivity of tumor cells to chemotherapy in multiple types of gastrointestinal tumors through the abnormal activation of the PI3K/AKT pathway. These findings provide valuable insights into the mechanisms underlying gastrointestinal tumors and potential therapeutic targets. However, gastrointestinal tumors remain a significant global health concern, with increasing incidence and mortality rates of gastrointestinal tumors over recent decades. This review provides a comprehensive summary of the latest research on the interactions of lncRNA and the PI3K/AKT pathway in gastrointestinal tumor development. Additionally, it focuses on the functions of lncRNAs and the PI3K/AKT pathway in carcinogenesis, exploring expression profiles, clinicopathological characteristics, interaction mechanisms with the PI3K/AKT pathway, and potential clinical applications.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
6
|
Khezri MR, Hsueh H, Mohammadipanah S, Khalili Fard J, Ghasemnejad‐Berenji M. The interplay between the PI3K/AKT pathway and circadian clock in physiologic and cancer-related pathologic conditions. Cell Prolif 2024; 57:e13608. [PMID: 38336976 PMCID: PMC11216939 DOI: 10.1111/cpr.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/15/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The circadian clock is responsible for the regulation of different cellular processes, and its disturbance has been linked to the development of different diseases, such as cancer. The main molecular mechanism for this issue has been linked to the crosstalk between core clock regulators and intracellular pathways responsible for cell survival. The PI3K/AKT signalling pathway is one of the most known intracellular pathways in the case of cancer initiation and progression. This pathway regulates different aspects of cell survival including proliferation, apoptosis, metabolism, and response to environmental stimuli. Accumulating evidence indicates that there is a link between the PI3K/AKT pathway activity and circadian rhythm in physiologic and cancer-related pathogenesis. Different classes of PI3Ks and AKT isoforms are involved in regulating circadian clock components in a transcriptional and functional manner. Reversely, core clock components induce a rhythmic fashion in PI3K and AKT activity in physiologic and pathogenic conditions. The aim of this review is to re-examine the interplay between this pathway and circadian clock components in normal condition and cancer pathogenesis, which provides a better understanding of how circadian rhythms may be involved in cancer progression.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Reproductive Health Research Center, Clinical Research InstituteUrmia University of Medical SciencesUrmiaIran
| | - Hsiang‐Yin Hsueh
- The Ohio State University Graduate Program in Molecular, Cellular and Developmental BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Somayeh Mohammadipanah
- Reproductive Health Research Center, Clinical Research InstituteUrmia University of Medical SciencesUrmiaIran
| | - Javad Khalili Fard
- Department of Pharmacology and Toxicology, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Morteza Ghasemnejad‐Berenji
- Department of Pharmacology and Toxicology, Faculty of PharmacyUrmia University of Medical SciencesUrmiaIran
- Research Center for Experimental and Applied Pharmaceutical SciencesUrmia University of Medical SciencesUrmiaIran
| |
Collapse
|
7
|
Wang Y, Han Y, Shang K, Xiao J, Tao L, Peng Z, Liu S, Jiang Y. Kokusaginine attenuates renal fibrosis by inhibiting the PI3K/AKT signaling pathway. Biomed Pharmacother 2024; 175:116695. [PMID: 38713950 DOI: 10.1016/j.biopha.2024.116695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024] Open
Abstract
Kokusaginine is an active ingredient alkaloid that has been isolated and extracted from Ruta graveolens L. Some researches have indicated that alkaloids possess anti-inflammatory and antioxidant effects. Nevertheless, the potential nephroprotective effects of kokusaginine on renal fibrosis remain undetermined. This study was conducted to examine the protective effect of kokusaginine on renal fibrosis and to explore the underlying mechanisms using both in vivo and in vitro models. Renal fibrosis was induced in male C57BL/6 J mice by feeding with 0.2% adenine-containing food and UUO surgery. Kokusaginine was administered orally simultaneously after the establishment of renal fibrosis. Renal function was measured by serum levels of creatinine and urea nitrogen. Renal pathological changes were assessed by HE staining and Masson staining. Western blotting was employed to detect the expression levels of fibrosis-related proteins in mice and cells. Additionally, network pharmacology analysis and RNA-seq were utilized to predict the pathways through which kokusaginine could exert its anti-fibrotic effects. The treatment with kokusaginine enhanced renal function, alleviated renal histoarchitectural lesions, and mitigated renal fibrosis in the renal fibrosis models. The network pharmacology and RNA-seq enrichment analysis of the KEGG pathway demonstrated that kokusaginine could exert anti-renal fibrosis activity via the PI3K/AKT signaling pathway. And the results were verified in both in vitro and in vivo experiments. In conclusion, our data implied that kokusaginine inhibited the activation of the PI3K/AKT signaling pathway both in vitro and in vivo, and suppressed the formation of renal fibrosis. Thus, the kokusaginine-mediated PI3K/AKT signaling pathway may represent a novel approach for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuanyuan Han
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China; Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kaiqi Shang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jing Xiao
- Hunan Institute for Drug Control, Changsha 410001, China
| | - Lijian Tao
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China; Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhangzhe Peng
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China; Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
8
|
Hussain MS, Moglad E, Afzal M, Gupta G, Hassan Almalki W, Kazmi I, Alzarea SI, Kukreti N, Gupta S, Kumar D, Chellappan DK, Singh SK, Dua K. Non-coding RNA mediated regulation of PI3K/Akt pathway in hepatocellular carcinoma: Therapeutic perspectives. Pathol Res Pract 2024; 258:155303. [PMID: 38728793 DOI: 10.1016/j.prp.2024.155303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is among the primary reasons for fatalities caused by cancer globally, highlighting the need for comprehensive knowledge of its molecular aetiology to develop successful treatment approaches. The PI3K/Akt system is essential in the course of HCC, rendering it an intriguing candidate for treatment. Non-coding RNAs (ncRNAs), such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are important mediators of the PI3K/Akt network in HCC. The article delves into the complex regulatory functions of ncRNAs in influencing the PI3K/Akt system in HCC. The study explores how lncRNAs, miRNAs, and circRNAs impact the expression as well as the function of the PI3K/Akt network, either supporting or preventing HCC growth. Additionally, treatment strategies focusing on ncRNAs in HCC are examined, such as antisense oligonucleotide-based methods, RNA interference, and small molecule inhibitor technologies. Emphasizing the necessity of ensuring safety and effectiveness in clinical settings, limitations, and future approaches in using ncRNAs as therapies for HCC are underlined. The present study offers useful insights into the complex regulation system of ncRNAs and the PI3K/Akt cascade in HCC, suggesting possible opportunities for developing innovative treatment approaches to address this lethal tumor.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Khandwa Road, Village Umrikheda, Near Toll Booth, Indore, Madhya Pradesh 452020, India
| | - Dinesh Kumar
- School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
9
|
Mehvari S, Karimian Fathi N, Saki S, Asadnezhad M, Arzhangi S, Ghodratpour F, Mohseni M, Zare Ashrafi F, Sadeghian S, Boroumand M, Shokohizadeh F, Rostami E, Boroumand R, Najafipour R, Malekzadeh R, Riazalhosseini Y, Akbari M, Lathrop M, Najmabadi H, Hosseini K, Kahrizi K. Contribution of genetic variants in the development of familial premature coronary artery disease in a cohort of cardiac patients. Clin Genet 2024; 105:611-619. [PMID: 38308583 DOI: 10.1111/cge.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Coronary artery disease (CAD), the most prevalent cardiovascular disease, is the leading cause of death worldwide. Heritable factors play a significant role in the pathogenesis of CAD. It has been proposed that approximately one-third of patients with CAD have a positive family history, and individuals with such history are at ~1.5-fold increased risk of CAD in their lifespans. Accordingly, the long-recognized familial clustering of CAD is a strong risk factor for this disease. Our study aimed to identify candidate genetic variants contributing to CAD by studying a cohort of 60 large Iranian families with at least two members in different generations afflicted with premature CAD (PCAD), defined as established disease at ≤45 years in men and ≤55 years in women. Exome sequencing was performed for a subset of the affected individuals, followed by prioritization and Sanger sequencing of candidate variants in all available family members. Subsequently, apparently healthy carriers of potential risk variants underwent coronary computed tomography angiography (CCTA), followed by co-segregation analysis of the combined data. Putative causal variants were identified in seven genes, ABCG8, CD36, CYP27A1, PIK3C2G, RASSF9, RYR2, and ZFYVE21, co-segregating with familial PCAD in seven unrelated families. Among these, PIK3C2G, RASSF9, and ZFYVE21 are novel candidate CAD susceptibility genes. Our findings indicate that rare variants in genes identified in this study are involved in CAD development.
Collapse
Affiliation(s)
- Sepideh Mehvari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nahid Karimian Fathi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sara Saki
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Asadnezhad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Ghodratpour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farzane Zare Ashrafi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Saeed Sadeghian
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadali Boroumand
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shokohizadeh
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Rostami
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahnama Boroumand
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Najafipour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Akbari
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kaveh Hosseini
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- McGill Genome Centre, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Nasr M, Fay A, Lupieri A, Malet N, Darmon A, Zahreddine R, Swiader A, Wahart A, Viaud J, Nègre-Salvayre A, Hirsch E, Monteyne D, Perez-Morgà D, Dupont N, Codogno P, Ramel D, Morel E, Laffargue M, Gayral S. PI3KCIIα-Dependent Autophagy Program Protects From Endothelial Dysfunction and Atherosclerosis in Response to Low Shear Stress in Mice. Arterioscler Thromb Vasc Biol 2024; 44:620-634. [PMID: 38152888 DOI: 10.1161/atvbaha.123.319978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND The ability to respond to mechanical forces is a basic requirement for maintaining endothelial cell (ECs) homeostasis, which is continuously subjected to low shear stress (LSS) and high shear stress (HSS). In arteries, LSS and HSS have a differential impact on EC autophagy processes. However, it is still unclear whether LSS and HSS differently tune unique autophagic machinery or trigger specific autophagic responses in ECs. METHODS Using fluid flow system to generate forces on EC and multiscale imaging analyses on ApoE-/- mice whole arteries, we studied the cellular and molecular mechanism involved in autophagic response to LSS or HSS on the endothelium. RESULTS We found that LSS and HSS trigger autophagy activation by mobilizing specific autophagic signaling modules. Indeed, LSS-induced autophagy in endothelium was independent of the class III PI3K (phosphoinositide 3-kinase) VPS34 (vacuolar sorting protein 34) but controlled by the α isoform of class II PI3K (phosphoinositide 3-kinase class II α [PI3KCIIα]). Accordingly, reduced PI3KCIIα expression in ApoE-/- mice (ApoE-/-PI3KCIIα+/-) led to EC dysfunctions associated with increased plaque deposition in the LSS regions. Mechanistically, we revealed that PI3KCIIα inhibits mTORC1 (mammalian target of rapamycin complex 1) activation and that rapamycin treatment in ApoE-/-PI3KCIIα+/- mice specifically rescue autophagy in arterial LSS regions. Finally, we demonstrated that absence of PI3KCIIα led to decreased endothelial primary cilium biogenesis in response to LSS and that ablation of primary cilium mimics PI3KCIIα-decreased expression in EC dysfunction, suggesting that this organelle could be the mechanosensor linking PI3KCIIα and EC homeostasis. CONCLUSIONS Our data reveal that mechanical forces variability within the arterial system determines EC autophagic response and supports a central role of PI3KCIIα/mTORC1 axis to prevent EC dysfunction in LSS regions.
Collapse
Affiliation(s)
- Mouin Nasr
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Alexis Fay
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Adrien Lupieri
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Nicole Malet
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Anne Darmon
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Rana Zahreddine
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Audrey Swiader
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Amandine Wahart
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Julien Viaud
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Anne Nègre-Salvayre
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy (E.H.)
| | - Daniel Monteyne
- IBMM-DBM, Department of Molecular Parasitology, University of Brussels, Gosselies, Belgium (D.M., D.P.-M.)
| | - David Perez-Morgà
- IBMM-DBM, Department of Molecular Parasitology, University of Brussels, Gosselies, Belgium (D.M., D.P.-M.)
| | - Nicolas Dupont
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, France (N.D., P.C., E.M.)
| | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, France (N.D., P.C., E.M.)
| | - Damien Ramel
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Etienne Morel
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes-Sorbonne Paris Cité, France (N.D., P.C., E.M.)
| | - Muriel Laffargue
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| | - Stephanie Gayral
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut national de la Santé et de la Recherche (INSERM) 1297, University of Toulouse 3, France (M.N., A.F., A.L., N.M., A.D., R.Z., A.S., A.W., J.V., A.N.-S., D.R., M.L., S.G.)
| |
Collapse
|
11
|
Yan G, Xiao Q, Zhao J, Chen H, Xu Y, Tan M, Peng L. Brucea javanica derived exosome-like nanovesicles deliver miRNAs for cancer therapy. J Control Release 2024; 367:425-440. [PMID: 38295998 DOI: 10.1016/j.jconrel.2024.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is characterized by complex heterogeneity, high recurrence and metastasis rates, and short overall survival, owing to the lack of endocrine and targeted receptors, which necessitates chemotherapy as the major treatment regimen. Exosome-like nanovesicles derived from medicinal plants have shown great potential as novel biotherapeutics for cancer therapy by delivering their incorporated nucleic acids, especially microRNAs (miRNAs), to mammalian cells. In this study, we isolated exosome-like nanovesicles derived from B. javanica (BF-Exos) and investigated their influence and underlying molecular mechanisms in TNBC. We found that BF-Exos delivered 10 functional miRNAs to 4T1 cells, significantly retarding the growth and metastasis of 4T1 cells by regulating the PI3K/Akt/mTOR signaling pathway and promoting ROS/caspase-mediated apoptosis. Moreover, BF-Exos were shown to inhibit the secretion of vascular endothelial growth factor, contributing to anti-angiogenesis in the tumor microenvironment. In vivo, BF-Exos inhibited tumor growth, metastasis, and angiogenesis in breast tumor mouse models, while maintaining high biosafety. Overall, BF-Exos are considered promising nanoplatforms for the delivery of medicinal plant-derived nucleic acids, with great potential to be developed into novel biotherapeutics for the treatment of TNBC.
Collapse
Affiliation(s)
- Ge Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qiyao Xiao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jingyu Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Haoran Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Minhong Tan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lihua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, PR China.
| |
Collapse
|
12
|
Korbut AI, Romanov VV, Klimontov VV. Urinary Excretion of Biomolecules Related to Cell Cycle, Proliferation, and Autophagy in Subjects with Type 2 Diabetes and Chronic Kidney Disease. Biomedicines 2024; 12:487. [PMID: 38540101 PMCID: PMC10968590 DOI: 10.3390/biomedicines12030487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 01/04/2025] Open
Abstract
Dysregulation of cell cycle, proliferation, and autophagy plays a pivotal role in diabetic kidney disease. In this study, we assessed urinary excretion of molecular regulators of these processes that mediate their effects via the PI3K/AKT/mTOR pathway in subjects with long-term type 2 diabetes (T2D) and different patterns of chronic kidney disease (CKD). We included 140 patients with T2D and 20 non-diabetic individuals in a cross-sectional study. Urinary PTEN, Beclin-1, sirtuin 1 (SIRT1), Klotho, fibroblast growth factor 21 (FGF21), and connective tissue growth factor (CTGF) were assessed using ELISA. Patients with T2D, when compared to control, demonstrated increased excretion of PTEN, Beclin-1, SIRT1, FGF21, CTGF, and decreased urinary Klotho (all p < 0.05). In the diabetic group, PTEN, FGF21, and CTGF were significantly higher in patients with declined renal function, while Klotho was lower in those with elevated albuminuria. FGF21 and PTEN correlated inversely with the estimated glomerular filtration rate. There was a negative correlation between Klotho and urinary albumin-to-creatinine ratio. In multivariate models, Klotho and PTEN were associated with albuminuric CKD independently. The results provide further support for the role of PTEN, BECN1, FGF21, Klotho, and CTGF in development albuminuric and non-albuminuric CKD in diabetes.
Collapse
Affiliation(s)
| | | | - Vadim V. Klimontov
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia
| |
Collapse
|
13
|
Hu J, Fu S, Zhan Z, Zhang J. Advancements in dual-target inhibitors of PI3K for tumor therapy: Clinical progress, development strategies, prospects. Eur J Med Chem 2024; 265:116109. [PMID: 38183777 DOI: 10.1016/j.ejmech.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Phosphoinositide 3-kinases (PI3Ks) modify lipids by the phosphorylation of inositol phospholipids at the 3'-OH position, thereby participating in signal transduction and exerting effects on various physiological processes such as cell growth, metabolism, and organism development. PI3K activation also drives cancer cell growth, survival, and metabolism, with genetic dysregulation of this pathway observed in diverse human cancers. Therefore, this target is considered a promising potential therapeutic target for various types of cancer. Currently, several selective PI3K inhibitors and one dual-target PI3K inhibitor have been approved and launched on the market. However, the majority of these inhibitors have faced revocation or voluntary withdrawal of indications due to concerns regarding their adverse effects. This article provides a comprehensive review of the structure and biological functions, and clinical status of PI3K inhibitors, with a specific emphasis on the development strategies and structure-activity relationships of dual-target PI3K inhibitors. The findings offer valuable insights and future directions for the development of highly promising dual-target drugs targeting PI3K.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Siyu Fu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
14
|
Wang J, Cheng X, Mei X, Wu H, Yu Q, Xiao M. The effect of Par3 on the cellular junctions and biological functions of odontoblast-lineage cells. Odontology 2024; 112:125-137. [PMID: 37493885 DOI: 10.1007/s10266-023-00838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/17/2023] [Indexed: 07/27/2023]
Abstract
Perfect intercellular junctions are key for odontoblast barrier function. However, whether Partitioning defective-3 (Par3) is expressed in odontoblasts and its potential effects on odontoblast junctions are unknown. Herein, we investigated the effect of Par3 on cellular junctions and the biological behavior of odontoblast-lineage cells (OLCs). Whole-transcriptome sequencing was used to analyze the effects of Par3 on OLCs and the underlying molecular mechanism. Par3 was detected under physiological and inflammatory conditions in OLCs. To investigate the regulatory effect of Par3 on junctions between mouse OLCs, the effects of Par3 downregulation on the proliferation, migration, cycle and apoptosis of OLCs were detected by 5-ethyl-2'-deoxyuridine (EdU) and Transwell assays and flow cytometry. Western blotting and alizarin red S and alkaline phosphatase (ALP) staining were used to observe the effect of Par3 downregulation on OLC mineralization. Whole-transcriptome sequencing was used to investigate the biological role of Par3 in OLCs and potential molecular mechanisms. Par3 was located along the odontoblast layer in the rat pulp tissue and in the cytoplasm of OLCs. Par3 expression was downregulated under inflammatory conditions. The OLC junctions were discontinuous, and total Zona occluden-1 (ZO-1) expression and expression of ZO-1 at the membrane in OLCs were reduced after Par3 silencing (P < 0.05). Expression of a junction-related protein (ZO-1) was downregulated after the downregulation of Par3 (P < 0.05), and ZO-1 moved from the cell membrane to the cytoplasm. OLC proliferation and migration were enhanced, but apoptosis and mineralization were inhibited in shPar3-transfected cells (P < 0.05). Sequencing identified 2996 differentially expressed genes (DEGs), which were mainly enriched in the response to stimuli and binding. Downregulation of Par3 could overactivate the PI3k-AKT pathway by promoting AKT phosphorylation (P < 0.05). Downregulation of Par3 may disrupt junctions between OLCs by affecting ZO-1 expression and distribution and promote OLC proliferation and migration but inhibit OLC mineralization. Par3 may interact with 14-3-3 proteins for PI3K-AKT pathway activation to affect OLC junctions and function.
Collapse
Affiliation(s)
- Jueyu Wang
- State Key Laboratory of Oral & Maxillofacial reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, 145 West Chang-le Road, Xi'an, China
| | - Xiaogang Cheng
- State Key Laboratory of Oral & Maxillofacial reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, 145 West Chang-le Road, Xi'an, China
| | - Xiaohan Mei
- State Key Laboratory of Oral & Maxillofacial reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, 145 West Chang-le Road, Xi'an, China
| | - Haoze Wu
- State Key Laboratory of Oral & Maxillofacial reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, 145 West Chang-le Road, Xi'an, China
| | - Qing Yu
- State Key Laboratory of Oral & Maxillofacial reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, 145 West Chang-le Road, Xi'an, China
| | - Min Xiao
- State Key Laboratory of Oral & Maxillofacial reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, 145 West Chang-le Road, Xi'an, China.
| |
Collapse
|
15
|
Setiabakti NM, Tarlac V, Larsson P, Hamilton JR. PI3KC2α inhibition is antithrombotic in blood from hypercholesterolemic mice. J Thromb Haemost 2024; 22:249-254. [PMID: 37827379 DOI: 10.1016/j.jtha.2023.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Current antiplatelet agents exhibit reduced antithrombotic efficacy in high-risk populations such as populations with hypercholesterolemia. The class II PI3-kinase, PI3KC2α, is a recently discovered target for novel antiplatelet therapy. PI3KC2α inhibition is antithrombotic in healthy mouse models, but whether this is preserved in hypercholesterolemia remains unknown. OBJECTIVES This study aimed to examine whether genetic deficiency or pharmacologic inhibition of PI3KC2α provides antithrombotic effects in blood from hypercholesterolemic mice. METHODS Hypercholesterolemic PI3KC2α-deficient mice were generated by breeding into an ApoE-/- background. Thrombosis was examined using an ex vivo whole blood thrombosis assay. The effect of pharmacologic inhibition of PI3KC2α was examined in whole blood from ApoE-/- mice treated with the PI3KC2α inhibitor MIPS-21335. RESULTS ApoE-/- mice exhibited the anticipated prothrombotic effect of hypercholesterolemia, with a 1.5-fold increase in thrombus volume in blood from ApoE-/- vs wild-type mice. This prothrombotic phenotype in blood from hypercholesterolemic mice was significantly reduced with PI3KC2α deficiency. Acute pharmacologic inhibition of PI3KC2α with MIPS-21335 similarly reduced thrombosis in blood from ApoE-/- mice. CONCLUSION These findings demonstrate that targeting PI3KC2α results in a potent antithrombotic effect in hypercholesterolemic mice and suggest that PI3KC2α is a promising target for antithrombotic therapy in patients with hypercholesterolemia at a high risk of thrombotic events.
Collapse
Affiliation(s)
- Natasha M Setiabakti
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Volga Tarlac
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Pia Larsson
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
16
|
Liu T, Wang W, Li X, Chen Y, Mu F, Wen A, Liu M, Ding Y. Advances of phytotherapy in ischemic stroke targeting PI3K/Akt signaling. Phytother Res 2023; 37:5509-5528. [PMID: 37641491 DOI: 10.1002/ptr.7994] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
The pathogenesis of ischemic stroke is complex, and PI3K/Akt signaling is considered to play a crucial role in it. The PI3K/Akt pathway regulates inflammation, oxidative stress, apoptosis, autophagy, and vascular endothelial homeostasis after cerebral ischemia; therefore, drug research targeting the PI3K/Akt pathway has become the focus of scientists. In this review, we analyzed the research reports of antiischemic stroke drugs targeting the PI3K/Akt pathway in the past two decades. Because of the rich sources of natural products, increasing studies have explored the value of natural compounds, including Flavonoids, Quinones, Alkaloids, Phenylpropanoids, Phenols, Saponins, and Terpenoids, in alleviating neurological impairment and achieved satisfactory results. Herbal extracts and medicinal formulas have been applied in the treatment of ischemic stroke for thousands of years in East Asian countries. These precious clinical experiences provide a new avenue for research of antiischemic stroke drugs. Finally, we summarize and discuss the characteristics and shortcomings of the current research and put forward prospects for further in-depth exploration.
Collapse
Affiliation(s)
- Tianlong Liu
- Department of Pharmacy, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Li
- Department of Pharmacy, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
| | - Yidan Chen
- Department of Pharmacy, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Minna Liu
- Department of Nephrology, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
17
|
Huang X, You L, Nepovimova E, Psotka M, Malinak D, Valko M, Sivak L, Korabecny J, Heger Z, Adam V, Wu Q, Kuca K. Inhibitors of phosphoinositide 3-kinase (PI3K) and phosphoinositide 3-kinase-related protein kinase family (PIKK). J Enzyme Inhib Med Chem 2023; 38:2237209. [PMID: 37489050 PMCID: PMC10392309 DOI: 10.1080/14756366.2023.2237209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 02/02/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3K) and phosphoinositide 3-kinase-related protein kinases (PIKK) are two structurally related families of kinases that play vital roles in cell growth and DNA damage repair. Dysfunction of PIKK members and aberrant stimulation of the PI3K/AKT/mTOR signalling pathway are linked to a plethora of diseases including cancer. In recent decades, numerous inhibitors related to the PI3K/AKT/mTOR signalling have made great strides in cancer treatment, like copanlisib and sirolimus. Notably, most of the PIKK inhibitors (such as VX-970 and M3814) related to DNA damage response have also shown good efficacy in clinical trials. However, these drugs still require a suitable combination therapy to overcome drug resistance or improve antitumor activity. Based on the aforementioned facts, we summarised the efficacy of PIKK, PI3K, and AKT inhibitors in the therapy of human malignancies and the resistance mechanisms of targeted therapy, in order to provide deeper insights into cancer treatment.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
18
|
Kobialka P, Llena J, Deleyto-Seldas N, Munar-Gelabert M, Dengra JA, Villacampa P, Albinyà-Pedrós A, Muixi L, Andrade J, van Splunder H, Angulo-Urarte A, Potente M, Grego-Bessa J, Castillo SD, Vanhaesebroeck B, Efeyan A, Graupera M. PI3K-C2β limits mTORC1 signaling and angiogenic growth. Sci Signal 2023; 16:eadg1913. [PMID: 38015911 DOI: 10.1126/scisignal.adg1913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
Phosphoinositide 3-kinases (PI3Ks) phosphorylate intracellular inositol lipids to regulate signaling and intracellular vesicular trafficking. Mammals have eight PI3K isoforms, of which class I PI3Kα and class II PI3K-C2α are essential for vascular development. The class II PI3K-C2β is also abundant in endothelial cells. Using in vivo and in vitro approaches, we found that PI3K-C2β was a critical regulator of blood vessel growth by restricting endothelial mTORC1 signaling. Mice expressing a kinase-inactive form of PI3K-C2β displayed enlarged blood vessels without corresponding changes in endothelial cell proliferation or migration. Instead, inactivation of PI3K-C2β resulted in an increase in the size of endothelial cells, particularly in the sprouting zone of angiogenesis. Mechanistically, we showed that the aberrantly large size of PI3K-C2β mutant endothelial cells was caused by mTORC1 activation, which sustained growth in these cells. Consistently, pharmacological inhibition of mTORC1 with rapamycin normalized vascular morphogenesis in PI3K-C2β mutant mice. Together, these results identify PI3K-C2β as a crucial determinant of endothelial signaling and illustrate the importance of mTORC1 regulation during angiogenic growth.
Collapse
Affiliation(s)
- Piotr Kobialka
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Judith Llena
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Nerea Deleyto-Seldas
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, Madrid 28029, Spain
| | - Margalida Munar-Gelabert
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Jose A Dengra
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Pilar Villacampa
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Alba Albinyà-Pedrós
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Laia Muixi
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Jorge Andrade
- Angiogenesis & Metabolism Laboratory, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Hielke van Splunder
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Ana Angulo-Urarte
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Michael Potente
- Angiogenesis & Metabolism Laboratory, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Joaquim Grego-Bessa
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Sandra D Castillo
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Bart Vanhaesebroeck
- Cancer Institute, Paul O'Gorman Building, University College London, WC1N 1EH London, UK
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, Madrid 28029, Spain
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- CIBERONC, Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| |
Collapse
|
19
|
Kakar R, Ghosh C, Sun Y. Phosphoinositide Signaling in Immune Cell Migration. Biomolecules 2023; 13:1705. [PMID: 38136577 PMCID: PMC10741629 DOI: 10.3390/biom13121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
In response to different immune challenges, immune cells migrate to specific sites in the body, where they perform their functions such as defense against infection, inflammation regulation, antigen recognition, and immune surveillance. Therefore, the migration ability is a fundamental aspect of immune cell function. Phosphoinositide signaling plays critical roles in modulating immune cell migration by controlling cell polarization, cytoskeletal rearrangement, protrusion formation, and uropod contraction. Upon chemoattractant stimulation, specific phosphoinositide kinases and phosphatases control the local phosphoinositide levels to establish polarized phosphoinositide distribution, which recruits phosphoinositide effectors to distinct subcellular locations to facilitate cell migration. In this Special Issue of "Molecular Mechanisms Underlying Cell Adhesion and Migration", we discuss the significance of phosphoinositide production and conversion by phosphoinositide kinases and phosphatases in the migration of different types of immune cells.
Collapse
Affiliation(s)
| | | | - Yue Sun
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA; (R.K.); (C.G.)
| |
Collapse
|
20
|
Vishwakarma P, Siddiqui NF, Thakur S, Jadhav H. FDA approved fused-pyrimidines as potential PI3K inhibitors: a computational repurposing approach. J Biomol Struct Dyn 2023; 42:13497-13514. [PMID: 37909480 DOI: 10.1080/07391102.2023.2276315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Fused pyrimidine scaffold is present in several US FDA-approved drugs for various therapeutic indications. Drug repurposing (or drug repositioning) involves the analysis of existing clinically approved drugs for new therapeutic indications. Phosphoinositide-3-kinase (PI3K), via the regulatory PI3K pathway, is involved in cell growth, proliferation, differentiation, survival, and angiogenesis. It is also considered a target in anticancer drug development as it promotes the growth of cancerous cells and increases resistance to anticancer therapy. The present work employed computational techniques like molecular docking, MMGBSA analysis, and molecular dynamics simulations to explore the PI3K inhibition by FDA-approved drugs with fused pyrimidine scaffold. The work identifies Lapatinib as a pan-class I PI3K inhibitor and Dipyridamole as an γ isoform-specific PI3K inhibitor and is reported here.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pinky Vishwakarma
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, Rajasthan, India
| | - Noor Fatima Siddiqui
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, Rajasthan, India
| | - Shikha Thakur
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, Rajasthan, India
| | - Hemant Jadhav
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, Rajasthan, India
| |
Collapse
|
21
|
Kücükdisli M, Bel-Abed H, Cirillo D, Lo WT, Efrém NL, Horatscheck A, Perepelittchenko L, Prokofeva P, Ehret TAL, Radetzki S, Neuenschwander M, Specker E, Médard G, Müller S, Wilhelm S, Kuster B, von Kries JP, Haucke V, Nazaré M. Structural Basis for Highly Selective Class II Alpha Phosphoinositide-3-Kinase Inhibition. J Med Chem 2023; 66:14278-14302. [PMID: 37819647 DOI: 10.1021/acs.jmedchem.3c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Class II phosphoinositide-3-kinases (PI3Ks) play central roles in cell signaling, division, migration, and survival. Despite evidence that all PI3K class II isoforms serve unique cellular functions, the lack of isoform-selective inhibitors severely hampers the systematic investigation of their potential relevance as pharmacological targets. Here, we report the structural evaluation and molecular determinants for selective PI3K-C2α inhibition by a structure-activity relationship study based on a pteridinone scaffold, leading to the discovery of selective PI3K-C2α inhibitors called PITCOINs. Cocrystal structures and docking experiments supported the rationalization of the structural determinants essential for inhibitor activity and high selectivity. Profiling of PITCOINs in a panel of more than 118 diverse kinases showed no off-target kinase inhibition. Notably, by addressing a selectivity pocket, PITCOIN4 showed nanomolar inhibition of PI3K-C2α and >100-fold selectivity in a general kinase panel. Our study paves the way for the development of novel therapies for diseases related to PI3K-C2α function.
Collapse
Affiliation(s)
- Murat Kücükdisli
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, 13125 Berlin, Germany
| | - Hassen Bel-Abed
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, 13125 Berlin, Germany
| | - Davide Cirillo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, 13125 Berlin, Germany
| | - Wen-Ting Lo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, 13125 Berlin, Germany
| | - Nina-Louisa Efrém
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, 13125 Berlin, Germany
| | - André Horatscheck
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, 13125 Berlin, Germany
| | - Liudmila Perepelittchenko
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, 13125 Berlin, Germany
| | - Polina Prokofeva
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Theresa A L Ehret
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Silke Radetzki
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, 13125 Berlin, Germany
| | - Martin Neuenschwander
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, 13125 Berlin, Germany
| | - Edgar Specker
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, 13125 Berlin, Germany
| | - Guillaume Médard
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Stephanie Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Jens Peter von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, 13125 Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, 13125 Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, 13125 Berlin, Germany
| |
Collapse
|
22
|
Zhang D, Chen X, Liu B, Yuan Y, Cui W, Zhu D, Zhu J, Duan S, Li C. The Temporal and Spatial Changes of Autophagy and PI3K Isoforms in Different Neural Cells After Hypoxia/Reoxygenation Injury. Mol Neurobiol 2023; 60:5366-5377. [PMID: 37316758 DOI: 10.1007/s12035-023-03421-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
There are limited therapeutic options for patient with traumatic spinal cord injury (SCI). Phosphoinositide 3-kinase family (PI3Ks) are the key molecules for regulating cell autophagy, which is a possible way of treating SCI. As we know, PI3K family are composed of eight isoforms, which are distributed into three classes. While the role of PI3Ks in regulating autophagy is controversial and the effects may be in a cell-specific manner. Different isoforms do not distribute in neural cells consistently and it is not clear how the PI3K isoforms regulate and interact with autophagy. Therefore, we explored the distributions and expression of different PI3K isoforms in two key neural cells (PC12 cells and astrocytes). The results showed that the expression of LC3II/I and p62, which are the markers of autophagy, changed in different patterns in PC12 cells and astrocytes after hypoxia/reoxygenation injury (H/R). Furthermore, the mRNA level of eight PI3K isoforms did not change in the same way, and even for the same isoform the mRNA activities are different between PC12 cells and astrocytes. What is more, the results of western blot of PI3K isoforms after H/R were inconsistent with the relevant mRNA. Based on this study, the therapeutic effects of regulating autophagy on SCI are not confirmed definitely, and its molecular mechanisms may be related with different temporal and spatial patterns of activation and distributions of PI3K isoforms.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xuanyu Chen
- Department of Orthopedics, Capital Medical University Electric Power Hospital, Beijing, 100073, China
| | - Baoge Liu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Yuan Yuan
- Department of Spinal Cord Injury Rehabilitation, China Rehabilitation Research Center, Beijing, 100068, China
| | - Wei Cui
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Di Zhu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jichao Zhu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shuo Duan
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Chenxi Li
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| |
Collapse
|
23
|
Cirillo D, Diceglie M, Nazaré M. Isoform-selective targeting of PI3K: time to consider new opportunities? Trends Pharmacol Sci 2023; 44:601-621. [PMID: 37438206 DOI: 10.1016/j.tips.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/14/2023]
Abstract
Phosphoinositide-3-kinases (PI3Ks) are central to several cellular signaling pathways in human physiology and are potential pharmacological targets for many pathologies including cancer, thrombosis, and pulmonary diseases. Tremendous efforts to develop isoform-selective inhibitors have culminated in the approval of several drugs, validating PI3K as a tractable and therapeutically relevant target. Although successful therapeutic validation has focused on isoform-selective class I orthosteric inhibitors, recent clinical findings have indicated challenges regarding poor drug tolerance owing to sustained on-target inhibition. Hence, additional approaches are warranted to increase the clinical benefits of specific clinical treatment options, which may involve the employment of so far underexploited targeting modalities or the development of inhibitors for currently underexplored PI3K class II isoforms. We review recent key discoveries in the development of isoform-selective inhibitors, focusing particularly on PI3K class II isoforms, and highlight the emerging importance of developing a broader arsenal of pharmacological tools.
Collapse
Affiliation(s)
- Davide Cirillo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, Germany
| | - Marta Diceglie
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, Germany.
| |
Collapse
|
24
|
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, Salimimoghadam S, Mirzaei S, Entezari M, Samarghandian S. Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal 2023; 17:423-443. [PMID: 36367667 PMCID: PMC10409967 DOI: 10.1007/s12079-022-00702-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urological cancers have obtained much attention in recent years due to their mortality and morbidity. The most common and malignant tumor of urological cancers is prostate cancer that imposes high socioeconomic costs on public life and androgen-deprivation therapy, surgery, and combination of chemotherapy and radiotherapy are employed in its treatment. PI3K/Akt signaling is an oncogenic pathway responsible for migration, proliferation and drug resistance in various cancers. In the present review, the role of PI3K/Akt signaling in prostate cancer progression is highlighted. The activation of PI3K/Akt signaling occurs in prostate cancer, while PTEN as inhibitor of PI3K/Akt shows down-regulation. Stimulation of PI3K/Akt signaling promotes survival of prostate tumor cells and prevents apoptosis. The cell cycle progression and proliferation rate of prostate tumor cells increase by PI3K/Akt signaling induction. PI3K/Akt signaling stimulates EMT and enhances metastasis of prostate tumor cells. Silencing PI3K/Akt signaling impairs growth and metastasis of prostate tumor cells. Activation of PI3K/Akt signaling mediates drug resistance and reduces radio-sensitivity of prostate tumor cells. Anti-tumor compounds suppress PI3K/Akt signaling in impairing prostate tumor progression. Furthermore, upstream regulators such as miRNAs, lncRNAs and circRNAs regulate PI3K/Akt signaling and it has clinical implications for prostate cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- League of European Research Universities, European University Association, University of Milan, Milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
25
|
Chaturvedi S, Biswas M, Sadhukhan S, Sonawane A. Role of EGFR and FASN in breast cancer progression. J Cell Commun Signal 2023:10.1007/s12079-023-00771-w. [PMID: 37490191 DOI: 10.1007/s12079-023-00771-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
Breast cancer (BC) emerged as one of the life-threatening diseases among females. Despite notable improvements made in cancer detection and treatment worldwide, according to GLOBACAN 2020, BC is the fifth leading cancer, with an estimated 1 in 6 cancer deaths, in a majority of countries. However, the exact cause that leads to BC progression still needs to be determined. Here, we reviewed the role of two novel biomarkers responsible for 50-70% of BC progression. The first one is epidermal growth factor receptor (EGFR) which belongs to the ErbB tyrosine kinases family, signalling pathways associated with it play a significant role in regulating cell proliferation and division. Another one is fatty acid synthase (FASN), a key enzyme responsible for the de novo lipid synthesis required for cancer cell development. This review presents a rationale for the EGFR-mediated pathways, their interaction with FASN, communion of these two biomarkers with BC, and improvements to overcome drug resistance caused by them.
Collapse
Affiliation(s)
- Suchi Chaturvedi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh, 453552, India
| | - Mainak Biswas
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678623, India.
- Physical & Chemical Biology Laboratory and Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678623, India.
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh, 453552, India.
| |
Collapse
|
26
|
Liu Y, Liu Q, Zhang Z, Yang Y, Zhou Y, Yan H, Wang X, Li X, Zhao J, Hu J, Yang S, Tian Y, Yao Y, Qiu Z, Song Y, Yang Y. The regulatory role of PI3K in ageing-related diseases. Ageing Res Rev 2023; 88:101963. [PMID: 37245633 DOI: 10.1016/j.arr.2023.101963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Ageing is a physiological/pathological process accompanied by the progressive damage of cell function, triggering various ageing-related disorders. Phosphatidylinositol 3-kinase (PI3K), which serves as one of the central regulators of ageing, is closely associated with cellular characteristics or molecular features, such as genome instability, telomere erosion, epigenetic alterations, and mitochondrial dysfunction. In this review, the PI3K signalling pathway was firstly thoroughly explained. The link between ageing pathogenesis and the PI3K signalling pathway was then summarized. Finally, the key regulatory roles of PI3K in ageing-related illnesses were investigated and stressed. In summary, we revealed that drug development and clinical application targeting PI3K is one of the focal points for delaying ageing and treating ageing-related diseases in the future.
Collapse
Affiliation(s)
- Yanqing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Qiong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Zhe Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yaru Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yazhe Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Huanle Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Xin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Xiaoru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Jing Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Jingyan Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Shulin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yifan Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yu Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Zhenye Qiu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yanbin Song
- Department of Cardiology, Affiliated Hospital, Yan'an University, 43 North Street, Yan'an 716000, China.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| |
Collapse
|
27
|
Vidalle MC, Sheth B, Fazio A, Marvi MV, Leto S, Koufi FD, Neri I, Casalin I, Ramazzotti G, Follo MY, Ratti S, Manzoli L, Gehlot S, Divecha N, Fiume R. Nuclear Phosphoinositides as Key Determinants of Nuclear Functions. Biomolecules 2023; 13:1049. [PMID: 37509085 PMCID: PMC10377365 DOI: 10.3390/biom13071049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Polyphosphoinositides (PPIns) are signalling messengers representing less than five per cent of the total phospholipid concentration within the cell. Despite their low concentration, these lipids are critical regulators of various cellular processes, including cell cycle, differentiation, gene transcription, apoptosis and motility. PPIns are generated by the phosphorylation of the inositol head group of phosphatidylinositol (PtdIns). Different pools of PPIns are found at distinct subcellular compartments, which are regulated by an array of kinases, phosphatases and phospholipases. Six of the seven PPIns species have been found in the nucleus, including the nuclear envelope, the nucleoplasm and the nucleolus. The identification and characterisation of PPIns interactor and effector proteins in the nucleus have led to increasing interest in the role of PPIns in nuclear signalling. However, the regulation and functions of PPIns in the nucleus are complex and are still being elucidated. This review summarises our current understanding of the localisation, biogenesis and physiological functions of the different PPIns species in the nucleus.
Collapse
Affiliation(s)
- Magdalena C Vidalle
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Antonietta Fazio
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Maria Vittoria Marvi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Stefano Leto
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Foteini-Dionysia Koufi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Neri
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Casalin
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Sonakshi Gehlot
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Roberta Fiume
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
28
|
Safaroghli-Azar A, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. Phosphoinositide 3-kinase (PI3K) classes: From cell signaling to endocytic recycling and autophagy. Eur J Pharmacol 2023:175827. [PMID: 37269974 DOI: 10.1016/j.ejphar.2023.175827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Lipid signaling is defined as any biological signaling action in which a lipid messenger binds to a protein target, converting its effects to specific cellular responses. In this complex biological pathway, the family of phosphoinositide 3-kinase (PI3K) represents a pivotal role and affects many aspects of cellular biology from cell survival, proliferation, and migration to endocytosis, intracellular trafficking, metabolism, and autophagy. While yeasts have a single isoform of phosphoinositide 3-kinase (PI3K), mammals possess eight PI3K types divided into three classes. The class I PI3Ks have set the stage to widen research interest in the field of cancer biology. The aberrant activation of class I PI3Ks has been identified in 30-50% of human tumors, and activating mutations in PIK3CA is one of the most frequent oncogenes in human cancer. In addition to indirect participation in cell signaling, class II and III PI3Ks primarily regulate vesicle trafficking. Class III PI3Ks are also responsible for autophagosome formation and autophagy flux. The current review aims to discuss the original data obtained from international research laboratories on the latest discoveries regarding PI3Ks-mediated cell biological processes. Also, we unravel the mechanisms by which pools of the same phosphoinositides (PIs) derived from different PI3K types act differently.
Collapse
Affiliation(s)
- Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Burke JE, Triscott J, Emerling BM, Hammond GRV. Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nat Rev Drug Discov 2023; 22:357-386. [PMID: 36376561 PMCID: PMC9663198 DOI: 10.1038/s41573-022-00582-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Lipid phosphoinositides are master regulators of almost all aspects of a cell's life and death and are generated by the tightly regulated activity of phosphoinositide kinases. Although extensive efforts have focused on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years have revealed opportunities for targeting almost all phosphoinositide kinases in human diseases, including cancer, immunodeficiencies, viral infection and neurodegenerative disease. This has led to widespread efforts in the clinical development of potent and selective inhibitors of phosphoinositide kinases. This Review summarizes our current understanding of the molecular basis for the involvement of phosphoinositide kinases in disease and assesses the preclinical and clinical development of phosphoinositide kinase inhibitors.
Collapse
Affiliation(s)
- John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Joanna Triscott
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Cabral-Dias R, Antonescu CN. Control of phosphatidylinositol-3-kinase signaling by nanoscale membrane compartmentalization. Bioessays 2023; 45:e2200196. [PMID: 36567275 DOI: 10.1002/bies.202200196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 09/12/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Phosphatidylinositol-3-kinases (PI3Ks) are lipid kinases that produce 3-phosphorylated derivatives of phosphatidylinositol upon activation by various cues. These 3-phosphorylated lipids bind to various protein effectors to control many cellular functions. Lipid phosphatases such as phosphatase and tensin homolog (PTEN) terminate PI3K-derived signals and are critical to ensure appropriate signaling outcomes. Many lines of evidence indicate that PI3Ks and PTEN, as well as some specific lipid effectors are highly compartmentalized, either in plasma membrane nanodomains or in endosomal compartments. We examine the evidence for specific recruitment of PI3Ks, PTEN, and other related enzymes to membrane nanodomains and endocytic compartments. We then examine the hypothesis that scaffolding of the sources (PI3Ks), terminators (PTEN), and effectors of these lipid signals with a common plasma membrane nanodomain may achieve highly localized lipid signaling and ensure selective activation of specific effectors. This highlights the importance of spatial regulation of PI3K signaling in various physiological and disease contexts.
Collapse
Affiliation(s)
- Rebecca Cabral-Dias
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Fleeman R. Repurposing Inhibitors of Phosphoinositide 3-kinase as Adjuvant Therapeutics for Bacterial Infections. FRONTIERS IN ANTIBIOTICS 2023; 2:1135485. [PMID: 38983593 PMCID: PMC11233138 DOI: 10.3389/frabi.2023.1135485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The rise in antimicrobial resistance and the decline in new antibiotics has created a great need for novel approaches to treat drug resistant bacterial infections. Increasing the burden of antimicrobial resistance, bacterial virulence factors allow for survival within the host, where they can evade host killing and antimicrobial therapy within their intracellular niches. Repurposing host directed therapeutics has great potential for adjuvants to allow for more effective bacterial killing by the host and antimicrobials. To this end, phosphoinositide 3-kinase inhibitors are FDA approved for cancer therapy, but also have potential to eliminate intracellular survival of pathogens. This review describes the PI3K pathway and its potential as an adjuvant target to treat bacterial infections more effectively.
Collapse
Affiliation(s)
- Renee Fleeman
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida. Orlando, FL 32837
| |
Collapse
|
32
|
De Santis MC, Gozzelino L, Margaria JP, Costamagna A, Ratto E, Gulluni F, Di Gregorio E, Mina E, Lorito N, Bacci M, Lattanzio R, Sala G, Cappello P, Novelli F, Giovannetti E, Vicentini C, Andreani S, Delfino P, Corbo V, Scarpa A, Porporato PE, Morandi A, Hirsch E, Martini M. Lysosomal lipid switch sensitises to nutrient deprivation and mTOR targeting in pancreatic cancer. Gut 2023; 72:360-371. [PMID: 35623884 PMCID: PMC9872233 DOI: 10.1136/gutjnl-2021-325117] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/07/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with limited therapeutic options. However, metabolic adaptation to the harsh PDAC environment can expose liabilities useful for therapy. Targeting the key metabolic regulator mechanistic target of rapamycin complex 1 (mTORC1) and its downstream pathway shows efficacy only in subsets of patients but gene modifiers maximising response remain to be identified. DESIGN Three independent cohorts of PDAC patients were studied to correlate PI3K-C2γ protein abundance with disease outcome. Mechanisms were then studied in mouse (KPC mice) and cellular models of PDAC, in presence or absence of PI3K-C2γ (WT or KO). PI3K-C2γ-dependent metabolic rewiring and its impact on mTORC1 regulation were assessed in conditions of limiting glutamine availability. Finally, effects of a combination therapy targeting mTORC1 and glutamine metabolism were studied in WT and KO PDAC cells and preclinical models. RESULTS PI3K-C2γ expression was reduced in about 30% of PDAC cases and was associated with an aggressive phenotype. Similarly, loss of PI3K-C2γ in KPC mice enhanced tumour development and progression. The increased aggressiveness of tumours lacking PI3K-C2γ correlated with hyperactivation of mTORC1 pathway and glutamine metabolism rewiring to support lipid synthesis. PI3K-C2γ-KO tumours failed to adapt to metabolic stress induced by glutamine depletion, resulting in cell death. CONCLUSION Loss of PI3K-C2γ prevents mTOR inactivation and triggers tumour vulnerability to RAD001 (mTOR inhibitor) and BPTES/CB-839 (glutaminase inhibitors). Therefore, these results might open the way to personalised treatments in PDAC with PI3K-C2γ loss.
Collapse
Affiliation(s)
- Maria Chiara De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Luca Gozzelino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Jean Piero Margaria
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Andrea Costamagna
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Edoardo Ratto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Erica Mina
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Nicla Lorito
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Marina Bacci
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine and Dentistry, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio", Chieti, Italy, Chieti, Italy
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine and Dentistry, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio", Chieti, Italy, Chieti, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | | | - Silvia Andreani
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Pietro Delfino
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- ARC-Net Research Centre, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Research Centre, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Paolo Ettore Porporato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Andrea Morandi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| |
Collapse
|
33
|
The Role of PI3K/AKT/mTOR Signaling in Hepatocellular Carcinoma Metabolism. Int J Mol Sci 2023; 24:ijms24032652. [PMID: 36768977 PMCID: PMC9916527 DOI: 10.3390/ijms24032652] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths in the world. Metabolic reprogramming is considered a new hallmark of cancer, but it remains unclearly described in HCC. The dysregulation of the PI3K/AKT/mTOR signaling pathway is common in HCC and is, therefore, a topic of further research and the concern of developing a novel target for liver cancer therapy. In this review, we illustrate mechanisms by which this signaling network is accountable for regulating HCC cellular metabolism, including glucose metabolism, lipid metabolism, amino acid metabolism, pyrimidine metabolism, and oxidative metabolism, and summarize the ongoing clinical trials based on the inhibition of the PI3K/AKT/mTOR pathway in HCC.
Collapse
|
34
|
Targeting Class I-II-III PI3Ks in Cancer Therapy: Recent Advances in Tumor Biology and Preclinical Research. Cancers (Basel) 2023; 15:cancers15030784. [PMID: 36765741 PMCID: PMC9913247 DOI: 10.3390/cancers15030784] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Phosphatidylinositol-3-kinase (PI3K) enzymes, producing signaling phosphoinositides at plasma and intracellular membranes, are key in intracellular signaling and vesicular trafficking pathways. PI3K is a family of eight enzymes divided into three classes with various functions in physiology and largely deregulated in cancer. Here, we will review the recent evidence obtained during the last 5 years on the roles of PI3K class I, II and III isoforms in tumor biology and on the anti-tumoral action of PI3K inhibitors in preclinical cancer models. The dependency of tumors to PI3K isoforms is dictated by both genetics and context (e.g., the microenvironment). The understanding of class II/III isoforms in cancer development and progression remains scarce. Nonetheless, the limited available data are consistent and reveal that there is an interdependency between the pathways controlled by all PI3K class members in their role to promote cancer cell proliferation, survival, growth, migration and metabolism. It is unknown whether this feature contributes to partial treatment failure with isoform-selective PI3K inhibitors. Hence, a better understanding of class II/III functions to efficiently inhibit their positive and negative interactions with class I PI3Ks is needed. This research will provide the proof-of-concept to develop combination treatment strategies targeting several PI3K isoforms simultaneously.
Collapse
|
35
|
Sirico M, D’Angelo A, Gianni C, Casadei C, Merloni F, De Giorgi U. Current State and Future Challenges for PI3K Inhibitors in Cancer Therapy. Cancers (Basel) 2023; 15:703. [PMID: 36765661 PMCID: PMC9913212 DOI: 10.3390/cancers15030703] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The phosphoinositide 3 kinase (PI3K)-protein kinase B (PKB/AKT)-mammalian target of the rapamycin (mTOR) axis is a key signal transduction system that links oncogenes and multiple receptor classes which are involved in many essential cellular functions. Aberrant PI3K signalling is one of the most commonly mutated pathways in cancer. Consequently, more than 40 compounds targeting key components of this signalling network have been tested in clinical trials among various types of cancer. As the oncogenic activation of the PI3K/AKT/mTOR pathway often occurs alongside mutations in other signalling networks, combination therapy should be considered. In this review, we highlight recent advances in the knowledge of the PI3K pathway and discuss the current state and future challenges of targeting this pathway in clinical practice.
Collapse
Affiliation(s)
- Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alberto D’Angelo
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
- Department of Oncology, Royal United Hospital, Bath BA1 3NG, UK
| | - Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Chiara Casadei
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Filippo Merloni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| |
Collapse
|
36
|
Structural Insights Uncover the Specific Phosphoinositide Recognition by the PH1 Domain of Arap3. Int J Mol Sci 2023; 24:ijms24021125. [PMID: 36674645 PMCID: PMC9865853 DOI: 10.3390/ijms24021125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Arap3, a dual GTPase-activating protein (GAP) for the small GTPases Arf6 and RhoA, plays key roles in regulating a wide range of biological processes, including cancer cell invasion and metastasis. It is known that Arap3 is a PI3K effector that can bind directly to PI(3,4,5)P3, and the PI(3,4,5)P3-mediated plasma membrane recruitment is crucial for its function. However, the molecular mechanism of how the protein recognizes PI(3,4,5)P3 remains unclear. Here, using liposome pull-down and surface plasmon resonance (SPR) analysis, we found that the N-terminal first pleckstrin homology (PH) domain (Arap3-PH1) can interact with PI(3,4,5)P3 and, with lower affinity, with PI(4,5)P2. To understand how Arap3-PH1 and phosphoinositide (PIP) lipids interact, we solved the crystal structure of the Arap3-PH1 in the apo form and complex with diC4-PI(3,4,5)P3. We also characterized the interactions of Arap3-PH1 with diC4-PI(3,4,5)P3 and diC4-PI(4,5)P2 in solution by nuclear magnetic resonance (NMR) spectroscopy. Furthermore, we found overexpression of Arap3 could inhibit breast cancer cell invasion in vitro, and the PIPs-binding ability of the PH1 domain is essential for this function.
Collapse
|
37
|
Qin C, Liu S, Zhou S, Wang Q, Xia X, Hu J, Yuan X, Wang Z, Yu Y, Ma D. PIK3C2A is a prognostic biomarker that is linked to immune infiltrates in kidney renal clear cell carcinoma. Front Immunol 2023; 14:1114572. [PMID: 37063922 PMCID: PMC10098324 DOI: 10.3389/fimmu.2023.1114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Background Phosphoinositide 3-kinases (PI3Ks) are lipid enzymes that regulate a wide range of intracellular functions. In contrast to Class I and Class III PI3K, which have more detailed descriptions, Class II PI3K has only recently become the focus of functional research. PIK3C2A is a classical member of the PI3Ks class II. However, the role of PIK3C2A in cancer prognosis and progression remains unknown. Methods The expression pattern and prognostic significance of PIK3C2A in human malignancies were investigated using multiple datasets and scRNA-seq data. The PIK3C2A expression in renal clear cell carcinoma (KIRC) was then validated utilizing Western blot. The functional role of PIK3C2A in KIRC was assessed using combined function loss experiments with in vitro experiments. Furthermore, the correlation of PIK3C2A expression with tumor immunity was investigated in KIRC. The TCGA database was employed to investigate PIK3C2A functional networks. Results Significant decrease in PIK3C2A expression in KIRC, demonstrated that it potentially influences the prognosis of diverse tumors, particularly KIRC. In addition, PIK3C2A was significantly correlated with the T stage, M stage, pathologic stage, and histologic grade of KIRC. Nomogram models were constructed and used to predict patient survival based on the results of multivariate Cox regression analysis. PIK3C2A knockdown resulted in significantly increased KIRC cell proliferation. Of note, PIK3C2A expression demonstrated a significant correlation with the infiltrating levels of primary immune cells in KIRC. Conclusion These findings support the hypothesis that PIK3C2A is a novel biomarker for tumor progression and indicates dynamic shifts in immune infiltration in KIRC. Furthermore, aberrant PIK3C2A expression can influence the biological activity of cancer cells.
Collapse
Affiliation(s)
- Chengdong Qin
- Department of Breast Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Siyuan Liu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Shiqi Zhou
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qibo Wang
- Department of Urology Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xianghou Xia
- Department of Breast Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jiejie Hu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaohong Yuan
- Department of Anesthesiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zongping Wang
- Department of Urology Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yang Yu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- *Correspondence: Dening Ma, ; Yang Yu,
| | - Dening Ma
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- *Correspondence: Dening Ma, ; Yang Yu,
| |
Collapse
|
38
|
Lo WT, Belabed H, Kücükdisli M, Metag J, Roske Y, Prokofeva P, Ohashi Y, Horatscheck A, Cirillo D, Krauss M, Schmied C, Neuenschwander M, von Kries JP, Médard G, Kuster B, Perisic O, Williams RL, Daumke O, Payrastre B, Severin S, Nazaré M, Haucke V. Development of selective inhibitors of phosphatidylinositol 3-kinase C2α. Nat Chem Biol 2023; 19:18-27. [PMID: 36109648 PMCID: PMC7613998 DOI: 10.1038/s41589-022-01118-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/20/2022] [Indexed: 01/01/2023]
Abstract
Phosphatidylinositol 3-kinase type 2α (PI3KC2α) and related class II PI3K isoforms are of increasing biomedical interest because of their crucial roles in endocytic membrane dynamics, cell division and signaling, angiogenesis, and platelet morphology and function. Herein we report the development and characterization of PhosphatidylInositol Three-kinase Class twO INhibitors (PITCOINs), potent and highly selective small-molecule inhibitors of PI3KC2α catalytic activity. PITCOIN compounds exhibit strong selectivity toward PI3KC2α due to their unique mode of interaction with the ATP-binding site of the enzyme. We demonstrate that acute inhibition of PI3KC2α-mediated synthesis of phosphatidylinositol 3-phosphates by PITCOINs impairs endocytic membrane dynamics and membrane remodeling during platelet-dependent thrombus formation. PITCOINs are potent and selective cell-permeable inhibitors of PI3KC2α function with potential biomedical applications ranging from thrombosis to diabetes and cancer.
Collapse
Affiliation(s)
- Wen-Ting Lo
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Hassane Belabed
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Murat Kücükdisli
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Juliane Metag
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Yvette Roske
- grid.419491.00000 0001 1014 0849Max-Delbrück-Centrum für Molekulare Medizin, Kristallographie, Berlin, Germany
| | - Polina Prokofeva
- grid.6936.a0000000123222966Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Yohei Ohashi
- grid.42475.300000 0004 0605 769XMRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - André Horatscheck
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Davide Cirillo
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Michael Krauss
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Christopher Schmied
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Martin Neuenschwander
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Jens Peter von Kries
- grid.418832.40000 0001 0610 524XLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Guillaume Médard
- grid.6936.a0000000123222966Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- grid.6936.a0000000123222966Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Olga Perisic
- grid.42475.300000 0004 0605 769XMRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Roger L. Williams
- grid.42475.300000 0004 0605 769XMRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Oliver Daumke
- grid.419491.00000 0001 1014 0849Max-Delbrück-Centrum für Molekulare Medizin, Kristallographie, Berlin, Germany
| | - Bernard Payrastre
- Inserm, U1297-Université, Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France ,grid.411175.70000 0001 1457 2980Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, Toulouse, France
| | - Sonia Severin
- Inserm, U1297-Université, Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Marc Nazaré
- Departments of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany. .,Departments of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
39
|
Huang J, Chen L, Wu J, Ai D, Zhang JQ, Chen TG, Wang L. Targeting the PI3K/AKT/mTOR Signaling Pathway in the Treatment of Human Diseases: Current Status, Trends, and Solutions. J Med Chem 2022; 65:16033-16061. [PMID: 36503229 DOI: 10.1021/acs.jmedchem.2c01070] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is one of the most important intracellular pathways involved in cell proliferation, growth, differentiation, and survival. Therefore, this route is a prospective biological target for treating various human diseases, such as tumors, neurodegenerative diseases, pulmonary fibrosis, and diabetes. An increasing number of clinical studies emphasize the necessity of developing novel molecules targeting the PI3K/AKT/mTOR pathway. This review focuses on recent advances in ATP-competitive inhibitors, allosteric inhibitors, covalent inhibitors, and proteolysis-targeting chimeras against the PI3K/AKT/mTOR pathway, and highlights possible solutions for overcoming the toxicities and acquired drug resistance of currently available drugs. We also provide recommendations for the future design and development of promising drugs targeting this pathway.
Collapse
Affiliation(s)
- Jindi Huang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Liye Chen
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiangxia Wu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Daiqiao Ai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ji-Quan Zhang
- College of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Tie-Gen Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Room 109, Building C, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| | - Ling Wang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
40
|
Antagonistic control of active surface integrins by myotubularin and phosphatidylinositol 3-kinase C2β in a myotubular myopathy model. Proc Natl Acad Sci U S A 2022; 119:e2202236119. [PMID: 36161941 DOI: 10.1073/pnas.2202236119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-linked centronuclear myopathy (XLCNM) is a severe human disease without existing therapies caused by mutations in the phosphoinositide 3-phosphatase MTM1. Loss of MTM1 function is associated with muscle fiber defects characterized by impaired localization of β-integrins and other components of focal adhesions. Here we show that defective focal adhesions and reduced active β-integrin surface levels in a cellular model of XLCNM are rescued by loss of phosphatidylinositiol 3-kinase C2β (PI3KC2β) function. Inactivation of the Mtm1 gene impaired myoblast differentiation into myotubes and resulted in reduced surface levels of active β1-integrins as well as corresponding defects in focal adhesions. These phenotypes were rescued by concomitant genetic loss of Pik3c2b or pharmacological inhibition of PI3KC2β activity. We further demonstrate that a hitherto unknown role of PI3KC2β in the endocytic trafficking of active β1-integrins rather than rescue of phosphatidylinositol 3-phosphate levels underlies the ability of Pik3c2b to act as a genetic modifier of cellular XLCNM phenotypes. Our findings reveal a crucial antagonistic function of MTM1 and PI3KC2β in the control of active β-integrin surface levels, thereby providing a molecular mechanism for the adhesion and myofiber defects observed in XLCNM. They further suggest specific pharmacological inhibition of PI3KC2β catalysis as a viable treatment option for XLCNM patients.
Collapse
|
41
|
Jia W, Luo S, Zhao W, Xu W, Zhong Y, Kong D. Discovery of Novel PI3Kδ Inhibitors Based on the p110δ Crystal Structure. Molecules 2022; 27:molecules27196211. [PMID: 36234743 PMCID: PMC9571382 DOI: 10.3390/molecules27196211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
PI3Kδ is a key mediator of B-cell receptor signaling and plays an important role in the pathogenesis of certain hematological malignancies, such as chronic lymphocytic leukemia. Idelalisib, which targets PI3Kδ specifically, is the first approved PI3K inhibitor for cancer therapy. Recently, we carried out virtual screening, cell-based assays, adapta kinase assays, and molecular dynamic analysis to discover novel PI3Kδ inhibitors and identified NSC348884 as a lead PI3Kδ inhibitor. NSC348884 had an excellent docking score, potent PI3Kδ-inhibitory activity, antitumor effects on various cancer cell lines, and a favorable binding mode with the active site of PI3Kδ. Moreover, through the structural modification of NSC348884, we further discovered comp#1, which forms H-bonds with both Val828 and Lys779 in the ATP binding pocket of PI3Kδ, with a more favorable conformation binding to PI3Kδ. In addition, we found that N1, N1, N2-trimethyl-N2-((6-methyl-1H-benzo[d]imidazol-2-yl) methyl) ethane-1,2-diamine might be a potential scaffold structure. Thus, the result of this study provides a far more efficient approach for discovering novel inhibitors targeting PI3Kδ.
Collapse
Affiliation(s)
- Wenqing Jia
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Shuyu Luo
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Wennan Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Weiren Xu
- Tianjin Institute of Pharmaceutical Research, Tianjin 300070, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (Y.Z.); (D.K.)
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin 300070, China
- Correspondence: (Y.Z.); (D.K.)
| |
Collapse
|
42
|
Zapevalova MV, Shchegravina ES, Fonareva IP, Salnikova DI, Sorokin DV, Scherbakov AM, Maleev AA, Ignatov SK, Grishin ID, Kuimov AN, Konovalova MV, Svirshchevskaya EV, Fedorov AY. Synthesis, Molecular Docking, In Vitro and In Vivo Studies of Novel Dimorpholinoquinazoline-Based Potential Inhibitors of PI3K/Akt/mTOR Pathway. Int J Mol Sci 2022; 23:ijms231810854. [PMID: 36142768 PMCID: PMC9503112 DOI: 10.3390/ijms231810854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
A (series) range of potential dimorpholinoquinazoline-based inhibitors of the PI3K/Akt/mTOR cascade was synthesized. Several compounds exhibited cytotoxicity towards a panel of cancer cell lines in the low and sub-micromolar range. Compound 7c with the highest activity and moderate selectivity towards MCF7 cells which express the mutant type of PI3K was also tested for the ability to inhibit PI3K-(signaling pathway) downstream effectors and associated proteins. Compound 7c inhibited the phosphorylation of Akt, mTOR, and S6K at 125–250 nM. It also triggered PARP1 cleavage, ROS production, and cell death via several mechanisms. Inhibition of PI3Kα was observed at a concentration of 7b 50 µM and of 7c 500 µM and higher, that can indicate minority PI3Kα as a target among other kinases in the titled cascade for 7c. In vivo studies demonstrated an inhibition of tumor growth in the colorectal tumor model. According to the docking studies, the replacement of the triazine core in gedatolisib (8) by a quinazoline fragment, and incorporation of a (hetero)aromatic unit connected with the carbamide group via a flexible spacer, can result in more selective inhibition of the PI3Kα isoform.
Collapse
Affiliation(s)
- Maria V. Zapevalova
- Department of Organic Chemistry, Nizhny Novgorod State University, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia
| | - Ekaterina S. Shchegravina
- Department of Organic Chemistry, Nizhny Novgorod State University, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia
- N.D. Zelinsky Insitute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russia
- Correspondence: (E.S.S.); (A.Y.F.)
| | - Irina P. Fonareva
- Department of Organic Chemistry, Nizhny Novgorod State University, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia
| | - Diana I. Salnikova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye Sh. 24, 115522 Moscow, Russia
| | - Danila V. Sorokin
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye Sh. 24, 115522 Moscow, Russia
| | - Alexander M. Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye Sh. 24, 115522 Moscow, Russia
| | - Alexander A. Maleev
- Department of Organic Chemistry, Nizhny Novgorod State University, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia
| | - Stanislav K. Ignatov
- Department of Organic Chemistry, Nizhny Novgorod State University, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia
| | - Ivan D. Grishin
- Department of Organic Chemistry, Nizhny Novgorod State University, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia
| | - Alexander N. Kuimov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia
| | - Maryia V. Konovalova
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Elena V. Svirshchevskaya
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Alexey Yu. Fedorov
- Department of Organic Chemistry, Nizhny Novgorod State University, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia
- N.D. Zelinsky Insitute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russia
- Correspondence: (E.S.S.); (A.Y.F.)
| |
Collapse
|
43
|
Zhu K, Wu Y, He P, Fan Y, Zhong X, Zheng H, Luo T. PI3K/AKT/mTOR-Targeted Therapy for Breast Cancer. Cells 2022; 11:2508. [PMID: 36010585 PMCID: PMC9406657 DOI: 10.3390/cells11162508] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 12/25/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB/AKT) and mechanistic target of rapamycin (mTOR) (PAM) pathways play important roles in breast tumorigenesis and confer worse prognosis in breast cancer patients. The inhibitors targeting three key nodes of these pathways, PI3K, AKT and mTOR, are continuously developed. For breast cancer patients to truly benefit from PAM pathway inhibitors, it is necessary to clarify the frequency and mechanism of abnormal alterations in the PAM pathway in different breast cancer subtypes, and further explore reliable biomarkers to identify the appropriate population for precision therapy. Some PI3K and mTOR inhibitors have been approved by regulatory authorities for the treatment of specific breast cancer patient populations, and many new-generation PI3K/mTOR inhibitors and AKT isoform inhibitors have also been shown to have good prospects for cancer therapy. This review summarizes the changes in the PAM signaling pathway in different subtypes of breast cancer, and the latest research progress about the biomarkers and clinical application of PAM-targeted inhibitors.
Collapse
Affiliation(s)
- Kunrui Zhu
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
- Multi-Omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yanqi Wu
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Ping He
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
- Multi-Omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yu Fan
- Multi-Omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Xiaorong Zhong
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
- Multi-Omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Hong Zheng
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
- Multi-Omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Ting Luo
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
- Multi-Omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
44
|
Mortazavi M, Moosavi F, Martini M, Giovannetti E, Firuzi O. Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer. Crit Rev Oncol Hematol 2022; 176:103749. [PMID: 35728737 DOI: 10.1016/j.critrevonc.2022.103749] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses among all malignancies. PI3K/AKT/mTOR signaling pathway, a main downstream effector of KRAS is involved in the regulation of key hallmarks of cancer. We here report that whole-genome analyses demonstrate the frequent involvement of aberrant activations of PI3K/AKT/mTOR pathway components in PDAC patients and critically evaluate preclinical and clinical evidence on the application of PI3K/AKT/mTOR pathway targeting agents. Combinations of these agents with chemotherapeutics or other targeted therapies, including the modulators of cyclin-dependent kinases, receptor tyrosine kinases and RAF/MEK/ERK pathway are also examined. Although human genetic studies and preclinical pharmacological investigations have provided strong evidence on the role of PI3K/AKT/mTOR pathway in PDAC, clinical studies in general have not been as promising. Patient stratification seems to be the key missing point and with the advent of biomarker-guided clinical trials, targeting PI3K/AKT/mTOR pathway could provide valuable assets for treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazine Pisana per la Scienza, Pisa, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
45
|
Local synthesis of the phosphatidylinositol-3,4-bisphosphate lipid drives focal adhesion turnover. Dev Cell 2022; 57:1694-1711.e7. [PMID: 35809565 PMCID: PMC7613278 DOI: 10.1016/j.devcel.2022.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 03/25/2022] [Accepted: 06/15/2022] [Indexed: 12/30/2022]
Abstract
Focal adhesions are multifunctional organelles that couple cell-matrix adhesion to cytoskeletal force transmission and signaling and to steer cell migration and collective cell behavior. Whereas proteomic changes at focal adhesions are well understood, little is known about signaling lipids in focal adhesion dynamics. Through the characterization of cells from mice with a kinase-inactivating point mutation in the class II PI3K-C2β, we find that generation of the phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P2) membrane lipid promotes focal adhesion disassembly in response to changing environmental conditions. We show that reduced growth factor signaling sensed by protein kinase N, an mTORC2 target and effector of RhoA, synergizes with the adhesion disassembly factor DEPDC1B to induce local synthesis of PtdIns(3,4)P2 by PI3K-C2β. PtdIns(3,4)P2 then promotes turnover of RhoA-dependent stress fibers by recruiting the PtdIns(3,4)P2-dependent RhoA-GTPase-activating protein ARAP3. Our findings uncover a pathway by which cessation of growth factor signaling facilitates cell-matrix adhesion disassembly via a phosphoinositide lipid switch.
Collapse
|
46
|
He X, Li Y, Deng B, Lin A, Zhang G, Ma M, Wang Y, Yang Y, Kang X. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif 2022; 55:e13275. [PMID: 35754255 PMCID: PMC9436900 DOI: 10.1111/cpr.13275] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Objects Traumatic spinal cord injury (TSCI) causes neurological dysfunction below the injured segment of the spinal cord, which significantly impacts the quality of life in affected patients. The phosphoinositide 3kinase/serine‐threonine kinase (PI3K/AKT) signaling pathway offers a potential therapeutic target for the inhibition of secondary TSCI. This review summarizes updates concerning the role of the PI3K/AKT pathway in TSCI. Materials and Methods By searching articles related to the TSCI field and the PI3K/AKT signaling pathway, we summarized the mechanisms of secondary TSCI and the PI3K/AKT signaling pathway; we also discuss current and potential future treatment methods for TSCI based on the PI3K/AKT signaling pathway. Results Early apoptosis and autophagy after TSCI protect the body against injury; a prolonged inflammatory response leads to the accumulation of pro‐inflammatory factors and excessive apoptosis, as well as excessive autophagy in the surrounding normal nerve cells, thus aggravating TSCI in the subacute stage of secondary injury. Initial glial scar formation in the subacute phase is a protective mechanism for TSCI, which limits the spread of damage and inflammation. However, mature scar tissue in the chronic phase hinders axon regeneration and prevents the recovery of nerve function. Activation of PI3K/AKT signaling pathway can inhibit the inflammatory response and apoptosis in the subacute phase after secondary TSCI; inhibiting this pathway in the chronic phase can reduce the formation of glial scar. Conclusion The PI3K/AKT signaling pathway has an important role in the recovery of spinal cord function after secondary injury. Inducing the activation of PI3K/AKT signaling pathway in the subacute phase of secondary injury and inhibiting this pathway in the chronic phase may be one of the potential strategies for the treatment of TSCI.
Collapse
Affiliation(s)
- Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Ying Li
- Medical School of Yan'an University, Yan'an University, Yan'an, China
| | - Bo Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Aixin Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Miao Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Yong Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| |
Collapse
|
47
|
Li H, Prever L, Hsu MY, Lo W, Margaria JP, De Santis MC, Zanini C, Forni M, Novelli F, Pece S, Di Fiore PP, Porporato PE, Martini M, Belabed H, Nazare M, Haucke V, Gulluni F, Hirsch E. Phosphoinositide Conversion Inactivates R-RAS and Drives Metastases in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103249. [PMID: 35098698 PMCID: PMC8948670 DOI: 10.1002/advs.202103249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/03/2021] [Indexed: 05/05/2023]
Abstract
Breast cancer is the most prevalent cancer and a major cause of death in women worldwide. Although early diagnosis and therapeutic intervention significantly improve patient survival rate, metastasis still accounts for most deaths. Here it is reported that, in a cohort of more than 2000 patients with breast cancer, overexpression of PI3KC2α occurs in 52% of cases and correlates with high tumor grade as well as increased probability of distant metastatic events, irrespective of the subtype. Mechanistically, it is demonstrated that PI3KC2α synthetizes a pool of PI(3,4)P2 at focal adhesions that lowers their stability and directs breast cancer cell migration, invasion, and metastasis. PI(3,4)P2 locally produced by PI3KC2α at focal adhesions recruits the Ras GTPase activating protein 3 (RASA3), which inactivates R-RAS, leading to increased focal adhesion turnover, migration, and invasion both in vitro and in vivo. Proof-of-concept is eventually provided that inhibiting PI3KC2α or lowering RASA3 activity at focal adhesions significantly reduces the metastatic burden in PI3KC2α-overexpressing breast cancer, thereby suggesting a novel strategy for anti-breast cancer therapy.
Collapse
Affiliation(s)
- Huayi Li
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Lorenzo Prever
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Myriam Y. Hsu
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Wen‐Ting Lo
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)Berlin13125Germany
| | - Jean Piero Margaria
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Maria Chiara De Santis
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Cristina Zanini
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Marco Forni
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Salvatore Pece
- IEOEuropean Institute of Oncology IRCCSVia Ripamonti 435Milan20141Italy
- Department of Oncology and Hemato‐OncologyUniversità degli Studi di MilanoMilano20142Italy
| | - Pier Paolo Di Fiore
- IEOEuropean Institute of Oncology IRCCSVia Ripamonti 435Milan20141Italy
- Department of Oncology and Hemato‐OncologyUniversità degli Studi di MilanoMilano20142Italy
| | - Paolo Ettore Porporato
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Hassane Belabed
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)Berlin13125Germany
| | - Marc Nazare
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)Berlin13125Germany
| | - Volker Haucke
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)Berlin13125Germany
- Faculty of Biology, Chemistry and PharmacyFreie Universität BerlinBerlin14195Germany
| | - Federico Gulluni
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurin10126Italy
| |
Collapse
|
48
|
Lo WT, Zhang Y, Vadas O, Roske Y, Gulluni F, De Santis MC, Zagar AV, Stephanowitz H, Hirsch E, Liu F, Daumke O, Kudryashev M, Haucke V. Structural basis of phosphatidylinositol 3-kinase C2α function. Nat Struct Mol Biol 2022; 29:218-228. [PMID: 35256802 PMCID: PMC8930771 DOI: 10.1038/s41594-022-00730-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/21/2022] [Indexed: 12/16/2022]
Abstract
Phosphatidylinositol 3-kinase type 2α (PI3KC2α) is an essential member of the structurally unresolved class II PI3K family with crucial functions in lipid signaling, endocytosis, angiogenesis, viral replication, platelet formation and a role in mitosis. The molecular basis of these activities of PI3KC2α is poorly understood. Here, we report high-resolution crystal structures as well as a 4.4-Å cryogenic-electron microscopic (cryo-EM) structure of PI3KC2α in active and inactive conformations. We unravel a coincident mechanism of lipid-induced activation of PI3KC2α at membranes that involves large-scale repositioning of its Ras-binding and lipid-binding distal Phox-homology and C-C2 domains, and can serve as a model for the entire class II PI3K family. Moreover, we describe a PI3KC2α-specific helical bundle domain that underlies its scaffolding function at the mitotic spindle. Our results advance our understanding of PI3K biology and pave the way for the development of specific inhibitors of class II PI3K function with wide applications in biomedicine.
Collapse
Affiliation(s)
- Wen-Ting Lo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Yingyi Zhang
- Max Planck Institute for Biophysics, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany.,Biological Cryo-EM Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Oscar Vadas
- University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Yvette Roske
- Max Delbrück Centre for Molecular Medicine (MDC), Crystallography, Berlin, Germany
| | - Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Maria Chiara De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | - Heike Stephanowitz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Oliver Daumke
- Max Delbrück Centre for Molecular Medicine (MDC), Crystallography, Berlin, Germany
| | - Misha Kudryashev
- Max Planck Institute for Biophysics, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany. .,Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
49
|
Ratti S, Mauro R, Rocchi C, Mongiorgi S, Ramazzotti G, Gargiulo M, Manzoli L, Cocco L, Fiume R. Roles of PI3K/AKT/mTOR Axis in Arteriovenous Fistula. Biomolecules 2022; 12:biom12030350. [PMID: 35327539 PMCID: PMC8945685 DOI: 10.3390/biom12030350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
Abstract
Renal failure is a worldwide disease with a continuously increasing prevalence and involving a rising need for long-term treatment, mainly by haemodialysis. Arteriovenous fistula (AVF) is the favourite type of vascular access for haemodialysis; however, the lasting success of this therapy depends on its maturation, which is directly influenced by many concomitant processes such as vein wall thickening or inflammation. Understanding the molecular mechanisms that drive AVF maturation and failure can highlight new or combinatorial drugs for more personalized therapy. In this review we analysed the relevance of critical enzymes such as PI3K, AKT and mTOR in processes such as wall thickening remodelling, immune system activation and inflammation reduction. We focused on these enzymes due to their involvement in the modulation of numerous cellular activities such as proliferation, differentiation and motility, and their impairment is related to many diseases such as cancer, metabolic syndrome and neurodegenerative disorders. In addition, these enzymes are highly druggable targets, with several inhibitors already being used in patient treatment for cancer and with encouraging results for AVF. Finally, we delineate how these enzymes may be targeted to control specific aspects of AVF in an effort to propose a more specialized therapy with fewer side effects.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (S.R.); (S.M.); (G.R.); (L.M.); (R.F.)
| | - Raffaella Mauro
- Vascular Surgery Unit, IRCCS University Hospital, Policlinico S. Orsola-Malpighi, 40126 Bologna, Italy; (R.M.); (C.R.); (M.G.)
| | - Cristina Rocchi
- Vascular Surgery Unit, IRCCS University Hospital, Policlinico S. Orsola-Malpighi, 40126 Bologna, Italy; (R.M.); (C.R.); (M.G.)
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (S.R.); (S.M.); (G.R.); (L.M.); (R.F.)
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (S.R.); (S.M.); (G.R.); (L.M.); (R.F.)
| | - Mauro Gargiulo
- Vascular Surgery Unit, IRCCS University Hospital, Policlinico S. Orsola-Malpighi, 40126 Bologna, Italy; (R.M.); (C.R.); (M.G.)
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (S.R.); (S.M.); (G.R.); (L.M.); (R.F.)
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (S.R.); (S.M.); (G.R.); (L.M.); (R.F.)
- Correspondence: ; Tel.: +39-051-209-1639
| | - Roberta Fiume
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (S.R.); (S.M.); (G.R.); (L.M.); (R.F.)
| |
Collapse
|
50
|
An Overview of Class II Phosphoinositide 3-Kinases. Curr Top Microbiol Immunol 2022; 436:51-68. [DOI: 10.1007/978-3-031-06566-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|