1
|
Soares De Oliveira L, Kaserman JE, Van Der Spek AH, Lee NJ, Undeutsch HJ, Werder RB, Wilson AA, Hollenberg AN. Thyroid hormone receptor beta (THRβ1) is the major regulator of T3 action in human iPSC-derived hepatocytes. Mol Metab 2024:102057. [PMID: 39481850 DOI: 10.1016/j.molmet.2024.102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE Thyroid hormone (TH) action is mediated by thyroid hormone receptor (THR) isoforms. While THRβ1 is likely the main isoform expressed in liver, its role in human hepatocytes is not fully understood. METHODS To elucidate the role of THRβ1 action in human hepatocytes we used CRISPR/Cas9 editing to knock out THRβ1 in induced pluripotent stem cells (iPSC). Following directed differentiation to the hepatic lineage, iPSC-derived hepatocytes were then interrogated to determine the role of THRβ1 in ligand-independent and -dependent functions. RESULTS We found that the loss of THRβ1 promoted alterations in proliferation rate and metabolic pathways regulated by T3, including gluconeogenesis, lipid oxidation, fatty acid synthesis, and fatty acid uptake. We observed that key genes involved in liver metabolism are regulated through both T3 ligand-dependent and -independent THRβ1 signaling mechanisms. Finally, we demonstrate that following THRβ1 knockout, several key metabolic genes remain T3 responsive suggesting they are THRα targets. CONCLUSIONS These results highlight that iPSC-derived hepatocytes are an effective platform to study mechanisms regulating TH signaling in human hepatocytes.
Collapse
Affiliation(s)
- Lorraine Soares De Oliveira
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Joseph E Kaserman
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Anne H Van Der Spek
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Cornell Medicine, New York, NY 10021, USA; Department of Endocrinology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam 1081 HV, Netherlands
| | - Nora J Lee
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Hendrik J Undeutsch
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Rhiannon B Werder
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Andrew A Wilson
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Anthony N Hollenberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
2
|
Sinha RA, Bruinstroop E, Yen PM. Actions of thyroid hormones and thyromimetics on the liver. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00991-4. [PMID: 39420154 PMCID: PMC7616774 DOI: 10.1038/s41575-024-00991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Thyroid hormones (triiodothyronine and thyroxine) are pivotal for metabolic balance in the liver and entire body. Dysregulation of the hypothalamus-pituitary-thyroid axis can contribute to hepatic metabolic disturbances, affecting lipid metabolism, glucose regulation and protein synthesis. In addition, reductions in circulating and intrahepatic thyroid hormone concentrations increase the risk of metabolic dysfunction-associated steatotic liver disease by inducing lipotoxicity, inflammation and fibrosis. Amelioration of hepatic metabolic disease by thyroid hormones in preclinical and clinical studies has spurred the development of thyromimetics that target THRB (the predominant thyroid hormone receptor isoform in the liver) and/or the liver itself to provide more selective activation of hepatic thyroid hormone-regulated metabolic pathways while reducing thyrotoxic side effects in tissues that predominantly express THRA such as the heart and bone. Resmetirom, a liver and THRB-selective thyromimetic, recently became the first FDA-approved drug for metabolic dysfunction-associated steatohepatitis (MASH). Thus, a better understanding of the metabolic actions of thyroid hormones and thyromimetics in the liver is timely and clinically relevant. Here, we describe the roles of thyroid hormones in normal liver function and pathogenesis of MASH, as well as some potential clinical issues that might arise when treating patients with MASH with thyroid hormone supplementation or thyromimetics.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
3
|
Wu Z, Hernandez A. Thyroid Hormone Clearance in the Paraventricular Nucleus of Male Mice Regulates Lean Mass and Physical Activity. Neuroendocrinology 2024:1-11. [PMID: 39293416 DOI: 10.1159/000541525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION The actions of thyroid hormones (THs) in the central nervous system are relevant to food intake and energy expenditure. TH receptors exhibit high expression in brain areas modulating energy balance, including the arcuate, paraventricular (PVN), supraoptic, and ventromedial (VMH) hypothalamic nuclei. METHODS To examine the role of THs in the regulation of energy balance via action in specific hypothalamic nuclei of the adult mouse, we performed experiments of conditional inactivation of DIO3, the enzyme responsible for the clearance of THs, in the lateral hypothalamus (LH), and VMH and PVN hypothalamic nuclei. We accomplished DIO3 genetic inactivation via stereotaxic injection of the AAV-cre vector into adult mice homozygous for a "floxed" Dio3 allele. RESULTS Dio3 inactivation in the LH and VMH of males or females did not result in significant changes in body weight 8 weeks after injection. However, inactivation of Dio3 in the PVN resulted in increased body weight (both fat mass and lean mass) and locomotor activity, and decreased hypothalamic Mc4r expression in male, but not female mice. However, PNV-specific Dio3 KO did not cause hyperphagia. CONCLUSION These results suggest local TH action influences MC4R signaling and possibly other PVN-associated circuitries, with consequences for body composition and energy balance endpoints, but not for orexigenic pathways. They also support a regulatory role for PVN Dio3 in the central regulation of energy homeostasis in adult life.
Collapse
Affiliation(s)
- Zhaofei Wu
- Department of Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
| | - Arturo Hernandez
- Department of Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
| |
Collapse
|
4
|
Hao X, Guo W, Li F, Cui L, Kang W. Analysis of the liver-gut axis including metabolomics and intestinal flora to determine the protective effects of kiwifruit seed oil on CCl 4-induced acute liver injury. Food Funct 2024; 15:9149-9164. [PMID: 39157920 DOI: 10.1039/d4fo02106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The hepatoprotective effects of kiwifruit seed oil (KSO) were evaluated on acute liver injury (ALI) induced by carbon tetrachloride (CCl4) in vivo. Network pharmacology was used to predict active compounds and targets. Metabolomics and gut microbiota analyses were used to discover the activity mechanism of KSO. KSO improved the liver histological structure, significantly reduced serum proinflammatory cytokine levels, and increased liver antioxidant capacity. The metabolomics analysis showed that KSO may have hepatoprotective effects by controlling metabolites through its participation in signaling pathways like tryptophan metabolism, glycolysis/gluconeogenesis, galactose metabolism, and bile secretion. The gut microbiota analysis demonstrated that KSO improved the composition and quantity of the gut flora. Network pharmacological investigations demonstrated that KSO operated by altering Ptgs2, Nos2, Ppara, Pparg and Serpine1 mRNA levels. All evidence shows that KSO has a hepatoprotective effect, and the mechanism is connected to the regulation of metabolic disorders and intestinal flora.
Collapse
Affiliation(s)
- Xuting Hao
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Wenjing Guo
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Fangfang Li
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Lili Cui
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- College of Agriculture, Henan University, Kaifeng 475004, China
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- College of Agriculture, Henan University, Kaifeng 475004, China
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| |
Collapse
|
5
|
Sommer-Ballarini M, Nguyen TH, Pletsch-Borba L, Wernicke C, Tacke F, Schwerdtle T, Pellowski D, Machann J, Spranger J, Wirth EK, Mai K. Impact of peripheral thyroid hormone balance on liver fat: insights from the NutriAct trial. Eur J Endocrinol 2024; 191:183-191. [PMID: 39049801 DOI: 10.1093/ejendo/lvae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Hypothyroidism has been proposed as a potential contributor to steatotic liver disease (SLD), but existing data shows conflicting results in euthyroid subjects. Therefore, we investigated the association between thyroid function and intrahepatic lipids (IHLs) during a 36-month randomized controlled trial evaluating a diet known to reduce liver fat. DESIGN 502 eligible subjects (aged 50-80 years, ≥1 risk factor for unhealthy aging) were randomly assigned to either follow a diet rich in unsaturated fatty acids, plant protein, and fiber (intervention group, IG), or dietary recommendations of the German Nutrition Society (control group, CG). METHODS Serum levels of thyroid hormones (THs) as well as IHLs, defined via magnetic resonance spectroscopy, were measured within an euthyroid subgroup without significant alcohol consumption at baseline (n = 332) and after 12 months (n = 243). A ratio of T3/T4 was used to assess whole-body deiodinase activity. Estimates of glucose and lipid metabolism were analyzed. RESULTS Only fT3 and T3/T4 ratios showed a significant positive correlation with IHL at baseline. We observed a significant decline in fT3, T3, fT3/fT4 ratio, and T3/T4 ratio in CG and IG after 12 months without significant differences between groups. TSH, fT4, and T4 remained stable. A larger improvement of IHL during dietary intervention was seen in those subjects with a lower decline in T3 concentrations. CONCLUSIONS Altered TH balance indicates a possible compensatory upregulation of whole-body TH activity in subjects with increased liver fat. This might be also relevant during the improvement of hepatic steatosis.
Collapse
Affiliation(s)
- Miriam Sommer-Ballarini
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
| | - Thu-Huong Nguyen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
| | - Laura Pletsch-Borba
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Charlotte Wernicke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
| | - Frank Tacke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), 10115 Berlin, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany
- German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Denny Pellowski
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- Institute of Nutritional Science, Department Food Chemistry, University of Potsdam,14469 Potsdam, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Joachim Spranger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
| | - Eva Katrin Wirth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
| | - Knut Mai
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10115 Berlin, Germany
- Department of Human Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| |
Collapse
|
6
|
Sagliocchi S, Restolfer F, Cossidente A, Dentice M. The key roles of thyroid hormone in mitochondrial regulation, at interface of human health and disease. J Basic Clin Physiol Pharmacol 2024; 35:231-240. [PMID: 39023546 PMCID: PMC11522957 DOI: 10.1515/jbcpp-2024-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
Mitochondria are highly plastic and dynamic organelles long known as the powerhouse of cellular bioenergetics, but also endowed with a critical role in stress responses and homeostasis maintenance, supporting and integrating activities across multifaced cellular processes. As a such, mitochondria dysfunctions are leading causes of a wide range of diseases and pathologies. Thyroid hormones (THs) are endocrine regulators of cellular metabolism, regulating intracellular nutrients fueling of sugars, amino acids and fatty acids. For instance, THs regulate the balance between the anabolism and catabolism of all the macro-molecules, influencing energy homeostasis during different nutritional conditions. Noteworthy, not only most of the TH-dependent metabolic modulations act via the mitochondria, but also THs have been proved to regulate the mitochondrial biosynthesis, dynamics and function. The significance of such an interplay is different in the context of specific tissues and strongly impacts on cellular homeostasis. Thus, a comprehensive understanding of THs-dependent mitochondrial functions and dynamics is required to develop more precise strategies for targeting mitochondrial function. Herein, we describe the mechanisms of TH-dependent metabolic regulation with a focus on mitochondrial action, in different tissue contexts, thus providing new insights for targeted modulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Federica Restolfer
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Alessandro Cossidente
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
7
|
Liao G, Wang W, Yu J, Li J, Yan Y, Liu H, Chen B, Fan L. Integrated analysis of intestinal microbiota and transcriptome reveals that a coordinated interaction of the endocrine, immune system and gut microbiota response to heat stress in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105176. [PMID: 38582249 DOI: 10.1016/j.dci.2024.105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Due to the ongoing global warming, the risk of heatwaves in the oceans is continuously increasing while our understanding of the physiological response of Litopenaeus vannamei under extreme temperature conditions remains limited. Therefore, this study aimed to evaluate the physiological responses of L. vannamei under heat stress. Our results indicated that as temperature rose, the structure of intestinal and hepatopancreatic tissues was damaged sequentially. Activity of immune-related enzymes (acid phosphatase/alkaline phosphatase) initially increased before decreased, while antioxidant enzymes (superoxide dismutase and glutathione-S transferase) activity and malondialdehyde content increased with rising temperature. In addition, the total antioxidant capacity decreased with rising temperature. With the rising temperature, there was a significant increase in the expression of caspase-3, heat shock protein 70, lipopolysaccharide-induced tumor necrosis factor-α, transcriptional enhanced associate domain and yorkie in intestinal and hepatopancreatic tissues. Following heat stress, the number of potentially beneficial bacteria (Rhodobacteraceae and Gemmonbacter) increased which maintain balance and promote vitamin synthesis. Intestinal transcriptome analysis revealed 852 differentially expressed genes in the heat stress group compared with the control group. KEGG functional annotation results showed that the endocrine system was the most abundant in Organismal systems followed by the immune system. These results indicated that heat stress leads to tissue damage in shrimp, however the shrimp may respond to stress through a coordinated interaction strategy of the endocrine system, immune system and gut microbiota. This study revealed the response mechanism of L. vannamei to acute heat stress and potentially provided a theoretical foundation for future research on shrimp environmental adaptations.
Collapse
Affiliation(s)
- Guowei Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wanqi Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaoping Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingping Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yumeng Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Haolin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Bing Chen
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Alzahrani MA, Baqar FS, Alzahrani BA, Badri ZA, Alshamrani R, Aljuhani J. Impact of Subclinical Hypothyroidism on Lipid Profile in Jeddah: A Retrospective Cohort Study. Cureus 2024; 16:e65433. [PMID: 39184696 PMCID: PMC11345027 DOI: 10.7759/cureus.65433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Background Patients with subclinical hypothyroidism (SCH) have a high serum concentration of thyroid-stimulating hormone (TSH), whereas their serum-free thyroxine concentrations are normal. Lipid metabolism is regulated in large part by thyroid hormones. It could be connected to a changed lipid profile. This study aimed to evaluate the relationship between SCH and alterations in the lipid profile. Methodology Data from 99 patients with SCH and 109 euthyroid cases were collected from King Abdulaziz Medical City, Jeddah, Saudi Arabia, from 2016 to 2022. Patients older than 18 years were included in the study. The groups were matched in terms of gender, age, and body mass index. SCH was defined as a TSH value of 4.5 to 10 mIU/L, and normal T4 as 5 to 18 μg/dL. Control cases had a normal TSH ranging from 0.45 to 4.5 mIU/L. The total serum cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride (TG) levels in both groups were examined and the results were recorded. Results In comparison to the control group, SCH patients had greater median glycated hemoglobin (HbA1C) (p = 0.001) and lower median vitamin D levels (p = 0.004) before therapy. Before therapy, SCH patients also showed considerably lower HDL levels and significantly higher LDL and TG levels (p < 0.001). Conclusions There is a substantial correlation between SCH and reduced HDL and vitamin D levels. It was linked to increased TG, LDL, and HbA1c levels. Only vitamin D and LDL were pathologically high. Treatment with levothyroxine raised total and LDL cholesterol levels. Future research should look into the affordability of treating SCH.
Collapse
Affiliation(s)
- Mahmoud A Alzahrani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Fatemah S Baqar
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Basil A Alzahrani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Ziyad A Badri
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Rayan Alshamrani
- King Saud Bin Abdulaziz University for Health Sciences, College of Medicine, King Abdullah International Medical Research Center, Jeddah, SAU
| | - Jamal Aljuhani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| |
Collapse
|
9
|
Lincoln K, Zhou J, Oster H, de Assis LVM. Circadian Gating of Thyroid Hormone Action in Hepatocytes. Cells 2024; 13:1038. [PMID: 38920666 PMCID: PMC11202020 DOI: 10.3390/cells13121038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Thyroid hormones, thyroxin (T4) and the biologically active triiodothyronine (T3), play important roles in liver metabolic regulation, including fatty acid biosynthesis, beta-oxidation, and cholesterol homeostasis. These functions position TH signaling as a potential target for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Elevated T3 levels in the circulation are associated with increased hepatic lipid turnover, which is also under the control of the circadian clock system. In this study, we developed a cell system to study the impact of hepatocyte circadian rhythms on the metabolic response to T3 treatment under control and steatotic conditions. Synchronized AML-12 circadian reporter hepatocytes were treated with T3 at different circadian phases and metabolic conditions. T3 treatment increased metabolic activity in a dose-independent fashion and had no significant effect on circadian rhythms in AML-12 cells. T3 had marked time-of-treatment-dependent effects on metabolic transcript expression. Steatosis induction altered metabolic transcript expression in AML-12 cells. In this condition, the circadian rhythm period was lengthened, and this effect was independent of T3. Under steatotic conditions, T3 had marked time-of-treatment dependent effects on metabolic transcript expression, which differed from those observed under control conditions. These findings reveal a time-of-day-dependent response of hepatocytes to T3, which is further modulated by the metabolic state. Our data suggest that time has a strong influence on liver TH action, which might be considered when treating MASLD.
Collapse
Affiliation(s)
- Karla Lincoln
- Institute of Neurobiology, Center of Brain Behavior & Metabolism, University of Lübeck, 23562 Lübeck, Germany; (K.L.); (J.Z.)
| | - Jingxuan Zhou
- Institute of Neurobiology, Center of Brain Behavior & Metabolism, University of Lübeck, 23562 Lübeck, Germany; (K.L.); (J.Z.)
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain Behavior & Metabolism, University of Lübeck, 23562 Lübeck, Germany; (K.L.); (J.Z.)
- University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Leonardo Vinicius Monteiro de Assis
- Institute of Neurobiology, Center of Brain Behavior & Metabolism, University of Lübeck, 23562 Lübeck, Germany; (K.L.); (J.Z.)
- University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| |
Collapse
|
10
|
Bechtold MA, Lin Y, Miller ML, Prieto JM, Frederick CE, Bennett LL, Peterson ME, Simpson KW, Loftus JP. Serum metabolome analysis in hyperthyroid cats before and after radioactive iodine therapy. PLoS One 2024; 19:e0305271. [PMID: 38857299 PMCID: PMC11164369 DOI: 10.1371/journal.pone.0305271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
Hyperthyroidism is the most common feline endocrinopathy. In hyperthyroid humans, untargeted metabolomic analysis identified persistent metabolic derangements despite achieving a euthyroid state. Therefore, we sought to define the metabolome of hyperthyroid cats and identify ongoing metabolic changes after treatment. We prospectively compared privately-owned hyperthyroid cats (n = 7) admitted for radioactive iodine (I-131) treatment and euthyroid privately-owned control (CON) cats (n = 12). Serum samples were collected before (T0), 1-month (T1), and three months after (T3) I-131 therapy for untargeted metabolomic analysis by MS/MS. Hyperthyroid cats (T0) had a distinct metabolic signature with 277 significantly different metabolites than controls (70 increased, 207 decreased). After treatment, 66 (T1 vs. CON) and 64 (T3 vs. CON) metabolite differences persisted. Clustering and data reduction analysis revealed separate clustering of hyperthyroid (T0) and CON cats with intermediate phenotypes after treatment (T1 & T3). Mevalonate/mevalonolactone and creatine phosphate were candidate biomarkers with excellent discrimination between hyperthyroid and healthy cats. We found several metabolic derangements (e.g., decreased carnitine and α-tocopherol) do not entirely resolve after achieving a euthyroid state after treating hyperthyroid cats with I-131. Further investigation is warranted to determine diagnostic and therapeutic implications for candidate biomarkers and persistent metabolic abnormalities.
Collapse
Affiliation(s)
- Molly A. Bechtold
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Yimei Lin
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Meredith L. Miller
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Jennifer M. Prieto
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Carol E. Frederick
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Lucinda L. Bennett
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Mark E. Peterson
- Animal Endocrine Clinic, New York, New York, United States of America
| | - Kenneth W. Simpson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - John P. Loftus
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
11
|
Pasciu V, Nieddu M, Sotgiu FD, Baralla E, Berlinguer F. Fecal thyroid hormone metabolites in wild ungulates: a mini-review. Front Vet Sci 2024; 11:1407479. [PMID: 38840625 PMCID: PMC11150844 DOI: 10.3389/fvets.2024.1407479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
This review aims to analyse the fluctuations of fecal thyroid hormone metabolites (FTMs) related to environmental and individual variables in different species of wild ungulates and provide a collection of assay methods. The great advantage of fecal sampling is being completely non-invasive. A systemic search was conducted from 2019 to 2024, using data sources PubMed, Scopus, Web of Science, and the World Wide Web, and ten studies were found on this topic. Three studies used the radioimmunoassay method for FTMs analysis, while the others used a less expensive enzyme-linked immunosorbent assay. Most of these papers validated the method for the species-specific matrix. Related to the studied variables, some authors analysed FTM fluctuations only concerning individual variables, and others in response to both. Temperature and fecal cortisol metabolites (FCMs) were the most studied environmental and individual variables, respectively. Since FTMs are an integrative measure of plasma thyroid hormones, the information obtained from a non-invasive-assay method regarding wild ungulate physiology is becoming of great interest to the scientific community.
Collapse
Affiliation(s)
- Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Maria Nieddu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | | | - Elena Baralla
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | |
Collapse
|
12
|
Sinha RA, Yen PM. Metabolic Messengers: Thyroid Hormones. Nat Metab 2024; 6:639-650. [PMID: 38671149 PMCID: PMC7615975 DOI: 10.1038/s42255-024-00986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/15/2024] [Indexed: 04/28/2024]
Abstract
Thyroid hormones (THs) are key hormones that regulate development and metabolism in mammals. In man, the major target tissues for TH action are the brain, liver, muscle, heart, and adipose tissue. Defects in TH synthesis, transport, metabolism, and nuclear action have been associated with genetic and endocrine diseases in man. Over the past few years, there has been renewed interest in TH action and the therapeutic potential of THs and thyromimetics to treat several metabolic disorders such as hypercholesterolemia, dyslipidaemia, non-alcoholic fatty liver disease (NAFLD), and TH transporter defects. Recent advances in the development of tissue and TH receptor isoform-targeted thyromimetics have kindled new hope for translating our fundamental understanding of TH action into an effective therapy. This review provides a concise overview of the historical development of our understanding of TH action, its physiological and pathophysiological effects on metabolism, and future therapeutic applications to treat metabolic dysfunction.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
- Div. Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
13
|
Byrne CD, Targher G, Tilg H. Thyroid hormone receptor-beta agonists: new MASLD therapies on the horizon. Gut 2024; 73:573-581. [PMID: 38233199 DOI: 10.1136/gutjnl-2023-330596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Affiliation(s)
- Christopher D Byrne
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Metabolic Disease Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella (VR), Italy
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University, Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
de Assis LVM, Harder L, Lacerda JT, Parsons R, Kaehler M, Cascorbi I, Nagel I, Rawashdeh O, Mittag J, Oster H. Tuning of liver circadian transcriptome rhythms by thyroid hormone state in male mice. Sci Rep 2024; 14:640. [PMID: 38182610 PMCID: PMC10770409 DOI: 10.1038/s41598-023-50374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Thyroid hormones (THs) are important regulators of systemic energy metabolism. In the liver, they stimulate lipid and cholesterol turnover and increase systemic energy bioavailability. It is still unknown how the TH state interacts with the circadian clock, another important regulator of energy metabolism. We addressed this question using a mouse model of hypothyroidism and performed circadian analyses. Low TH levels decreased locomotor activity, food intake, and body temperature mostly in the active phase. Concurrently, liver transcriptome profiling showed only subtle effects compared to elevated TH conditions. Comparative circadian transcriptome profiling revealed alterations in mesor, amplitude, and phase of transcript levels in the livers of low-TH mice. Genes associated with cholesterol uptake, biosynthesis, and bile acid secretion showed reduced mesor. Increased and decreased cholesterol levels in the serum and liver were identified, respectively. Combining data from low- and high-TH conditions allowed the identification of 516 genes with mesor changes as molecular markers of the liver TH state. We explored these genes and created an expression panel that assesses liver TH state in a time-of-day dependent manner. Our findings suggest that the liver has a low TH action under physiological conditions. Circadian profiling reveals genes as potential markers of liver TH state.
Collapse
Affiliation(s)
- Leonardo Vinicius Monteiro de Assis
- Center of Brain Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Marie Curie Street, 23562, Lübeck, Germany.
- University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| | - Lisbeth Harder
- Center of Brain Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Marie Curie Street, 23562, Lübeck, Germany
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - José Thalles Lacerda
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Rex Parsons
- Faculty of Health, School of Public Health and Social Work, Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, Queensland University of Technology, Kelvin Grove, Australia
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inga Nagel
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Oliver Rawashdeh
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Jens Mittag
- Center of Brain Behavior and Metabolism, Institute for Endocrinology and Diabetes - Molecular Endocrinology, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Center of Brain Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Marie Curie Street, 23562, Lübeck, Germany.
- University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| |
Collapse
|
15
|
Jordan-Ward R, von Hippel FA, Wilson CA, Rodriguez Maldonado Z, Dillon D, Contreras E, Gardell A, Minicozzi MR, Titus T, Ungwiluk B, Miller P, Carpenter D, Postlethwait JH, Byrne S, Buck CL. Differential gene expression and developmental pathologies associated with persistent organic pollutants in sentinel fish in Troutman Lake, Sivuqaq, Alaska. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122765. [PMID: 37913975 DOI: 10.1016/j.envpol.2023.122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Persistent organic pollutants (POPs) are lipophilic compounds that bioaccumulate in animals and biomagnify within food webs. Many POPs are endocrine disrupting compounds that impact vertebrate development. POPs accumulate in the Arctic via global distillation and thereby impact high trophic level vertebrates as well as people who live a subsistence lifestyle. The Arctic also contains thousands of point sources of pollution, such as formerly used defense (FUD) sites. Sivuqaq (St. Lawrence Island), Alaska was used by the U.S. military during the Cold War and FUD sites on the island remain point sources of POP contamination. We examined the effects of POP exposure on ninespine stickleback (Pungitius pungitius) collected from Troutman Lake in the village of Gambell as a model for human exposure and disease. During the Cold War, Troutman Lake was used as a dump site by the U.S. military. We found that PCB concentrations in stickleback exceeded the U.S. Environmental Protection Agency's guideline for unlimited consumption despite these fish being low trophic level organisms. We examined effects at three levels of biological organization: gene expression, endocrinology, and histomorphology. We found that ninespine stickleback from Troutman Lake exhibited suppressed gonadal development compared to threespine stickleback (Gasterosteus aculeatus) studied elsewhere. Troutman Lake stickleback also displayed two distinct hepatic phenotypes, one with lipid accumulation and one with glycogen-type vacuolation. We compared the transcriptomic profiles of these liver phenotypes using RNA sequencing and found significant upregulation of genes involved in ribosomal and metabolic pathways in the lipid accumulation group. Additionally, stickleback displaying liver lipid accumulation had significantly fewer thyroid follicles than the vacuolated phenotype. Our study and previous work highlight health concerns for people and wildlife due to pollution hotspots in the Arctic, and the need for health-protective remediation.
Collapse
Affiliation(s)
- Renee Jordan-Ward
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Frank A von Hippel
- Department of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave., P.O. Box 245210, Tucson, AZ 85724, USA.
| | - Catherine A Wilson
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Zyled Rodriguez Maldonado
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Danielle Dillon
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Elise Contreras
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Alison Gardell
- School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, 1900 Commerce Street, Tacoma, WA 98402, USA
| | - Michael R Minicozzi
- Department of Biological Sciences, Minnesota State University Mankato, 242 Trafton Science Center South, Mankato, MN, 56001, USA
| | - Tom Titus
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Bobby Ungwiluk
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - Pamela Miller
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - David Carpenter
- Institute for Health and the Environment, University at Albany, 5 University Place, Rensselaer, NY 12144, USA
| | - John H Postlethwait
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Samuel Byrne
- Middlebury College, Department of Biology and Global Health Program, 14 Old Chapel Rd, Middlebury, VT 05753, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| |
Collapse
|
16
|
Khosravipour M, Ghanbari Kakavandi M, Gharagozlou F, Nadri F, Barzegar A, Emami K, Valadi Athar H. Independent, modified, and interacting effects of long-term noise, extremely low-frequency electromagnetic fields, and shift work exposures on liver enzymes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122036. [PMID: 37321317 DOI: 10.1016/j.envpol.2023.122036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/21/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
To quantify long-term independent, modified, and interacting effects of noise, extremely low-frequency electromagnetic fields (ELF-EMFs), and shift work exposures on liver enzymes, a four-year repeated measures study was performed among male workers in a thermal power plant industry from 2016 to 2020. The 8-h equivalent sound pressure levels (Leq) were measured at weighting channels of Z, A, and C for octave-band frequencies. The 8-h time-weighted average of ELF-EMFs levels was measured for each participant. Shift work schedule was determined based on job titles, including 3-rotating night shift work and fixed day shift work schedules. The fasting blood samples were taken to determine liver enzymes (AST, Aspartate transaminase; ALT, Alanine transaminase). The percentage change (PC) and 95% confidence interval (CI) of AST and ALT enzymes were estimated by the different bootstrapped-mixed-effects linear regression models. Per 10-dB noise increase, we found a significantly higher PC (95% CI) of AST and ALT (only LAeq) levels in all regression models with the highest changes for LAeq. For the octave-band noise analysis, there was an upward trend from 31.5 Hz to 1 kHz frequencies and a downward trend from 1 to 8 kHz frequencies. Per 1 mG ELF-EMFs increase, we observed a significantly higher PC (95% CI) of AST and ALT enzymes in the main adjusted and the main adjusted + shift work models. The 3-rotating night than fixed day shift workers had a significant PC in the unadjusted model for AST enzyme and the fully adjusted and the main adjusted + ELF-EMFs models for ALT enzyme. Significant negative two-way or/and three-way interaction effects among the noise, ELF-EMFs, and shift work were observed for both AST and ALT enzymes. Our findings indicated long-term noise, ELF-EMFs, and 3-rotating night shift work exposures may be significantly associated with changes in the levels of liver enzymes.
Collapse
Affiliation(s)
- Masoud Khosravipour
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoud Ghanbari Kakavandi
- Department of Occupational Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran; Research center for Environmental Determinant of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faramarz Gharagozlou
- Department of Occupational Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran; Research center for Environmental Determinant of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farshad Nadri
- Department of Occupational Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran; Research center for Environmental Determinant of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akbar Barzegar
- Department of Occupational Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran; Research center for Environmental Determinant of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khosro Emami
- Department of Occupational Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Valadi Athar
- Department of Occupational Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
17
|
Marino L, Kim A, Ni B, Celi FS. Thyroid hormone action and liver disease, a complex interplay. Hepatology 2023:01515467-990000000-00521. [PMID: 37535802 DOI: 10.1097/hep.0000000000000551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
Thyroid hormone action is involved in virtually all physiological processes. It is well known that the liver and thyroid are intimately linked, with thyroid hormone playing important roles in de novo lipogenesis, beta-oxidation (fatty acid oxidation), cholesterol metabolism, and carbohydrate metabolism. Clinical and mechanistic research studies have shown that thyroid hormone can be involved in chronic liver diseases, including alcohol-associated or NAFLD and HCC. Thyroid hormone action and synthetic thyroid hormone analogs can exert beneficial actions in terms of lowering lipids, preventing chronic liver disease and as liver anticancer agents. More recently, preclinical and clinical studies have indicated that some analogs of thyroid hormone could also play a role in the treatment of liver disease. These synthetic molecules, thyromimetics, can modulate lipid metabolism, particularly in NAFLD/NASH. In this review, we first summarize the thyroid hormone signaling axis in the context of liver biology, then we describe the changes in thyroid hormone signaling in liver disease and how liver diseases affect the thyroid hormone homeostasis, and finally we discuss the use of thyroid hormone-analog for the treatment of liver disease.
Collapse
Affiliation(s)
- Luigi Marino
- Department of Medicine, UConn Health, University of Connecticut, Farmington, Connecticut, USA
| | - Adam Kim
- Division of Gastroenterology and Hepatology, Department of Medicine, UConn Health, University of Connecticut, Farmington, Connecticut, USA
| | - Bin Ni
- Alliance Pharma, Philadelphia, Pennsylvania, USA
| | - Francesco S Celi
- Department of Medicine, UConn Health, University of Connecticut, Farmington, Connecticut, USA
| |
Collapse
|
18
|
Elshinshawy S, Elhaddad H, Abdel Alem S, Shaker O, Salam R, Yosry A, Elebrashy I. The Interrelation Between Hypothyroidism and Non-alcoholic Fatty Liver Disease, a Cross-sectional Study. J Clin Exp Hepatol 2023; 13:638-648. [PMID: 37440948 PMCID: PMC10333950 DOI: 10.1016/j.jceh.2023.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 03/12/2023] [Indexed: 07/15/2023] Open
Abstract
Background Thyroid hormones play an important role in the regulation of diverse metabolic processes and might play a crucial role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, their association remains controversial. Therefore, our aim is to clarify whether overt or subclinical hypothyroidism was associated with NAFLD. Methods This cross-sectional study included 60 participants with a new diagnosis of hypothyroidism and 30 age- and gender-matched healthy participants with thyroid-stimulating hormone (TSH) level <4.5 mIU/L. Anthropometric measurements, laboratory parameters, plasma fibroblast growth factor 21 (FGF21), and hepatic steatosis diagnosed via controlled attenuation parameter (CAP) using transient elastography between the hypothyroid groups and control group were analyzed. Results Participants with hypothyroidism displayed significantly higher serum aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transferase, total cholestrol, triglycerides, low-density lipoprotein cholesterol, TSH, hemoglobin A1c, fasting insulin, and homeostatic model assessment of insulin resistance (HOMA-IR) but significantly lower serum albumin, high-density lipoprotein cholesterol, and free thyroxine levels than the control group (P = <0.001). The CAP values were significantly higher in participants with overt and subclinical hypothyroidism than the control group (P = <0.001). The only significant independent predictors of steatosis in our study were free T4, body mass index, and HOMA-IR after using multivariate logistic regression. The mean serum FGF21 levels were increased in hypothyroid participants with hepatic steatosis than those without hepatic steatosis (126.9 ± 272.6) pg/ml vs. (106.8 ± 138.7) pg/ml, P = 0.8). Receiver operating characteristic (ROC) curve showed that FGF21 was not a significant marker for hepatic steatosis in hypothyroid participants (area under curve (AUC) = 0.44, P = 0.54). Conclusion Individuals with subclinical or overt hypothyroidism were more likely to have NAFLD than those with normal thyroid function. Serum FGF21 levels were increased in hypothyroid individuals and its role as a marker of hepatic steatosis in hypothyroid individuals needs further assessment.
Collapse
Affiliation(s)
- Sarah Elshinshawy
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Hemmat Elhaddad
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Shereen Abdel Alem
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Olfat Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Randa Salam
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Ayman Yosry
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Ibrahim Elebrashy
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
19
|
Tian D, Yu Y, Yu Y, Lu L, Tong D, Zhang W, Zhang X, Shi W, Liu G. Tris(2-chloroethyl) Phosphate Exerts Hepatotoxic Impacts on Zebrafish by Disrupting Hypothalamic-Pituitary-Thyroid and Gut-Liver Axes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37276532 DOI: 10.1021/acs.est.3c01631] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ubiquitous environmental presence of tris(2-chloroethyl) phosphate (TCEP) poses a potential threat to animals; however, little is known about its hepatotoxicity. In this study, the effects of TCEP exposure (0.5 and 5.0 μg/L for 28 days) on liver health and the potential underlying toxification mechanisms were investigated in zebrafish. Our results demonstrated that TCEP exposure led to hepatic tissue lesions and resulted in significant alterations in liver-injury-specific markers. Moreover, TCEP-exposed fish had significantly lower levels of thyrotropin-releasing hormone and thyroid-stimulating hormone in the brain, evidently less triiodothyronine whereas more thyroxine in plasma, and markedly altered expressions of genes from the hypothalamic-pituitary-thyroid (HPT) axis in the brain or liver. In addition, a significantly higher proportion of Bacteroidetes in the gut microbiota, an elevated bacterial source endotoxin lipopolysaccharide (LPS) in the plasma, upregulated expression of LPS-binding protein and Toll-like receptor 4 in the liver, and higher levels of proinflammatory cytokines in the liver were detected in TCEP-exposed zebrafish. Furthermore, TCEP-exposed fish also suffered severe oxidative damage, possibly due to disruption of the antioxidant system. These findings suggest that TCEP may exert hepatotoxic effects on zebrafish by disrupting the HPT and gut-liver axes and thereafter inducing hepatic inflammation and oxidative stress.
Collapse
Affiliation(s)
- Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
20
|
Liu J, Zhou X, Feng C, Zheng W, Chen P, Zhang X, Hou P. Glucagon-modified Liposomes Delivering Thyroid Hormone for Anti-obesity Therapy. Arch Med Res 2023:S0188-4409(23)00057-7. [PMID: 37121791 DOI: 10.1016/j.arcmed.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/24/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Thyroid hormones (active form T3) are naturally potent compounds that influence energy expenditure, cholesterol metabolism, and fat oxidation. T3 would be an effective anti-obesity drug if it would not be delivered to the heart and bones, which leads to serious side effects, such as cardiovascular and bone thyrotoxicity, muscle wasting, and so on. METHODS In this study, we designed a targeted drug delivery system that is a glucagon-modified liposome to deliver T3 to the liver and adipose tissues. RESULTS The liposomes exhibited excellent properties, including uniform nanoscale particle size, good physicochemical stability, and adequate drug release behavior. More importantly, the glucagon-modified liposomes were enriched in the liver, which minimized the undesired bone and cardiovascular thyrotoxicity of T3. Compared to the control group, T3-loading glucagon-modified liposomes could effectively decrease body weight, reverse hepatic steatosis, and correct hyperlipidemia and hyperglycemia in ob/ob mice, without the undesired cardiovascular and bone thyrotoxicity. CONCLUSION These findings indicate that delivery of thyroid hormone by glucagon-modified liposomes may provide an effective strategy for anti-obesity therapy.
Collapse
Affiliation(s)
- Juan Liu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xinrui Zhou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chao Feng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Wenfang Zheng
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Pu Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
21
|
Li W, He Q, Zhang H, Shu S, Wang L, Wu Y, Yuan Z, Zhou J. Thyroid-stimulating hormone within the normal reference range has a U-shaped association with the severity of coronary artery disease in nondiabetic patients but is diluted in diabetic patients. J Investig Med 2023; 71:350-360. [PMID: 36680358 DOI: 10.1177/10815589221149187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Too high or too low thyroid-stimulating hormone (TSH) has been associated with the progress and prognosis of coronary artery disease (CAD). However, whether TSH within its normal reference range plays a role in the severity of CAD remains unclear. In this observational study, we explored the potential relationship of hypersensitive TSH (hs-TSH) with the severity of CAD in euthyroid patients with or without diabetes mellitus. A total of 7357 CAD patients with euthyroidism were enrolled in this study. Of those, 1997 had diabetes mellitus. The severity of CAD was evaluated through the presence of myocardial infarction (MI) and the severity of coronary lesions, which was calculated using the Gensini score (GS). Logistic regression models treating hs-TSH as a categorical variable and restricted cubic spline analyses treating it as a continuous variable were used to evaluate the associations of hs-TSH with the severity of CAD. The propensity score matching method was used to further validate the differences between diabetic and nondiabetic patients. CAD patients with diabetes mellitus had lower levels of hs-TSH (1.6 (0.97-2.53) vs 1.67 (1.00-2.64)) in serum compared with CAD patients without diabetes mellitus. Meanwhile, hs-TSH was independently related to the severity of CAD. In CAD patients with vs without diabetes mellitus, the U-shaped relationship between hs-TSH and MI was more prominent in patients without diabetes mellitus, and the significant U-shaped association between higher GS and hs-TSH remained only in nondiabetes. Therefore, hs-TSH within the normal reference range has a U-shaped association with the severity of CAD in nondiabetic patients, which is markedly diluted in diabetic patients.
Collapse
Affiliation(s)
- Wenyuan Li
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qingyuan He
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haoxuan Zhang
- Department of Bioengineering, Southwest Jiaotong University, Chengdu, Sichuan, China
- Department of Biological Science, Georgia State University, Atlanta, GA, USA
| | - Shan Shu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lijun Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yue Wu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zuyi Yuan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Juan Zhou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Key Laboratory of Molecular Cardiology of Shannxi Province, Xi'an, Shaanxi, China
| |
Collapse
|
22
|
Marschner RA, Roginski AC, Ribeiro RT, Longo L, Álvares-da-Silva MR, Wajner SM. Uncovering Actions of Type 3 Deiodinase in the Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD). Cells 2023; 12:cells12071022. [PMID: 37048095 PMCID: PMC10093729 DOI: 10.3390/cells12071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has gained worldwide attention as a public health problem. Nonetheless, lack of enough mechanistic knowledge restrains effective treatments. It is known that thyroid hormone triiodothyronine (T3) regulates hepatic lipid metabolism, and mitochondrial function. Liver dysfunction of type 3 deiodinase (D3) contributes to MAFLD, but its role is not fully understood. Objective: To evaluate the role of D3 in the progression of MAFLD in an animal model. Methodology: Male/adult Sprague Dawley rats (n = 20) were allocated to a control group (2.93 kcal/g) and high-fat diet group (4.3 kcal/g). Euthanasia took place on the 28th week. D3 activity and expression, Uncoupling Protein 2 (UCP2) and type 1 deiodinase (D1) expression, oxidative stress status, mitochondrial, Krebs cycle and endoplasmic reticulum homeostasis in liver tissue were measured. Results: We observed an increase in D3 activity/expression (p < 0.001) related to increased thiobarbituric acid reactive substances (TBARS) and carbonyls and diminished reduced glutathione (GSH) in the MAFLD group (p < 0.05). There was a D3-dependent decrease in UCP2 expression (p = 0.01), mitochondrial capacity, respiratory activity with increased endoplasmic reticulum stress in the MAFLD group (p < 0.001). Surprisingly, in an environment with lower T3 levels due to high D3 activity, we observed an augmented alpha-ketoglutarate dehydrogenase (KGDH) and glutamate dehydrogenase (GDH) enzymes activity (p < 0.05). Conclusion: Induced D3, triggered by changes in the REDOX state, decreases T3 availability and hepatic mitochondrial capacity. The Krebs cycle enzymes were altered as well as endoplasmic reticulum stress. Taken together, these results shed new light on the role of D3 metabolism in MAFLD.
Collapse
Affiliation(s)
- Rafael Aguiar Marschner
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Ana Cristina Roginski
- Post-Graduate Program in Biochemestry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Post-Graduate Program in Biochemestry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil
| | - Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil
| | - Simone Magagnin Wajner
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil
- Correspondence:
| |
Collapse
|
23
|
Hu Y, Zhou F, Lei F, Lin L, Huang X, Sun T, Liu W, Zhang X, Cai J, She ZG, Li H. The nonlinear relationship between thyroid function parameters and metabolic dysfunction-associated fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1115354. [PMID: 36909326 PMCID: PMC9992977 DOI: 10.3389/fendo.2023.1115354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND The relationship between thyroid function parameters and metabolic dysfunction-associated fatty liver disease (MAFLD) remains controversial. Additionally, little is known about the relationship between thyroid function parameters and MAFLD in the Chinese population. METHODS We conducted a retrospective cross-sectional study involving 177,540 individuals with thyroid function tests and MAFLD diagnosis from 2010-2018. The association between thyroid function parameters and MAFLD was evaluated on a continuous scale with restricted cubic spline (RCS) models and by the prior-defined centile categories with multivariable-adjusted logistic regression models. Thyroid function parameters included free triiodothyronine (FT3), free tetra-iodothyronine (FT4), and thyroid stimulating hormone (TSH). Additionally, fully adjusted RCS models stratified by sex, age, and location were studied. RESULTS In the RCS models, the risk of MAFLD increased with higher levels of FT3 when FT3 <5.58pmol/L, while the risk of MAFLD decreased with higher levels of FT3 when FT3 ≥5.58pmol/L (P nonlinearity <0.05). While RCS analysis suggested that the FT4 levels had a negative association with MAFLD (P nonlinearity <0.05), indicating an increase in FT4 levels was associated with a decreased risk of MAFLD. RCS analysis suggested an overall positive association between the concentration of TSH and MAFLD risk (P nonlinearity <0.05). The rising slope was sharper when the TSH concentration was less than 1.79uIU/mL, which indicated the association between TSH and MAFLD risk was tightly interrelated within this range. The multivariable logistic regression showed that populations in the 81st-95th centile had the highest risk of MAFLD among all centiles of FT3/TSH, with the 1st-5th centile as the reference category. CONCLUSIONS Our study suggested nonlinear relationships between thyroid function parameters and MAFLD. Thyroid function parameters could be additional modifiable risk factors apart from the proven risk factors to steer new avenues regarding MAFLD prevention and treatment.
Collapse
Affiliation(s)
- Yingying Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Fan Zhou
- Department of Gastroenterology, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Fang Lei
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Lijin Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xuewei Huang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Tao Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Weifang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xingyuan Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- *Correspondence: Hongliang Li, ; Zhi-Gang She,
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- *Correspondence: Hongliang Li, ; Zhi-Gang She,
| |
Collapse
|
24
|
Liu L, Yang Y, Yang F, Lin Y, Liu K, Wang X, Zhang Y. A mechanistic investigation about hepatoxic effects of borneol using zebrafish. Hum Exp Toxicol 2023; 42:9603271221149011. [PMID: 36594174 DOI: 10.1177/09603271221149011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Except for clinical value, borneol is routinely used in food and cosmetics with seldom safety evaluation. To investigate its hepatoxicity, we exposed 3 dpf (days post fertilization) larval zebrafish to borneol at a gradient of concentrations (200-500 μM) for 3 days. Herein, our results revealed that high doses of borneol (300-500 μM) caused liver size decrease or lateral lobe absence. Borneol also seriously disturbed the hepatic protein metabolism presented with the increased activity of alanine aminotransferase (ALT) and lipid metabolism shown with the increased level of triglycerides (TG) and total cholesterol (TC). The lipid accumulation (oil red staining) was detected as well. Additionally, significant upregulation of genes was detected that related to oxidative stress, lipid anabolism, endoplasmic reticulum stress (ERS), and autophagy. Conversely, the lipid metabolism-related genes were markedly downregulated. Moreover, the changes in the superoxide dismutase activity and the level of glutathione and malondialdehyde raised the likelihood of lipid peroxidation. The outcomes indicated the involvement of oxidative stress, ERS, lipid metabolism, and autophagy in borneol-induced lipid metabolic disorder and hepatic injury. This study will provide a more comprehensive understanding of borneol hepatoxicity and the theoretical basis for the safe use of this compound.
Collapse
Affiliation(s)
- L Liu
- School of Pharmacy, 12412Changzhou University, Changzhou, China
| | - Y Yang
- School of Pharmacy, 12412Changzhou University, Changzhou, China.,Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - F Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Y Lin
- School of Pharmacy, 12412Changzhou University, Changzhou, China
| | - K Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - X Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Y Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
25
|
Pasciu V, Sotgiu FD, Nieddu M, Porcu C, Berlinguer F. Measurement of fecal T3 metabolite levels in sheep: Analytical and biological validation of the method. Front Vet Sci 2022; 9:1011651. [PMID: 36504867 PMCID: PMC9733671 DOI: 10.3389/fvets.2022.1011651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction Biological sample collection from wild and farms animals is often associated with difficulties related to the handling and restraint procedures, and most of the time it could induce stress, altering the welfare and physiological homeostasis. The analysis of fecal T3 metabolites (FTMs) allows to test samples collected in a non-invasive manner, providing several information about the animal's physiological conditions and the effects related to environmental and nutritional variations. This procedure has found wide application in wild species, but less in domestic ones. Methods The aim of this work was to validate the use of an immuno-enzymatic competitive ELISA kit, designed for T3 quantification in human blood serum samples, for the assessment of FTMs in the sheep. For the analytical validation, precision, recovery and parallelism were evaluated; for biological validation the variations of FTMs in relation to age, sex and the physiological status of the animal were determined. Results After a verification of the precision (RSD % < 15%), mean recovery (75%) and parallelism (CV% < 10%), the kit was used to measure FTMs in cyclic, pregnant, and early lactating ewes as well as in rams and ewe lambs. The results showed that FTMs concentrations in pregnant ewes were significantly lower (p < 0.05) than in cyclic and early lactation ones. Furthermore, there were no significant differences in FTMs levels between ewes and rams, while in lambs FTMs levels were higher than in adults (p < 0.001). Conclusion In conclusion the present study demonstrates that FTMs can be reliably and accurately determined in sheep feces, using an ELISA kit formulated for human serum T3 assay. The application of this method in the livestock sector could allow to improve our knowledge about the response of animals to different physiological and environmental conditions, and thus assess their welfare.
Collapse
Affiliation(s)
- Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy,*Correspondence: Valeria Pasciu
| | | | - Maria Nieddu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Cristian Porcu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | |
Collapse
|
26
|
Huang J, Chen M, Liang Y, Hu Y, Xia W, Zhang Y, Zhao C, Wu L. Integrative metabolic analysis of orbital adipose/connective tissue in patients with thyroid-associated ophthalmopathy. Front Endocrinol (Lausanne) 2022; 13:1001349. [PMID: 36465658 PMCID: PMC9718489 DOI: 10.3389/fendo.2022.1001349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Objective Thyroid-associated ophthalmopathy (TAO) is a disfiguring autoimmune disease, which destroys the structure of orbital tissues and even threatens vision. Metabolic reprograming is critical in autoimmune diseases; however, the metabolic basis of TAO remains to be clarified. Our study aimed to reveal the metabolic profile of TAO. Methods Orbital adipose/connective tissues from eleven TAO patients and twelve control subjects were collected during surgeries and analyzed with liquid chromatograph-mass spectrometer. Orthogonal partial least-squares discrimination analysis (OPLS-DA), variable importance in projection (VIP), heat map, and volcano plot were used to reveal metabolic profile in TAO. Pathway analysis and metabolites-gene analysis were utilized to explore potential metabolic metabolism in TAO. Results 3038 metabolites were detected in samples from the TAO patients and the controls. OPLS-DA analysis of the metabolomics results showed two distinguished groups, demonstrating that TAO has a unique metabolome. Univariate tests identified 593 dysregulated metabolites (P < 0.05), including 367 increased metabolites and 226 decreased metabolites. Pathway analysis showed that changed metabolites were enriched in cholesterol metabolism, choline metabolism in cancer, fat digestion and absorption, regulation of lipolysis in adipocytes, and insulin resistance. In addition, metabolites-gene analysis illustrated that cholesterol metabolism was involved in the pathogenesis of TAO. Endoplasmic reticulum stress-related genes (ATF6, PERK, and IRE1α) expressions were higher in TAO orbital tissues than in control orbital tissues verified by western blot. Additionally, the expression level of diacylglycerol acyltransferase 1 (DGAT1), a key metabolic protein for triacylglycerol synthesis, was increased in orbital tissues of TAO detected by qRT-PCR, indicating disrupted cholesterol metabolism in TAO. Conclusion The present study demonstrated different metabolite profiles and potential metabolic mechanisms in TAO.
Collapse
Affiliation(s)
- Jiancheng Huang
- Eye Institute, Eye and Ear, Nose & Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Healthcare (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Meng Chen
- Eye Institute, Eye and Ear, Nose & Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Healthcare (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yu Liang
- Eye Institute, Eye and Ear, Nose & Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Healthcare (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yuxiang Hu
- Eye Institute, Eye and Ear, Nose & Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Healthcare (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Weiyi Xia
- Eye Institute, Eye and Ear, Nose & Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Healthcare (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yihan Zhang
- Eye Institute, Eye and Ear, Nose & Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Healthcare (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Chen Zhao
- Eye Institute, Eye and Ear, Nose & Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Healthcare (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Lianqun Wu
- Eye Institute, Eye and Ear, Nose & Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Healthcare (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Beale DJ, Sinclair GM, Shah R, Paten AM, Kumar A, Long SM, Vardy S, Jones OAH. A review of omics-based PFAS exposure studies reveals common biochemical response pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157255. [PMID: 35817100 DOI: 10.1016/j.scitotenv.2022.157255] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Per and Polyfluoroalkyl Substances (PFAS) are a diverse group of man-made chemicals with a range of industrial applications and which are widespread in the environment. They are structurally diverse but comprise a common chemical feature of at least one (though usually more) perfluorocarbon moiety (-CnF2n-) attached to a functional group such as a carboxylic or sulphonic acid. The strength of the Carbon-Fluorine bond means the compounds do not break down easily and can thus bioaccumulate. PFAS are of high concern to regulators and the public due to their potential toxicity and high persistence. At high exposure levels, PFAS have been implicated in a range of harmful effects on human and environmental health, particularly problems in/with development, cholesterol and endocrine disruption, immune system function, and oncogenesis. However, most environmental toxicology studies use far higher levels of PFAS than are generally found in the environment. Additionally, since the type of exposure, the PFAS used, and the organisms tested all vary between studies, so do the results. Traditional ecotoxicology studies may thus not identify PFAS effects at environmentally relevant exposures. Here we conduct a review of omics-based PFAS exposure studies using laboratory ecotoxicological methodologies and environmentally relevant exposure levels and show that common biochemical response pathways are identified in multiple studies. A major pathway identified was the pentose phosphate shunt pathway. Such molecular markers of sublethal PFAS exposure will greatly benefit accurate and effective risk assessments to ensure that new PFAS regulations can consider the full effects of PFAS exposure on environmental and human health receptors.
Collapse
Affiliation(s)
- David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| | - Georgia M Sinclair
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Rohan Shah
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia; Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Amy M Paten
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, Acton, ACT 2601, Australia
| | - Anupama Kumar
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Urrbrae, SA 5064, Australia
| | - Sara M Long
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Suzanne Vardy
- Water Quality and Investigation, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, QLD 4102, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
28
|
Hatziagelaki E, Paschou SA, Schön M, Psaltopoulou T, Roden M. NAFLD and thyroid function: pathophysiological and therapeutic considerations. Trends Endocrinol Metab 2022; 33:755-768. [PMID: 36171155 DOI: 10.1016/j.tem.2022.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/21/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a worldwide rising challenge because of hepatic, but also extrahepatic, complications. Thyroid hormones are master regulators of energy and lipid homeostasis, and the presence of abnormal thyroid function in NAFLD suggests pathogenic relationships. Specifically, persons with hypothyroidism feature dyslipidemia and lower hepatic β-oxidation, which favors accumulation of triglycerides and lipotoxins, insulin resistance, and subsequently de novo lipogenesis. Recent studies indicate that liver-specific thyroid hormone receptor β agonists are effective for the treatment of NAFLD, likely due to improved lipid homeostasis and mitochondrial respiration, which, in turn, may contribute to a reduced risk of NAFLD progression. Taken together, the possible coexistence of thyroid disease and NAFLD calls for increased awareness and optimized strategies for mutual screening and management.
Collapse
Affiliation(s)
- Erifili Hatziagelaki
- Diabetes Center, Second Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Martin Schön
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Theodora Psaltopoulou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
29
|
Hepatic thyroid hormone signalling modulates glucose homeostasis through the regulation of GLP-1 production via bile acid-mediated FXR antagonism. Nat Commun 2022; 13:6408. [PMID: 36302774 PMCID: PMC9613917 DOI: 10.1038/s41467-022-34258-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/17/2022] [Indexed: 12/25/2022] Open
Abstract
Thyroid hormones (TH) regulate systemic glucose metabolism through incompletely understood mechanisms. Here, we show that improved glucose metabolism in hypothyroid mice after T3 treatment is accompanied with increased glucagon-like peptide-1 (GLP-1) production and insulin secretion, while co-treatment with a GLP-1 receptor antagonist attenuates the effects of T3 on insulin and glucose levels. By using mice lacking hepatic TH receptor β (TRβ) and a liver-specific TRβ-selective agonist, we demonstrate that TRβ-mediated hepatic TH signalling is required for both the regulation of GLP-1 production and the insulinotropic and glucose-lowering effects of T3. Moreover, administration of a liver-targeted TRβ-selective agonist increases GLP-1 and insulin levels and alleviates hyperglycemia in diet-induced obesity. Mechanistically, T3 suppresses Cyp8b1 expression, resulting in increased the levels of Farnesoid X receptor (FXR)-antagonistic bile acids, thereby potentiating GLP-1 production and insulin secretion by repressing intestinal FXR signalling. T3 correlates with both plasma GLP-1 and fecal FXR-antagonistic bile acid levels in people with normal thyroid function. Thus, our study reveals a role for hepatic TH signalling in glucose homeostasis through the regulation of GLP-1 production via bile acid-mediated FXR antagonism.
Collapse
|
30
|
Wirth EK, Puengel T, Spranger J, Tacke F. Thyroid hormones as a disease modifier and therapeutic target in nonalcoholic steatohepatitis. Expert Rev Endocrinol Metab 2022; 17:425-434. [PMID: 35957531 DOI: 10.1080/17446651.2022.2110864] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide and closely interconnected to the metabolic syndrome. Liver-specific and systemic signaling pathways orchestrating glucose and fatty acid metabolism contribute to intrahepatic accumulation of lipids and inflammatory processes eventually causing disease progression to nonalcoholic steatohepatitis (NASH), liver fibrosis, and cirrhosis. Since a high number of key regulatory genes regarding liver homeostasis are directly mediated via thyroid hormone (TH) signaling, targeting TH receptors (TRs) represent a promising therapeutic potential for the treatment of NAFLD. AREAS COVERED In this review, we elucidate the effects of TH on metabolic regulations in the liver via local availability and actions. We discuss recent advances and the potential impact of thyromimetics in basic research and clinical trials including liver-targeted and TRβ-specific agents for the treatment of NAFLD. EXPERT OPINION Unselective TR targeting can be accompanied by negative side effects due to high TRβ expression in other organs and TRα-mediated effects. Recent advances in drug development and the introduction of liver-targeted thyromimetics selectively activating TRβ such as Resmetirom (MGL-3196) and VK2809 bring new hope of translating the knowledge on local TH effects into effective hepatic lipid-clearing therapies against NASH.
Collapse
Affiliation(s)
- Eva K Wirth
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Tobias Puengel
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
31
|
Giolito MV, Plateroti M. Thyroid hormone signaling in the intestinal stem cells and their niche. Cell Mol Life Sci 2022; 79:476. [PMID: 35947210 PMCID: PMC11072102 DOI: 10.1007/s00018-022-04503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Several studies emphasized the function of the thyroid hormones in stem cell biology. These hormones act through the nuclear hormone receptor TRs, which are T3-modulated transcription factors. Pioneer work on T3-dependent amphibian metamorphosis showed that the crosstalk between the epithelium and the underlying mesenchyme is absolutely required for intestinal maturation and stem cell emergence. With the recent advances of powerful animal models and 3D-organoid cultures, similar findings have now begun to be described in mammals, where the action of T3 and TRα1 control physiological and cancer-related stem cell biology. In this review, we have summarized recent findings on the multiple functions of T3 and TRα1 in intestinal epithelium stem cells, cancer stem cells and their niche. In particular, we have highlighted the regulation of metabolic functions directly linked to normal and/or cancer stem cell biology. These findings help explain other possible mechanisms by which TRα1 controls stem cell biology, beyond the more classical Wnt and Notch signaling pathways.
Collapse
Affiliation(s)
- Maria Virginia Giolito
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 3 Avenue Molière 67200, Strasbourg, France
| | - Michelina Plateroti
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 3 Avenue Molière 67200, Strasbourg, France.
| |
Collapse
|
32
|
de Assis LVM, Harder L, Lacerda JT, Parsons R, Kaehler M, Cascorbi I, Nagel I, Rawashdeh O, Mittag J, Oster H. Rewiring of liver diurnal transcriptome rhythms by triiodothyronine (T 3) supplementation. eLife 2022; 11:79405. [PMID: 35894384 PMCID: PMC9391036 DOI: 10.7554/elife.79405] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Diurnal (i.e., 24 hr) physiological rhythms depend on transcriptional programs controlled by a set of circadian clock genes/proteins. Systemic factors like humoral and neuronal signals, oscillations in body temperature, and food intake align physiological circadian rhythms with external time. Thyroid hormones (THs) are major regulators of circadian clock target processes such as energy metabolism, but little is known about how fluctuations in TH levels affect the circadian coordination of tissue physiology. In this study, a high triiodothyronine (T3) state was induced in mice by supplementing T3 in the drinking water, which affected body temperature, and oxygen consumption in a time-of-day-dependent manner. A 24-hr transcriptome profiling of liver tissue identified 37 robustly and time independently T3-associated transcripts as potential TH state markers in the liver. Such genes participated in xenobiotic transport, lipid and xenobiotic metabolism. We also identified 10–15% of the liver transcriptome as rhythmic in control and T3 groups, but only 4% of the liver transcriptome (1033 genes) were rhythmic across both conditions – amongst these, several core clock genes. In-depth rhythm analyses showed that most changes in transcript rhythms were related to mesor (50%), followed by amplitude (10%), and phase (10%). Gene set enrichment analysis revealed TH state-dependent reorganization of metabolic processes such as lipid and glucose metabolism. At high T3 levels, we observed weakening or loss of rhythmicity for transcripts associated with glucose and fatty acid metabolism, suggesting increased hepatic energy turnover. In summary, we provide evidence that tonic changes in T3 levels restructure the diurnal liver metabolic transcriptome independent of local molecular circadian clocks. Many environmental conditions, including light and temperature, vary with a daily rhythm that affects how animals interact with their surroundings. Indeed, most species have developed so-called circadian clocks: internal molecular timers that cycle approximately every 24 hours and regulate many bodily functions, including digestion, energy metabolism and sleep. The energy metabolism of the liver – the chemical reactions that occur in the organ to produce energy from nutrients – is controlled both by the circadian clock system, and by the hormones produced by a gland in the neck called the thyroid. However, the interaction between these two regulators is poorly understood. To address this question, de Assis, Harder et al. elevated the levels of thyroid hormones in mice by adding these hormones to their drinking water. Studying these mice showed that, although thyroid hormone levels were good indicators of how much energy mice burn in a day, they do not reflect daily fluctuations in metabolic rate faithfully. Additionally, de Assis, Harder et al. showed that elevating T3, the active form of thyroid hormone, led to a rewiring of the daily rhythms at which genes were turned on and off in the liver, affecting the daily timing of processes including fat and cholesterol metabolism. This occurred without changing the circadian clock of the liver directly. De Assis, Harder et al.’s results indicate that time-of-day critically affects the action of thyroid hormones in the liver. This suggests that patients with hypothyroidism, who produce low levels of thyroid hormones, may benefit from considering time-of-day as a factor in disease diagnosis, therapy and, potentially, prevention. Further data on the rhythmic regulation of thyroid action in humans, including in patients with hypothyroidism, are needed to further develop this approach.
Collapse
Affiliation(s)
| | - Lisbeth Harder
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | - Rex Parsons
- Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Inga Nagel
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Oliver Rawashdeh
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Jens Mittag
- Institute for Endocrinology and Diabetes - Molecular Endocrinology, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
33
|
Influence of Altered Thyroid Hormone Mechanisms in the Progression of Metabolic Dysfunction Associated with Fatty Liver Disease (MAFLD): A Systematic Review. Metabolites 2022; 12:metabo12080675. [PMID: 35893242 PMCID: PMC9330085 DOI: 10.3390/metabo12080675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
We performed a systematic review of the mechanisms of thyroid hormones (THs) associated with metabolic dysfunction associated with fatty liver disease (MAFLD). This systematic review was registered under PROSPERO (CRD42022323766). We searched the MEDLINE (via PubMed) and Embase databases from their inception to March 2022. We included studies that assessed thyroid function by measuring the serum level of THs and those involved in MAFLD. We excluded reviews, case reports, editorials, letters, duplicate studies and designed controls. Forty-three studies included MAFLD, eleven analyzed THs, and thirty-two evaluated the mechanisms of THs in MAFLD. Thyroid hormones are essential for healthy growth, development and tissue maintenance. In the liver, THs directly influence the regulation of lipid and carbohydrate metabolism, restoring the homeostatic state of the body. The selected studies showed an association of reduced levels of THs with the development and progression of MAFLD. In parallel, reduced levels of T3 have a negative impact on the activation of co-regulators in the liver, reducing the transcription of genes important in hepatic metabolism. Overall, this is the first review that systematically synthesizes studies focused on the mechanism of THs in the development and progression of MAFLD. The data generated in this systematic review strengthen knowledge of the impact of TH changes on the liver and direct new studies focusing on therapies that use these mechanisms.
Collapse
|
34
|
Pujia R, Mazza E, Montalcini T, Arturi F, Brunetti A, Aversa A, Romeo S, Perticone M, Sciacqua A, Pujia A. Liver Stiffness in Obese Hypothyroid Patients Taking Levothyroxine. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58070946. [PMID: 35888665 PMCID: PMC9316150 DOI: 10.3390/medicina58070946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Thyroid dysfunction is associated with non-alcoholic fatty liver disease, but its role in the progression of liver damage in obese patients remains unclear. In addition, several case reports have suggested the existence of a levothyroxine-induced liver injury, which has been poorly investigated. Our aim was to verify whether a difference in the prevalence of liver fibrosis exists in a population of obese individuals taking Levothyroxine. Materials and Methods: We conducted a cross-sectional study on a population of 137 obese individuals, of which 49 were on replacement therapy with Levothyroxine. We excluded those who had hypertriglyceridemia and diabetes mellitus. All participants underwent a liver stiffness assessment by transient elastography as well as biochemical measurements. In subjects with liver fibrosis, other cause of liver fibrosis were ruled out. Results: Participants taking Levothyroxine had a higher prevalence of liver fibrosis than those not taking Levothyroxine (30.6% vs. 2.3%; p < 0.001), and these results were obtained after we made an adjustment for age (Exp(B) = 18.9; 95% CI = 4.1−87.4; p < 0.001). The liver stiffness value differed significantly between groups (6.0 ± 3.6 and 5.1 ± 1.2, p = 0.033). Of those subjects taking Levothyroxine, there were no significant differences in the dose of medication (1.21 ± 0.36 vs. 1.07 ± 0.42; p = 0.240) and treatment duration (13.7 ± 7.43 vs. 11.13 ± 6.23; p = 0.380) between those with and without liver fibrosis. Conclusions: We found, for the first time, a greater prevalence of liver fibrosis in obese individuals taking Levothyroxine than in those not taking this medication. This finding needs to be confirmed by longitudinal population studies as well as by cellular studies.
Collapse
Affiliation(s)
- Roberta Pujia
- Department of Medical and Surgical Science, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy; (R.P.); (E.M.); (F.A.); (S.R.); (M.P.); (A.S.); (A.P.)
| | - Elisa Mazza
- Department of Medical and Surgical Science, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy; (R.P.); (E.M.); (F.A.); (S.R.); (M.P.); (A.S.); (A.P.)
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy;
- Correspondence:
| | - Franco Arturi
- Department of Medical and Surgical Science, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy; (R.P.); (E.M.); (F.A.); (S.R.); (M.P.); (A.S.); (A.P.)
| | - Antonio Brunetti
- Department of Health Science, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Antonio Aversa
- Department of Clinical and Experimental Medicine, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Stefano Romeo
- Department of Medical and Surgical Science, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy; (R.P.); (E.M.); (F.A.); (S.R.); (M.P.); (A.S.); (A.P.)
- Department of Molecular and Clinical Medicine, The University of Gothenburg, 40530 Gothenburg, Sweden
| | - Maria Perticone
- Department of Medical and Surgical Science, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy; (R.P.); (E.M.); (F.A.); (S.R.); (M.P.); (A.S.); (A.P.)
| | - Angela Sciacqua
- Department of Medical and Surgical Science, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy; (R.P.); (E.M.); (F.A.); (S.R.); (M.P.); (A.S.); (A.P.)
| | - Arturo Pujia
- Department of Medical and Surgical Science, University Magna Grecia of Catanzaro, 88100 Catanzaro, Italy; (R.P.); (E.M.); (F.A.); (S.R.); (M.P.); (A.S.); (A.P.)
| |
Collapse
|
35
|
Liang X, Wang Y, Liu L, Zhang X, Li L, Tang R, Li D. Acute nitrite exposure interferes with intestinal thyroid hormone homeostasis in grass carp (Ctenopharyngodon idellus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113510. [PMID: 35468440 DOI: 10.1016/j.ecoenv.2022.113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Nitrite in the aquatic environment potentially disturbs thyroid hormone (TH) homeostasis in peripheral tissues, but little is known about TH metabolism in the intestine. This study investigated the serum concentrations of THs and thyroid-stimulating hormone (TSH) as well as the activity of intestinal iodothyronine deiodinases (IDs) of grass carp (Ctenopharyngodon idellus) exposed to various concentrations of nitrite (0, 8, 25, or 50 mg/L) for 96 h. Acute nitrite exposure significantly altered the triiodothyronine (T3) levels and the morphology of thyroid follicles at 96 h. Thyroxine (T4), free T4 levels and intestinal IDs activities showed an increase trend under nitrite stress. After 96 h exposure, nitrite down-regulated the expressions levels of intestinal Akt1 protein, sugar transporter genes, and thyroid hormone receptor (TR) signaling pathway genes except for tr ɑ1 and tr ɑ2. Moreover, the expressions levels of pparγ, cpt1α, cd36, fabp2 and fatp4 were down-regulated, whereas fabp6 and lpl were up-regulated in the 50 mg/L exposure group at 96 h. The results indicate that acute nitrite exposure has the potential to disturb the homeostasis of intestinal TH metabolism, which in turn alters TRs genes transcription, down-regulates sugar transporter activities, and promotes the energy expenditure in gut of grass carp.
Collapse
Affiliation(s)
- Xiao Liang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yin Wang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Lu Liu
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Xi Zhang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
36
|
Ko YK, Kim H, Lee Y, Lee YS, Gim JA. DNA Methylation Patterns According to Fatty Liver Index and Longitudinal Changes from the Korean Genome and Epidemiology Study (KoGES). Curr Issues Mol Biol 2022; 44:1149-1168. [PMID: 35723298 PMCID: PMC8947460 DOI: 10.3390/cimb44030075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
The role of differentially methylated regions (DMRs) in nonalcoholic fatty liver disease (NAFLD) is unclear. This study aimed to identify the role of DMR in NAFLD development and progression using the Korean Genome and Epidemiology Study (KoGES) cohort. We used laboratory evaluations and Illumina Methylation 450 k DNA methylation microarray data from KoGES. The correlation between fatty liver index (FLI) and genomic CpG sites was analyzed in 322 subjects. Longitudinal changes over 8 years were confirmed in 33 subjects. To identify CpG sites and genes related to FLI, we obtained enrichment terms for 6765 genes. DMRs were identified for both high (n = 128) and low (n = 194) groups on the basis of FLI 30 in 142 men and 180 women. To confirm longitudinal changes in 33 subjects, the ratio of follow-up and baseline investigation values was obtained. Correlations and group comparisons were performed for the 8 year change values. PITPNM3, RXFP3, and THRB were hypermethylated in the increased FLI groups, whereas SLC9A2 and FOXI3 were hypermethylated in the decreased FLI groups. DMRs describing NAFLD were determined, and functions related to inflammation were identified. Factors related to longitudinal changes are suggested, and blood circulation-related functions appear to be important in the management of NAFLD.
Collapse
Affiliation(s)
- Young Kyung Ko
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul 08308, Korea;
| | - Hayeon Kim
- Department of Pathology, Korea University College of Medicine, Seoul 08308, Korea;
| | - Yoonseok Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul 08308, Korea;
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul 08308, Korea;
- Correspondence: (Y.-S.L.); (J.-A.G.); Tel.: +82-2-2626-3013 (Y.-S.L.); +82-2-2626-2362 (J.-A.G.)
| | - Jeong-An Gim
- Medical Science Research Center, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
- Correspondence: (Y.-S.L.); (J.-A.G.); Tel.: +82-2-2626-3013 (Y.-S.L.); +82-2-2626-2362 (J.-A.G.)
| |
Collapse
|
37
|
Wu H, Wang S, Tian Y, Zhou N, Wu C, Li R, Xu W, Xu T, Gu L, Ji F, Xu L, Lu L. Effects of Hydroxylated Lecithin on Growth Performance, Serum Enzyme Activity, Hormone Levels Related to Lipid Metabolism and Meat Quality in Jiangnan White Goslings. Front Vet Sci 2022; 9:829338. [PMID: 35296058 PMCID: PMC8920548 DOI: 10.3389/fvets.2022.829338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of the present study was to evaluate the effects of hydroxylated lecithin on growth performance, serum enzyme activity, hormone levels related to lipid metabolism and meat quality in Jiangnan White goslings. Six hundred 1-day-old goslings were randomly divided into five treatments with six replicates and 20 for each replicate. The control group (CG) was fed the basal diet, while the experimental group was fed the basal diet with 50, 100, 200 mg/kg hydroxylated lecithin and 100 mg/kg soy lecithin (HLG50, HLG100, HLG200, and LG100, respectively) in the form of powder. Feed and water were provided ad libitum for 32 days. Compared with the CG, (a) the average daily feed intake was higher (P < 0.05) in HLG100, the final body weight and average daily gain were higher (P < 0.05), and the feed conversion ratio was lower in the HLG200; (b) the alanine aminotransferase, malate dehydrogenase, leptin, glucagon, thyroid hormone, Triiodothyronine contents in the HLG200 were lower (P < 0.05); (c) The breast muscle water holding capacity was higher (P < 0.05) in groups with hydroxylated lecithin, the breast muscle shear force and fiber diameter were lower (P < 0.05) in the HLG100; (d) the inositic acid, intramuscular fat, phospholipid contents were higher (P < 0.05), the triglyceride content was lower (P < 0.05) in HLG100 of the breast muscle; (e) the relative expression of sterol regulatory element-binding protein-1 genes were higher (P < 0.05) in the treated groups of muscles, the phosphorylase kinase gamma subunit 1 gene expression was shown an opposite trend. In comparison with LG100, (a) the feed conversion ratio was lower (P < 0.05) in HLG200; (b) the alanine aminotransferase and adiponectin contents were higher (P < 0.05), the malondialdehyde and free fatty acid contents were lower (P < 0.05) in HLG200; (c) the water holding capacity and intramuscular fat contents in the breast and leg muscles were higher (P < 0.05) in HLG200. The hydroxylated lecithin concentration of 200 mg/kg improved the growth performance, serum enzyme activity, hormone levels related to lipid metabolism, and the meat quality of Jiangnan White goslings.
Collapse
Affiliation(s)
- Hongzhi Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Sibo Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Ning Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Chunqin Wu
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Ruiqing Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Tieshan Xu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lihong Gu
- Institute of Animal Science & Veterinary, Hainan Academy of Agricultural Science, Haikou, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Li Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Li Xu
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- *Correspondence: Lizhi Lu
| |
Collapse
|
38
|
Noh JY, Kim MJ, Park JM, Yun TG, Kang MJ, Pyun JC. Laser desorption/ionization mass spectrometry of L-thyroxine (T4) using combi-matrix of α-cyano-4-hydroxycinnamic acid (CHCA) and graphene. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00314-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractAn optimal combi-matrix for MALDI-TOF mass spectrometry was presented for the analysis of L-thyroxine (T4) in human serum. For the selection of the optimal combi-matrix, several kinds of combi-matrices were prepared by mixing the conventional organic matrix of CHCA with nanomaterials, such as graphene, carbon nanotubes, nanoparticles of Pt and TiO2. In order to select the optimal combi-matrix, the absorption at the wavelength of laser radiation (337 nm) for the ionization of sample was estimated using UV–Vis spectrometry. And, the heat absorption properties of these combi-matrices were also analyzed using differential scanning calorimetry (DSC), such as onset temperature and fusion enthalpy. In the case of the combi-matrix of CHCA and graphene, the onset temperature and fusion enthalpy were observed to be lower than those of CHCA, which represented the enhanced transfer of heat to the analyte in comparison with CHCA. From the analysis of optical and thermal properties, the combi-matrix of CHCA and graphene was selected to be an optimal combination for the transfer of laser energy during MALDI-TOF mass spectrometry. The feasibility of the combi-matrix composed of CHCA and graphene was demonstrated for the analysis of T4 molecules using MALDI-TOF mass spectrometry. The combi-matrix of CHCA and graphene was estimated to have an improved limit of detection and a wider detection range in comparison with other kinds of combi-matrices. Finally, the MALDI-TOF MS results of T4 analysis using combi-matrix were statistically compared with those of the conventional immunoassay.
Collapse
|
39
|
Chen Q, Wu C, Yao Z, Cai L, Ni Y, Mao S. Elevated thyroid hormones caused by high concentrate diets participate in hepatic metabolic disorders in dairy cows. Anim Biosci 2022; 35:1184-1194. [PMID: 34991199 PMCID: PMC9262717 DOI: 10.5713/ab.21.0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022] Open
Abstract
Objective High concentrate diets are widely used to satisfy high-yielding dairy cows; however, long-term feeding of high concentrate diets can cause subacute ruminal acidosis (SARA). The endocrine disturbance is one of the important reasons for metabolic disorders caused by SARA. However, there is no current report about thyroid hormones involved in liver metabolic disorders induced by a high concentrate diet. Methods In this study, 12 mid-lactating dairy cows were randomly assigned to HC (high concentrate) group (60% concentrate of dry matter, n = 6) and LC (low concentrate) group (40% concentrate of dry matter, n = 6). All cows were slaughtered on the 21st day, and the samples of blood and liver were collected to analyze the blood biochemistry, histological changes, thyroid hormones, and the expression of genes and proteins. Results Compared with LC group, HC group showed decreased serum triglyceride, free fatty acid, total cholesterol, low-density lipoprotein cholesterol, increased hepatic glycogen, and glucose. For glucose metabolism, the gene and protein expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase 1 in the liver were significantly up-regulated in HC group. For lipid metabolism, the expression of sterol regulatory element-binding protein 1, long-chain acyl-CoA synthetase 1, and fatty acid synthase in the liver was decreased in HC group, whereas carnitine palmitoyltransferase 1α and peroxisome proliferator activated receptor α were increased. Serum triiodothyronine, thyroxin, free triiodothyronine (FT3), and hepatic FT3 increased in HC group, accompanied by increased expression of thyroid hormone receptor (THR) in the liver. Conclusion Taken together, thyroid hormones may increase hepatic gluconeogenesis, β-oxidation and reduce fatty acid synthesis through the THR pathway to participate in the metabolic disorders caused by a high concentrate diet.
Collapse
Affiliation(s)
- Qu Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Wu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Yao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
40
|
Massimino W, Andrieux C, Biasutti S, Davail S, Bernadet MD, Pioche T, Ricaud K, Gontier K, Morisson M, Collin A, Panserat S, Houssier M. Impacts of Embryonic Thermal Programming on the Expression of Genes Involved in Foie gras Production in Mule Ducks. Front Physiol 2021; 12:779689. [PMID: 34925068 PMCID: PMC8678469 DOI: 10.3389/fphys.2021.779689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/04/2021] [Indexed: 11/15/2022] Open
Abstract
Embryonic thermal programming has been shown to improve foie gras production in overfed mule ducks. However, the mechanisms at the origin of this programming have not yet been characterized. In this study, we investigated the effect of embryonic thermal manipulation (+1°C, 16 h/24 h from embryonic (E) day 13 to E27) on the hepatic expression of genes involved in lipid and carbohydrate metabolisms, stress, cell proliferation and thyroid hormone pathways at the end of thermal manipulation and before and after overfeeding (OF) in mule ducks. Gene expression analyses were performed by classic or high throughput real-time qPCR. First, we confirmed well-known results with strong impact of OF on the expression of genes involved in lipid and carbohydrates metabolisms. Then we observed an impact of OF on the hepatic expression of genes involved in the thyroid pathway, stress and cell proliferation. Only a small number of genes showed modulation of expression related to thermal programming at the time of OF, and only one was also impacted at the end of the thermal manipulation. For the first time, we explored the molecular mechanisms of embryonic thermal programming from the end of heat treatment to the programmed adult phenotype with optimized liver metabolism.
Collapse
Affiliation(s)
- William Massimino
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Charlotte Andrieux
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Sandra Biasutti
- Univ Pau & Pays Adour, E2S UPPA, IUT Génie Biologique, Mont-de-Marsan, France
| | - Stéphane Davail
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | | | - Tracy Pioche
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Karine Ricaud
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Karine Gontier
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Mireille Morisson
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Anne Collin
- BOA, INRAE, Université de Tours, Nouzilly, France
| | - Stéphane Panserat
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Marianne Houssier
- Univ Pau & Pays Adour, INRAE, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
41
|
Türker F, Oral A, Şahin T, Türker BÇ, Koçak E, Ataoğlu HE, Ahbab S. Does the FT3-to-FT4 ratio easily predict the progression of NAFLD and NASH cirrhosis? J Int Med Res 2021; 49:3000605211056841. [PMID: 34763561 PMCID: PMC8593317 DOI: 10.1177/03000605211056841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background Factors causing progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH) and liver cirrhosis remain relatively unknown. We aimed to evaluate the power and effectiveness of the free triiodothyronine (FT3)-to-free thyroxine (FT4) ratio to predict non-alcoholic fatty liver disease (NAFLD)/liver fibrosis and NASH cirrhosis severity. Methods Patients (n = 436) with NASH-associated liver cirrhosis (n = 68), patients with liver biopsy-proven NAFLD (n = 226), or healthy participants (n = 142) were enrolled between January 2010 and January 2020. The aspartate aminotransferase-to-thrombocyte ratio (APRI), NAFLD fibrosis score, albumin–bilirubin score (ALBI), aspartate aminotransferase (AST)-to-alanine aminotransferase (ALT) ratio, FT3-to-FT4 ratio, and Fibrosis-4 (FIB-4) were calculated and evaluated. Results All parameters were significantly higher in NASH cirrhosis than in the healthy group. Body mass index, ALT, fasting insulin, homeostatic model assessment for insulin resistance, and triglyceride levels were significantly higher in liver biopsy-proven NAFLD than in the healthy group. The APRI, NAFLD fibrosis score, ALBI, AST-to-ALT ratio, FT3-to-FT4 ratio, and FIB-4 were significantly higher in the NASH cirrhosis group than in the healthy group. In patients with biopsy-proven NAFLD, the FT3-to-FT4 ratio was significantly lower than in the healthy group. Conclusion The FT3-to-FT4 ratio is an effective and useful indicator to predict NAFLD/liver fibrosis and NASH cirrhosis severity.
Collapse
Affiliation(s)
- Fatih Türker
- University of Health Sciences Turkey, Haseki Health Training and Research Hospital, Department of Internal Medicine, Istanbul, Turkey
| | - Alihan Oral
- Medicana Hospital Bahçelievler, Internal Medicine Clinic, Istanbul, Turkey
| | - Tolga Şahin
- Demiroğlu Bilim University Department of Gastroenterology, Istanbul, Turkey
| | - Betül Çavuşoğlu Türker
- Istanbul Taksim Training and Research Hospital, Internal Medicine Clinic, Istanbul, Turkey
| | - Erdem Koçak
- Istinye University Department of Gastroenterology, Istanbul, Turkey
| | - Hayriye Esra Ataoğlu
- University of Health Sciences Turkey, Haseki Health Training and Research Hospital, Department of Internal Medicine, Istanbul, Turkey
| | - Süleyman Ahbab
- University of Health Sciences Turkey, Haseki Health Training and Research Hospital, Department of Internal Medicine, Istanbul, Turkey
| |
Collapse
|
42
|
Corinti D, Chiavarino B, Spano M, Tintaru A, Fornarini S, Crestoni ME. Molecular Basis for the Remarkably Different Gas-Phase Behavior of Deprotonated Thyroid Hormones Triiodothyronine (T3) and Reverse Triiodothyronine (rT3): A Clue for Their Discrimination? Anal Chem 2021; 93:14869-14877. [PMID: 34714056 PMCID: PMC8581966 DOI: 10.1021/acs.analchem.1c03892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Thyroid hormones
are biologically active small molecules responsible
for growth and development regulation, basal metabolic rate, and lipid
and carbohydrate metabolism. Liquid chromatography mass spectrometry
(LC–MS) can be used to quantify thyroid hormones blood level
with high speed and selectivity, aiming to improve the diagnosis and
treatment of the severe pathological conditions in which they are
implicated, i.e., hypo- and hyperthyroidism. In this work, the gas-phase
behavior of the isomeric thyroid hormones triiodothyronine (T3) and
reverse triiodothyronine (rT3) in their deprotonated form was studied
at a molecular level using MS-based techniques. Previously reported
collision-induced dissociation experiments yielded distinct spectra
despite the high structural similarity of the two compounds, suggesting
different charge sites to be responsible. Infrared multiple photon
dissociation spectroscopy on [T3-H]− and [rT3-H]− was performed, and the results were interpreted using
DFT and MP2 calculations, assessing the prevalence of T3 in the carboxylate
form and rT3 as a phenolate isomer. The different deprotonation sites
of the two isomers were also found to drive their ion-mobility behavior.
In fact, [T3-H]− and [rT3-H]− were
successfully separated. Drift times were correlated with collisional
cross section values of 209 and 215 Å2 for [T3-H]− and [rT3-H]−, respectively. Calculations
suggested the charge site to be the main parameter involved in the
different mobilities of the two anions. Finally, bare [T3-H]− and [rT3-H]− were made to react with neutral acetylacetone
and trifluoroacetic acid, confirming rT3 to be more acidic than T3
in agreement with the calculated gas-phase acidities of T3 and rT3
equal to 1345 and 1326 kJ mol–1, respectively.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", Roma I-00185, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", Roma I-00185, Italy
| | - Mattia Spano
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", Roma I-00185, Italy
| | - Aura Tintaru
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille 13397, France
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", Roma I-00185, Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", Roma I-00185, Italy
| |
Collapse
|
43
|
Guo Y, Hu C, Xia B, Zhou X, Luo S, Gan R, Duan P, Tan Y. Iodine excess induces hepatic, renal and pancreatic injury in female mice as determined by attenuated total reflection Fourier-transform infrared spectrometry. J Appl Toxicol 2021; 42:600-616. [PMID: 34585417 DOI: 10.1002/jat.4242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/23/2021] [Accepted: 09/05/2021] [Indexed: 11/08/2022]
Abstract
Limited knowledge of the long-term effects of excessive iodine (EI) intake on biomolecular signatures in the liver/pancreas/kidney prompted this study. Herein, following 6 months of exposure in mice to 300, 600, 1200 or 2400 μg/L iodine, the biochemical signature of alterations to the liver/pancreas/kidney was profiled using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy coupled with principal component analysis-linear discriminant analysis (PCA-LDA). Our research showed that serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), serum creatinine (Scr), insulin, blood glucose levels and homeostasis model assessment for insulin resistance (HOMA-IR) index in the 1200 and 2400 μg/L iodine-treated groups were significantly increased compared with those in the control group. Moreover, histological analysis showed that the liver/kidney/pancreas tissues of mice exposed to EI treatment displayed substantial morphological abnormalities, such as a loss of hepatic architecture, glomerular cell vacuolation and pancreatic neutrophilic infiltration. Notably, EI treatment caused distinct biochemical signature segregation between EI-exposed versus the control liver/pancreas/kidney. The main biochemical alterations between EI-exposed and control groups were observed for protein phosphorylation, protein secondary structures and lipids. The ratios of amide I-to-amide II (1674 cm-1 /1570 cm-1 ), α-helix-to-β-sheet (1657 cm-1 /1635 cm-1 ), glycogen-to-phosphate (1030 cm-1 /1086 cm-1 ) and the peptide aggregation (1 630 cm-1 /1650 cm-1 ) level of EI-treated groups significantly differed from the control group. Our study demonstrated that EI induced hepatic, renal and pancreatic injury by disturbing the structure, metabolism and function of the cell membrane. This finding provides the new method and implication for human health assessment regarding long-term EI intake.
Collapse
Affiliation(s)
- Yang Guo
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China.,College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China
| | - Chunhui Hu
- Department of Clinical Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Bintong Xia
- Department of Urology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xianwen Zhou
- Fourth Clinical College, Hubei University of Medicine, Shiyan, China
| | - Sihan Luo
- Fourth Clinical College, Hubei University of Medicine, Shiyan, China
| | - Ruijia Gan
- Fourth Clinical College, Hubei University of Medicine, Shiyan, China
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yan Tan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Andrology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
44
|
Liu C, Ding J, Gao X, Du C, Hou C, Wu X, Shen W, Zhu J. Effects of acute low temperature stress on the hormones and gene expression of glucocorticoid receptor of large yellow croaker Larimichthys crocea. J Therm Biol 2021; 99:103018. [PMID: 34420651 DOI: 10.1016/j.jtherbio.2021.103018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/12/2021] [Accepted: 05/30/2021] [Indexed: 11/28/2022]
Abstract
The neuroendocrine system of fish responds to low temperature via regulating hormones. To explore the adaptability of Larimichthys crocea to low temperature, the levels of the plasma cortisol, thyroid stimulating hormone (TSH), triiodothyronine (T3), thyroxine (T4), total cholesterol (TC), and glucose were determined after exposure to low temperature and during subsequent rewarming. Furthermore, the mRNA expression of the glucocorticoid receptor (GR) gene was analyzed under the stress. We found that the levels of the plasma cortisol, TSH, T3, glucose, and TC increased under the low temperature stress, suggesting that elevated hormones may be conducive to promoting the mobilization of the glucose and lipid in L. crocea exposed to low temperature. During the rewarming period, the plasma cortisol level decreased, whereas the T3 level was still significantly higher than that in the control group. Notably, the plasma T4 level was unaffected by the temperature changes. Furthermore, the sequence alignment and phylogenetic tree analysis revealed that the GR protein of L. crocea had high homology and a similar protein structure with those from other teleosts. Under the low temperature stress, the GR mRNA expression increased in the brain and head kidney, whereas it basically returned to the control level following rewarming. These findings revealed the changes of the hormones and the potential function of the GR gene in L. crocea following exposure to low temperature, providing some insights into breeding low temperature-resistant varieties of L. crocea.
Collapse
Affiliation(s)
- Cheng Liu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China; Ningbo Academy of Oceanology and Fishery, Ningbo, 315012, Zhejiang, China
| | - Jie Ding
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China; Ningbo Academy of Oceanology and Fishery, Ningbo, 315012, Zhejiang, China
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Chen Du
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Congcong Hou
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xiongfei Wu
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315012, Zhejiang, China
| | - Weiliang Shen
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315012, Zhejiang, China.
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
45
|
Genome-Wide Association Study for Fatty Acid Composition in American Angus Cattle. Animals (Basel) 2021; 11:ani11082424. [PMID: 34438882 PMCID: PMC8388739 DOI: 10.3390/ani11082424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Livestock is an important commodity playing a major role in the global economy. Red meat plays an important role in human life, as it is a good source of animal protein and energy. The fatty acid content of beef has been shown to impact the eating experience and nutritional value of beef. Therefore, this study aimed to identify genomic regions which can account for genetic variation in meat fatty acid content. Genotypes imputed to the Illumina BovineHD 770K BeadChip were used in this study. Thirty-six 1-Mb genomic regions with a posterior probability of inclusion (PPI) greater than 0.90 were identified to be associated with variation in the content of at least one fatty acid. The genomic regions (1Mb) which were associated with more than one fatty acid trait with high genetic variance and harbored good candidate genes were on Chromosome (Chr) 6 (fatty acid binding protein 2), Chr 19 (thyroid hormone receptor alpha, fatty acid synthase), Chr 26 (stearoyl-CoA desaturase), and Chr 29 (thyroid hormone responsive, fatty acid desaturase 2, and fatty acid desaturase 3). Further studies are required to identify the causal variants within the identified genomic regions. Findings from the present study will help to increase understanding of the variation in fatty acid content of beef and help to enhance selection for beef with improved fatty acid composition.
Collapse
|
46
|
Cui B, Xiao X, Wang J, Wang H, Wu C, Yan Y, Zheng J, Wang J, Zong Y, Zhang Y, Hui R, Gerdes AM, Wang Y. Low THRB (thyroid hormone receptor beta) Promoter Methylation Levels in Peripheral Blood Leukocytes Induced By Systematic Inflammation Are Involved in Low Thyroid Hormone Function in Metabolic Syndrome. Hypertension 2021; 78:1005-1015. [PMID: 34397273 DOI: 10.1161/hypertensionaha.121.17847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Bing Cui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| | - Xiao Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| | - Jin'e Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| | - Hongrui Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| | - Cunjin Wu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| | - Yupeng Yan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| | - Jun Zheng
- Rizhao Port Hospital, Rizhao, Shandong, China (J.Z., JingJun Wang)
| | - JingJun Wang
- Rizhao Port Hospital, Rizhao, Shandong, China (J.Z., JingJun Wang)
| | - Yuru Zong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| | - Yu Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| | - A Martin Gerdes
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.).,Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, New York (A.M.G.)
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (B.C., X.X., Jin'e Wang, H.W., C.W., Y.Y., Y. Zong, Y. Zhang, R.H., A.M.G., Y.W.)
| |
Collapse
|
47
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Laparra JM, Boscá L. Beyond classic concepts in thyroid homeostasis: Immune system and microbiota. Mol Cell Endocrinol 2021; 533:111333. [PMID: 34048865 DOI: 10.1016/j.mce.2021.111333] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
It has long been known that thyroid hormones have implications for multiple physiological processes and can lead to serious illness when there is an imbalance in its metabolism. The connections between thyroid hormone metabolism and the immune system have been extensively described, as they can participate in inflammation, autoimmunity, or cancer progression. In addition, changes in the normal intestinal microbiota involve the activation of the immune system while triggering different pathophysiological disorders. Recent studies have linked the microbiota and certain bacterial fragments or metabolites to the regulation of thyroid hormones and the general response in the endocrine system. Even if the biology and function of the thyroid gland has attracted more attention due to its pathophysiological importance, there are essential mechanisms and issues related to it that are related to the interplay between the intestinal microbiota and the immune system and must be further investigated. Here we summarize additional information to uncover these relationships, the knowledge of which would help establish new personalized medical strategies.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain.
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - José M Laparra
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra. Cantoblanco 8, 28049, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain.
| |
Collapse
|
48
|
Lietzow J, Golchert J, Pietzner M, Völker U, Poutanen M, Ohlsson C, Homuth G, Köhrle J. Comparative Analysis of the Effects of Long-Term 3,5-diiodothyronine Treatment on the Murine Hepatic Proteome and Transcriptome Under Conditions of Normal Diet and High-Fat Diet. Thyroid 2021; 31:1135-1146. [PMID: 33637021 DOI: 10.1089/thy.2020.0160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: The thyroid hormone (TH) metabolite 3,5-diiodothyronine (3,5-T2) is considered as a potential drug for treatment of nonalcoholic fatty liver disease (NAFLD) based on its prominent antisteatotic effects in murine models of obesity without the detrimental thyromimetic side effects known for classical TH. To expand our understanding of its mode of action, we comprehensively characterized the effects of 3,5-T2 on hepatic gene expression in a diet-induced murine model of obesity by a combined liver proteome and transcriptome analysis. Materials and Methods: Male C57BL/6 mice fed high-fat diet (HFD) to induce NAFLD or standard diet (SD) as control were treated with 2.5 μg/g body weight 3,5-T2 or saline for 4 weeks. We performed mass spectrometry analyses and integrated those proteome data with earlier published microarray-based transcriptome data from the same animals. In addition, concentrations of several sex steroids in serum and different tissues were determined by gas chromatography-tandem mass spectrometry. Results: We observed limited concordance between transcripts and proteins exhibiting differential abundance under 3,5-T2 treatment, which was only partially explainable by methodological reasons and might, therefore, reflect noncanonical post-transcriptional events. The treatment affected the levels of more and partially different proteins under HFD as compared with SD, demonstrating response modulation by the hepatic lipid load. The hepatic physiological signatures of 3,5-T2 treatment inferable from the omics data comprised the reduction of oxidative stress and alteration of apolipoprotein profiles, both due to decreased liver fat content. In addition, induction of several classical TH target genes and genes involved in the biosynthesis of cholesterol, bile acids (BAs), and male sex steroids was observed. The latter finding was supported by hepatic sex steroid measurements. Conclusion: While confirming the beneficial hepatic liver fat reduction by 3,5-T2 treatment, our data suggest that besides the well-known induction of fatty acid oxidation the stimulation of cholesterol- and BA synthesis with subsequent excretion of the latter through bile might represent a further important mechanism in this context. The obvious intensified male sex steroid exposition of the liver in 3,5-T2-treated HFD animals can be predicted to cause enhanced hepatic "masculinization," with not yet clear but potentially detrimental physiological consequences.
Collapse
Affiliation(s)
- Julika Lietzow
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Janine Golchert
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Maik Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Matti Poutanen
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Josef Köhrle
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| |
Collapse
|
49
|
Guo Y, Lv Z, Tang Z, Huang S, Peng C, Wang F, Zhou Z, Ding W, Liu W, Liu P, Li D, Song J, He J, Chen Y, Liu G, Hu X, Liu J, Ke Y. Long-term exposure to low doses of bisphenol S has hypoglycaemic effect in adult male mice by promoting insulin sensitivity and repressing gluconeogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116630. [PMID: 33667749 DOI: 10.1016/j.envpol.2021.116630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 05/27/2023]
Abstract
Bisphenol S (BPS), an industrial chemical that is a structural analogue of bisphenol A, has been widely reported to be involved in various biological processes. Epidemiological studies have demonstrated that exposure to BPS is associated with dysglycaemia-related health outcomes. The role of BPS in glucose metabolism, however, remains controversial. In this study, we aimed to investigate the effects of chronic exposure to environmentally relevant concentrations of BPS on glucose metabolism in different nutritionally conditioned mice. Our results revealed that 1-month exposure to a BPS dosage of 100 μg/kg bw slightly increased the insulin sensitivity of normal diet-fed mice, and that this effect was enhanced after 3-month exposure. It was also found that BPS exposure attenuated insulin resistance and reduced gluconeogenesis in high-fat diet-fed mice. Consequently, the concentrations of hepatic metabolites related to glucose metabolism were altered in both groups of mice. Moreover, thyroid hormone signalling was disrupted after BPS administration in both groups of mice. Taken together, our results demonstrated that chronic exposure to environmentally relevant concentrations of BPS exerted an unexpected hypoglycaemic effect in mice of different nutritional statuses, and that this was partly attributable to disrupted thyroid hormone signalling.
Collapse
Affiliation(s)
- Yajie Guo
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Zhi Tang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China; Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Changfeng Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Fangting Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Zhiguang Zhou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Wenqi Ding
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Weiwen Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Peiyi Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Di Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jiayi Song
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jie He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Ying Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Guangnan Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiaoxiao Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianjun Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuebin Ke
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
50
|
Wang Y, Guo P, Liu L, Zhang Y, Zeng P, Yuan Z. Mendelian Randomization Highlights the Causal Role of Normal Thyroid Function on Blood Lipid Profiles. Endocrinology 2021; 162:6136226. [PMID: 33587120 DOI: 10.1210/endocr/bqab037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/13/2022]
Abstract
The association between thyroid function and dyslipidemia has been well documented in observational studies. However, observational studies are prone to confounding, making it difficult to conduct causal inference. We performed a 2-sample bidirectional Mendelian randomization (MR) using summary statistics from large-scale genome-wide association studies of thyroid stimulating hormone (TSH), free T4 (FT4), and blood lipids. We chose the inverse variance-weighted (IVW) method for the main analysis, and consolidated results through various sensitivity analyses involving 6 different MR methods under different model specifications. We further conducted genetic correlation analysis and colocalization analysis to deeply reflect the causality. The IVW method showed per 1 SD increase in normal TSH was significantly associated with a 0.048 SD increase in total cholesterol (TC; P < 0.001) and a 0.032 SD increase in low-density lipoprotein cholesterol (LDL; P = 0.021). A 1 SD increase in normal FT4 was significantly associated with a 0.056 SD decrease in TC (P = 0.014) and a 0.072 SD decrease in LDL (P = 0.009). Neither TSH nor FT4 showed causal associations with high-density lipoprotein cholesterol and triglycerides. No significant causal effect of blood lipids on normal TSH or FT4 can be detected. All results were largely consistent when using several alternative MR methods, and were reconfirmed by both genetic correlation analysis and colocalization analysis. Our study suggested that, even within reference range, higher TSH or lower FT4 are causally associated with increased TC and LDL, whereas no reverse causal association can be found.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ping Guo
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lu Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yanan Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|