1
|
Guo G, Wang W, Tu M, Zhao B, Han J, Li J, Pan Y, Zhou J, Ma W, Liu Y, Sun T, Han X, An Y. Deciphering adipose development: Function, differentiation and regulation. Dev Dyn 2024; 253:956-997. [PMID: 38516819 DOI: 10.1002/dvdy.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.
Collapse
Affiliation(s)
- Ge Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wanli Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wen Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Parichatikanond W, Duangrat R, Kurose H, Mangmool S. Regulation of β-Adrenergic Receptors in the Heart: A Review on Emerging Therapeutic Strategies for Heart Failure. Cells 2024; 13:1674. [PMID: 39451192 PMCID: PMC11506672 DOI: 10.3390/cells13201674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
The prolonged overstimulation of β-adrenergic receptors (β-ARs), a member of the G protein-coupled receptor (GPCR) family, causes abnormalities in the density and functionality of the receptor and contributes to cardiac dysfunctions, leading to the development and progression of heart diseases, especially heart failure (HF). Despite recent advancements in HF therapy, mortality and morbidity rates continue to be high. Treatment with β-AR antagonists (β-blockers) has improved clinical outcomes and reduced overall hospitalization and mortality rates. However, several barriers in the management of HF remain, providing opportunities to develop new strategies that focus on the functions and signal transduction of β-ARs involved in the pathogenesis of HF. As β-AR can signal through multiple pathways influenced by different receptor subtypes, expression levels, and signaling components such as G proteins, G protein-coupled receptor kinases (GRKs), β-arrestins, and downstream effectors, it presents a complex mechanism that could be targeted in HF management. In this narrative review, we focus on the regulation of β-ARs at the receptor, G protein, and effector loci, as well as their signal transductions in the physiology and pathophysiology of the heart. The discovery of potential ligands for β-AR that activate cardioprotective pathways while limiting off-target signaling is promising for the treatment of HF. However, applying findings from preclinical animal models to human patients faces several challenges, including species differences, the genetic variability of β-ARs, and the complexity and heterogeneity of humans. In this review, we also summarize recent updates and future research on the regulation of β-ARs in the molecular basis of HF and highlight potential therapeutic strategies for HF.
Collapse
Affiliation(s)
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Hitoshi Kurose
- Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan;
- Pharmacology for Life Sciences, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Nakamura N, Honjo M, Yamagishi-Kimura R, Sakata R, Watanabe S, Aihara M. Neuroprotective effect of omidenepag on excitotoxic retinal ganglion cell death regulating COX-2-EP2-cAMP-PKA/Epac pathway via Neuron-Glia interaction. Neuroscience 2024; 553:145-159. [PMID: 38992567 DOI: 10.1016/j.neuroscience.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/03/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Glutamate excitotoxicity is involved in retinal ganglion cell (RGC) death in various retinal degenerative diseases, including ischemia-reperfusion injury and glaucoma. Excitotoxic RGC death is caused by both direct damage to RGCs and indirect damage through neuroinflammation of retinal glial cells. Omidenepag (OMD), a novel E prostanoid receptor 2 (EP2) agonist, is a recently approved intraocular pressure-lowering drug. The second messenger of EP2 is cyclic adenosine monophosphate (cAMP), which activates protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). In this study, we investigated the neuroprotective effects of OMD on excitotoxic RGC death by focusing on differences in cAMP downstream signaling from the perspective of glia-neuron interactions. We established a glutamate excitotoxicity model in vitro and NMDA intravitreal injection model in vivo. In vitro, rat primary RGCs were used in an RGC survival rate assay. MG5 cells (mouse microglial cell line) and A1 cells (astrocyte cell line) were used for immunocytochemistry and Western blotting to evaluate the expressions of COX-1/2, PKA, Epac1/2, pCREB, cleaved caspase-3, inflammatory cytokines, and neurotrophic factors. Mouse retinal specimens underwent hematoxylin and eosin staining, flat-mounted retina examination, and immunohistochemistry. OMD significantly suppressed excitotoxic RGC death, cleaved caspase-3 expression, and activated glia both in vitro and in vivo. Moreover, it inhibited Epac1 and inflammatory cytokine expression and promoted COX-2, pCREB, and neurotrophic factor expression. OMD may have neuroprotective effects through inhibition of the Epac pathway and promotion of the COX-2-EP2-cAMP-PKA pathway by modulating glia-neuron interaction.
Collapse
Affiliation(s)
- Natsuko Nakamura
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Reiko Yamagishi-Kimura
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rei Sakata
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sumiko Watanabe
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Gardner OFW, Bai T, Baillie GS, Ferretti P. Phosphodiesterase 4D activity in acrodysostosis-associated neural pathology: too much or too little? Brain Commun 2024; 6:fcae225. [PMID: 38983619 PMCID: PMC11232698 DOI: 10.1093/braincomms/fcae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Members of the phosphodiesterase 4 (PDE4) enzyme family regulate the availability of the secondary messenger cyclic adenosine monophosphate (cAMP) and, by doing so, control cellular processes in health and disease. In particular, PDE4D has been associated with Alzheimer's disease and the intellectual disability seen in fragile X syndrome. Furthermore, single point mutations in critical PDE4D regions cause acrodysostosis type 2(ACRDYS2, also referred to as inactivating PTH/PTHrP signalling disorder 5 or iPPSD5), where intellectual disability is seen in ∼90% of patients alongside the skeletal dysmorphologies that are characteristic of acrodysostosis type 1 (ACRDYS1/iPPSD4) and ACRDYS2. Two contrasting mechanisms have been proposed to explain how mutations in PDE4D cause iPPSD5. The first mechanism, the 'over-activation hypothesis', suggests that cAMP/PKA (cyclic adenosine monophosphate/protein kinase A) signalling is reduced by the overactivity of mutant PDE4D, whilst the second, the 'over-compensation hypothesis' suggests that mutations reduce PDE4D activity. That reduction in activity is proposed to cause an increase in cellular cAMP, triggering the overexpression of other PDE isoforms. The resulting over-compensation then reduces cellular cAMP and the levels of cAMP/PKA signalling. However, neither of these proposed mechanisms accounts for the fine control of PDE activation and localization, which are likely to play a role in the development of iPPSD5. This review will draw together our understanding of the role of PDE4D in iPPSD5 and present a novel perspective on possible mechanisms of disease.
Collapse
Affiliation(s)
- Oliver F W Gardner
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Tianshu Bai
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - George S Baillie
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8QQ, UK
| | - Patrizia Ferretti
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
5
|
Mazina LM, Novikova VO, Pokidova OV, Sanina NA. Effect of Nitrosyl Iron Complex with 3,4-Dichlorothiophenolyls on the Level of Cyclic Nucleotide In Vitro. Bull Exp Biol Med 2024; 177:212-216. [PMID: 39093471 DOI: 10.1007/s10517-024-06158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 08/04/2024]
Abstract
The effect of a promising NO donor, a binuclear nitrosyl iron complex (NIC) with 3,4-dichlorothiophenolyls [Fe2(SC6H3Cl2)2(NO)4], on the adenylate cyclase and soluble guanylate cyclase enzymatic systems was studied. In in vitro experiments, this complex increased the concentration of important secondary messengers, such as cAMP and cGMP. An increase of their level by 2.4 and 4.5 times, respectively, was detected at NIC concentration of 0.1 mM. The ligand of the complex, 3,4-dichlorothiophenol, produced a less pronounced effect on adenylate cyclase. It was shown that the effect of this complex on the activity of soluble guanylate cyclase was comparable to the effect of anionic nitrosyl complex with thiosulfate ligands that exhibits vasodilating and cardioprotective properties.
Collapse
Affiliation(s)
- L M Mazina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia.
| | - V O Novikova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - O V Pokidova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - N A Sanina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Scientific Educational Center "Medical Chemistry", State University of Education, Mytishchi, Russia
| |
Collapse
|
6
|
Jiang C, Zhao J, Zhang Y, Zhu X. Role of EPAC1 in chronic pain. Biochem Biophys Rep 2024; 37:101645. [PMID: 38304575 PMCID: PMC10832381 DOI: 10.1016/j.bbrep.2024.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Chronic pain usually lasts over three months and commonly occurs in chronic diseases (cancer, arthritis, and diabetes), injuries (herniated discs, torn ligaments), and many major pain disorders (neuropathic pain, fibromyalgia, chronic headaches). Unfortunately, there is currently a lack of effective treatments to help people with chronic pain to achieve complete relief. Therefore,it is particularly important to understand the mechanism of chronic pain and find new therapeutic targets. The exchange protein directly activated by cyclic adenosine monophosphate(cAMP) (EPAC) has been recognized for its functions in nerve regeneration, stimulating insulin release, controlling vascular pressure, and controlling other metabolic activities. In recent years, many studies have found that the subtype of EPAC, EPAC1 is involved in the regulation of neuroinflammation and plays a crucial role in the regulation of pain, which is expected to become a new therapeutic target for chronic pain. This article reviews the major contributions of EPAC1 in chronic pain.
Collapse
Affiliation(s)
- Chenlu Jiang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Jiacheng Zhao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Yihang Zhang
- Medical School of Nantong University, Nantong, 226001, China
| | - Xiang Zhu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| |
Collapse
|
7
|
Ujfalusi-Pozsonyi K, Bódis E, Nyitrai M, Kengyel A, Telek E, Pécsi I, Fekete Z, Varnyuné Kis-Bicskei N, Mas C, Moussaoui D, Pernot P, Tully MD, Weik M, Schirò G, Kapetanaki SM, Lukács A. ATP-dependent conformational dynamics in a photoactivated adenylate cyclase revealed by fluorescence spectroscopy and small-angle X-ray scattering. Commun Biol 2024; 7:147. [PMID: 38307988 PMCID: PMC10837130 DOI: 10.1038/s42003-024-05842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
Structural insights into the photoactivated adenylate cyclases can be used to develop new ways of controlling cellular cyclic adenosine monophosphate (cAMP) levels for optogenetic and other applications. In this work, we use an integrative approach that combines biophysical and structural biology methods to provide insight on the interaction of adenosine triphosphate (ATP) with the dark-adapted state of the photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata (OaPAC). A moderate affinity of the nucleotide for the enzyme was calculated and the thermodynamic parameters of the interaction have been obtained. Stopped-flow fluorescence spectroscopy and small-angle solution scattering have revealed significant conformational changes in the enzyme, presumably in the adenylate cyclase (AC) domain during the allosteric mechanism of ATP binding to OaPAC with small and large-scale movements observed to the best of our knowledge for the first time in the enzyme in solution upon ATP binding. These results are in line with previously reported drastic conformational changes taking place in several class III AC domains upon nucleotide binding.
Collapse
Affiliation(s)
- K Ujfalusi-Pozsonyi
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - E Bódis
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - M Nyitrai
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - A Kengyel
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - E Telek
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - I Pécsi
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | - Z Fekete
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary
| | | | - C Mas
- Univ. Grenoble Alpes, CNRS, CEA, EMBL, ISBG, F-38000, Grenoble, France
| | - D Moussaoui
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - P Pernot
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - M D Tully
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - M Weik
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - G Schirò
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - S M Kapetanaki
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary.
| | - A Lukács
- Department of Biophysics, Medical School, University of Pécs, 7624, Pécs, Hungary.
| |
Collapse
|
8
|
Reverte-Salisa L, Siddig S, Hildebrand S, Yao X, Zurkovic J, Jaeckstein MY, Heeren J, Lezoualc'h F, Krahmer N, Pfeifer A. EPAC1 enhances brown fat growth and beige adipogenesis. Nat Cell Biol 2024; 26:113-123. [PMID: 38195707 PMCID: PMC10791580 DOI: 10.1038/s41556-023-01311-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
Brown adipose tissue (BAT) is a central thermogenic organ that enhances energy expenditure and cardiometabolic health. However, regulators that specifically increase the number of thermogenic adipocytes are still an unmet need. Here, we show that the cAMP-binding protein EPAC1 is a central regulator of adaptive BAT growth. In vivo, selective pharmacological activation of EPAC1 increases BAT mass and browning of white fat, leading to higher energy expenditure and reduced diet-induced obesity. Mechanistically, EPAC1 coordinates a network of regulators for proliferation specifically in thermogenic adipocytes, but not in white adipocytes. We pinpoint the effects of EPAC1 to PDGFRα-positive preadipocytes, and the loss of EPAC1 in these cells impedes BAT growth and worsens diet-induced obesity. Importantly, EPAC1 activation enhances the proliferation and differentiation of human brown adipocytes and human brown fat organoids. Notably, a coding variant of RAPGEF3 (encoding EPAC1) that is positively correlated with body mass index abolishes noradrenaline-induced proliferation of brown adipocytes. Thus, EPAC1 might be an attractive target to enhance thermogenic adipocyte number and energy expenditure to combat metabolic diseases.
Collapse
Affiliation(s)
- Laia Reverte-Salisa
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Sana Siddig
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Staffan Hildebrand
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Xi Yao
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Jelena Zurkovic
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Michelle Y Jaeckstein
- Institute of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Institute of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Lezoualc'h
- Institute of Cardiovascular and Metabolic Diseases, Inserm UMR-1297, Université Toulouse -Paul Sabatier, Toulouse, France
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany.
- PharmaCenter Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
9
|
Dodonova SA, Zhidkova EM, Kryukov AA, Valiev TT, Kirsanov KI, Kulikov EP, Budunova IV, Yakubovskaya MG, Lesovaya EA. Synephrine and Its Derivative Compound A: Common and Specific Biological Effects. Int J Mol Sci 2023; 24:17537. [PMID: 38139366 PMCID: PMC10744207 DOI: 10.3390/ijms242417537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
This review is focused on synephrine, the principal phytochemical found in bitter orange and other medicinal plants and widely used as a dietary supplement for weight loss/body fat reduction. We examine different aspects of synephrine biology, delving into its established and potential molecular targets, as well as its mechanisms of action. We present an overview of the origin, chemical composition, receptors, and pharmacological properties of synephrine, including its anti-inflammatory and anti-cancer activity in various in vitro and animal models. Additionally, we conduct a comparative analysis of the molecular targets and effects of synephrine with those of its metabolite, selective glucocorticoid receptor agonist (SEGRA) Compound A (CpdA), which shares a similar chemical structure with synephrine. SEGRAs, including CpdA, have been extensively studied as glucocorticoid receptor activators that have a better benefit/risk profile than glucocorticoids due to their reduced adverse effects. We discuss the potential of synephrine usage as a template for the synthesis of new generation of non-steroidal SEGRAs. The review also provides insights into the safe pharmacological profile of synephrine.
Collapse
Affiliation(s)
- Svetlana A. Dodonova
- Research Institute of Experimental Medicine, Department of Pathophysiology, Kursk State Medical University, 305041 Kursk, Russia; (S.A.D.); (A.A.K.)
| | - Ekaterina M. Zhidkova
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
| | - Alexey A. Kryukov
- Research Institute of Experimental Medicine, Department of Pathophysiology, Kursk State Medical University, 305041 Kursk, Russia; (S.A.D.); (A.A.K.)
| | - Timur T. Valiev
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
| | - Kirill I. Kirsanov
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
| | - Evgeny P. Kulikov
- Laboratory of Single Cell Biology, Russian University of People’s Friendship (RUDN) University, 117198 Moscow, Russia;
| | - Irina V. Budunova
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA;
| | - Marianna G. Yakubovskaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
| | - Ekaterina A. Lesovaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
- Laboratory of Single Cell Biology, Russian University of People’s Friendship (RUDN) University, 117198 Moscow, Russia;
| |
Collapse
|
10
|
Parsons EC, Hoffmann R, Baillie GS. Revisiting the roles of cAMP signalling in the progression of prostate cancer. Biochem J 2023; 480:1599-1614. [PMID: 37830741 PMCID: PMC10586777 DOI: 10.1042/bcj20230297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Prostate cancer is one of the most common cancers in men and one of the top causes of death in men worldwide. Development and function of both normal prostate cells and early-stage prostate cancer cells are dependent on the cross-talk between androgen signalling systems and a variety of other transduction pathways which drive differentiation of these cells towards castration-resistance. One such signalling pathway is the ubiquitous cAMP signalling axis which functions to activate spatially restricted pools of cAMP effectors such as protein kinase A (PKA). The importance of both PKA and cAMP in the development of prostate cancer, and their interactions with the androgen receptor, were the focus of a review by Merkle and Hoffmann in 2010. In this updated review, we revisit this topic with analysis of current PKA-related prostate cancer literature and introduce novel information on the relevance of another cAMP effector, the exchange protein directly activated by cAMP (EPAC).
Collapse
Affiliation(s)
- Emma C. Parsons
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Bearsden, Glasgow G61 1QH, U.K
| | - Ralf Hoffmann
- Oncology, Philips Research Eindhoven, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands
- School of Cardiovascular & Metabolic Health, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| | - George S. Baillie
- School of Cardiovascular & Metabolic Health, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K
| |
Collapse
|
11
|
Grimm J, Tkachuk AN, Patel R, Hennigan ST, Gutu A, Dong P, Gandin V, Osowski AM, Holland KL, Liu ZJ, Brown TA, Lavis LD. Optimized Red-Absorbing Dyes for Imaging and Sensing. J Am Chem Soc 2023; 145:23000-23013. [PMID: 37842926 PMCID: PMC10603817 DOI: 10.1021/jacs.3c05273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 10/17/2023]
Abstract
Rhodamine dyes are excellent scaffolds for developing a broad range of fluorescent probes. A key property of rhodamines is their equilibrium between a colorless lactone and fluorescent zwitterion. Tuning the lactone-zwitterion equilibrium constant (KL-Z) can optimize dye properties for specific biological applications. Here, we use known and novel organic chemistry to prepare a comprehensive collection of rhodamine dyes to elucidate the structure-activity relationships that govern KL-Z. We discovered that the auxochrome substituent strongly affects the lactone-zwitterion equilibrium, providing a roadmap for the rational design of improved rhodamine dyes. Electron-donating auxochromes, such as julolidine, work in tandem with fluorinated pendant phenyl rings to yield bright, red-shifted fluorophores for live-cell single-particle tracking (SPT) and multicolor imaging. The N-aryl auxochrome combined with fluorination yields red-shifted Förster resonance energy transfer (FRET) quencher dyes useful for creating a new semisynthetic indicator to sense cAMP using fluorescence lifetime imaging microscopy (FLIM). Together, this work expands the synthetic methods available for rhodamine synthesis, generates new reagents for advanced fluorescence imaging experiments, and describes structure-activity relationships that will guide the design of future probes.
Collapse
Affiliation(s)
- Jonathan
B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Ariana N. Tkachuk
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - S. Thomas Hennigan
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Alina Gutu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Peng Dong
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Valentina Gandin
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Anastasia M. Osowski
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Katie L. Holland
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Zhe J. Liu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Timothy A. Brown
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| |
Collapse
|
12
|
Sartre C, Peurois F, Ley M, Kryszke MH, Zhang W, Courilleau D, Fischmeister R, Ambroise Y, Zeghouf M, Cianferani S, Ferrandez Y, Cherfils J. Membranes prime the RapGEF EPAC1 to transduce cAMP signaling. Nat Commun 2023; 14:4157. [PMID: 37438343 DOI: 10.1038/s41467-023-39894-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
EPAC1, a cAMP-activated GEF for Rap GTPases, is a major transducer of cAMP signaling and a therapeutic target in cardiac diseases. The recent discovery that cAMP is compartmentalized in membrane-proximal nanodomains challenged the current model of EPAC1 activation in the cytosol. Here, we discover that anionic membranes are a major component of EPAC1 activation. We find that anionic membranes activate EPAC1 independently of cAMP, increase its affinity for cAMP by two orders of magnitude, and synergize with cAMP to yield maximal GEF activity. In the cell cytosol, where cAMP concentration is low, EPAC1 must thus be primed by membranes to bind cAMP. Examination of the cell-active chemical CE3F4 in this framework further reveals that it targets only fully activated EPAC1. Together, our findings reformulate previous concepts of cAMP signaling through EPAC proteins, with important implications for drug discovery.
Collapse
Affiliation(s)
- Candice Sartre
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - François Peurois
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Marie Ley
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, IPHC, CNRS UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Marie-Hélène Kryszke
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Wenhua Zhang
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Delphine Courilleau
- Université Paris-Saclay, IPSIT-CIBLOT, Inserm US31, CNRS UAR3679, 91400, Orsay, France
| | | | - Yves Ambroise
- Université Paris-Saclay, CEA, Service de Chimie Bioorganique et de Marquage, 91191, Gif-sur-Yvette, France
| | - Mahel Zeghouf
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, IPHC, CNRS UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Yann Ferrandez
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Jacqueline Cherfils
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
13
|
Slika H, Mansour H, Nasser SA, Shaito A, Kobeissy F, Orekhov AN, Pintus G, Eid AH. Epac as a tractable therapeutic target. Eur J Pharmacol 2023; 945:175645. [PMID: 36894048 DOI: 10.1016/j.ejphar.2023.175645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
In 1957, cyclic adenosine monophosphate (cAMP) was identified as the first secondary messenger, and the first signaling cascade discovered was the cAMP-protein kinase A (PKA) pathway. Since then, cAMP has received increasing attention given its multitude of actions. Not long ago, a new cAMP effector named exchange protein directly activated by cAMP (Epac) emerged as a critical mediator of cAMP's actions. Epac mediates a plethora of pathophysiologic processes and contributes to the pathogenesis of several diseases such as cancer, cardiovascular disease, diabetes, lung fibrosis, neurological disorders, and others. These findings strongly underscore the potential of Epac as a tractable therapeutic target. In this context, Epac modulators seem to possess unique characteristics and advantages and hold the promise of providing more efficacious treatments for a wide array of diseases. This paper provides an in-depth dissection and analysis of Epac structure, distribution, subcellular compartmentalization, and signaling mechanisms. We elaborate on how these characteristics can be utilized to design specific, efficient, and safe Epac agonists and antagonists that can be incorporated into future pharmacotherapeutics. In addition, we provide a detailed portfolio for specific Epac modulators highlighting their discovery, advantages, potential concerns, and utilization in the context of clinical disease entities.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| | - Hadi Mansour
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| | | | - Abdullah Shaito
- Biomedical Research Center, Qatar University, Doha, P.O. Box: 2713, Qatar.
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, Georgia, USA.
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, Moscow, 117418, Russia; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, 125315, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Osennyaya Street 4-1-207, Moscow, 121609, Russia.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy.
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar.
| |
Collapse
|
14
|
Davis GE, Kemp SS. Extracellular Matrix Regulation of Vascular Morphogenesis, Maturation, and Stabilization. Cold Spring Harb Perspect Med 2023; 13:a041156. [PMID: 35817544 PMCID: PMC10578078 DOI: 10.1101/cshperspect.a041156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The extracellular matrix represents a critical regulator of tissue vascularization during embryonic development and postnatal life. In this perspective, we present key information and concepts that focus on how the extracellular matrix controls capillary assembly, maturation, and stabilization, and, in addition, contributes to tissue stability and health. In particular, we present and discuss mechanistic details underlying (1) the role of the extracellular matrix in controlling different steps of vascular morphogenesis, (2) the ability of endothelial cells (ECs) and pericytes to coassemble into elongated and narrow capillary EC-lined tubes with associated pericytes and basement membrane matrices, and (3) the identification of specific growth factor combinations ("factors") and peptides as well as coordinated "factor" and extracellular matrix receptor signaling pathways that are required to form stabilized capillary networks.
Collapse
Affiliation(s)
- George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida 33612, USA
| | - Scott S Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida 33612, USA
| |
Collapse
|
15
|
Urrutia PJ, González-Billault C. A Role for Second Messengers in Axodendritic Neuronal Polarity. J Neurosci 2023; 43:2037-2052. [PMID: 36948585 PMCID: PMC10039749 DOI: 10.1523/jneurosci.1065-19.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/24/2023] Open
Abstract
Neuronal polarization is a complex molecular process regulated by intrinsic and extrinsic mechanisms. Nerve cells integrate multiple extracellular cues to generate intracellular messengers that ultimately control cell morphology, metabolism, and gene expression. Therefore, second messengers' local concentration and temporal regulation are crucial elements for acquiring a polarized morphology in neurons. This review article summarizes the main findings and current understanding of how Ca2+, IP3, cAMP, cGMP, and hydrogen peroxide control different aspects of neuronal polarization, and highlights questions that still need to be resolved to fully understand the fascinating cellular processes involved in axodendritic polarization.
Collapse
Affiliation(s)
- Pamela J Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile 7510157
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile 8380453
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile 7800003
- Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
16
|
Yoshie M, Ohishi K, Ishikawa G, Tsuru A, Kusama K, Azumi M, Tamura K. Small GTP-binding protein Rap1 mediates EGF and HB-EGF signaling and modulates EGF receptor expression in HTR-8/SVneo extravillous trophoblast cells. Reprod Med Biol 2023; 22:e12537. [PMID: 37614815 PMCID: PMC10442520 DOI: 10.1002/rmb2.12537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Purpose Extravillous trophoblasts (EVTs) invade the endometrium to establish a fetomaternal interaction during pregnancy. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) stimulate EVT invasion by binding to the EGF receptor (EGFR). We examined the role of the small GTP-binding protein Rap1 in EGF- and HB-EGF-stimulated EVT invasion. Methods Expression of Rap1 in the first-trimester placenta was examined by immunohistochemistry. Effect of EGF or HB-EGF on Rap1 activation (GTP-Rap1) and Rap1 knockdown on invasion was assessed in EVT cell line (HTR-8/SVneo). In addition, effect of Rap1 knockdown and Rap1GAP (a Rap1 inactivator) overexpression on the activation of EGF signaling and EGFR expression were examined. Results Rap1 was expressed by EVTs, villous cytotrophoblasts, and syncytiotrophoblasts in the placenta. EGF and HB-EGF activated Rap1 and promoted invasion of HTR-8/SVneo, and these effects were inhibited by Rap1 knockdown. The EGF- and HB-EGF-induced phosphorylation of AKT, ERK1/2, p38MAPK, and Src was inhibited by Rap1 knockdown. Furthermore, the knockdown of Rap1 reduced the EGFR protein level. Overexpression of Rap1GAP repressed EGF- and HB-EGF-induced Rap1 activation and reduced EGFR expression. Conclusion Rap1 may function as a mediator of EGF and HB-EGF signaling pathways and can modulate EGFR expression in EVTs during placental development.
Collapse
Affiliation(s)
- Mikihiro Yoshie
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Kensuke Ohishi
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Gen Ishikawa
- Department of ObstetricsMiyagi Children's HospitalSendaiJapan
| | - Atsuya Tsuru
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Kazuya Kusama
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Mana Azumi
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Kazuhiro Tamura
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| |
Collapse
|
17
|
Zhou H, Zhao C, Wang P, Yang W, Zhu H, Zhang S. Regulators involved in trophoblast syncytialization in the placenta of intrauterine growth restriction. Front Endocrinol (Lausanne) 2023; 14:1107182. [PMID: 36798658 PMCID: PMC9927020 DOI: 10.3389/fendo.2023.1107182] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Placental dysfunction refers to the insufficiency of placental perfusion and chronic hypoxia during early pregnancy, which impairs placental function and causes inadequate supply of oxygen and nutrients to the fetus, affecting fetal development and health. Fetal intrauterine growth restriction, one of the most common outcomes of pregnancy-induced hypertensions, can be caused by placental dysfunction, resulting from deficient trophoblast syncytialization, inadequate trophoblast invasion and impaired vascular remodeling. During placental development, cytotrophoblasts fuse to form a multinucleated syncytia barrier, which supplies oxygen and nutrients to meet the metabolic demands for fetal growth. A reduction in the cell fusion index and the number of nuclei in the syncytiotrophoblast are found in the placentas of pregnancies complicated by IUGR, suggesting that the occurrence of IUGR may be related to inadequate trophoblast syncytialization. During the multiple processes of trophoblasts syncytialization, specific proteins and several signaling pathways are involved in coordinating these events and regulating placental function. In addition, epigenetic modifications, cell metabolism, senescence, and autophagy are also involved. Study findings have indicated several abnormally expressed syncytialization-related proteins and signaling pathways in the placentas of pregnancies complicated by IUGR, suggesting that these elements may play a crucial role in the occurrence of IUGR. In this review, we discuss the regulators of trophoblast syncytialization and their abnormal expression in the placentas of pregnancies complicated by IUGR.
Collapse
Affiliation(s)
- Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chenqiong Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Peixin Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| |
Collapse
|
18
|
Nowell J, Blunt E, Edison P. Incretin and insulin signaling as novel therapeutic targets for Alzheimer's and Parkinson's disease. Mol Psychiatry 2023; 28:217-229. [PMID: 36258018 PMCID: PMC9812772 DOI: 10.1038/s41380-022-01792-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 01/20/2023]
Abstract
Despite an ever-growing prevalence and increasing economic burden of Alzheimer's disease (AD) and Parkinson's disease (PD), recent advances in drug development have only resulted in minimally effective treatment. In AD, along with amyloid and tau phosphorylation, there is an associated increase in inflammation/glial activation, a decrease in synaptic function, an increase in astrocyte activation, and a state of insulin resistance. In PD, along with α-synuclein accumulation, there is associated inflammation, synaptic dysfunction, dopaminergic neuronal loss, and some data to suggest insulin resistance. Therapeutic strategies for neurodegenerative disorders have commonly targeted individual pathological processes. An effective treatment might require either utilization of multiple drugs which target the individual pathological processes which underlie the neurodegenerative disease or the use of a single agent which could influence multiple pathological processes. Insulin and incretins are compounds with multiple effects on neurodegenerative processes. Preclinical studies have demonstrated that GLP-1 receptor agonists reduce neuroinflammation, reduce tau phosphorylation, reduce amyloid deposition, increase synaptic function, and improve memory formation. Incretin mimetics may act through the restoration of insulin signaling pathways, inducing further neuroprotective effects. Currently, phase 2 and phase 3 trials are underway in AD and PD populations. Here, we provide a comprehensive review of the therapeutic potential of incretin mimetics and insulin in AD and PD.
Collapse
Affiliation(s)
- Joseph Nowell
- grid.7445.20000 0001 2113 8111Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Eleanor Blunt
- grid.7445.20000 0001 2113 8111Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK. .,School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
19
|
Prodan N, Ershad F, Reyes-Alcaraz A, Li L, Mistretta B, Gonzalez L, Rao Z, Yu C, Gunaratne PH, Li N, Schwartz RJ, McConnell BK. Direct reprogramming of cardiomyocytes into cardiac Purkinje-like cells. iScience 2022; 25:105402. [PMID: 36388958 PMCID: PMC9646947 DOI: 10.1016/j.isci.2022.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Currently, there are no treatments that ameliorate cardiac cell death, the underlying basis of cardiovascular disease. An unexplored cell type in cardiac regeneration is cardiac Purkinje cells; specialized cells from the cardiac conduction system (CCS) responsible for propagating electrical signals. Purkinje cells have tremendous potential as a regenerative treatment because they may intrinsically integrate with the CCS of a recipient myocardium, resulting in more efficient electrical conduction in diseased hearts. This study is the first to demonstrate an effective protocol for the direct reprogramming of human cardiomyocytes into cardiac Purkinje-like cells using small molecules. The cells generated were genetically and functionally similar to native cardiac Purkinje cells, where expression of key cardiac Purkinje genes such as CNTN2, ETV1, PCP4, IRX3, SCN5a, HCN2 and the conduction of electrical signals with increased velocity was observed. This study may help to advance the quest to finding an optimized cell therapy for heart regeneration.
Collapse
Affiliation(s)
- Nicole Prodan
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Health-2 (H2) Building, Room 5024, Houston, TX 77204-5037, USA
| | - Faheem Ershad
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Arfaxad Reyes-Alcaraz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Health-2 (H2) Building, Room 5024, Houston, TX 77204-5037, USA
| | - Luge Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brandon Mistretta
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, UH-Sequencing & Gene Editing Core, University of Houston, Houston, TX 77204, USA
| | - Lei Gonzalez
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Zhoulyu Rao
- Department of Mechanical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Cunjiang Yu
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
- Department of Mechanical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Preethi H. Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, UH-Sequencing & Gene Editing Core, University of Houston, Houston, TX 77204, USA
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert J. Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd, Health-2 (H2) Building, Room 5024, Houston, TX 77204-5037, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
20
|
Virwani PD, Cai L, Yeung PKK, Qian G, Chen Y, Zhou L, Wong JWH, Wang Y, Ho JWK, Lau KK, Qian PY, Chung SK. Deficiency of exchange protein directly activated by cAMP (EPAC)-1 in mice augments glucose intolerance, inflammation, and gut dysbiosis associated with Western diet. MICROBIOME 2022; 10:187. [PMID: 36329549 PMCID: PMC9635209 DOI: 10.1186/s40168-022-01366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Gut microbiota (GM) dysregulation, known as dysbiosis, has been proposed as a crucial driver of obesity associated with "Western" diet (WD) consumption. Gut dysbiosis is associated with increased gut permeability, inflammation, and insulin resistance. However, host metabolic pathways implicated in the pathophysiology of gut dysbiosis are still elusive. Exchange protein directly activated by cAMP (Epac) plays a critical role in cell-cell junction formation and insulin secretion. Here, we used homozygous Epac1-knockout (Epac1-/-), Epac2-knockout (Epac2-/-), and wild-type (WT) mice to investigate the role of Epac proteins in mediating gut dysbiosis, gut permeability, and inflammation after WD feeding. RESULTS The 16S rRNA gene sequencing of fecal DNA showed that the baseline GM of Epac2-/-, but not Epac1-/-, mice was represented by a significantly higher Firmicutes to Bacteroidetes ratio and significant alterations in several taxa compared to WT mice, suggesting that Epac2-/- mice had gut dysbiosis under physiological conditions. However, an 8-week WD led to a similar gut microbiome imbalance in mice regardless of genotype. While Epac1 deficiency modestly exacerbated the WD-induced GM dysbiosis, the WD-fed Epac2-/- mice had a more significant increase in gut permeability than corresponding WT mice. After WD feeding, Epac1-/-, but not Epac2-/-, mice had significantly higher mRNA levels of tumor necrosis factor-alpha (TNF-α) and F4/80 in the epididymal white adipose tissue (EWAT), increased circulating lipocalin-2 protein and more severe glucose intolerance, suggesting greater inflammation and insulin resistance in WD-fed Epac1-/- mice than corresponding WT mice. Consistently, Epac1 protein expression was significantly reduced in the EWAT of WD-fed WT and Epac2-/- mice. CONCLUSION Despite significantly dysregulated baseline GM and a more pronounced increase in gut permeability upon WD feeding, WD-fed Epac2-/- mice did not exhibit more severe inflammation and glucose intolerance than corresponding WT mice. These findings suggest that the role of gut dysbiosis in mediating WD-associated obesity may be context-dependent. On the contrary, we demonstrate that deficiency of host signaling protein, Epac1, drives inflammation and glucose intolerance which are the hallmarks of WD-induced obesity. Video abstract.
Collapse
Affiliation(s)
- Preeti Dinesh Virwani
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Lin Cai
- Department of Ocean Science and Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong S.A.R. China
| | - Patrick Ka Kit Yeung
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Gordon Qian
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong S.A.R., China
| | - Yingxian Chen
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Lei Zhou
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Jason Wing Hon Wong
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong S.A.R., China
| | - Joshua Wing Kei Ho
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong S.A.R., China
| | - Kui Kai Lau
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong S.A.R., China
| | - Pei-Yuan Qian
- Department of Ocean Science and Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong S.A.R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
| | - Sookja Kim Chung
- Faculty of Medicine; Faculty of Innovation Engineering, Macau University of Science and Technology, Macau Special Administrative Region (S.A.R.), China
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong S.A.R., China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau S.A.R., China
| |
Collapse
|
21
|
Bowker Z, Goldstein S, Breitbart H. Protein acetylation protects sperm from spontaneous acrosome reaction. Theriogenology 2022; 191:231-238. [PMID: 35998406 DOI: 10.1016/j.theriogenology.2022.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
In order to penetrate the egg, spermatozoa must undergo the acrosome reaction in close proximity to the egg. This process can take place only after a series of biochemical changes in the sperm, collectively termed capacitation, occur in the female reproductive tract. Sperm cells can undergo spontaneous-acrosome reaction(sAR) before reaching the vicinity of the egg, preventing successful fertilization. Several mechanisms were shown to protect sperm from undergoing sAR, and all of them are involved in proper capacitation. Here, we describe the involvement of protein acetylation in the mechanism that protects bovine spermatozoa from sAR. Incubation of bovine sperm under non-capacitation conditions revealed a strong increase in sAR that was significantly reduced in the presence of deacetylase inhibitors. Protein kinase A (PKA) is an essential key enzyme in sperm capacitation, and its inhibition results in high sAR. The reduction in sAR by hyperacetylation was independent of PKA activity. We previously demonstrated that calmodulin-kinase II (CaMKII) activity protects sperm from sAR, and here we show that its activity is essential for reduction in sAR by hyperacetylation. We further show that the 'exchange protein directly activated by Camp' (EPAC) mediates both protein lysine acetylation and the reduced rate of sAR caused by hyperacetylation. In conclusion, these results suggest a PKA-independent and EPAC-CaMKII dependent hyperacetylation mechanism that protects sperm from sAR.
Collapse
Affiliation(s)
- Z Bowker
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - S Goldstein
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - H Breitbart
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
22
|
Wei W, Smrcka AV. Subcellular β-Adrenergic Receptor Signaling in Cardiac Physiology and Disease. J Cardiovasc Pharmacol 2022; 80:334-341. [PMID: 35881897 PMCID: PMC9452480 DOI: 10.1097/fjc.0000000000001324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/29/2022] [Indexed: 01/31/2023]
Abstract
ABSTRACT Adrenergic receptors are critical regulators of cardiac function with profound effects on cardiac output during sympathetic stimulation. Chronic stimulation of the adrenergic system of the heart under conditions of cardiac stress leads to cardiac dysfunction, hypertrophy, and ultimately failure. Emerging data have revealed that G protein-coupled receptors in intracellular compartments are functionally active and regulate distinct cellular processes from those at the cell surface. β2 adrenergic receptors internalize onto endosomes in various cell types where they have recently been shown to continue to stimulate cAMP production to selectively regulate gene expression. Other studies have identified β1 adrenergic receptors at the nuclear envelope and the Golgi apparatus. Here, we discuss data on signaling by β1 and β2 adrenergic receptors in the heart and the possible influence of their subcellular locations on their divergent physiological functions in cardiac myocytes and in cardiac pathology. Understanding the relative roles of these receptors at these locations could have a significant impact on pharmacological targeting of these receptors for the treatment of heart failure and cardiac diseases.
Collapse
Affiliation(s)
- Wenhui Wei
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | | |
Collapse
|
23
|
Ahmed MB, Alghamdi AAA, Islam SU, Lee JS, Lee YS. cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach. Cells 2022; 11:cells11132020. [PMID: 35805104 PMCID: PMC9266045 DOI: 10.3390/cells11132020] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most common causes of death globally. Despite extensive research and considerable advances in cancer therapy, the fundamentals of the disease remain unclear. Understanding the key signaling mechanisms that cause cancer cell malignancy may help to uncover new pharmaco-targets. Cyclic adenosine monophosphate (cAMP) regulates various biological functions, including those in malignant cells. Understanding intracellular second messenger pathways is crucial for identifying downstream proteins involved in cancer growth and development. cAMP regulates cell signaling and a variety of physiological and pathological activities. There may be an impact on gene transcription from protein kinase A (PKA) as well as its downstream effectors, such as cAMP response element-binding protein (CREB). The position of CREB downstream of numerous growth signaling pathways implies its oncogenic potential in tumor cells. Tumor growth is associated with increased CREB expression and activation. PKA can be used as both an onco-drug target and a biomarker to find, identify, and stage tumors. Exploring cAMP effectors and their downstream pathways in cancer has become easier using exchange protein directly activated by cAMP (EPAC) modulators. This signaling system may inhibit or accelerate tumor growth depending on the tumor and its environment. As cAMP and its effectors are critical for cancer development, targeting them may be a useful cancer treatment strategy. Moreover, by reviewing the material from a distinct viewpoint, this review aims to give a knowledge of the impact of the cAMP signaling pathway and the related effectors on cancer incidence and development. These innovative insights seek to encourage the development of novel treatment techniques and new approaches.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | | | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan;
| | - Joon-Seok Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | - Young-Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
- Correspondence: ; Tel.: +82-53-950-6353; Fax: +82-53-943-2762
| |
Collapse
|
24
|
Identification of Core Allosteric Sites through Temperature- and Nucleus-Invariant Chemical Shift Covariance. Biophys J 2022; 121:2035-2045. [PMID: 35538664 DOI: 10.1016/j.bpj.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
Allosteric regulation is essential to control biological function. In addition, allosteric sites offer a promising venue for selective drug targeting. However, accurate mapping of allosteric sites remains challenging since allostery relies on often subtle, yet functionally relevant, structural and dynamical changes. A viable approach proposed to overcome such challenge is the chemical shift covariance analysis (CHESCA). Although CHESCA offers an exhaustive map of allosteric networks, it is critical to define the core allosteric sites to be prioritized in subsequent functional studies or the design of allosteric drugs. Here we propose two new CHESCA-based methodologies, called temperature CHESCA (T-CHESCA) and CLASS-CHESCA, aimed at narrowing down allosteric maps to the core allosteric residues. Both T- and CLASS-CHESCAs rely on the invariance of core inter-residue correlations to changes in the chemical shifts of the active and inactive conformations interconverting in fast exchange. In the T-CHESCA the chemical shifts of such states are modulated through temperature changes, while in the CLASS-CHESCA through variations in the spin-active nuclei involved in pairwise correlations. The T- and CLASS-CHESCAs as well as complete-linkage CHESCA were applied to the cAMP-binding domain of the exchange protein directly activated by cAMP (EPAC), which serves as a prototypical allosteric switch. Residues consistently identified by the three CHESCA methods were found in previously identified EPAC allosteric core sites. Hence, the T-, CLASS- and CL-CHESCA provide a toolset to establish allosteric site hierarchy and triage allosteric sites to be further analyzed by mutations and functional assays. Furthermore, the core allosteric networks selectively revealed through T- and CLASS-CHESCA are expected to facilitate the mechanistic understanding of disease-related mutations and the design of selective allosteric modulators.
Collapse
|
25
|
Rhynchosia volubilis Promotes Cell Survival via cAMP-PKA/ERK-CREB Pathway. Pharmaceuticals (Basel) 2022; 15:ph15010073. [PMID: 35056130 PMCID: PMC8778899 DOI: 10.3390/ph15010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Rhynchosia volubilis, a small black bean, has been used as a traditional remedy to treat diseases and maintain health in East Asia, but its cellular effects and molecular mechanisms are not fully understood. The purpose of this study was to investigate the effect of ethanol extract from Rhynchosia volubilis (EERV) on cell survival and to elucidate the biochemical signaling pathways. Our results showed that EERV stimulated the cyclic AMP (cAMP) signal revealed by a fluorescent protein (FP)-based intensiometric sensor. Using a Förster resonance energy transfer (FRET)-based sensor, we further revealed that EERV could activate PKA and ERK signals, which are downstream effectors of cAMP. In addition, we reported that EERV could induce the phosphorylation of CREB, a key signal for cell survival. Thus, our results suggested that EERV protects against apoptosis by activating the cell survival pathway through the cAMP-PKA/ERK-CREB pathway.
Collapse
|
26
|
Kayser C, Lohse MJ, Bock A. Real-Time Measurements of Intracellular cAMP Gradients Using FRET-Based cAMP Nanorulers. Methods Mol Biol 2022; 2483:1-13. [PMID: 35286666 DOI: 10.1007/978-1-0716-2245-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is one of the most important and ubiquitous second messengers in cells downstream of G protein-coupled receptors (GPCRs). In a single cell, cAMP can exert innumerous specific cell functions in response to more than one hundred different GPCRs. Cells achieve this extraordinary functional specificity of cAMP signaling by limiting the spread of these signals in space and time. To do so, cells establish nanometer-size cAMP gradients by immobilizing cAMP via cAMP binding proteins and via targeted activity of cAMP-degrading phosphodiesterases (PDEs). As cAMP gradients appear to be essential for cell function, new technologies are needed to accurately measure cAMP gradients in intact cells with nanometer-resolution. Here we describe FRET-based cAMP nanorulers to measure local, nanometer-size cAMP gradients in intact cells in the direct vicinity of PDEs.
Collapse
Affiliation(s)
- Charlotte Kayser
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Receptor Signaling Lab, Robert-Roessle-Strasse 10, Berlin, Germany
| | - Martin J Lohse
- ISAR Bioscience Institute, Semmelweisstraße 5, Munich, Germany
| | - Andreas Bock
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Receptor Signaling Lab, Robert-Roessle-Strasse 10, Berlin, Germany.
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Haertelstrasse, Leipzig, Germany.
| |
Collapse
|
27
|
Putnins EE, Goebeler V, Ostadkarampour M. Monoamine Oxidase-B Inhibitor Reduction in Pro-Inflammatory Cytokines Mediated by Inhibition of cAMP-PKA/EPAC Signaling. Front Pharmacol 2021; 12:741460. [PMID: 34867348 PMCID: PMC8635787 DOI: 10.3389/fphar.2021.741460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Mucosal epithelial cell integrity is an important component of innate immunity and it protects the host from an environment rich in microorganisms. Virulence factors from Gram-negative bacteria [e.g. lipopolysaccharide (LPS)] induce significant pro-inflammatory cytokine expression. Monoamine oxidase (MAO) inhibitors reduce cytokine expression in a variety of inflammatory models and may therefore have therapeutic potential for a number of inflammatory diseases. We tested the anti-inflammatory therapeutic potential of a recently developed reversible MAO-B inhibitor (RG0216) with reduced transport across the blood–brain barrier. In an epithelial cell culture model, RG0216 significantly decreased LPS-induced interleukin (IL)-6 and IL-1β gene and protein expression and was as effective as equimolar concentrations of deprenyl (an existing irreversible MAO-B inhibitor). Hydrogen peroxide and modulating dopamine receptor signaling had no effect on cytokine expression. We showed that LPS-induced expression of IL-6 and IL-1β was cAMP dependent, that IL-6 and IL-1β expression were induced by direct cAMP activation (forskolin) and that RG0216 and deprenyl effectively reduced cAMP-mediated cytokine expression. Targeted protein kinase A (PKA) and Exchange Protein Activated by cAMP (EPAC) activation regulated IL-6 and IL-1β expression, albeit in different ways, but both cytokines were effectively decreased with RG0216. RG0216 reduction of LPS-induced cytokine expression occurred by acting downstream of the cAMP-PKA/EPAC signaling cascade. This represents a novel mechanism by which MAO-B selective inhibitors regulate LPS-induced IL-6 and IL-1β expression.
Collapse
Affiliation(s)
- Edward E Putnins
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Verena Goebeler
- Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Mahyar Ostadkarampour
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
Liu X, Song L, Ma X, Liu Y, Huang H, Xu Y, Yan W. Overexpression of RAPGEF3 enhances the therapeutic effect of dezocine in treatment of neuropathic pain. Genet Mol Biol 2021; 44:e20200463. [PMID: 34807222 PMCID: PMC8607529 DOI: 10.1590/1678-4685-gmb-2020-0463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
Pain is a significant problem worldwide that affects the quality of life of patients. Dezocine is a non-addictive analgesic drug with kappa-opioid antagonist activity and has been successfully used to alleviate of postoperative pain. In addition, dezocine has an analgesic effect similar to that of morphine, alleviating moderate to severe pain. Rap guanine nucleotide exchange factor 3 (RAPGEF3) is a guanine nucleotide exchange factor for GTPases Rap1 and Rap2, which could enhance the activity of Rap1 to promote cell adhesion and axon regeneration, as well as promote neurite extension by interacting with nerve growth factors. Here, we first observed that overexpression of RAPGEF3 increased cell viability, as shown by a CCK-8 assay, and recovered brain function in rats. The expression of inflammation-related factors at the mRNA level was detected using qPCR, and the concentration of these factors in a cultured cell medium and rat serum samples were decreased as shown by ELISA after RAPGEF3 overexpression. Through western blotting, we further found that pro-inflammatory proteins were decreased, and these effects might be mediated by inhibition of the Ras/p-38 MAPK signaling pathway. Taken together, we speculated that RAPGEF3overexpression enhances the therapeutic effect of dezocine on neuropathic pain by inhibiting the inflammatory response through inhibition of the Ras/p-38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Xue Liu
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| | - Li Song
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| | - Xiaojun Ma
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| | - Yong Liu
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| | - Hui Huang
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| | - Yongsheng Xu
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| | - Wei Yan
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| |
Collapse
|
29
|
Virk D, Kumar A, Jaggi AS, Singh N. Ameliorative role of rolipram, PDE-4 inhibitor, against sodium arsenite-induced vascular dementia in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63250-63262. [PMID: 34226994 DOI: 10.1007/s11356-021-15189-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Arsenic exposure to the population leads to serious health problems like neurotoxicity, nephrotoxicity, and cardiovascular abnormality. In the present study, the work has been commenced to discover the prospect of rolipram a phosphodiestrase-4 (PDE-4) inhibitor against sodium arsenite (SA)-induced vascular endothelial dysfunction (EnDF) leading to dementia in rats. Wistar rats were treated with SA (5 mg/kg body weight/day orally) for 44 days for induction of vascular EnDF and dementia. Learning and memory were evaluated using Morris water maze (MWM) test. Vascular EnDF was evaluated using aortic ring preparation. Various biochemical parameters were also evaluated like brain oxidative stress (viz. reduced glutathione and thiobarbituric acid reactive substances level), serum nitrite/nitrate activity, acetylcholinesterase activity, and inflammatory markers (viz. neutrophil infiltration in brain and myeloperoxidase). SA-treated rats showed poor performance in water maze trials indicating attenuated memory and ability to learn with significant rise (p < 0.05) in brain acetylcholinesterase activity, brain oxidative stress, neutrophil count, and significant decrease (p < 0.05) in serum nitrite/nitrate levels and vascular endothelial functions. Rolipram (PDE-4 inhibitor) treatment (0.03 mg/kg and 0.06 mg/kg body weight, intraperitoneally daily for 14 days) significantly improved memory and learning abilities, and restored various biochemical parameters and EnDF. It is concluded that PDE-4 modulator may be considered the prospective target for the treatment of SA-induced vascular EnDF and related dementia.
Collapse
Affiliation(s)
- Divjot Virk
- Department of Pharmaceutical Sciences and Drug Research, CNS Research Lab., Pharmacology Division, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India
| | - Amit Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, CNS Research Lab., Pharmacology Division, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, CNS Research Lab., Pharmacology Division, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
30
|
Regulation of P2X1 receptors by modulators of the cAMP effectors PKA and EPAC. Proc Natl Acad Sci U S A 2021; 118:2108094118. [PMID: 34508006 DOI: 10.1073/pnas.2108094118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
P2X1 receptors are adenosine triphosphate (ATP)-gated cation channels that are functionally important for male fertility, bladder contraction, and platelet aggregation. The activity of P2X1 receptors is modulated by lipids and intracellular messengers such as cAMP, which can stimulate protein kinase A (PKA). Exchange protein activated by cAMP (EPAC) is another cAMP effector; however, its effect on P2X1 receptors has not yet been determined. Here, we demonstrate that P2X1 currents, recorded from human embryonic kidney (HEK) cells transiently transfected with P2X1 cDNA, were inhibited by the highly selective EPAC activator 007-AM. In contrast, EPAC activation enhanced P2X2 current amplitude. The PKA activator 6-MB-cAMP did not affect P2X1 currents, but inhibited P2X2 currents. The inhibitory effects of EPAC on P2X1 were prevented by triple mutation of residues 21 to 23 on the amino terminus of P2X1 subunits to the equivalent amino acids on P2X2 receptors. Double mutation of residues 21 and 22 and single mutation of residue 23 also protected P2X1 receptors from inhibition by EPAC activation. Finally, the inhibitory effects of EPAC on P2X1 were also prevented by NSC23766, an inhibitor of Rac1, a member of the Rho family of small GTPases. These data suggest that EPAC is an important regulator of P2X1 and P2X2 receptors.
Collapse
|
31
|
The Rap1 small GTPase is a critical mediator of the effects of stress on prefrontal cortical dysfunction. Mol Psychiatry 2021; 26:3223-3239. [PMID: 32651478 DOI: 10.1038/s41380-020-0835-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
The neural molecular and biochemical response to stress is a distinct physiological process, and multiple lines of evidence indicate that the prefrontal cortex (PFC) is particularly sensitive to, and afflicted by, exposure to stress. Largely through this PFC dysfunction, stress has a characterized role in facilitating cognitive impairment, which is often dissociable from its effects on non-cognitive behaviors. The Rap1 small GTPase pathway has emerged as a commonly disrupted intracellular target in neuropsychiatric conditions, whether it be via alterations in Rap1 expression or through alterations in the expression of direct and specific upstream Rap1 activators and inhibitors. Here we demonstrate that escalating, intermittent stress increases Rap1 in mouse PFC synapses, results in cognitive impairments, and reduces the preponderance of mature dendritic spines in PFC neurons. Using viral-mediated gene transfer, we reveal that the hyper-induction of Rap1 in the PFC is sufficient to drive stress-relevant cognitive and synaptic phenotypes. These findings point to Rap1 as a critical mediator of stress-driven neuronal and behavioral pathology and highlight a previously unrecognized involvement for Rap1 in novelty-driven PFC engagement.
Collapse
|
32
|
Kaneko K, Lin HY, Fu Y, Saha PK, De la Puente-Gomez AB, Xu Y, Ohinata K, Chen P, Morozov A, Fukuda M. Rap1 in the VMH regulates glucose homeostasis. JCI Insight 2021; 6:142545. [PMID: 33974562 PMCID: PMC8262364 DOI: 10.1172/jci.insight.142545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
The hypothalamus is a critical regulator of glucose metabolism and is capable of correcting diabetes conditions independently of an effect on energy balance. The small GTPase Rap1 in the forebrain is implicated in high-fat diet–induced (HFD-induced) obesity and glucose imbalance. Here, we report that increasing Rap1 activity selectively in the medial hypothalamus elevated blood glucose without increasing the body weight of HFD-fed mice. In contrast, decreasing hypothalamic Rap1 activity protected mice from diet-induced hyperglycemia but did not prevent weight gain. The remarkable glycemic effect of Rap1 was reproduced when Rap1 was specifically deleted in steroidogenic factor-1–positive (SF-1–positive) neurons in the ventromedial hypothalamic nucleus (VMH) known to regulate glucose metabolism. While having no effect on body weight regardless of sex, diet, and age, Rap1 deficiency in the VMH SF1 neurons markedly lowered blood glucose and insulin levels, improved glucose and insulin tolerance, and protected mice against HFD-induced neural leptin resistance and peripheral insulin resistance at the cellular and whole-body levels. Last, acute pharmacological inhibition of brain exchange protein directly activated by cAMP 2, a direct activator of Rap1, corrected glucose imbalance in obese mouse models. Our findings uncover the primary role of VMH Rap1 in glycemic control and implicate Rap1 signaling as a potential target for therapeutic intervention in diabetes.
Collapse
Affiliation(s)
- Kentaro Kaneko
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Hsiao-Yun Lin
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Yukiko Fu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | | | - Ana B De la Puente-Gomez
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Peter Chen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alexei Morozov
- Unit on Behavioral Genetics, Laboratory of Molecular Pathophysiology, National Institute of Mental Health, NIH, Maryland, USA.,Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA
| | - Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
33
|
Zhuang Y, Zhang C, Cheng M, Huang J, Liu Q, Yuan G, Lin K, Yu H. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater 2021; 6:1791-1809. [PMID: 33336112 PMCID: PMC7721596 DOI: 10.1016/j.bioactmat.2020.11.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular diseases are the most prevalent cause of ischemic necrosis of tissue and organ, which even result in dysfunction and death. Vascular regeneration or artificial vascular graft, as the conventional treatment modality, has received keen attentions. However, small-diameter (diameter < 4 mm) vascular grafts have a high risk of thrombosis and intimal hyperplasia (IH), which makes long-term lumen patency challengeable. Endothelial cells (ECs) form the inner endothelium layer, and are crucial for anti-coagulation and thrombogenesis. Thus, promoting in situ endothelialization in vascular graft remodeling takes top priority, which requires recruitment of endothelia progenitor cells (EPCs), migration, adhesion, proliferation and activation of EPCs and ECs. Chemotaxis aimed at ligands on EPC surface can be utilized for EPC homing, while nanofibrous structure, biocompatible surface and cell-capturing molecules on graft surface can be applied for cell adhesion. Moreover, cell orientation can be regulated by topography of scaffold, and cell bioactivity can be modulated by growth factors and therapeutic genes. Additionally, surface modification can also reduce thrombogenesis, and some drug release can inhibit IH. Considering the influence of macrophages on ECs and smooth muscle cells (SMCs), scaffolds loaded with drugs that can promote M2 polarization are alternative strategies. In conclusion, the advanced strategies for enhanced long-term lumen patency of vascular grafts are summarized in this review. Strategies for recruitment of EPCs, adhesion, proliferation and activation of EPCs and ECs, anti-thrombogenesis, anti-IH, and immunomodulation are discussed. Ideal vascular grafts with appropriate surface modification, loading and fabrication strategies are required in further studies.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chenglong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengjia Cheng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jinyang Huang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
34
|
Tanwar M, Kateriya S, Nair D, Jose M. Optogenetic modulation of real-time nanoscale dynamics of HCN channels using photoactivated adenylyl cyclases. RSC Chem Biol 2021; 2:863-875. [PMID: 34458814 PMCID: PMC8341789 DOI: 10.1039/d0cb00124d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Adenosine 3',5'-cyclic monophosphate (cAMP) is a key second messenger that activates several signal transduction pathways in eukaryotic cells. Alteration of basal levels of cAMP is known to activate protein kinases, regulate phosphodiesterases and modulate the activity of ion channels such as Hyper polarization-activated cyclic nucleotide gated channels (HCN). Recent advances in optogenetics have resulted in the availability of novel genetically encoded molecules with the capability to alter cytoplasmic profiles of cAMP with unprecedented spatial and temporal precision. Using single molecule based super-resolution microscopy and different optogenetic modulators of cellular cAMP in both live and fixed cells, we illustrate a novel paradigm to report alteration in nanoscale confinement of ectopically expressed HCN channels. We characterized the efficacy of cAMP generation using ensemble photoactivation of different optogenetic modulators. Then we demonstrate that local modulation of cAMP alters the exchange of membrane bound HCN channels with its nanoenvironment. Additionally, using high density single particle tracking in combination with both acute and chronic optogenetic elevation of cAMP in the cytoplasm, we show that HCN channels are confined to sub 100 nm sized functional domains on the plasma membrane. The nanoscale properties of these domains along with the exchange kinetics of HCN channels in and out of these molecular zones are altered upon temporal changes in the cytoplasmic cAMP. Using HCN2 point mutants and a truncated construct of HCN2 with altered sensitivity to cAMP, we confirmed these alterations in lateral organization of HCN2 to be specific to cAMP binding. Thus, combining these advanced non-invasive paradigms, we report a cAMP dependent ensemble and single particle behavior of HCN channels mediated by its cyclic nucleotide binding domain, opening innovative ways to dissect biochemical pathways at the nanoscale and real-time in living cells.
Collapse
Affiliation(s)
- Meenakshi Tanwar
- Centre for Neuroscience, Indian Institute of Science Bangalore-560012 India
| | - Suneel Kateriya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University New Delhi-110067 India
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science Bangalore-560012 India
| | - Mini Jose
- Centre for Neuroscience, Indian Institute of Science Bangalore-560012 India
| |
Collapse
|
35
|
Human umbilical cord mesenchymal stem cells in type 2 diabetes mellitus: the emerging therapeutic approach. Cell Tissue Res 2021; 385:497-518. [PMID: 34050823 DOI: 10.1007/s00441-021-03461-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/11/2021] [Indexed: 12/14/2022]
Abstract
The umbilical cord has been proved to be an easy-access, reliable, and useful source of mesenchymal stem cells (MSC) for clinical applications due to its primitive, immunomodulatory, non-immunogenic, secretory and paracrine, migratory, proliferative, and multipotent properties. This set of characteristics has recently attracted great research interest in the fields of nanotechnology and regenerative medicine and cellular therapy. Accumulating evidence supports a pronounced therapeutic potential of MSC in many different pathologies, from hematology to immunology, wound-healing, tissue regeneration, and oncology. Diabetes mellitus, branded the epidemic of the century, is considered a chronic metabolic disorder, representing a major burden for health system sustainability and an important public health challenge to modern societies. The available treatments for type 2 diabetes mellitus (T2DM) still rely mainly on combinations of oral antidiabetic agents with lifestyle and nutritional adjustments. Despite the continuous development of novel and better hypoglycemic drugs, their efficacy is limited in the installment and progression of silent T2DM complications. T2DM comorbidities and mortality rates still make it a serious, common, costly, and long-term manageable disease. Recently, experimental models, preclinical observations, and clinical studies have provided some insights and preliminary promising results using umbilical cord MSCs to treat and manage diabetes. This review focuses on the latest research and applications of human-derived umbilical cord MSC in the treatment and management of T2DM, exploring and systematizing the key effects of both umbilical cord MSC and its factor-rich secretome accordingly with the major complications associated to T2DM.
Collapse
|
36
|
Colombe AS, Pidoux G. Cardiac cAMP-PKA Signaling Compartmentalization in Myocardial Infarction. Cells 2021; 10:cells10040922. [PMID: 33923648 PMCID: PMC8073060 DOI: 10.3390/cells10040922] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Under physiological conditions, cAMP signaling plays a key role in the regulation of cardiac function. Activation of this intracellular signaling pathway mirrors cardiomyocyte adaptation to various extracellular stimuli. Extracellular ligand binding to seven-transmembrane receptors (also known as GPCRs) with G proteins and adenylyl cyclases (ACs) modulate the intracellular cAMP content. Subsequently, this second messenger triggers activation of specific intracellular downstream effectors that ensure a proper cellular response. Therefore, it is essential for the cell to keep the cAMP signaling highly regulated in space and time. The temporal regulation depends on the activity of ACs and phosphodiesterases. By scaffolding key components of the cAMP signaling machinery, A-kinase anchoring proteins (AKAPs) coordinate both the spatial and temporal regulation. Myocardial infarction is one of the major causes of death in industrialized countries and is characterized by a prolonged cardiac ischemia. This leads to irreversible cardiomyocyte death and impairs cardiac function. Regardless of its causes, a chronic activation of cardiac cAMP signaling is established to compensate this loss. While this adaptation is primarily beneficial for contractile function, it turns out, in the long run, to be deleterious. This review compiles current knowledge about cardiac cAMP compartmentalization under physiological conditions and post-myocardial infarction when it appears to be profoundly impaired.
Collapse
|
37
|
Zhang Y, Zhou B, Sun J, He Q, Zhao Y. Knockdown of GPSM1 Inhibits the Proliferation and Promotes the Apoptosis of B-Cell Acute Lymphoblastic Leukemia Cells by Suppressing the ADCY6-RAPGEF3-JNK Signaling Pathway. Pathol Oncol Res 2021; 27:643376. [PMID: 34257610 PMCID: PMC8262160 DOI: 10.3389/pore.2021.643376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is the common type of blood cancer. Although the remission rate has increased, the current treatment options for B-ALL are usually related to adverse reactions and recurrence, so it is necessary to find other treatment options. G protein signaling modulator 1 (GPSM1) is one of several factors that affect the basic activity of the G protein signaling system, but its role in B-ALL has not yet been clarified. In this study, we analyzed the expression of GPSM1 in the Oncomine database and found that the GPSM1 levels were higher in B-ALL cells than in peripheral blood mononuclear cells (PBMCs). Analyses of the Gene Expression Profiling Interactive Analysis (GEPIA) demonstrated that patients with high GPSM1 levels had shorter survival times than those with low levels. Additionally, gene set enrichment analysis (GSEA) suggested that GPSM1 was positively correlated with proliferation, G protein-coupled receptor (GPCR) ligand binding, Gαs signaling and calcium signaling pathways. In further experiments, GPSM1 was found to be highly expressed in Acute lymphoblastic leukemia (ALL) cell lines, and downregulation of GPSM1 inhibited proliferation and promoted cell cycle arrest and apoptosis in BALL-1 and Reh cells. Moreover, knockdown of GPSM1 suppressed ADCY6 and RAPGEF3 expression in BALL-1 and Reh cells. Furthermore, we reported that GPSM1 regulated JNK expression via ADCY6-RAPGEF3. The present study demonstrates that GPSM1 promotes tumor growth in BALL-1 and Reh cells by modulating ADCY6-RAPGEF3-JNK signaling.
Collapse
Affiliation(s)
- Ye Zhang
- Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China.,Department of Bioinformatics, School of Life Sciences, China Medical University, Shenyang, China
| | - Bo Zhou
- Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China.,Department of Bioinformatics, School of Life Sciences, China Medical University, Shenyang, China
| | - Jingjing Sun
- Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China.,Department of Bioinformatics, School of Life Sciences, China Medical University, Shenyang, China
| | - Qun He
- Department of Bioinformatics, School of Life Sciences, China Medical University, Shenyang, China
| | - Yujie Zhao
- Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
38
|
Ni K, Zhang W, Ni Y, Mao YT, Wang Y, Gu XP, Ma ZL. Dorsal root ganglia NR2B-mediated Epac1-Piezo2 signaling pathway contributes to mechanical allodynia of bone cancer pain. Oncol Lett 2021; 21:338. [PMID: 33692870 DOI: 10.3892/ol.2021.12599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/04/2021] [Indexed: 01/14/2023] Open
Abstract
Mechanical allodynia is a painful perception of mechanical stimuli and one of the typical symptoms in bone cancer pain (BCP). Previous studies have revealed that mice and humans lacking mechanically activated Piezo2 channels do not sense mechanical stimuli. However, the underlying mechanism of Piezo2 in BCP has not been well established. The aim of the present study was to investigate whether exchange protein directly activated by cAMP 1 (Epac1) mediated Piezo2 signaling pathway may be responsible for the mechanical allodynia of BCP and whether N-methyl-D-aspartic acid (NMDA) receptor subunit 2B (NR2B) is involved in the pathway. In the present study, a BCP model was established in C3H/HeJ mice by intramedullary injection of osteosarcoma cells. The results of the mechanical allodynia test demonstrated a markedly decreased paw withdrawal mechanical threshold in BCP mice, accompanied by a significant increase in Epac1, NR2B proteins and Piezo2 mRNA expression levels in the ipsilateral dorsal root ganglion (DRG). Compared with the sham group, intrathecal Epac1 antisense oligodeoxynucleotides (Epac1-ASODN) effectively ameliorated the mechanical allodynia and decreased the expression levels of NR2B and Piezo2 in the tumor group. Pretreatment of naïve mice with a NR2B antagonist prevented the aggravation of mechanical allodynia and DRG Piezo2 levels induced by an Epac1 agonist. However, the NR2B agonist-induced increase in Piezo2 expression levels was not reversed by pretreatment with Epac1-ASODN. In conclusion, the results of the present study demonstrated that NR2B, which is a crucial downstream regulator of Epac1, may mediate the Epac1-Piezo2 pathway contributing to the development of the mechanical allodynia of BCP. The present study may enrich the theoretical knowledge of the mechanical allodynia of BCP and provide a potential analgesic strategy for clinical treatment.
Collapse
Affiliation(s)
- Kun Ni
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Wei Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Yuan Ni
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Yan-Ting Mao
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Yi Wang
- Department of Neurosurgery, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiao-Ping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Zheng-Liang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
39
|
Regulation of Mitochondrial Homeostasis by sAC-Derived cAMP Pool: Basic and Translational Aspects. Cells 2021; 10:cells10020473. [PMID: 33671810 PMCID: PMC7926680 DOI: 10.3390/cells10020473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/21/2023] Open
Abstract
In contrast to the traditional view of mitochondria being solely a source of cellular energy, e.g., the "powerhouse" of the cell, mitochondria are now known to be key regulators of numerous cellular processes. Accordingly, disturbance of mitochondrial homeostasis is a basic mechanism in several pathologies. Emerging data demonstrate that 3'-5'-cyclic adenosine monophosphate (cAMP) signalling plays a key role in mitochondrial biology and homeostasis. Mitochondria are equipped with an endogenous cAMP synthesis system involving soluble adenylyl cyclase (sAC), which localizes in the mitochondrial matrix and regulates mitochondrial function. Furthermore, sAC localized at the outer mitochondrial membrane contributes significantly to mitochondrial biology. Disturbance of the sAC-dependent cAMP pools within mitochondria leads to mitochondrial dysfunction and pathology. In this review, we discuss the available data concerning the role of sAC in regulating mitochondrial biology in relation to diseases.
Collapse
|
40
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Influence of Phosphodiesterase Inhibition on CRE- and EGR1-Dependent Transcription in a Mouse Hippocampal Cell Line. Int J Mol Sci 2020; 21:ijms21228658. [PMID: 33212816 PMCID: PMC7696530 DOI: 10.3390/ijms21228658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 11/25/2022] Open
Abstract
Signaling pathways, depending on the second messenger molecule cAMP, modulate hippocampal cell signaling via influencing transcription factors like cAMP-regulated element-binding protein (CREB) or early growth response 1 EGR1/Krox24/zif268/ZENK (EGR1). Here, we investigated two reporter cell lines derived from an immortalized hippocampal neuronal cell line stably expressing a CRE- or EGR1-luciferase reporter gene (HT22CREluc and HT22EGR1luc, respectively). The cells were subjected to phosphodiesterase inhibitors and other cAMP-modulating agents to investigate dose- and time-dependent phosphodiesterase (PDE)-mediated fine-tuning of cAMP-dependent transcriptional signaling. The non-isoform-specific cyclic nucleotide phosphodiesterase (PDE) inhibitor isobutyl-methyl-xanthine (IBMX), as well as selective inhibitors of PDE3 (milrinone) and PDE4 (rolipram), were tested for their ability to elevate CRE- and EGR1-luciferase activity. Pharmacological parameters like onset of activity, maximum activity, and offset of activity were determined. In summary, phosphodiesterase inhibition appeared similarly potent in comparison to adenylate cyclase stimulation or direct activation of protein kinase A (PKA) via specific cAMP agonists and was at least partly mediated by PKA as shown by the selective PKA inhibitor Rp-8-Br-cAMPS. Moreover, transcriptional activation by PDE inhibition was also influenced by organic anion-exchanger action and interacted with fibroblast growth factor (FGF) receptor-mediated pathways.
Collapse
|
42
|
He Y, Huang Y, Mai C, Pan H, Luo HB, Liu L, Xie Y. The immunomodulatory role of PDEs inhibitors in immune cells: therapeutic implication in rheumatoid arthritis. Pharmacol Res 2020; 161:105134. [DOI: 10.1016/j.phrs.2020.105134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 01/19/2023]
|
43
|
Diz-Chaves Y, Herrera-Pérez S, González-Matías LC, Lamas JA, Mallo F. Glucagon-Like Peptide-1 (GLP-1) in the Integration of Neural and Endocrine Responses to Stress. Nutrients 2020; 12:nu12113304. [PMID: 33126672 PMCID: PMC7692797 DOI: 10.3390/nu12113304] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Glucagon like-peptide 1 (GLP-1) within the brain is produced by a population of preproglucagon neurons located in the caudal nucleus of the solitary tract. These neurons project to the hypothalamus and another forebrain, hindbrain, and mesolimbic brain areas control the autonomic function, feeding, and the motivation to feed or regulate the stress response and the hypothalamic-pituitary-adrenal axis. GLP-1 receptor (GLP-1R) controls both food intake and feeding behavior (hunger-driven feeding, the hedonic value of food, and food motivation). The activation of GLP-1 receptors involves second messenger pathways and ionic events in the autonomic nervous system, which are very relevant to explain the essential central actions of GLP-1 as neuromodulator coordinating food intake in response to a physiological and stress-related stimulus to maintain homeostasis. Alterations in GLP-1 signaling associated with obesity or chronic stress induce the dysregulation of eating behavior. This review summarized the experimental shreds of evidence from studies using GLP-1R agonists to describe the neural and endocrine integration of stress responses and feeding behavior.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- CINBIO, Universidade de Vigo, Grupo FB3A, Laboratorio de Endocrinología, 36310 Vigo, Spain;
- Correspondence: (Y.D.-C.); (F.M.); Tel.: +34-(986)-130226 (Y.D.-C.); +34-(986)-812393 (F.M.)
| | - Salvador Herrera-Pérez
- CINBIO, Universidade de Vigo, Grupo FB3B, Laboratorio de Neurociencia, 36310 Vigo, Spain; (S.H.-P.); (J.A.L.)
| | | | - José Antonio Lamas
- CINBIO, Universidade de Vigo, Grupo FB3B, Laboratorio de Neurociencia, 36310 Vigo, Spain; (S.H.-P.); (J.A.L.)
| | - Federico Mallo
- CINBIO, Universidade de Vigo, Grupo FB3A, Laboratorio de Endocrinología, 36310 Vigo, Spain;
- Correspondence: (Y.D.-C.); (F.M.); Tel.: +34-(986)-130226 (Y.D.-C.); +34-(986)-812393 (F.M.)
| |
Collapse
|
44
|
Chen H, Zhang YHPJ. Enzymatic regeneration and conservation of ATP: challenges and opportunities. Crit Rev Biotechnol 2020; 41:16-33. [PMID: 33012193 DOI: 10.1080/07388551.2020.1826403] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Adenosine triphosphate (ATP), the universal energy currency of life, has a central role in numerous biochemical reactions with potential for the synthesis of numerous high-value products. ATP can be regenerated by three types of mechanisms: substrate level phosphorylation, oxidative phosphorylation, and photophosphorylation. Current ATP regeneration methods are mainly based on substrate level phosphorylation catalyzed by one enzyme, several cascade enzymes, or in vitro synthetic enzymatic pathways. Among them, polyphosphate kinases and acetate kinase, along with their respective phosphate donors, are the most popular approaches for in vitro ATP regeneration. For in vitro artificial pathways, either ATP-free or ATP-balancing strategies can be implemented via smart pathway design by choosing ATP-independent enzymes. Also, we discuss some remaining challenges and suggest perspectives, especially for industrial biomanufacturing. Development of ATP regeneration systems featuring low cost, high volumetric productivity, long lifetime, flexible compatibility, and great robustness could be one of the bottom-up strategies for cascade biocatalysis and in vitro synthetic biology.
Collapse
Affiliation(s)
- Hongge Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, Tianjin, China
| |
Collapse
|
45
|
Lee SY, Lee YY, Choi JS, Kim KS, Min DS, Park SY, Han JS. Nitration of protein phosphatase 2A increases via Epac1/PLCε/CaMKII/HDAC5/iNOS cascade in human endometrial stromal cell decidualization. FASEB J 2020; 34:14407-14423. [PMID: 33000885 DOI: 10.1096/fj.202001212r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
Decidualization of the endometrial stroma is an essential differentiation process for embryo implantation and maintenance of pregnancy. We previously reported that protein phosphatase 2A (PP2A) acts as a key mediator during cAMP-induced decidualization of human endometrial stromal cells (hESCs). However, the mechanism underlying its activation has remained obscure in hESCs. In the present study, we aimed to reveal the mechanism that induces the nitration of PP2A catalytic subunit (PP2Ac) during cAMP-induced decidualization of hESCs. First, cAMP-induced PP2Ac nitration was significantly repressed using L-NAME, an inhibitor of nitric oxide synthase (NOS). Among several NOS isoforms, only inducible NOS (iNOS) was highly expressed in hESCs, indicating that iNOS directly induces the nitration of PP2Ac. Second, cAMP-induced iNOS expression and PP2Ac nitration were decreased by treatment with TSA, an inhibitor of histone deacetylase 5 (HDAC5). cAMP-induced phosphorylation of CaMKII and HDAC5 was suppressed by treatment with U73122 (an inhibitor of phospholipase C) or transfection of PLCε siRNA. Finally, small G protein Rap1 and its guanine nucleotide exchange factor Epac1 were found to be involved in cAMP-induced PP2A activation. Taken together, our results suggest that PP2Ac nitration during cAMP-induced decidualization of hESCs is induced through the Epac1-Rap1-PLCε-CaMKII-HDAC5-iNOS signaling pathway.
Collapse
Affiliation(s)
- So Young Lee
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Yun Young Lee
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea.,Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Joong-Sub Choi
- Department of Obstetrics and Gynecology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Kyeong Soo Kim
- Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology, Jinju, Republic of Korea
| | - Do Sik Min
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Shin-Young Park
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Joong-Soo Han
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea.,Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
46
|
Longo J, Pandyra AA, Stachura P, Minden MD, Schimmer AD, Penn LZ. Cyclic AMP-hydrolyzing phosphodiesterase inhibitors potentiate statin-induced cancer cell death. Mol Oncol 2020; 14:2533-2545. [PMID: 32749766 PMCID: PMC7530792 DOI: 10.1002/1878-0261.12775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/13/2020] [Accepted: 07/30/2020] [Indexed: 01/06/2023] Open
Abstract
Dipyridamole, an antiplatelet drug, has been shown to synergize with statins to induce cancer cell-specific apoptosis. However, given the polypharmacology of dipyridamole, the mechanism by which it potentiates statin-induced apoptosis remains unclear. Here, we applied a pharmacological approach to identify the activity of dipyridamole specific to its synergistic anticancer interaction with statins. We evaluated compounds that phenocopy the individual activities of dipyridamole and assessed whether they could potentiate statin-induced cell death. Notably, we identified that a phosphodiesterase (PDE) inhibitor, cilostazol, and other compounds that increase intracellular cyclic adenosine monophosphate (cAMP) levels potentiate statin-induced apoptosis in acute myeloid leukemia and multiple myeloma cells. Additionally, we demonstrated that both dipyridamole and cilostazol further inhibit statin-induced activation of sterol regulatory element-binding protein 2, a known modulator of statin sensitivity, in a cAMP-independent manner. Taken together, our data support that PDE inhibitors such as dipyridamole and cilostazol can potentiate statin-induced apoptosis via a dual mechanism. Given that several PDE inhibitors are clinically approved for various indications, they are immediately available for testing in combination with statins for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Joseph Longo
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| | - Aleksandra A. Pandyra
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Department of Molecular Medicine IIMedical FacultyHeinrich Heine UniversityDüsseldorfGermany
- Department of Gastroenterology, Hepatology, and Infectious DiseasesHeinrich Heine UniversityDüsseldorfGermany
| | - Paweł Stachura
- Department of Molecular Medicine IIMedical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - Mark D. Minden
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| | - Aaron D. Schimmer
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| | - Linda Z. Penn
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| |
Collapse
|
47
|
Kusnadi EP, Trigos AS, Cullinane C, Goode DL, Larsson O, Devlin JR, Chan KT, De Souza DP, McConville MJ, McArthur GA, Thomas G, Sanij E, Poortinga G, Hannan RD, Hannan KM, Kang J, Pearson RB. Reprogrammed mRNA translation drives resistance to therapeutic targeting of ribosome biogenesis. EMBO J 2020; 39:e105111. [PMID: 32945574 PMCID: PMC7604608 DOI: 10.15252/embj.2020105111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 12/31/2022] Open
Abstract
Elevated ribosome biogenesis in oncogene‐driven cancers is commonly targeted by DNA‐damaging cytotoxic drugs. Our previous first‐in‐human trial of CX‐5461, a novel, less genotoxic agent that specifically inhibits ribosome biogenesis via suppression of RNA polymerase I (Pol I) transcription, revealed single‐agent efficacy in refractory blood cancers. Despite this clinical response, patients were not cured. In parallel, we demonstrated a marked improvement in the in vivo efficacy of CX‐5461 in combination with PI3K/AKT/mTORC1 pathway inhibitors. Here, we reveal the molecular basis for this improved efficacy observed in vivo, which is associated with specific suppression of translation of mRNAs encoding regulators of cellular metabolism. Importantly, acquired resistance to this cotreatment is driven by translational rewiring that results in dysregulated cellular metabolism and induction of a cAMP‐dependent pathway critical for the survival of blood cancers including lymphoma and acute myeloid leukemia. Our studies thus identify key molecular mechanisms underpinning the response of blood cancers to selective inhibition of ribosome biogenesis and define metabolic vulnerabilities that will facilitate the rational design of more effective regimens for Pol I‐directed therapies.
Collapse
Affiliation(s)
- Eric P Kusnadi
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia
| | - Anna S Trigos
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia
| | - Carleen Cullinane
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia
| | - David L Goode
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Jennifer R Devlin
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia
| | - Keefe T Chan
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Vic, Australia
| | - Malcolm J McConville
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Vic, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Vic, Australia
| | - Grant A McArthur
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia
| | - George Thomas
- Metabolism and Cancer Group, Molecular Mechanisms and Experimental Therapy In Oncology Program, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, Vic, Australia
| | - Gretchen Poortinga
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia
| | - Ross D Hannan
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Vic, Australia.,ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Acton, ACT, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic, Australia.,School of Biomedical Sciences, University of Queensland, Brisbane, Qld, Australia
| | - Katherine M Hannan
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Vic, Australia.,ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Acton, ACT, Australia
| | - Jian Kang
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia
| | - Richard B Pearson
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Vic, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic, Australia
| |
Collapse
|
48
|
Wehbe N, Slika H, Mesmar J, Nasser SA, Pintus G, Baydoun S, Badran A, Kobeissy F, Eid AH, Baydoun E. The Role of Epac in Cancer Progression. Int J Mol Sci 2020; 21:ijms21186489. [PMID: 32899451 PMCID: PMC7555121 DOI: 10.3390/ijms21186489] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer continues to be a prime contributor to global mortality. Despite tremendous research efforts and major advances in cancer therapy, much remains to be learned about the underlying molecular mechanisms of this debilitating disease. A better understanding of the key signaling events driving the malignant phenotype of cancer cells may help identify new pharmaco-targets. Cyclic adenosine 3',5'-monophosphate (cAMP) modulates a plethora of biological processes, including those that are characteristic of malignant cells. Over the years, most cAMP-mediated actions were attributed to the activity of its effector protein kinase A (PKA). However, studies have revealed an important role for the exchange protein activated by cAMP (Epac) as another effector mediating the actions of cAMP. In cancer, Epac appears to have a dual role in regulating cellular processes that are essential for carcinogenesis. In addition, the development of Epac modulators offered new routes to further explore the role of this cAMP effector and its downstream pathways in cancer. In this review, the potentials of Epac as an attractive target in the fight against cancer are depicted. Additionally, the role of Epac in cancer progression, namely its effect on cancer cell proliferation, migration/metastasis, and apoptosis, with the possible interaction of reactive oxygen species (ROS) in these phenomena, is discussed with emphasis on the underlying mechanisms and pathways.
Collapse
Affiliation(s)
- Nadine Wehbe
- Department of Biology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon; (N.W.); (J.M.)
| | - Hasan Slika
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon;
| | - Joelle Mesmar
- Department of Biology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon; (N.W.); (J.M.)
| | - Suzanne A. Nasser
- Department of Pharmacology, Beirut Arab University, P.O. Box 11-5020 Beirut, Lebanon;
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sharjah, P.O. Box 27272 Sharjah, UAE;
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Serine Baydoun
- Department of Radiology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon;
| | - Adnan Badran
- Department of Basic Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan;
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon;
| | - Ali H. Eid
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon;
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
- Correspondence: (A.H.E.); (E.B.); Tel.: +961-1-350-000 (ext. 4891) (A.H.E. & E.B.)
| | - Elias Baydoun
- Department of Biology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon; (N.W.); (J.M.)
- Correspondence: (A.H.E.); (E.B.); Tel.: +961-1-350-000 (ext. 4891) (A.H.E. & E.B.)
| |
Collapse
|
49
|
Bang J, Zippin JH. Cyclic adenosine monophosphate (cAMP) signaling in melanocyte pigmentation and melanomagenesis. Pigment Cell Melanoma Res 2020; 34:28-43. [PMID: 32777162 DOI: 10.1111/pcmr.12920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) regulates numerous functions in both benign melanocytes and melanoma cells. cAMP is generated from two distinct sources, transmembrane and soluble adenylyl cyclases (tmAC and sAC, respectively), and is degraded by a family of proteins called phosphodiesterases (PDEs). cAMP signaling can be regulated in many different ways and can lead to varied effects in melanocytes. It was recently revealed that distinct cAMP signaling pathways regulate pigmentation by either altering pigment gene expression or the pH of melanosomes. In the context of melanoma, many studies report seemingly contradictory roles for cAMP in tumorigenesis. For example, cAMP signaling has been implicated in both cancer promotion and suppression, as well as both therapy resistance and sensitization. This conundrum in the field may be explained by the fact that cAMP signals in discrete microdomains and each microdomain can mediate differential cellular functions. Here, we review the role of cAMP signaling microdomains in benign melanocyte biology, focusing on pigmentation, and in melanomagenesis.
Collapse
Affiliation(s)
- Jakyung Bang
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Jonathan H Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
50
|
Peng L, Gao DD, Xu JW, Xu JB, Ke LJ, Qiu ZE, Zhu YX, Zhang YL, Zhou WL. Cellular mechanisms underlying carbon monoxide stimulated anion secretion in rat epididymal epithelium. Nitric Oxide 2020; 100-101:30-37. [DOI: 10.1016/j.niox.2020.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/13/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
|