1
|
Lee NY, Kyun ML, Yu JE, Kim SO, Lim KH, Lee KH. Transport of Golgi-localized β-catenin p-S47 by KIF11 or KIFC3 induces primary ciliogenesis. Mol Cells 2024; 47:100142. [PMID: 39476973 PMCID: PMC11609372 DOI: 10.1016/j.mocell.2024.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Primary cilium is an important hub for cell signaling and dysregulation of primary cilia assembly and disassembly is associated with the development of cancer and chemotherapeutic drug resistance, as well as the genetic disorders collectively known as ciliopathy. β-catenin plays a major role in canonical Wnt signaling; however, its association with primary cilia has only recently been highlighted in reports of β-catenin-mediated primary ciliogenesis. In this study, we found that β-catenin p-S47 was localized to the Golgi apparatus and the nucleus, and the amount of β-catenin p-S47 at these locations was significantly higher during primary ciliogenesis compared with asynchronous cell growth conditions. In addition, the novel β-catenin-binding motor proteins KIF11 and KIFC3 were shown to have a lower binding affinity in β-catenin S47A than in β-catenin wild-type. Knockdown of KIF11 or KIFC3 resulted in primary cilia deficiency and increased β-catenin p-S47 levels in the Golgi apparatus and were accompanied by a decrease in β-catenin p-S47 at the centrosome. The accumulation of β-catenin p-S47 in the nucleus was increased during primary ciliogenesis along with β-catenin-dependent transcriptional activity. The collective findings indicate the existence of a novel mechanism of primary ciliogenesis involving KIF11-/KIFC3-associated β-catenin p-S47 in the Golgi apparatus and β-catenin p-S47 transcriptional activity in the nucleus. This study revealed a new mechanism for the study of ciliopathies, cancer, and chemotherapeutic drug resistance caused by primary ciliogenesis dysregulation and provides new targets for drug development to treat these diseases.
Collapse
Affiliation(s)
- Na Yeong Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, Korea; College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Korea
| | - Mi-Lang Kyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Ji Eun Yu
- College of Pharmacy, Mokpo National University, 1666, Yeongsan-ro, Muan-gun, Jeonnam 58554, Korea
| | - Sun-Ok Kim
- Department of Biochemistry and Pathology, Chungbuk National University College of Medicine and Medical Research Center, Cheongju, Chungbuk 28160, Korea
| | - Key-Hwan Lim
- College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Korea
| | - Kyung Ho Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, Korea; Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
2
|
Frisby D, Murakonda AB, Ashraf B, Dhawan K, Almeida-Souza L, Naslavsky N, Caplan S. Endosomal actin branching, fission, and receptor recycling require FCHSD2 recruitment by MICAL-L1. Mol Biol Cell 2024; 35:ar144. [PMID: 39382837 PMCID: PMC11617095 DOI: 10.1091/mbc.e24-07-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024] Open
Abstract
Endosome fission is required for the release of carrier vesicles and the recycling of receptors to the plasma membrane. Early events in endosome budding and fission rely on actin branching to constrict the endosomal membrane, ultimately leading to nucleotide hydrolysis and enzymatic fission. However, our current understanding of this process is limited, particularly regarding the coordination between the early and late steps of endosomal fission. Here we have identified a novel interaction between the endosomal scaffolding protein, MICAL-L1, and the human homologue of the Drosophila Nervous Wreck (Nwk) protein, FCH and double SH3 domains protein 2 (FCHSD2). We demonstrate that MICAL-L1 recruits FCHSD2 to the endosomal membrane, where it is required for ARP2/3-mediated generation of branched actin, endosome fission and receptor recycling to the plasma membrane. Because MICAL-L1 first recruits FCHSD2 to the endosomal membrane, and is subsequently responsible for recruitment of the ATPase and fission protein EHD1 to endosomes, our findings support a model in which MICAL-L1 orchestrates endosomal fission by connecting between the early actin-driven and subsequent nucleotide hydrolysis steps of the process.
Collapse
Affiliation(s)
- Devin Frisby
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Ajay B. Murakonda
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Bazella Ashraf
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Kanika Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla 92093, CA
| | - Leonardo Almeida-Souza
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00790, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
3
|
Pant K, Richard S, Peixoto E, Baral S, Yang R, Ren Y, Masyuk TV, LaRusso NF, Gradilone SA. Cholangiocyte ciliary defects induce sustained epidermal growth factor receptor signaling. Hepatology 2024:01515467-990000000-01003. [PMID: 39186465 DOI: 10.1097/hep.0000000000001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND AND AIMS The primary cilium, an organelle that protrudes from cell surfaces, is essential for sensing extracellular signals. With disturbed cellular communication and chronic liver pathologies, this organelle's dysfunctions have been linked to disorders, including polycystic liver disease and cholangiocarcinoma. The goal of this study was to elucidate the relationship between primary cilia and the crucial regulator of cellular proliferation, the epidermal growth factor receptor (EGFR) signaling pathway, which has been associated with various clinical conditions. APPROACH AND RESULTS The study identified aberrant EGFR signaling pathways in cholangiocytes lacking functional primary cilia using liver-specific intraflagellar transport 88 knockout mice, a Pkhd1 mutant rat model, and human cell lines that did not have functional cilia. Cilia-deficient cholangiocytes showed persistent EGFR activation because of impaired receptor degradation, in contrast to their normal counterparts, where EGFR localization to the cilia promotes appropriate signaling. Using histone deacetylase 6 inhibitors to restore primary cilia accelerates EGFR degradation, thereby reducing maladaptive signaling. Importantly, experimental intervention with the histone deacetylase 6 inhibitor tubastatin A in an orthotopic rat model moved EGFR to cilia and reduced ERK phosphorylation. Concurrent administration of EGFR and histone deacetylase 6 inhibitors in cholangiocarcinoma and polycystic liver disease cells demonstrated synergistic antiproliferative effects, which were associated with the restoration of functioning primary cilia. CONCLUSIONS This study's findings shed light on ciliary function and robust EGFR signaling with slower receptor turnover. We could use therapies that restore the function of primary cilia to treat EGFR-driven diseases in polycystic liver disease and cholangiocarcinoma.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | | | - Subheksha Baral
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Rendong Yang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yanan Ren
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Frisby D, Murakonda AB, Ashraf B, Dhawan K, Almeida-Souza L, Naslavsky N, Caplan S. Endosomal actin branching, fission and receptor recycling require FCHSD2 recruitment by MICAL-L1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601011. [PMID: 38979241 PMCID: PMC11230409 DOI: 10.1101/2024.06.27.601011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Endosome fission is required for the release of carrier vesicles and the recycling of receptors to the plasma membrane. Early events in endosome budding and fission rely on actin branching to constrict the endosomal membrane, ultimately leading to nucleotide hydrolysis and enzymatic fission. However, our current understanding of this process is limited, particularly regarding the coordination between the early and late steps of endosomal fission. Here we have identified a novel interaction between the endosomal scaffolding protein, MICAL-L1, and the human homolog of the Drosophila Nervous Wreck (Nwk) protein, FCH and double SH3 domains protein 2 (FCHSD2). We demonstrate that MICAL-L1 recruits FCHSD2 to the endosomal membrane, where it is required for ARP2/3-mediated generation of branched actin, endosome fission and receptor recycling to the plasma membrane. Since MICAL-L1 first recruits FCHSD2 to the endosomal membrane, and is subsequently responsible for recruitment of the ATPase and fission protein EHD1 to endosomes, our findings support a model in which MICAL-L1 orchestrates endosomal fission by connecting between the early actin-driven and subsequent nucleotide hydrolysis steps of the process.
Collapse
|
5
|
Reddy Palicharla V, Mukhopadhyay S. Molecular and structural perspectives on protein trafficking to the primary cilium membrane. Biochem Soc Trans 2024; 52:1473-1487. [PMID: 38864436 PMCID: PMC11346432 DOI: 10.1042/bst20231403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024]
Abstract
The primary cilium is a dynamic subcellular compartment templated from the mother centriole or basal body. Cilia are solitary and tiny, but remarkably consequential in cellular pathways regulating proliferation, differentiation, and maintenance. Multiple transmembrane proteins such as G-protein-coupled receptors, channels, enzymes, and membrane-associated lipidated proteins are enriched in the ciliary membrane. The precise regulation of ciliary membrane content is essential for effective signal transduction and maintenance of tissue homeostasis. Surprisingly, a few conserved molecular factors, intraflagellar transport complex A and the tubby family adapter protein TULP3, mediate the transport of most membrane cargoes into cilia. Recent advances in cryogenic electron microscopy provide fundamental insights into these molecular players. Here, we review the molecular players mediating cargo delivery into the ciliary membrane through the lens of structural biology. These mechanistic insights into ciliary transport provide a framework for understanding of disease variants in ciliopathies, enable precise manipulation of cilia-mediated pathways, and provide a platform for the development of targeted therapeutics.
Collapse
Affiliation(s)
- Vivek Reddy Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| |
Collapse
|
6
|
Minamino N, Fujii H, Murata H, Hachinoda S, Kondo Y, Hotta K, Ueda T. Analysis of Plant-Specific ANTH Domain-Containing Protein in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2023; 64:1331-1342. [PMID: 37804254 DOI: 10.1093/pcp/pcad118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Membrane trafficking is a fundamental mechanism for protein and lipid transport in eukaryotic cells and exhibits marked diversity among eukaryotic lineages with distinctive body plans and lifestyles. Diversification of the membrane trafficking system is associated with the expansion and secondary loss of key machinery components, including RAB GTPases, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and adaptor proteins, during plant evolution. The number of AP180 N-terminal homology (ANTH) proteins, an adaptor family that regulates vesicle formation and cargo sorting during clathrin-mediated endocytosis, increases during plant evolution. In the genome of Arabidopsis thaliana, 18 genes for ANTH proteins have been identified, a higher number than that in yeast and animals, suggesting a distinctive diversification of ANTH proteins. Conversely, the liverwort Marchantia polymorpha possesses a simpler repertoire; only two genes encoding canonical ANTH proteins have been identified in its genome. Intriguingly, a non-canonical ANTH protein is encoded in the genome of M. polymorpha, which also harbors a putative kinase domain. Similar proteins have been detected in sporadic lineages of plants, suggesting their ancient origin and multiple secondary losses during evolution. We named this unique ANTH group phosphatidylinositol-binding clathrin assembly protein-K (PICALM-K) and characterized it in M. polymorpha using genetic, cell biology-based and artificial intelligence (AI)-based approaches. Our results indicate a flagella-related function of MpPICALM-K in spermatozoids, which is distinct from that of canonical ANTH proteins. Therefore, ANTH proteins have undergone significant functional diversification during evolution, and PICALM-K represents a plant-unique ANTH protein that is delivered by neofunctionalization through exon shuffling.
Collapse
Affiliation(s)
- Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Haruki Fujii
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502 Japan
| | - Haruhiko Murata
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502 Japan
| | - Sho Hachinoda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Yohei Kondo
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787 Japan
| | - Kazuhiro Hotta
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502 Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| |
Collapse
|
7
|
Yeo S, Jang J, Jung HJ, Lee H, Choe Y. Primary cilia-mediated regulation of microglial secretion in Alzheimer's disease. Front Mol Biosci 2023; 10:1250335. [PMID: 37942288 PMCID: PMC10627801 DOI: 10.3389/fmolb.2023.1250335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023] Open
Abstract
Alzheimer's disease (AD) is a brain disorder manifested by a gradual decline in cognitive function due to the accumulation of extracellular amyloid plaques, disruptions in neuronal substance transport, and the degeneration of neurons. In affected neurons, incomplete clearance of toxic proteins by neighboring microglia leads to irreversible brain inflammation, for which cellular signaling is poorly understood. Through single-cell transcriptomic analysis, we discovered distinct regional differences in the ability of microglia to clear damaged neurites. Specifically, microglia in the septal region of wild type mice exhibited a transcriptomic signature resembling disease-associated microglia (DAM). These lateral septum (LS)-enriched microglia were associated with dense axonal bundles originating from the hippocampus. Further transcriptomic and proteomic approaches revealed that primary cilia, small hair-like structures found on cells, played a role in the regulation of microglial secretory function. Notably, primary cilia were transiently observed in microglia, and their presence was significantly reduced in microglia from AD mice. We observed significant changes in the secretion and proteomic profiles of the secretome after inhibiting the primary cilia gene intraflagellar transport particle 88 (Ift88) in microglia. Intriguingly, inhibiting primary cilia in the septal microglia of AD mice resulted in the expansion of extracellular amyloid plaques and damage to adjacent neurites. These results indicate that DAM-like microglia are present in the LS, a critical target region for hippocampal nerve bundles, and that the primary ciliary signaling system regulates microglial secretion, affecting extracellular proteostasis. Age-related primary ciliopathy probably contributes to the selective sensitivity of microglia, thereby exacerbating AD. Targeting the primary ciliary signaling system could therefore be a viable strategy for modulating neuroimmune responses in AD treatments.
Collapse
Affiliation(s)
- Seungeun Yeo
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jaemyung Jang
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyun Jin Jung
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyeyoung Lee
- Division of Applied Bioengineering, Dong-eui University, Busan, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
8
|
Lee KH. Primary cilia: a novel research approach to overcome anticancer drug resistance. Front Mol Biosci 2023; 10:1270639. [PMID: 37900915 PMCID: PMC10602908 DOI: 10.3389/fmolb.2023.1270639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023] Open
Abstract
Primary cilia are cellular organelles that consist of a microtubule skeleton surrounded by a membrane filled with cell signaling receptors. Many studies have shown that primary cilia are cellular antennas, which serve as signaling hubs and their assembly and disassembly are dynamically regulated throughout the cell cycle, playing an important role in regulating cellular homeostasis. Aberrant control of primary cilia dynamics causes a number of genetic disorders known as ciliopathies and is closely associated with tumorigenesis. Anticancer drug resistance is a primary cause of chemotherapy failure, although there is no apparent remedy. The recent identification of a relationship between anticancer drug resistance and primary ciliary dynamics has made primary cilia an important target subcellular organelle for overcoming anticancer drug resistance. Therefore, the research on primary ciliary dynamics may provide new strategies to overcome anticancer drug resistance, which is urgently needed. This review aims to summarize research on the relevance of primary cilia and anticancer drug resistance, as well as future possibilities for research on overcoming anticancer drug resistance utilizing primary cilia dynamics.
Collapse
Affiliation(s)
- Kyung Ho Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Republic of Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
9
|
Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet 2023; 24:421-441. [PMID: 37072495 PMCID: PMC7615029 DOI: 10.1038/s41576-023-00587-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
Primary cilia, antenna-like sensory organelles protruding from the surface of most vertebrate cell types, are essential for regulating signalling pathways during development and adult homeostasis. Mutations in genes affecting cilia cause an overlapping spectrum of >30 human diseases and syndromes, the ciliopathies. Given the immense structural and functional diversity of the mammalian cilia repertoire, there is a growing disconnect between patient genotype and associated phenotypes, with variable severity and expressivity characteristic of the ciliopathies as a group. Recent technological developments are rapidly advancing our understanding of the complex mechanisms that control biogenesis and function of primary cilia across a range of cell types and are starting to tackle this diversity. Here, we examine the structural and functional diversity of primary cilia, their dynamic regulation in different cellular and developmental contexts and their disruption in disease.
Collapse
Affiliation(s)
- Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | | | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Ceccherini E, Signore G, Tedeschi L, Vozzi F, Di Giorgi N, Michelucci E, Cecchettini A, Rocchiccioli S. Proteomic Modulation in TGF-β-Treated Cholangiocytes Induced by Curcumin Nanoparticles. Int J Mol Sci 2023; 24:10481. [PMID: 37445659 DOI: 10.3390/ijms241310481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Curcumin is a natural polyphenol that exhibits a variety of beneficial effects on health, including anti-inflammatory, antioxidant, and hepato-protective properties. Due to its poor water solubility and membrane permeability, in the present study, we prepared and characterized a water-stable, freely dispersible nanoformulation of curcumin. Although the potential of curcumin nanoformulations in the hepatic field has been studied, there are no investigations on their effect in fibrotic pathological conditions involving cholangiocytes. Exploiting an in vitro model of transforming growth factor-β (TGF-β)-stimulated cholangiocytes, we applied the Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS)-based quantitative proteomic approaches to study the proteome modulation induced by curcumin nanoformulation. Our results confirmed the well-documented anti-inflammatory properties of this nutraceutic, highlighting the induction of programmed cell death as a mechanism to counteract the cellular damages induced by TGF-β. Moreover, curcumin nanoformulation positively influenced the expression of several proteins involved in TGF-β-mediated fibrosis. Given the crucial importance of deregulated cholangiocyte functions during cholangiopathies, our results provide the basis for a better understanding of the mechanisms associated with this pathology and could represent a rationale for the development of more targeted therapies.
Collapse
Affiliation(s)
- Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Giovanni Signore
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | - Lorena Tedeschi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Federico Vozzi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Nicoletta Di Giorgi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Elena Michelucci
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
- Institute of Chemistry of Organometallic Compounds, National Research Council, 56124 Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
11
|
Ma R, Kutchy NA, Wang Z, Hu G. Extracellular vesicle-mediated delivery of anti-miR-106b inhibits morphine-induced primary ciliogenesis in the brain. Mol Ther 2023; 31:1332-1345. [PMID: 37012704 PMCID: PMC10188913 DOI: 10.1016/j.ymthe.2023.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Repeated use of opioids such as morphine causes changes in the shape and signal transduction pathways of various brain cells, including astrocytes and neurons, resulting in alterations in brain functioning and ultimately leading to opioid use disorder. We previously demonstrated that extracellular vesicle (EV)-induced primary ciliogenesis contributes to the development of morphine tolerance. Herein, we aimed to investigate the underlying mechanisms and potential EV-mediated therapeutic approach to inhibit morphine-mediated primary ciliogenesis. We demonstrated that miRNA cargo in morphine-stimulated-astrocyte-derived EVs (morphine-ADEVs) mediated morphine-induced primary ciliogenesis in astrocytes. CEP97 is a target of miR-106b and is a negative regulator of primary ciliogenesis. Intranasal delivery of ADEVs loaded with anti-miR-106b decreased the expression of miR-106b in astrocytes, inhibited primary ciliogenesis, and prevented the development of tolerance in morphine-administered mice. Furthermore, we confirmed primary ciliogenesis in the astrocytes of opioid abusers. miR-106b-5p in morphine-ADEVs induces primary ciliogenesis via targeting CEP97. Intranasal delivery of ADEVs loaded with anti-miR-106b ameliorates morphine-mediated primary ciliogenesis and prevents morphine tolerance. Our findings bring new insights into the mechanisms underlying primary cilium-mediated morphine tolerance and pave the way for developing ADEV-mediated small RNA delivery strategies for preventing substance use disorders.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901- 8525, USA
| | - Zhongbin Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
12
|
Aslanyan MG, Doornbos C, Diwan GD, Anvarian Z, Beyer T, Junger K, van Beersum SEC, Russell RB, Ueffing M, Ludwig A, Boldt K, Pedersen LB, Roepman R. A targeted multi-proteomics approach generates a blueprint of the ciliary ubiquitinome. Front Cell Dev Biol 2023; 11:1113656. [PMID: 36776558 PMCID: PMC9908615 DOI: 10.3389/fcell.2023.1113656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Establishment and maintenance of the primary cilium as a signaling-competent organelle requires a high degree of fine tuning, which is at least in part achieved by a variety of post-translational modifications. One such modification is ubiquitination. The small and highly conserved ubiquitin protein possesses a unique versatility in regulating protein function via its ability to build mono and polyubiquitin chains onto target proteins. We aimed to take an unbiased approach to generate a comprehensive blueprint of the ciliary ubiquitinome by deploying a multi-proteomics approach using both ciliary-targeted ubiquitin affinity proteomics, as well as ubiquitin-binding domain-based proximity labelling in two different mammalian cell lines. This resulted in the identification of several key proteins involved in signaling, cytoskeletal remodeling and membrane and protein trafficking. Interestingly, using two different approaches in IMCD3 and RPE1 cells, respectively, we uncovered several novel mechanisms that regulate cilia function. In our IMCD3 proximity labeling cell line model, we found a highly enriched group of ESCRT-dependent clathrin-mediated endocytosis-related proteins, suggesting an important and novel role for this pathway in the regulation of ciliary homeostasis and function. In contrast, in RPE1 cells we found that several structural components of caveolae (CAV1, CAVIN1, and EHD2) were highly enriched in our cilia affinity proteomics screen. Consistently, the presence of caveolae at the ciliary pocket and ubiquitination of CAV1 specifically, were found likely to play a role in the regulation of ciliary length in these cells. Cilia length measurements demonstrated increased ciliary length in RPE1 cells stably expressing a ubiquitination impaired CAV1 mutant protein. Furthermore, live cell imaging in the same cells revealed decreased CAV1 protein turnover at the cilium as the possible cause for this phenotype. In conclusion, we have generated a comprehensive list of cilia-specific proteins that are subject to regulation via ubiquitination which can serve to further our understanding of cilia biology in health and disease.
Collapse
Affiliation(s)
- Mariam G. Aslanyan
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cenna Doornbos
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gaurav D. Diwan
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Zeinab Anvarian
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tina Beyer
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Sylvia E. C. van Beersum
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Robert B. Russell
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Alexander Ludwig
- School of Biological Sciences, NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Lotte B. Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
13
|
Shim MS, Liton PB. The physiological and pathophysiological roles of the autophagy lysosomal system in the conventional aqueous humor outflow pathway: More than cellular clean up. Prog Retin Eye Res 2022; 90:101064. [PMID: 35370083 PMCID: PMC9464695 DOI: 10.1016/j.preteyeres.2022.101064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
During the last few years, the autophagy lysosomal system is emerging as a central cellular pathway with roles in survival, acting as a housekeeper and stress response mechanism. Studies by our and other labs suggest that autophagy might play an essential role in maintaining aqueous humor outflow homeostasis, and that malfunction of autophagy in outflow pathway cells might predispose to ocular hypertension and glaucoma pathogenesis. In this review, we will collect the current knowledge and discuss the molecular mechanisms by which autophagy does or might regulate normal outflow pathway tissue function, and its response to different types of stressors (oxidative stress and mechanical stress). We will also discuss novel roles of autophagy and lysosomal enzymes in modulation of TGFβ signaling and ECM remodeling, and the link between dysregulated autophagy and cellular senescence. We will examine what we have learnt, using pre-clinical animal models about how dysregulated autophagy can contribute to disease and apply that to the current status of autophagy in human glaucoma. Finally, we will consider and discuss the challenges and the potential of autophagy as a therapeutic target for the treatment of ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Myoung Sup Shim
- Duke University, Department of Ophthalmology, Durham, NC, 27705, USA
| | - Paloma B Liton
- Duke University, Department of Ophthalmology, Durham, NC, 27705, USA.
| |
Collapse
|
14
|
Ptchd1 mediates opioid tolerance via cholesterol-dependent effects on μ-opioid receptor trafficking. Nat Neurosci 2022; 25:1179-1190. [PMID: 35982154 DOI: 10.1038/s41593-022-01135-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Repeated exposure to opioids causes tolerance, which limits their analgesic utility and contributes to overdose and abuse liability. However, the molecular mechanisms underpinning tolerance are not well understood. Here, we used a forward genetic screen in Caenorhabditis elegans for unbiased identification of genes regulating opioid tolerance which revealed a role for PTR-25/Ptchd1. We found that PTR-25/Ptchd1 controls μ-opioid receptor trafficking and that these effects were mediated by the ability of PTR-25/Ptchd1 to control membrane cholesterol content. Electrophysiological studies showed that loss of Ptchd1 in mice reduced opioid-induced desensitization of neurons in several brain regions and the peripheral nervous system. Mice and C. elegans lacking Ptchd1/PTR-25 display similarly augmented responses to opioids. Ptchd1 knockout mice fail to develop analgesic tolerance and have greatly diminished somatic withdrawal. Thus, we propose that Ptchd1 plays an evolutionarily conserved role in protecting the μ-opioid receptor against overstimulation.
Collapse
|
15
|
Napoli G, Panzironi N, Traversa A, Catalanotto C, Pace V, Petrizzelli F, Giovannetti A, Lazzari S, Cogoni C, Tartaglia M, Carella M, Mazza T, Pizzuti A, Parisi C, Caputo V. Potassium Channel KCNH1 Activating Variants Cause Altered Functional and Morphological Ciliogenesis. Mol Neurobiol 2022; 59:4825-4838. [PMID: 35639255 PMCID: PMC9363390 DOI: 10.1007/s12035-022-02886-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/17/2022] [Indexed: 12/18/2022]
Abstract
The primary cilium is a non-motile sensory organelle that extends from the surface of most vertebrate cells and transduces signals regulating proliferation, differentiation, and migration. Primary cilia dysfunctions have been observed in cancer and in a group of heterogeneous disorders called ciliopathies, characterized by renal and liver cysts, skeleton and limb abnormalities, retinal degeneration, intellectual disability, ataxia, and heart disease and, recently, in autism spectrum disorder, schizophrenia, and epilepsy. The potassium voltage-gated channel subfamily H member 1 (KCNH1) gene encodes a member of the EAG (ether-à-go-go) family, which controls potassium flux regulating resting membrane potential in both excitable and non-excitable cells and is involved in intracellular signaling, cell proliferation, and tumorigenesis. KCNH1 missense variants have been associated with syndromic neurodevelopmental disorders, including Zimmermann-Laband syndrome 1 (ZLS1, MIM #135500), Temple-Baraitser syndrome (TMBTS, MIM #611816), and, recently, with milder phenotypes as epilepsy. In this work, we provide evidence that KCNH1 localizes at the base of the cilium in pre-ciliary vesicles and ciliary pocket of human dermal fibroblasts and retinal pigment epithelial (hTERT RPE1) cells and that the pathogenic missense variants (L352V and R330Q; NP_002229.1) perturb cilia morphology, assembly/disassembly, and Sonic Hedgehog signaling, disclosing a multifaceted role of the protein. The study of KCNH1 localization, its functions related to primary cilia, and the alterations introduced by mutations in ciliogenesis, cell cycle coordination, cilium morphology, and cilia signaling pathways could help elucidate the molecular mechanisms underlying neurological phenotypes and neurodevelopmental disorders not considered as classical ciliopathies but for which a significant role of primary cilia is emerging.
Collapse
Affiliation(s)
- Giulia Napoli
- Institute of Biochemistry and Cell Biology, CNR-National Research Council, Monterotondo Scalo, Rome, Italy
| | - Noemi Panzironi
- Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Alice Traversa
- Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo (FG), Italy
| | | | - Valentina Pace
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Petrizzelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Agnese Giovannetti
- Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Sara Lazzari
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carlo Cogoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Massimo Carella
- Research Unit of Medical Genetics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Tommaso Mazza
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Parisi
- Institute of Biochemistry and Cell Biology, CNR-National Research Council, Monterotondo Scalo, Rome, Italy.
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
16
|
Renthal R, Chen LY. Tunnel connects lipid bilayer to occluded odorant-binding site of insect olfactory receptor. Biophys Chem 2022; 289:106862. [DOI: 10.1016/j.bpc.2022.106862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
|
17
|
Juhl AD, Anvarian Z, Kuhns S, Berges J, Andersen JS, Wüstner D, Pedersen LB. Transient accumulation and bidirectional movement of KIF13B in primary cilia. J Cell Sci 2022; 136:275012. [DOI: 10.1242/jcs.259257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/01/2022] [Indexed: 10/18/2022] Open
Abstract
Primary cilia are microtubule-based sensory organelles whose assembly and function rely on the conserved bidirectional intraflagellar transport (IFT) system, which is powered by anterograde kinesin-2 and retrograde cytoplasmic dynein 2 motors. Nematodes additionally employ a cell type-specific kinesin-3 motor, KLP-6, which moves within cilia independently of IFT and regulates ciliary content and function. Here we provide evidence that a KLP-6 homolog, KIF13B, undergoes bursts of bidirectional movement within primary cilia of cultured immortalized human retinal pigment epithelial (hTERT-RPE1) cells. Anterograde and retrograde intraciliary velocities of KIF13B were similar to those of IFT (IFT172-eGFP), but intraciliary movement of KIF13B required its own motor domain and appeared to be cell-type specific. Our work provides the first demonstration of motor-driven, intraciliary movement by a vertebrate kinesin other than kinesin-2 motors.
Collapse
Affiliation(s)
- Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Zeinab Anvarian
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | - Stefanie Kuhns
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Julia Berges
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
- Department of Biomedicine, Facultad Ciencias Experimentales, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km. 1.800, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Jens S. Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Lotte B. Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
18
|
Kanamaru T, Neuner A, Kurtulmus B, Pereira G. Balancing the length of the distal tip by septins is key for stability and signalling function of primary cilia. EMBO J 2022; 41:e108843. [PMID: 34981518 PMCID: PMC8724769 DOI: 10.15252/embj.2021108843] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
Primary cilia are antenna-like organelles required for signalling transduction. How cilia structure is mechanistically maintained at steady-state to promote signalling is largely unknown. Here, we define that mammalian primary cilia axonemes are formed by proximal segment (PS) and distal segment (DS) delineated by tubulin polyglutamylation-rich and -poor regions, respectively. The analysis of proximal/distal segmentation indicated that perturbations leading to cilia over-elongation influenced PS or DS length with a different impact on cilia behaviour. We identified septins as novel repressors of DS growth. We show that septins control the localisation of MKS3 and CEP290 required for a functional transition zone (TZ), and the cilia tip accumulation of the microtubule-capping kinesin KIF7, a cilia-growth inhibitor. Live-cell imaging and analysis of sonic-hedgehog (SHH) signalling activation established that DS over-extension increased cilia ectocytosis events and decreased SHH activation. Our data underlines the importance of understanding cilia segmentation for length control and cilia-dependent signalling.
Collapse
Affiliation(s)
- Taishi Kanamaru
- Centre for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
- German Cancer Research Centre (DKFZ)DKFZ‐ZMBH AllianceHeidelbergGermany
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| | - Annett Neuner
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| | - Bahtiyar Kurtulmus
- Centre for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
- German Cancer Research Centre (DKFZ)DKFZ‐ZMBH AllianceHeidelbergGermany
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| | - Gislene Pereira
- Centre for Organismal Studies (COS)University of HeidelbergHeidelbergGermany
- German Cancer Research Centre (DKFZ)DKFZ‐ZMBH AllianceHeidelbergGermany
- Centre for Molecular Biology (ZMBH)University of HeidelbergHeidelbergGermany
| |
Collapse
|
19
|
Quidwai T, Wang J, Hall EA, Petriman NA, Leng W, Kiesel P, Wells JN, Murphy LC, Keighren MA, Marsh JA, Lorentzen E, Pigino G, Mill P. A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia. eLife 2021; 10:e69786. [PMID: 34734804 PMCID: PMC8754431 DOI: 10.7554/elife.69786] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation.
Collapse
Affiliation(s)
- Tooba Quidwai
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Jiaolong Wang
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Emma A Hall
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Narcis A Petriman
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Weihua Leng
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Petra Kiesel
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Jonathan N Wells
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Laura C Murphy
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Margaret A Keighren
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Human TechnopoleMilanItaly
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
20
|
Primary cilia and the reciprocal activation of AKT and SMAD2/3 regulate stretch-induced autophagy in trabecular meshwork cells. Proc Natl Acad Sci U S A 2021; 118:2021942118. [PMID: 33753495 DOI: 10.1073/pnas.2021942118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activation of autophagy is one of the responses elicited by high intraocular pressure (IOP) and mechanical stretch in trabecular meshwork (TM) cells. However, the mechanosensor and the molecular mechanisms by which autophagy is induced by mechanical stretch in these or other cell types is largely unknown. Here, we have investigated the mechanosensor and downstream signaling pathway that regulate cyclic mechanical stretch (CMS)-induced autophagy in TM cells. We report that primary cilia act as a mechanosensor for CMS-induced autophagy and identified a cross-regulatory talk between AKT1 and noncanonical SMAD2/3 signaling as critical components of primary cilia-mediated activation of autophagy by mechanical stretch. Furthermore, we demonstrated the physiological significance of our findings in ex vivo perfused eyes. Removal of primary cilia disrupted the homeostatic IOP compensatory response and prevented the increase in LC3-II protein levels in response to elevated pressure challenge, strongly supporting a role of primary cilia-mediated autophagy in regulating IOP homeostasis.
Collapse
|
21
|
Astrocyte-Derived Extracellular Vesicle-Mediated Activation of Primary Ciliary Signaling Contributes to the Development of Morphine Tolerance. Biol Psychiatry 2021; 90:575-585. [PMID: 34417054 DOI: 10.1016/j.biopsych.2021.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Morphine is used extensively in the clinical setting owing to its beneficial effects, such as pain relief; its therapeutic utility is limited because the prolonged use of morphine often results in tolerance and addiction. Astrocytes in the brain are a direct target of morphine action and play an essential role in the development of morphine tolerance. Primary cilia and the cilia-mediated sonic hedgehog (SHH) signaling pathways have been shown to play a role in drug resistance and morphine tolerance, respectively. Extracellular vesicles (EVs) play important roles as cargo-carrying vesicles mediating communication among cells and tissues. METHODS C57BL/6N mice were administered morphine for 8 days to develop tolerance, which was determined using the tail-flick and hot plate assays. EVs were separated from astrocyte-conditioned media using either size exclusion chromatography or ultracentrifugation approaches, followed by characterization of EVs using nanoparticle tracking analysis for EV size distribution and number, Western blotting for EV markers, and electron microscopy for EV morphology. Astrocytes were treated with EVs for 24 hours, followed by assessing primary cilia by fluorescent immunostaining for primary cilia markers (ARL13B and acetylated tubulin). RESULTS Morphine-tolerant mice exhibited an increase in primary cilia length and percentage of ciliated astrocytes. The levels of SHH protein were upregulated in morphine-stimulated astrocyte-derived EVs. SHH on morphine-stimulated astrocyte-derived EVs activated SHH signaling in astrocytes through primary cilia. Our in vivo study demonstrated that inhibition of either EV release or primary cilia prevents morphine tolerance in mice. CONCLUSIONS EV-mediated primary ciliogenesis contributes to the development of morphine tolerance.
Collapse
|
22
|
Kobayashi Y, Tomoshige S, Imakado K, Sekino Y, Koganezawa N, Shirao T, Diniz GB, Miyamoto T, Saito Y. Ciliary GPCR-based transcriptome as a key regulator of cilia length control. FASEB Bioadv 2021; 3:744-767. [PMID: 34485842 PMCID: PMC8409570 DOI: 10.1096/fba.2021-00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
The primary cilium is a plasma membrane-protruding sensory organelle that efficiently conveys signaling cascades in a highly ordered microenvironment. Its signaling is mediated, in part, by a limited set of GPCRs preferentially enriched in the cilium membrane. This includes melanin-concentrating hormone (MCH) receptor 1 (MCHR1), which plays a role in feeding and mood. In addition to its receptor composition, the length of the cilium is a characteristic parameter that is implicated in its function. We previously found that MCH can dynamically shorten cilia length via the Gi/o and Akt pathways in both MCHR1-expressing hTERT-RPE1 cells (hRPE1 cells) and rat hippocampal neurons. However, the detailed mechanisms by which MCH regulates cilia length through ciliary MCHR1 remains unclear. In this study, we aimed to determine the transcriptome changes in MCHR1-expressing hRPE1 cells in response to MCH to identify the target molecules involved in cilia length regulation via MCHR1 activation. RNA sequencing analysis of ciliated cells subjected to MCH treatment showed upregulation of 424 genes and downregulation of 112 genes compared with static control cells. Validation by quantitative real-time PCR, knocking down, and CRISPR/Cas9-mediated knockout technology identified a molecule, PDZ and LIM domain-containing protein 5 (PDLIM5). Thus, it was considered as the most significant key factor for MCHR1-mediated shortening of cilia length. Additional analyses revealed that the actin-binding protein alpha-actinin 1/4 is a crucial downstream target of the PDLIM5 signaling pathway that exerts an effect on MCHR1-induced cilia shortening. In the endogenous MCHR1-expressing hippocampus, transcriptional upregulation of PDLIM5 and actinin 1/4, following the application of MCH, was detected when the MCHR1-positive cilia were shortened. Together, our transcriptome study based on ciliary MCHR1 function uncovered a novel and important regulatory step underlying cilia length control. These results will potentially serve as a basis for understanding the mechanism underlying the development of obesity and mood disorders.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Sakura Tomoshige
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Kosuke Imakado
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Yuko Sekino
- Endowed Laboratory of Human Cell‐Based Drug DiscoveryGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Noriko Koganezawa
- Department of Neurobiology and BehaviorGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Tomoaki Shirao
- Department of Neurobiology and BehaviorGraduate School of MedicineGunma UniversityMaebashiJapan
- AlzMed, Inc.TokyoJapan
| | - Giovanne B. Diniz
- California National Primate Research CenterUniversity of CaliforniaDavisCAUSA
| | - Tatsuo Miyamoto
- Department of Genetics and Cell BiologyResearch Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Yumiko Saito
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| |
Collapse
|
23
|
Chen Y, Aspera-Werz RH, Menger MM, Falldorf K, Ronniger M, Stacke C, Histing T, Nussler AK, Ehnert S. Exposure to 16 Hz Pulsed Electromagnetic Fields Protect the Structural Integrity of Primary Cilia and Associated TGF-β Signaling in Osteoprogenitor Cells Harmed by Cigarette Smoke. Int J Mol Sci 2021; 22:7036. [PMID: 34210094 PMCID: PMC8268780 DOI: 10.3390/ijms22137036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023] Open
Abstract
Cigarette smoking (CS) is one of the main factors related to avoidable diseases and death across the world. Cigarette smoke consists of numerous toxic compounds that contribute to the development of osteoporosis and fracture nonunion. Exposure to pulsed electromagnetic fields (PEMF) was proven to be a safe and effective therapy to support bone fracture healing. The aims of this study were to investigate if extremely low frequency (ELF-) PEMFs may be beneficial to treat CS-related bone disease, and which effect the duration of the exposure has. In this study, immortalized human mesenchymal stem cells (SCP-1 cells) impaired by 5% cigarette smoke extract (CSE) were exposed to ELF-PEMFs (16 Hz) with daily exposure ranging from 7 min to 90 min. Cell viability, adhesion, and spreading were evaluated by Sulforhodamine B, Calcein-AM staining, and Phalloidin-TRITC/Hoechst 33342 staining. A migration assay kit was used to determine cell migration. Changes in TGF-β signaling were evaluated with an adenoviral Smad2/3 reporter assay, RT-PCR, and Western blot. The structure and distribution of primary cilia were analyzed with immunofluorescent staining. Our data indicate that 30 min daily exposure to a specific ELF-PEMF most effectively promoted cell viability, enhanced cell adhesion and spreading, accelerated migration, and protected TGF-β signaling from CSE-induced harm. In summary, the current results provide evidence that ELF-PEMF can be used to support early bone healing in patients who smoke.
Collapse
Affiliation(s)
- Yangmengfan Chen
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (Y.C.); (R.H.A.-W.); (M.M.M.); (T.H.); (S.E.)
| | - Romina H. Aspera-Werz
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (Y.C.); (R.H.A.-W.); (M.M.M.); (T.H.); (S.E.)
| | - Maximilian M. Menger
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (Y.C.); (R.H.A.-W.); (M.M.M.); (T.H.); (S.E.)
| | - Karsten Falldorf
- Sachtleben GmbH, Haus Spectrum am UKE, Martinistraße 64, D-20251 Hamburg, Germany; (K.F.); (M.R.); (C.S.)
| | - Michael Ronniger
- Sachtleben GmbH, Haus Spectrum am UKE, Martinistraße 64, D-20251 Hamburg, Germany; (K.F.); (M.R.); (C.S.)
| | - Christina Stacke
- Sachtleben GmbH, Haus Spectrum am UKE, Martinistraße 64, D-20251 Hamburg, Germany; (K.F.); (M.R.); (C.S.)
| | - Tina Histing
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (Y.C.); (R.H.A.-W.); (M.M.M.); (T.H.); (S.E.)
| | - Andreas K. Nussler
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (Y.C.); (R.H.A.-W.); (M.M.M.); (T.H.); (S.E.)
| | - Sabrina Ehnert
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (Y.C.); (R.H.A.-W.); (M.M.M.); (T.H.); (S.E.)
| |
Collapse
|
24
|
Nano PR, Johnson TK, Kudo T, Mooney NA, Ni J, Demeter J, Jackson PK, Chen JK. Structure-activity mapping of ARHGAP36 reveals regulatory roles for its GAP homology and C-terminal domains. PLoS One 2021; 16:e0251684. [PMID: 33999959 PMCID: PMC8128262 DOI: 10.1371/journal.pone.0251684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/01/2021] [Indexed: 11/24/2022] Open
Abstract
ARHGAP36 is an atypical Rho GTPase-activating protein (GAP) family member that drives both spinal cord development and tumorigenesis, acting in part through an N-terminal motif that suppresses protein kinase A and activates Gli transcription factors. ARHGAP36 also contains isoform-specific N-terminal sequences, a central GAP-like module, and a unique C-terminal domain, and the functions of these regions remain unknown. Here we have mapped the ARHGAP36 structure-activity landscape using a deep sequencing-based mutagenesis screen and truncation mutant analyses. Using this approach, we have discovered several residues in the GAP homology domain that are essential for Gli activation and a role for the C-terminal domain in counteracting an N-terminal autoinhibitory motif that is present in certain ARHGAP36 isoforms. In addition, each of these sites modulates ARHGAP36 recruitment to the plasma membrane or primary cilium. Through comparative proteomics, we also have identified proteins that preferentially interact with active ARHGAP36, and we demonstrate that one binding partner, prolyl oligopeptidase-like protein, is a novel ARHGAP36 antagonist. Our work reveals multiple modes of ARHGAP36 regulation and establishes an experimental framework that can be applied towards other signaling proteins.
Collapse
Affiliation(s)
- Patricia R. Nano
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Taylor K. Johnson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Takamasa Kudo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nancie A. Mooney
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jun Ni
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Janos Demeter
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter K. Jackson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - James K. Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Chemistry, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Douanne T, Stinchcombe JC, Griffiths GM. Teasing out function from morphology: Similarities between primary cilia and immune synapses. J Cell Biol 2021; 220:212075. [PMID: 33956049 PMCID: PMC8105739 DOI: 10.1083/jcb.202102089] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Immune synapses are formed between immune cells to facilitate communication and coordinate the immune response. The reorganization of receptors involved in recognition and signaling creates a transient area of plasma membrane specialized in signaling and polarized secretion. Studies on the formation of the immune synapse between cytotoxic T lymphocytes (CTLs) and their targets uncovered a critical role for centrosome polarization in CTL function and suggested a striking parallel between the synapse and primary cilium. Since these initial observations, a plethora of further morphological, functional, and molecular similarities have been identified between these two fascinating structures. In this review, we describe how advances in imaging and molecular techniques have revealed additional parallels as well as functionally significant differences and discuss how comparative studies continue to shed light on the molecular mechanisms underlying the functions of both the immune synapse and primary cilium.
Collapse
Affiliation(s)
- Tiphaine Douanne
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, England, UK
| | - Jane C Stinchcombe
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, England, UK
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
26
|
Camblor-Perujo S, Kononenko NL. Brain-specific functions of the endocytic machinery. FEBS J 2021; 289:2219-2246. [PMID: 33896112 DOI: 10.1111/febs.15897] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Endocytosis is an essential cellular process required for multiple physiological functions, including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. In a broad sense, endocytosis is accomplished through either constitutive or ligand-induced invagination of the plasma membrane, which results in the formation of the plasma membrane-retrieved endocytic vesicles, which can either be sent for degradation to the lysosomes or recycled back to the PM. This additional function of endocytosis in membrane retrieval has been adopted by excitable cells, such as neurons, for membrane equilibrium maintenance at synapses. The last two decades were especially productive with respect to the identification of brain-specific functions of the endocytic machinery, which additionally include but not limited to regulation of neuronal differentiation and migration, maintenance of neuron morphology and synaptic plasticity, and prevention of neurotoxic aggregates spreading. In this review, we highlight the current knowledge of brain-specific functions of endocytic machinery with a specific focus on three brain cell types, neuronal progenitor cells, neurons, and glial cells.
Collapse
Affiliation(s)
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, University of Cologne, Germany.,Center for Physiology & Pathophysiology, Medical Faculty, University of Cologne, Germany
| |
Collapse
|
27
|
Nonredundant roles of DIAPHs in primary ciliogenesis. J Biol Chem 2021; 296:100680. [PMID: 33872598 PMCID: PMC8122175 DOI: 10.1016/j.jbc.2021.100680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
Primary cilia are hubs for several signaling pathways, and disruption in cilia function and formation leads to a range of diseases collectively known as ciliopathies. Both ciliogenesis and cilia maintenance depend on vesicle trafficking along a network of microtubules and actin filaments toward the basal body. The DIAPH (Diaphanous-related) family of formins promote both actin polymerization and microtubule (MT) stability. Recently, we showed that the formin DIAPH1 is involved in ciliogenesis. However, the role of other DIAPH family members in ciliogenesis had not been investigated. Here we show that depletion of either DIAPH2 or DIAPH3 also disrupted ciliogenesis and cilia length. DIAPH3 depletion also reduced trafficking within cilia. To specifically examine the role of DIAPH3 at the base, we used fused full-length DIAPH3 to centrin, which targeted DIAPH3 to the basal body, causing increased trafficking to the ciliary base, an increase in cilia length, and formation of bulbs at the tips of cilia. Additionally, we confirmed that the microtubule-stabilizing properties of DIAPH3 are important for its cilia length functions and trafficking. These results indicate the importance of DIAPH proteins in regulating cilia maintenance. Moreover, defects in ciliogenesis caused by DIAPH depletion could only be rescued by expression of the specific family member depleted, indicating nonredundant roles for these proteins.
Collapse
|
28
|
Yamakawa D, Katoh D, Kasahara K, Shiromizu T, Matsuyama M, Matsuda C, Maeno Y, Watanabe M, Nishimura Y, Inagaki M. Primary cilia-dependent lipid raft/caveolin dynamics regulate adipogenesis. Cell Rep 2021; 34:108817. [PMID: 33691104 DOI: 10.1016/j.celrep.2021.108817] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/28/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Primary cilia play a pivotal role in signal transduction and development and are known to serve as signaling hubs. Recent studies have shown that primary cilium dysfunction influences adipogenesis, but the mechanisms are unclear. Here, we show that mesenchymal progenitors C3H10T1/2 depleted of trichoplein, a key regulator of cilium formation, have significantly longer cilia than control cells and fail to differentiate into adipocytes. Mechanistically, the elongated cilia prevent caveolin-1- and/or GM3-positive lipid rafts from being assembled around the ciliary base where insulin receptor proteins accumulate, thereby inhibiting the insulin-Akt signaling. We further generate trichoplein knockout mice, in which adipogenic progenitors display elongated cilia and impair the lipid raft dynamics. The knockout mice on an extended high-fat diet exhibit reduced body fat and smaller adipocytes than wild-type (WT) mice. Overall, our results suggest a role for primary cilia in regulating adipogenic signal transduction via control of the lipid raft dynamics around cilia.
Collapse
Affiliation(s)
- Daishi Yamakawa
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Daisuke Katoh
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Kousuke Kasahara
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202, Japan
| | - Chise Matsuda
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yumi Maeno
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
29
|
WDR35 is involved in subcellular localization of acetylated tubulin in 293T cells. Biochem Biophys Res Commun 2021; 547:169-175. [PMID: 33610917 DOI: 10.1016/j.bbrc.2021.01.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 11/23/2022]
Abstract
WDR35/IFT121 is an intraflagellar transport protein in primary cilia, which is associated with RagA, an mTORC1-activating protein. To elucidate the functions of the interaction between WDR35 and RagA in primary cilia, as well as mTOR signaling, we identified WDR35-interacting proteins using mass spectrometry. We found that WDR35 associates with CCT complex proteins including TCP1/CCT1, which act as molecular chaperones for α-tubulin folding. Immunostaining showed that acetylated α-tubulin was concentrated in the vicinity of primary cilia in 293T cells. In contrast, acetylated tubulin was dispersed in WDR35 partial knockout cells established from 293T cells. Similarly, scattered subcellular localization of acetylated tubulin was observed in RagA knockout cells. RagA was present in the primary cilia of NIH3T3 cells, and the GDP form of RagA exhibited strong binding to WDR35 and negative regulation of primary cilium formation. These results suggest that WDR35 is involved in the subcellular localization of acetylated tubulin in primary cilia via its interactions with TCP1 and/or RagA family proteins.
Collapse
|
30
|
Álvarez-Satta M, Lago-Docampo M, Bea-Mascato B, Solarat C, Castro-Sánchez S, Christensen ST, Valverde D. ALMS1 Regulates TGF-β Signaling and Morphology of Primary Cilia. Front Cell Dev Biol 2021; 9:623829. [PMID: 33598462 PMCID: PMC7882606 DOI: 10.3389/fcell.2021.623829] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
In this study, we aimed to evaluate the role of ALMS1 in the morphology of primary cilia and regulation of cellular signaling using a knockdown model of the hTERT-RPE1 cell line. ALMS1 depletion resulted in the formation of longer cilia, which often displayed altered morphology as evidenced by extensive twisting and bending of the axoneme. Transforming growth factor beta/bone morphogenetic protein (TGF-β/BMP) signaling, which is regulated by primary cilia, was similarly affected by ALMS1 depletion as judged by reduced levels of TGFβ-1-mediated activation of SMAD2/3. These results provide novel information on the role of ALMS1 in the function of primary cilia and processing of cellular signaling, which when aberrantly regulated may underlie Alström syndrome.
Collapse
Affiliation(s)
- María Álvarez-Satta
- CINBIO, Universidade de Vigo, Vigo, Spain.,Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Mauro Lago-Docampo
- CINBIO, Universidade de Vigo, Vigo, Spain.,Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Brais Bea-Mascato
- CINBIO, Universidade de Vigo, Vigo, Spain.,Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Carlos Solarat
- CINBIO, Universidade de Vigo, Vigo, Spain.,Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Sheila Castro-Sánchez
- CINBIO, Universidade de Vigo, Vigo, Spain.,Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Søren T Christensen
- Department of Biology, Section of Cell Biology and Physiology, The August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Diana Valverde
- CINBIO, Universidade de Vigo, Vigo, Spain.,Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), Hospital Álvaro Cunqueiro, Vigo, Spain
| |
Collapse
|
31
|
Glypican-1, -3, -5 (GPC1, GPC3, GPC5) and Hedgehog Pathway Expression in Oral Squamous Cell Carcinoma. Appl Immunohistochem Mol Morphol 2021; 29:345-351. [PMID: 33512817 DOI: 10.1097/pai.0000000000000907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/28/2020] [Indexed: 12/09/2022]
Abstract
Proteoglycans are involved in tumor development and may regulate the Hedgehog (HH) pathway. This study aimed to investigate the gene and protein expression of glypican-1 (GPC1), -3 (GPC3), and -5 (GPC5) in oral squamous cell carcinoma (OSCC) and tumor-free lateral margins (TM) and their association with the HH pathway. Quantitative PCR was performed for GPC1, GPC3, GPC5, SHH, PTCH1, SMO, and GLI1 genes in samples of OSCC (n=31), TM (n=12), and non-neoplastic oral mucosa (NNM) of healthy patients (n=6), alongside an immunohistochemical evaluation of GPC1, GPC3, and GPC5 proteins and HH proteins SHH and glioma-associated oncogene homolog 1 (GLI1). Double staining for GPC3/SHH, GPC5/SHH, GPC3/tubulin [ac Lys40], GPC5/Tubulin [ac Lys40], and GPC5/GLI1 was also performed. Overexpression of GPC1 and GPC5 in tumor samples and underexpressed levels of GPC3 gene transcripts were observed when compared with TM (standard sample). HH pathway mRNA aberrant expression in OSCC samples and a negative correlation between GPC1 and GPC5 at transcription levels were detected. GPC1 staining was rare in OSCC, but positive cells were found in NNM and TM. Otherwise positive immunostaining for GPC3 and GPC5 was observed in OSCCs, but not in NNM and TM. Blood vessels adjacent to tumor islands were positive for GPC1 and GPC5. Co-localization of GPC3-positive and GPC5-positive cells with SHH and Tubulin [ac Lys40] proteins was noted, as well as of GPC5 and GLI1. The absence of the GPC1 protein in neoplastic cells, underexpression of the GPC3 gene, and co-localization of GPCs and HH proteins may indicate the maintenance of aberrant HH pathway activation in OSCC.
Collapse
|
32
|
Lee J, Sul HJ, Kim KH, Chang JY, Shong M. Primary Cilia Mediate TSH-Regulated Thyroglobulin Endocytic Pathways. Front Endocrinol (Lausanne) 2021; 12:700083. [PMID: 34552555 PMCID: PMC8451241 DOI: 10.3389/fendo.2021.700083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/12/2021] [Indexed: 12/02/2022] Open
Abstract
Primary cilia are sensory organelles with a variety of receptors and channels on their membranes. Recently, primary cilia were proposed to be crucial sites for exocytosis and endocytosis of vesicles associated with endocytic control of various ciliary signaling pathways. Thyroglobulin (Tg) synthesis and Tg exocytosis/endocytosis are critical for the functions of thyroid follicular cells, where primary cilia are relatively well preserved. LRP2/megalin has been detected on the apical surface of absorptive epithelial cells, including thyrocytes. LRP2/megalin on thyrocytes serves as a Tg receptor and can mediate Tg endocytosis. In this study, we investigated the role of primary cilia in LRP2/megalin expression in thyroid gland stimulated with endogenous TSH using MMI-treated and Tg-Cre;Ift88flox/flox mice. LRP2/megalin expression in thyroid follicles was higher in MMI-treated mice than in untreated control mice. MMI-treated mice exhibited a significant increase in ciliogenesis in thyroid follicular cells relative to untreated controls. Furthermore, MMI-induced ciliogenesis accompanied increases in LRP2/megalin expression in thyroid follicular cells, in which LRP2/megalin was localized to the primary cilium. By contrast, in Tg-Cre;Ift88flox/flox mice, thyroid with defective primary cilia expressed markedly lower levels of LRP2/megalin. Serum Tg levels were elevated in MMI-treated mice and reduced in Tg-Cre;Ift88flox/flox mice. Taken together, these results indicate that defective ciliogenesis in murine thyroid follicular cells is associated with impaired LRP2/megalin expression and reduced serum Tg levels. Our results strongly suggest that primary cilia harbors LRP2/megalin, and are involved in TSH-mediated endocytosis of Tg in murine thyroid follicles.
Collapse
Affiliation(s)
- Junguee Lee
- Department of Pathology, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Junguee Lee, ; Minho Shong,
| | - Hae Joung Sul
- Department of Pathology, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kun-Ho Kim
- Department of Nuclear Medicine, Chungnam National University Hospital and College of Medicine, Daejeon, South Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Junguee Lee, ; Minho Shong,
| |
Collapse
|
33
|
La Sala G, Di Pietro C, Matteoni R, Bolasco G, Marazziti D, Tocchini-Valentini GP. Gpr37l1/prosaposin receptor regulates Ptch1 trafficking, Shh production, and cell proliferation in cerebellar primary astrocytes. J Neurosci Res 2020; 99:1064-1083. [PMID: 33350496 DOI: 10.1002/jnr.24775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 02/24/2024]
Abstract
Mammalian cerebellar astrocytes critically regulate the differentiation and maturation of neuronal Purkinje cells and granule precursors. The G protein-coupled receptor 37-like 1 (Gpr37l1) is expressed by Bergmann astrocytes and interacts with patched 1 (Ptch1) at peri-ciliary membranes. Cerebellar primary astrocyte cultures from wild-type and Gpr37l1 null mutant mouse pups were established and studied. Primary cilia were produced by cultures of both genotypes, as well as Ptch1 and smoothened (Smo) components of the sonic hedgehog (Shh) mitogenic pathway. Compared to wild-type cells, Gpr37l1-/- astrocytes displayed striking increases in proliferative activity, Ptch1 protein expression and internalization, intracellular cholesterol content, ciliary localization of Smo, as well as a marked production of active Shh. Similar effects were reproduced by treating wild-type astrocytes with a putative prosaptide ligand of Gpr37l1. These findings indicate that Gpr37l1-Ptch1 interactions specifically regulate Ptch1 internalization and trafficking, with consequent stimulation of Shh production and activation of proliferative signaling.
Collapse
Affiliation(s)
- Gina La Sala
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - Rafaele Matteoni
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - Giulia Bolasco
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo Scalo, Rome, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - Glauco P Tocchini-Valentini
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| |
Collapse
|
34
|
Shinde SR, Nager AR, Nachury MV. Ubiquitin chains earmark GPCRs for BBSome-mediated removal from cilia. J Biophys Biochem Cytol 2020; 219:211536. [PMID: 33185668 PMCID: PMC7716378 DOI: 10.1083/jcb.202003020] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/29/2020] [Accepted: 10/21/2020] [Indexed: 01/04/2023] Open
Abstract
Regulated trafficking of G protein-coupled receptors (GPCRs) controls cilium-based signaling pathways. β-Arrestin, a molecular sensor of activated GPCRs, and the BBSome, a complex of Bardet-Biedl syndrome (BBS) proteins, are required for the signal-dependent exit of ciliary GPCRs, but the functional interplay between β-arrestin and the BBSome remains elusive. Here we find that, upon activation, ciliary GPCRs become tagged with ubiquitin chains comprising K63 linkages (UbK63) in a β-arrestin-dependent manner before BBSome-mediated exit. Removal of ubiquitin acceptor residues from the somatostatin receptor 3 (SSTR3) and from the orphan GPCR GPR161 demonstrates that ubiquitination of ciliary GPCRs is required for their regulated exit from cilia. Furthermore, targeting a UbK63-specific deubiquitinase to cilia blocks the exit of GPR161, SSTR3, and Smoothened (SMO) from cilia. Finally, ubiquitinated proteins accumulate in cilia of mammalian photoreceptors and Chlamydomonas cells when BBSome function is compromised. We conclude that Ub chains mark GPCRs and other unwanted ciliary proteins for recognition by the ciliary exit machinery.
Collapse
|
35
|
Song K, Qing Y, Guo Q, Peden EK, Chen C, Mitch WE, Truong L, Cheng J. PDGFRA in vascular adventitial MSCs promotes neointima formation in arteriovenous fistula in chronic kidney disease. JCI Insight 2020; 5:137298. [PMID: 33001865 PMCID: PMC7710276 DOI: 10.1172/jci.insight.137298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic kidney disease (CKD) induces the failure of arteriovenous fistulas (AVFs) and promotes the differentiation of vascular adventitial GLI1-positive mesenchymal stem cells (GMCs). However, the roles of GMCs in forming neointima in AVFs remain unknown. GMCs isolated from CKD mice showed increased potential capacity of differentiation into myofibroblast-like cells. Increased activation of expression of PDGFRA and hedgehog (HH) signaling were detected in adventitial cells of AVFs from patients with end-stage kidney disease and CKD mice. PDGFRA was translocated and accumulated in early endosome when sonic hedgehog was overexpressed. In endosome, PDGFRA-mediated activation of TGFB1/SMAD signaling promoted the differentiation of GMCs into myofibroblasts, extracellular matrix deposition, and vascular fibrosis. These responses resulted in neointima formation and AVF failure. KO of Pdgfra or inhibition of HH signaling in GMCs suppressed the differentiation of GMCs into myofibroblasts. In vivo, specific KO of Pdgfra inhibited GMC activation and vascular fibrosis, resulting in suppression of neointima formation and improvement of AVF patency despite CKD. Our findings could yield strategies for maintaining AVF functions.
Collapse
Affiliation(s)
- Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ying Qing
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Qunying Guo
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Eric K Peden
- Department of Vascular Surgery, DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Changyi Chen
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - William E Mitch
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Luan Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Jizhong Cheng
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
36
|
Palander O, Trimble WS. DIAPH1 regulates ciliogenesis and trafficking in primary cilia. FASEB J 2020; 34:16516-16535. [PMID: 33124112 DOI: 10.1096/fj.202001178r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/08/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023]
Abstract
Primary cilia are critical hubs for several signaling pathways, and defects in ciliogenesis or cilia maintenance produce a range of diseases collectively known as ciliopathies. Ciliogenesis requires vesicle trafficking along a network of microtubules and actin filaments to the basal body. The DIAPH1 (Diaphanous-related formin) family of formins promotes both actin polymerization and EB1-dependent microtubule (MT) stability. EB1 and EB3 have previously been implicated in cilia biogenesis to carry out centrosome-related functions. However, the role of DIAPH1 proteins had not been examined. Here we show that the depletion of DIAPH1 decreased ciliogenesis, cilia length, and reduced trafficking within cilia. Additionally, both actin nucleating and microtubule-stabilizing properties of DIAPH1 are important for their cilia functions. To assess their roles in ciliogenesis in isolation, we targeted DIAPH1 specifically to the basal body, which caused an increase in cilia length and increased trafficking within cilia. Intriguingly, expression of DIAPH1 mutants associated with human deafness and microcephaly impaired ciliation and caused cilia elongation and bulb formation. These results suggest that the actin and microtubule functions of DIAPH1 proteins regulate cilia maintenance in part by regulating vesicular trafficking to the base of the primary cilia.
Collapse
Affiliation(s)
- Oliva Palander
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - William S Trimble
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Lee KH. Involvement of Wnt signaling in primary cilia assembly and disassembly. FEBS J 2020; 287:5027-5038. [PMID: 33015954 DOI: 10.1111/febs.15579] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022]
Abstract
The primary cilium is a nonmotile microtubule-based structure, which functions as an antenna-like cellular sensing organelle. The primary cilium is assembled from the basal body, a mother centriole-based structure, during interphase or a quiescent cell stage, and rapidly disassembles before entering mitosis in a dynamic cycle. Defects in this ciliogenesis dynamics are associated with human diseases such as ciliopathy and cancer, but the molecular mechanisms of the ciliogenesis dynamics are still largely unknown. To date, various cellular signaling pathways associated with primary cilia have been proposed, but the main signaling pathways regulating primary cilia assembly/disassembly remain enigmatic. This review describes recent findings in Wnt-induced primary cilia assembly/disassembly and potential future directions for the study of the cellular signaling related to the primary ciliogenesis dynamics.
Collapse
Affiliation(s)
- Kyung Ho Lee
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
| |
Collapse
|
38
|
Barsch F, Niedermair T, Mamilos A, Schmitt VH, Grevenstein D, Babel M, Burgoyne T, Shoemark A, Brochhausen C. Physiological and Pathophysiological Aspects of Primary Cilia-A Literature Review with View on Functional and Structural Relationships in Cartilage. Int J Mol Sci 2020; 21:ijms21144959. [PMID: 32674266 PMCID: PMC7404129 DOI: 10.3390/ijms21144959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cilia are cellular organelles that project from the cell. They occur in nearly all non-hematopoietic tissues and have different functions in different tissues. In mesenchymal tissues primary cilia play a crucial role in the adequate morphogenesis during embryological development. In mature articular cartilage, primary cilia fulfil chemo- and mechanosensitive functions to adapt the cellular mechanisms on extracellular changes and thus, maintain tissue homeostasis and morphometry. Ciliary abnormalities in osteoarthritic cartilage could represent pathophysiological relationships between ciliary dysfunction and tissue deformation. Nevertheless, the molecular and pathophysiological relationships of ‘Primary Cilia’ (PC) in the context of osteoarthritis is not yet fully understood. The present review focuses on the current knowledge about PC and provide a short but not exhaustive overview of their role in cartilage.
Collapse
Affiliation(s)
- Friedrich Barsch
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany and Institute of Exercise and Occupational Medicine, Department of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Tanja Niedermair
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
| | - Andreas Mamilos
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
| | - Volker H. Schmitt
- Cardiology I, Centre for Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany;
| | - David Grevenstein
- Department for Orthopedic and Trauma Surgery, University of Cologne, 50923 Köln, Germany;
| | - Maximilian Babel
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
| | - Thomas Burgoyne
- Royal Brompton Hospital and Harefield NHS Trust, SW3 6NP London and UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
| | - Amelia Shoemark
- Royal Brompton Hospital and Harefield NHS Trust, University of Dundee, Dundee DD1 4HN, UK;
| | - Christoph Brochhausen
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
- Correspondence: ; Tel.: +49-941-944-6636
| |
Collapse
|
39
|
Gabriel GC, Young CB, Lo CW. Role of cilia in the pathogenesis of congenital heart disease. Semin Cell Dev Biol 2020; 110:2-10. [PMID: 32418658 DOI: 10.1016/j.semcdb.2020.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/13/2022]
Abstract
An essential role for cilia in the pathogenesis of congenital heart disease (CHD) has emerged from findings of a large-scale mouse forward genetic screen. High throughput screening with fetal ultrasound imaging followed by whole exome sequencing analysis recovered a preponderance of cilia related genes and cilia transduced cell signaling genes among mutations identified to cause CHD. The perturbation of left-right patterning in CHD pathogenesis is suggested by the association of CHD with heterotaxy, but also by the finding of the co-occurrence of laterality defects with CHD in birth defect registries. Many of the cilia and cilia cell signaling genes recovered were found to be related to Hedgehog signaling. Studies in mice showed cilia transduced hedgehog signaling coordinates left-right patterning with heart looping and differentiation of the heart tube. Cilia transduced Shh signaling also regulates later events in heart development, including outflow tract septation and formation of the atrioventricular septum. More recent work has shown mutations in cilia related genes may also contribute to valve disease that largely manifest in adult life. Overall, these and other findings show cilia play an important role in CHD and also in more common valve diseases.
Collapse
Affiliation(s)
- George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States
| | - Cullen B Young
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States.
| |
Collapse
|
40
|
Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Biol 2020; 20:389-405. [PMID: 30948801 DOI: 10.1038/s41580-019-0116-4] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The primary cilium is a hair-like surface-exposed organelle of the eukaryotic cell that decodes a variety of signals - such as odorants, light and Hedgehog morphogens - by altering the local concentrations and activities of signalling proteins. Signalling within the cilium is conveyed through a diverse array of second messengers, including conventional signalling molecules (such as cAMP) and some unusual intermediates (such as sterols). Diffusion barriers at the ciliary base establish the unique composition of this signalling compartment, and cilia adapt their proteome to signalling demands through regulated protein trafficking. Much progress has been made on the molecular understanding of regulated ciliary trafficking, which encompasses not only exchanges between the cilium and the rest of the cell but also the shedding of signalling factors into extracellular vesicles.
Collapse
|
41
|
Liu P, Dodson M, Fang D, Chapman E, Zhang DD. NRF2 negatively regulates primary ciliogenesis and hedgehog signaling. PLoS Biol 2020; 18:e3000620. [PMID: 32053600 PMCID: PMC7043785 DOI: 10.1371/journal.pbio.3000620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/26/2020] [Accepted: 01/22/2020] [Indexed: 01/24/2023] Open
Abstract
Primary cilia are lost during cancer development, but the mechanism regulating cilia degeneration is not determined. While transcription factor nuclear factor-erythroid 2-like 2 (NRF2) protects cells from oxidative, proteotoxic, and metabolic stress in normal cells, hyperactivation of NRF2 is oncogenic, although the detailed molecular mechanisms by which uncontrolled NRF2 activation promotes cancer progression remain unclear. Here, we report that NRF2 suppresses hedgehog (Hh) signaling through Patched 1 (PTCH1) and primary ciliogenesis via p62/sequestosome 1 (SQSTM1). PTCH1, a negative regulator of Hh signaling, is an NRF2 target gene, and as such, hyperactivation of NRF2 impairs Hh signaling. NRF2 also suppresses primary cilia formation through p62-dependent inclusion body formation and blockage of Bardet-Biedl syndrome 4 (BBS4) entrance into cilia. Simultaneous ablation of PTCH1 and p62 completely abolishes NRF2-mediated inhibition of both primary ciliogenesis and Hh signaling. Our findings reveal a previously unidentified role of NRF2 in controlling a cellular organelle, the primary cilium, and its associated Hh signaling pathway and also uncover a mechanism by which NRF2 hyperactivation promotes tumor progression via primary cilia degeneration and aberrant Hh signaling. A better understanding of the crosstalk between NRF2 and primary cilia/Hh signaling could not only open new avenues for cancer therapeutic discovery but could also have significant implications regarding pathologies other than cancer, including developmental disorders, in which improper primary ciliogenesis and Hh signaling play a major role.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
- The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
42
|
Long H, Huang K. Transport of Ciliary Membrane Proteins. Front Cell Dev Biol 2020; 7:381. [PMID: 31998723 PMCID: PMC6970386 DOI: 10.3389/fcell.2019.00381] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Cilia and flagella are highly conserved organelles in eukaryotic cells that drive cell movement and act as cell antennae that receive and transmit signals. In addition to receiving and transducing external signals that activate signal cascades, cilia also secrete ciliary ectosomes that send signals to recipient cells, and thereby mediate cell–cell communication. Abnormal ciliary function leads to various ciliopathies, and the precise transport and localization of ciliary membrane proteins are essential for cilium function. This review summarizes current knowledge about the transport processes of ciliary membrane proteins after their synthesis at the endoplasmic reticulum: modification and sorting in the Golgi apparatus, transport through vesicles to the ciliary base, entrance into cilia through the diffusion barrier, and turnover by ectosome secretion. The molecular mechanisms and regulation involved in each step are also discussed. Transport of ciliary membrane proteins is a complex, precise cellular process coordinated among multiple organelles. By systematically analyzing the existing research, we identify topics that should be further investigated to promote progress in this field of research.
Collapse
Affiliation(s)
- Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
43
|
Abstract
Recent evidence has indicated that caveolins are localized at the base of primary cilia, which are microtubule-based sensory organelles present on the cell surface, and that Caveolin-1 (CAV1) plays important roles in regulating ciliary membrane composition and function. Here we describe methods to analyze the localization and function of CAV1 in primary cilia of cultured mammalian cells. These include methods for culturing and transfecting mammalian cells with a CAV1-encoding plasmid or small interfering RNA (siRNA), analysis of mammalian cells by immunofluorescence microscopy (IFM) with antibodies against ciliary markers and CAV1, as well as methods for analyzing ciliary CAV1 function in siRNA-treated cells by IFM and cell-based signaling assays.
Collapse
|
44
|
Abstract
Primary cilia project in a single copy from the surface of most vertebrate cell types; they detect and transmit extracellular cues to regulate diverse cellular processes during development and to maintain tissue homeostasis. The sensory capacity of primary cilia relies on the coordinated trafficking and temporal localization of specific receptors and associated signal transduction modules in the cilium. The canonical Hedgehog (HH) pathway, for example, is a bona fide ciliary signalling system that regulates cell fate and self-renewal in development and tissue homeostasis. Specific receptors and associated signal transduction proteins can also localize to primary cilia in a cell type-dependent manner; available evidence suggests that the ciliary constellation of these proteins can temporally change to allow the cell to adapt to specific developmental and homeostatic cues. Consistent with important roles for primary cilia in signalling, mutations that lead to their dysfunction underlie a pleiotropic group of diseases and syndromic disorders termed ciliopathies, which affect many different tissues and organs of the body. In this Review, we highlight central mechanisms by which primary cilia coordinate HH, G protein-coupled receptor, WNT, receptor tyrosine kinase and transforming growth factor-β (TGFβ)/bone morphogenetic protein (BMP) signalling and illustrate how defects in the balanced output of ciliary signalling events are coupled to developmental disorders and disease progression.
Collapse
|
45
|
Finetti F, Capitani N, Baldari CT. Emerging Roles of the Intraflagellar Transport System in the Orchestration of Cellular Degradation Pathways. Front Cell Dev Biol 2019; 7:292. [PMID: 31803744 PMCID: PMC6877659 DOI: 10.3389/fcell.2019.00292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022] Open
Abstract
Ciliated cells exploit a specific transport system, the intraflagellar transport (IFT) system, to ensure the traffic of molecules from the cell body to the cilium. However, it is now clear that IFT activity is not restricted to cilia-related functions. This is strikingly exemplified by the observation that IFT proteins play important roles in cells lacking a primary cilium, such as lymphocytes. Indeed, in T cells the IFT system regulates the polarized transport of endosome-associated T cell antigen receptors and signaling mediators during assembly of the immune synapse, a specialized interface that forms on encounter with a cognate antigen presenting cell and on which T cell activation and effector function crucially depend. Cellular degradation pathways have recently emerged as new extraciliary functions of the IFT system. IFT proteins have been demonstrated to regulate autophagy in ciliated cells through their ability to recruit the autophagy machinery to the base of the cilium. We have now implicated the IFT component IFT20 in another central degradation process that also controls the latest steps in autophagy, namely lysosome function, by regulating the cation-independent mannose-6-phosphate receptor (CI-MPR)-dependent lysosomal targeting of acid hydrolases. This involves the ability of IFT20 to act as an adaptor coupling the CI-MPR to dynein for retrograde transport to the trans-Golgi network. In this short review we will discuss the emerging roles of IFT proteins in cellular degradation pathways.
Collapse
Affiliation(s)
| | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
46
|
Zhou Y, Saito M, Fukuma T, Takahashi Y. [Unlabeled imaging of primary cilia by scanning ion conductance microscopy]. Nihon Yakurigaku Zasshi 2019; 154:192-196. [PMID: 31597898 DOI: 10.1254/fpj.154.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Primary cilia are non-motile cilia consisting of a centriole-derived basal body and a microtubule-based axoneme. In recent years, the structure and function of primary cilia have been attracting attention due to the relation with the onset of ciliary disease. Scanning ion conductance microscopy (SICM) is a probe microscopy used to measure the topography and functions of living cells at nanoscale. Furthermore, the labelling procedure is not necessary for SICM measurement compare to fluorescence imaging. We compared the structures of primary cilia of human retinal pigment epithelial cell line (RPE-1 cells) and Madin-Darby canine kidney cell line (MDCK cells) at nanoscale by using SICM. In addition, high resolution SICM images have also succeeded in visualizing ciliary pockets that difficult to be fluorescently labeled.
Collapse
Affiliation(s)
- Yuanshu Zhou
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine
| | - Takeshi Fukuma
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University
| | - Yasufumi Takahashi
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST)
| |
Collapse
|
47
|
Gerondopoulos A, Strutt H, Stevenson NL, Sobajima T, Levine TP, Stephens DJ, Strutt D, Barr FA. Planar Cell Polarity Effector Proteins Inturned and Fuzzy Form a Rab23 GEF Complex. Curr Biol 2019; 29:3323-3330.e8. [PMID: 31564489 PMCID: PMC6864590 DOI: 10.1016/j.cub.2019.07.090] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023]
Abstract
A subset of Rab GTPases have been implicated in cilium formation in cultured mammalian cells [1-6]. Rab11 and Rab8, together with their GDP-GTP exchange factors (GEFs), TRAPP-II and Rabin8, promote recruitment of the ciliary vesicle to the mother centriole and its subsequent maturation, docking, and fusion with the cell surface [2-5]. Rab23 has been linked to cilium formation and membrane trafficking at mature cilia [1, 7, 8]; however, the identity of the GEF pathway activating Rab23, a member of the Rab7 subfamily of Rabs, remains unclear. Longin-domain-containing complexes have been shown to act as GEFs for Rab7 subfamily GTPases [9-12]. Here, we show that Inturned and Fuzzy, proteins previously implicated as planar cell polarity (PCP) effectors and in developmentally regulated cilium formation [13, 14], contain multiple longin domains characteristic of the Mon1-Ccz1 family of Rab7 GEFs and form a specific Rab23 GEF complex. In flies, loss of Rab23 function gave rise to defects in planar-polarized trichome formation consistent with this biochemical relationship. In cultured human and mouse cells, Inturned and Fuzzy localized to the basal body and proximal region of cilia, and cilium formation was compromised by depletion of either Inturned or Fuzzy. Cilium formation arrested after docking of the ciliary vesicle to the mother centriole but prior to axoneme elongation and fusion of the ciliary vesicle and plasma membrane. These findings extend the family of longin domain GEFs and define a molecular activity linking Rab23-regulated membrane traffic to cilia and planar cell polarity.
Collapse
Affiliation(s)
- Andreas Gerondopoulos
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Helen Strutt
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Nicola L Stevenson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Tomoaki Sobajima
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Tim P Levine
- Institute of Ophthalmology, University College London, 11-43 Bath St., London EC1V 9EL, UK
| | - David J Stephens
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Francis A Barr
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
48
|
Kuhns S, Seixas C, Pestana S, Tavares B, Nogueira R, Jacinto R, Ramalho JS, Simpson JC, Andersen JS, Echard A, Lopes SS, Barral DC, Blacque OE. Rab35 controls cilium length, function and membrane composition. EMBO Rep 2019; 20:e47625. [PMID: 31432619 PMCID: PMC6776896 DOI: 10.15252/embr.201847625] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Rab and Arl guanine nucleotide-binding (G) proteins regulate trafficking pathways essential for the formation, function and composition of primary cilia, which are sensory devices associated with Sonic hedgehog (Shh) signalling and ciliopathies. Here, using mammalian cells and zebrafish, we uncover ciliary functions for Rab35, a multitasking G protein with endocytic recycling, actin remodelling and cytokinesis roles. Rab35 loss via siRNAs, morpholinos or knockout reduces cilium length in mammalian cells and the zebrafish left-right organiser (Kupffer's vesicle) and causes motile cilia-associated left-right asymmetry defects. Consistent with these observations, GFP-Rab35 localises to cilia, as do GEF (DENND1B) and GAP (TBC1D10A) Rab35 regulators, which also regulate ciliary length and Rab35 ciliary localisation. Mammalian Rab35 also controls the ciliary membrane levels of Shh signalling regulators, promoting ciliary targeting of Smoothened, limiting ciliary accumulation of Arl13b and the inositol polyphosphate 5-phosphatase (INPP5E). Rab35 additionally regulates ciliary PI(4,5)P2 levels and interacts with Arl13b. Together, our findings demonstrate roles for Rab35 in regulating cilium length, function and membrane composition and implicate Rab35 in pathways controlling the ciliary levels of Shh signal regulators.
Collapse
Affiliation(s)
- Stefanie Kuhns
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Cecília Seixas
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Sara Pestana
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Bárbara Tavares
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Renata Nogueira
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Raquel Jacinto
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - José S Ramalho
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Jeremy C Simpson
- School of Biology and Environmental ScienceUniversity College DublinDublin 4Ireland
| | - Jens S Andersen
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | | | - Susana S Lopes
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Duarte C Barral
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Oliver E Blacque
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| |
Collapse
|
49
|
Wilcockson SG, Ashe HL. Drosophila Ovarian Germline Stem Cell Cytocensor Projections Dynamically Receive and Attenuate BMP Signaling. Dev Cell 2019; 50:296-312.e5. [PMID: 31178401 PMCID: PMC6688100 DOI: 10.1016/j.devcel.2019.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 03/26/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
Abstract
In the Drosophila ovarian germline, Bone Morphogenetic Protein (BMP) signals released by niche cells promote germline stem cell (GSC) maintenance. Although BMP signaling is known to repress expression of a key differentiation factor, it remains unclear whether BMP-responsive transcription also contributes positively to GSC identity. Here, we identify the GSC transcriptome using RNA sequencing (RNA-seq), including the BMP-induced transcriptional network. Based on these data, we provide evidence that GSCs form two types of cellular projections. Genetic manipulation and live ex vivo imaging reveal that both classes of projection allow GSCs to access a reservoir of Dpp held away from the GSC-niche interface. Moreover, microtubule-rich projections, termed "cytocensors", form downstream of BMP and have additional functionality, which is to attenuate BMP signaling. In this way, cytocensors allow dynamic modulation of signal transduction to facilitate differentiation following GSC division. This ability of cytocensors to attenuate the signaling response expands the repertoire of functions associated with signaling projections.
Collapse
Affiliation(s)
- Scott G Wilcockson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Hilary L Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
50
|
Galli C, Colangelo M, Pedrazzi G, Guizzardi S. The Response of Osteoblasts and Bone to Sinusoidal Electromagnetic Fields: Insights from the Literature. Calcif Tissue Int 2019; 105:127-147. [PMID: 30997574 DOI: 10.1007/s00223-019-00554-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/11/2019] [Indexed: 12/23/2022]
Abstract
Electromagnetic fields (EMFs) have been proposed as a tool to ameliorate bone formation and healing. Despite their promising results, however, they have failed to enter routine clinical protocols to treat bone conditions where higher bone mass has to be achieved. This is no doubt also due to a fundamental lack of knowledge and understanding on their effects and the optimal settings for attaining the desired therapeutic effects. This review analysed the available in vitro and in vivo studies that assessed the effects of sinusoidal EMFs (SEMFs) on bone and bone cells, comparing the results and investigating possible mechanisms of action by which SEMFs interact with tissues and cells. The effects of SEMFs on bone have not been as thoroughly investigated as pulsed EMFs; however, abundant evidence shows that SEMFs affect the proliferation and differentiation of osteoblastic cells, acting on multiple cellular mechanisms. SEMFs have also proven to increase bone mass in rodents under normal conditions and in osteoporotic animals.
Collapse
Affiliation(s)
- C Galli
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - M Colangelo
- Department of Medicine and Surgery, Histology and Embryology Lab, University of Parma, Parma, Italy
| | - G Pedrazzi
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Via Volturno 39, 43126, Parma, Italy
| | - S Guizzardi
- Department of Medicine and Surgery, Histology and Embryology Lab, University of Parma, Parma, Italy
| |
Collapse
|