1
|
Mi K, Wang X, Ma C, Tan Y, Zhao G, Cao X, Yuan H. NLRX1 attenuates endoplasmic reticulum stress via STING in cardiac hypertrophy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119852. [PMID: 39357547 DOI: 10.1016/j.bbamcr.2024.119852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Endoplasmic reticulum stress-induced cell apoptosis is a pivotal mechanism underlying the progression of cardiac hypertrophy. NLRX1, a member of the NOD-like receptor family, modulates various cellular processes, including STING, NF-κB, MAPK pathways, reactive oxygen species production, essential metabolic pathways, autophagy and cell death. Emerging evidence suggests that NLRX1 may offer protection against diverse cardiac diseases. However, the impacts and mechanisms of NLRX1 on endoplasmic reticulum stress in cardiac hypertrophy remains largely unexplored. In our study, we observed that the NLRX1 and phosphorylated STING (p-STING) were highly expressed in both hypertrophic mouse heart and cellular model of cardiac hypertrophy. Whereas over-expression of NLRX1 mitigated the expression levels of p-STING, as well as the endoplasmic reticulum stress markers, including transcription activating factor 4 (ATF4), C/EBP homologous protein (CHOP) and the ratios of phosphorylated PERK to PERK, phosphorylated IRE1 to IRE1 and phosphorylated eIF2α to eIF2α in an Angiotensin II (Ang II)-induced cellular model of cardiac hypertrophy. Importantly, the protective effects of NLRX1 were attenuated upon pretreatment with the STING agonist, DMXAA. Our findings provide the evidence that NLRX1 attenuates the PERK-eIF2α-ATF4-CHOP axis of endoplasmic reticulum stress response via inhibition of p-STING in Ang II-treated cardiomyocytes, thereby ameliorating the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Keying Mi
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Xiaoyan Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Chao Ma
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Yinghua Tan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Gang Zhao
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Xinran Cao
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China.
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China.
| |
Collapse
|
2
|
Rauluseviciute I, Launay T, Barzaghi G, Nikumbh S, Lenhard B, Krebs AR, Castro-Mondragon J, Mathelier A. Identification of transcription factor co-binding patterns with non-negative matrix factorization. Nucleic Acids Res 2024; 52:e85. [PMID: 39217462 PMCID: PMC11472169 DOI: 10.1093/nar/gkae743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Transcription factor (TF) binding to DNA is critical to transcription regulation. Although the binding properties of numerous individual TFs are well-documented, a more detailed comprehension of how TFs interact cooperatively with DNA is required. We present COBIND, a novel method based on non-negative matrix factorization (NMF) to identify TF co-binding patterns automatically. COBIND applies NMF to one-hot encoded regions flanking known TF binding sites (TFBSs) to pinpoint enriched DNA patterns at fixed distances. We applied COBIND to 5699 TFBS datasets from UniBind for 401 TFs in seven species. The method uncovered already established co-binding patterns and new co-binding configurations not yet reported in the literature and inferred through motif similarity and protein-protein interaction knowledge. Our extensive analyses across species revealed that 67% of the TFs shared a co-binding motif with other TFs from the same structural family. The co-binding patterns captured by COBIND are likely functionally relevant as they harbor higher evolutionarily conservation than isolated TFBSs. Open chromatin data from matching human cell lines further supported the co-binding predictions. Finally, we used single-molecule footprinting data from mouse embryonic stem cells to confirm that the COBIND-predicted co-binding events associated with some TFs likely occurred on the same DNA molecules.
Collapse
Affiliation(s)
- Ieva Rauluseviciute
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Timothée Launay
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Guido Barzaghi
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
- Collaboration for Joint Ph.D. degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Sarvesh Nikumbh
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Arnaud Regis Krebs
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Jaime A Castro-Mondragon
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Yoo JY, Ko KS, Vu BN, Lee YE, Choi HN, Lee YN, Fanata WID, Harmoko R, Lee SK, Chung WS, Hong JC, Lee KO. IRE1 is implicated in protein synthesis regulation under ER stress conditions in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108963. [PMID: 39084166 DOI: 10.1016/j.plaphy.2024.108963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
The unfolded protein response (UPR) is a crucial cellular mechanism for maintaining protein folding homeostasis during endoplasmic reticulum (ER) stress. In this study, the role of IRE1, a key component of the UPR, was investigated in protein translation regulation under ER stress conditions in Arabidopsis. We discovered that the loss of IRE1A and IRE1B leads to diminished protein translation, indicating a significant role for IRE1 in this process. However, this regulation was not solely dependent on the interaction with bZIP60, a key transcription factor in the UPR. Interestingly, while chemical chaperones TUDCA and PBA effectively alleviated the translation inhibition observed in ire1a ire1b mutants, this effect was more pronounced than the mitigation observed from suppressing GCN2 expression or introducing a non-phosphorylatable eIF2α variant. Additionally, the kinase and ribonuclease activities of IRE1B were demonstrated to be crucial for plant adaptation and protein synthesis regulation under ER stress conditions. Overall, this study not only highlights the complex regulatory mechanisms of IRE1 in plant ER stress responses but also provides insights into its multifaceted roles in protein translation regulation.
Collapse
Affiliation(s)
- Jae Yong Yoo
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Ki Seong Ko
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Bich Ngoc Vu
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Young Eun Lee
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Ha Na Choi
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Yoo Na Lee
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Wahyu Indra Duwi Fanata
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Department of Agrotechnology, Faculty of Agriculture, University of Jember, Jember, 68121, Indonesia
| | - Rikno Harmoko
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Research Center for Genetic Engineering, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor, Cibinong, Bogor, 16911, Indonesia
| | - Sang-Kyu Lee
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Woo Sik Chung
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Jong Chan Hong
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Kyun Oh Lee
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea.
| |
Collapse
|
4
|
Giulietti S, Bigini V, Savatin DV. ROS and RNS production, subcellular localization, and signaling triggered by immunogenic danger signals. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4512-4534. [PMID: 37950493 DOI: 10.1093/jxb/erad449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Plants continuously monitor the environment to detect changing conditions and to properly respond, avoiding deleterious effects on their fitness and survival. An enormous number of cell surface and intracellular immune receptors are deployed to perceive danger signals associated with microbial infections. Ligand binding by cognate receptors represents the first essential event in triggering plant immunity and determining the outcome of the tissue invasion attempt. Reactive oxygen and nitrogen species (ROS/RNS) are secondary messengers rapidly produced in different subcellular localizations upon the perception of immunogenic signals. Danger signal transduction inside the plant cells involves cytoskeletal rearrangements as well as several organelles and interactions between them to activate key immune signaling modules. Such immune processes depend on ROS and RNS accumulation, highlighting their role as key regulators in the execution of the immune cellular program. In fact, ROS and RNS are synergic and interdependent intracellular signals required for decoding danger signals and for the modulation of defense-related responses. Here we summarize current knowledge on ROS/RNS production, compartmentalization, and signaling in plant cells that have perceived immunogenic danger signals.
Collapse
Affiliation(s)
- Sarah Giulietti
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Valentina Bigini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Daniel V Savatin
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
5
|
Wang B, Yang J, Wu J, Hu X, Zhu J, Fang J, Han B, Zhou B. Identification and validation of endoplasmic reticulum stress-related genes that enhance immunotherapy in colon cancer. Transl Cancer Res 2024; 13:3760-3770. [PMID: 39145077 PMCID: PMC11319978 DOI: 10.21037/tcr-23-2227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/13/2024] [Indexed: 08/16/2024]
Abstract
Background Endoplasmic reticulum stress (ERS)-related genes are related to tumor growth, metastasis, and immunotherapy response. In this paper, we tried to identify ERS-related genes related to immunotherapy in colon cancer. Methods ERS-related genes were downloaded from the Molecular Signatures Database (MSigDB) and GeneCards websites. Normal and tumor samples of the colon were obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression Project (GTEx), and Gene Expression Omnibus (GEO) databases. A risk model based on gene coefficients was constructed by using the least absolute shrinkage and selection operator (LASSO) regression. The inherent biological process differences between risk groups were explored by Gene Ontology (GO) and gene set enrichment analysis (GSEA). ESTIMATE and single-sample GSEA (ssGSEA) algorithms were used to analyze the correlation between tumor microenvironment (TME) and immune checkpoint and risk score. The semi-inhibitory concentration (IC50) values of chemotherapeutic drugs between risk groups were calculated to evaluate the sensitivity of immunotherapy. Results The pathway analysis showed that the ERS risk model was relevant to biosynthesis and metabolism. Consistent clustering based on the ERS-related differentially expressed genes (DEGs) demonstrated that the samples divided into three clusters had significant clinicopathological differences. A risk model consisting of six ERS-related genes was established. The model was verified on GSE39582 and GSE17536 testing datasets. The results showed that ERS risk model was significantly related to TME and immune checkpoint, and these genes enhanced the immunotherapy ability of colon cancer. Conclusions We established a risk model with ERS-related genes (PMM2, STC2, EIF2AK1, HSPA1A, SLC8A1, KCNQ1), which enhance the sensitivity of immunotherapy for colon cancer. These may provide a new perspective for the treatment of colon cancer.
Collapse
Affiliation(s)
- Baolin Wang
- Department of General Surgery, The 63650th Hospital of People Liberation Army, Korla, China
| | - Jun Yang
- Department of General Surgery, The 63650th Hospital of People Liberation Army, Korla, China
| | - Jiexin Wu
- The Infirmary of Nanyu School of Chongqing, Chongqing, China
| | - Xiaoming Hu
- Department of General Surgery, The 63650th Hospital of People Liberation Army, Korla, China
| | - Jun Zhu
- Department of General Surgery, The 63650th Hospital of People Liberation Army, Korla, China
| | - Jiang Fang
- Department of General Surgery, The 63650th Hospital of People Liberation Army, Korla, China
| | - Bo Han
- Department of General Surgery, The 63650th Hospital of People Liberation Army, Korla, China
| | - Bo Zhou
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Zhang H, Zhang Y, Cui K, Liu C, Chen M, Fu Y, Li Z, Ma H, Zhang H, Qi B, Xu J. A Global Identification of Protein Disulfide Isomerases from 'duli' Pear ( Pyrus betulaefolia) and Their Expression Profiles under Salt Stress. Genes (Basel) 2024; 15:968. [PMID: 39202330 PMCID: PMC11353384 DOI: 10.3390/genes15080968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 09/03/2024] Open
Abstract
Protein disulfide isomerases (PDIs) and PDI-like proteins catalyze the oxidation and reduction in protein disulfide bonds, inhibit aggregation of misfolded proteins, and participate in isomerization and abiotic stress responses. The wild type 'duli' pear (Pyrus betulaefolia) is an important rootstock commonly used for commercial pear tree grafting in northern China. In this study, we identified 24 PDI genes, named PbPDIs, from the genome of 'duli' pear. With 12 homologous gene pairs, these 24 PbPDIs distribute on 12 of its 17 chromosomes. Phylogenetic analysis placed the 24 PbPDIs into four clades and eleven groups. Collinearity analysis of the PDIs between P. betulaefolia, Arabidopsis thaliana, and Oryza sativa revealed that the PbPDIs of 'duli' pear show a strong collinear relationship with those from Arabidopsis, a dicot; but a weak collinear relationship with those from rice, a monocot. Quantitative RT-PCR analysis showed that most of the PbPDIs were upregulated by salt stress. Identification and expression analysis of 'duli' pear PbPDIs under salt stress conditions could provide useful information for further research in order to generate salt-resistant rootstock for pear grafting in the future.
Collapse
Affiliation(s)
- Hao Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Yuyue Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Kexin Cui
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Chang Liu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Mengya Chen
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Yufan Fu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Zhenjie Li
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Hui Ma
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Haixia Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Baoxiu Qi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Jianfeng Xu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| |
Collapse
|
7
|
Ni L, Yang L, Lin Y. Recent progress of endoplasmic reticulum stress in the mechanism of atherosclerosis. Front Cardiovasc Med 2024; 11:1413441. [PMID: 39070554 PMCID: PMC11282489 DOI: 10.3389/fcvm.2024.1413441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
The research progress of endoplasmic reticulum (ER) stress in atherosclerosis (AS) is of great concern. The ER, a critical cellular organelle, plays a role in important biological processes including protein synthesis, folding, and modification. Various pathological factors may cause ER stress, and sustained or excessive ER stress triggers the unfolded protein response, ultimately resulting in apoptosis and disease. Recently, researchers have discovered the importance of ER stress in the onset and advancement of AS. ER stress contributes to the occurrence of AS through different pathways such as apoptosis, inflammatory response, oxidative stress, and autophagy. Therefore, this review focuses on the mechanisms of ER stress in the development of AS and related therapeutic targets, which will contribute to a deeper understanding of the disease's pathogenesis and provide novel strategies for preventing and treating AS.
Collapse
Affiliation(s)
| | | | - Yuanyuan Lin
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
8
|
Pastor-Cantizano N, Angelos ER, Ruberti C, Jiang T, Weng X, Reagan BC, Haque T, Juenger TE, Brandizzi F. Programmed cell death regulator BAP2 is required for IRE1-mediated unfolded protein response in Arabidopsis. Nat Commun 2024; 15:5804. [PMID: 38987268 PMCID: PMC11237027 DOI: 10.1038/s41467-024-50105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/29/2024] [Indexed: 07/12/2024] Open
Abstract
Environmental and physiological situations can challenge the balance between protein synthesis and folding capacity of the endoplasmic reticulum (ER) and cause ER stress, a potentially lethal condition. The unfolded protein response (UPR) restores ER homeostasis or actuates programmed cell death (PCD) when ER stress is unresolved. The cell fate determination mechanisms of the UPR are not well understood, especially in plants. Here, we integrate genetics and ER stress profiling with natural variation and quantitative trait locus analysis of 350 natural accessions of the model species Arabidopsis thaliana. Our analyses implicate a single nucleotide polymorphism to the loss of function of the general PCD regulator BON-ASSOCIATED PROTEIN2 (BAP2) in UPR outcomes. We establish that ER stress-induced BAP2 expression is antagonistically regulated by the UPR master regulator, inositol-requiring enzyme 1 (IRE1), and that BAP2 controls adaptive UPR amplitude in ER stress and ignites pro-death mechanisms in conditions of UPR insufficiency.
Collapse
Affiliation(s)
- Noelia Pastor-Cantizano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Burjassot, Spain
| | - Evan R Angelos
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Botany & Plant Sciences Department, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - Cristina Ruberti
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Biosciences, University of Milan, Milano, Italy
| | - Tao Jiang
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Mid-Florida Research and Education Center, University of Florida, Apopka, FL, USA
| | - Xiaoyu Weng
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Brandon C Reagan
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - Taslima Haque
- Department of Integrative Biology, University of Texas, Austin, TX, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Plant Biology Department, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
9
|
Man Y, Zhang Y, Chen L, Zhou J, Bu Y, Zhang X, Li X, Li Y, Jing Y, Lin J. The VAMP-associated protein VAP27-1 plays a crucial role in plant resistance to ER stress by modulating ER-PM contact architecture in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100929. [PMID: 38678366 PMCID: PMC11287176 DOI: 10.1016/j.xplc.2024.100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/30/2023] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
The endoplasmic reticulum (ER) and the plasma membrane (PM) form ER-PM contact sites (EPCSs) that allow the ER and PM to exchange materials and information. Stress-induced disruption of protein folding triggers ER stress, and the cell initiates the unfolded protein response (UPR) to resist the stress. However, whether EPCSs play a role in ER stress in plants remains unclear. VESICLE-ASSOCIATED MEMBRANE PROTEIN (VAMP)-ASSOCIATED PROTEIN 27-1 (VAP27-1) functions in EPCS tethering and is encoded by a family of 10 genes (VAP27-1-10) in Arabidopsis thaliana. Here, we used CRISPR-Cas9-mediated genome editing to obtain a homozygous vap27-1 vap27-3 vap27-4 (vap27-1/3/4) triple mutant lacking three of the key VAP27 family members in Arabidopsis. The vap27-1/3/4 mutant exhibits defects in ER-PM connectivity and EPCS architecture, as well as excessive UPR signaling. We further showed that relocation of VAP27-1 to the PM mediates specific VAP27-1-related EPCS remodeling and expansion under ER stress. Moreover, the spatiotemporal dynamics of VAP27-1 at the PM increase ER-PM connectivity and enhance Arabidopsis resistance to ER stress. In addition, we revealed an important role for intracellular calcium homeostasis in the regulation of UPR signaling. Taken together, these results broaden our understanding of the molecular and cellular mechanisms of ER stress and UPR signaling in plants, providing additional clues for improving plant broad-spectrum resistance to different stresses.
Collapse
Affiliation(s)
- Yi Man
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yue Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Linghui Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Junhui Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yufen Bu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xi Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yun Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yanping Jing
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Ko DK, Brandizzi F. Dynamics of ER stress-induced gene regulation in plants. Nat Rev Genet 2024; 25:513-525. [PMID: 38499769 PMCID: PMC11186725 DOI: 10.1038/s41576-024-00710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Endoplasmic reticulum (ER) stress is a potentially lethal condition that is induced by the abnormal accumulation of unfolded or misfolded secretory proteins in the ER. In eukaryotes, ER stress is managed by the unfolded protein response (UPR) through a tightly regulated, yet highly dynamic, reprogramming of gene transcription. Although the core principles of the UPR are similar across eukaryotes, unique features of the plant UPR reflect the adaptability of plants to their ever-changing environments and the need to balance the demands of growth and development with the response to environmental stressors. The past decades have seen notable progress in understanding the mechanisms underlying ER stress sensing and signalling transduction pathways, implicating the UPR in the effects of physiological and induced ER stress on plant growth and crop yield. Facilitated by sequencing technologies and advances in genetic and genomic resources, recent efforts have driven the discovery of transcriptional regulators and elucidated the mechanisms that mediate the dynamic and precise gene regulation in response to ER stress at the systems level.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
11
|
Bhandari DD, Brandizzi F. Logistics of defense: The contribution of endomembranes to plant innate immunity. J Cell Biol 2024; 223:e202307066. [PMID: 38551496 PMCID: PMC10982075 DOI: 10.1083/jcb.202307066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Phytopathogens cause plant diseases that threaten food security. Unlike mammals, plants lack an adaptive immune system and rely on their innate immune system to recognize and respond to pathogens. Plant response to a pathogen attack requires precise coordination of intracellular traffic and signaling. Spatial and/or temporal defects in coordinating signals and cargo can lead to detrimental effects on cell development. The role of intracellular traffic comes into a critical focus when the cell sustains biotic stress. In this review, we discuss the current understanding of the post-immune activation logistics of plant defense. Specifically, we focus on packaging and shipping of defense-related cargo, rerouting of intracellular traffic, the players enabling defense-related traffic, and pathogen-mediated subversion of these pathways. We highlight the roles of the cytoskeleton, cytoskeleton-organelle bridging proteins, and secretory vesicles in maintaining pathways of exocytic defense, acting as sentinels during pathogen attack, and the necessary elements for building the cell wall as a barrier to pathogens. We also identify points of convergence between mammalian and plant trafficking pathways during defense and highlight plant unique responses to illustrate evolutionary adaptations that plants have undergone to resist biotic stress.
Collapse
Affiliation(s)
- Deepak D. Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Varshney V, Singh J, Mishra V. Unlocking the plant ER stress code: IRE1-proteasome signaling cohort takes the lead. TRENDS IN PLANT SCIENCE 2024; 29:610-612. [PMID: 38102044 DOI: 10.1016/j.tplants.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
In the intricate landscape of cellular function, proper protein folding is pivotal for cellular processes, particularly within the endoplasmic reticulum (ER). In a recent study, Ko et al. reveal a signaling role for inositol-requiring enzyme 1 (IRE1) in ER stress and identify PHOSPHATASE TYPE 2CA (PP2CA)-INTERACTING RING FINGER PROTEIN 1 (PIR1) as a crucial plant-specific regulator, balancing the unfolded protein response (UPR) and ubiquitin-proteasome system (UPS) by modulating ABI5 stability, unveiling intricate stress response connections.
Collapse
Affiliation(s)
- Vishal Varshney
- Department of Botany, Govt. Shaheed Gend Singh College, Charama, Chhattisgarh, India.
| | - Jawahar Singh
- National Institute of Plant Genome Research (NIPGR), New Delhi, India; University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, UK
| | - Vishnu Mishra
- National Institute of Plant Genome Research (NIPGR), New Delhi, India; Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| |
Collapse
|
13
|
Meng R, Li Z, Kang X, Zhang Y, Wang Y, Ma Y, Wu Y, Dong S, Li X, Gao L, Chu X, Yang G, Yuan X, Wang J. High Overexpression of SiAAP9 Leads to Growth Inhibition and Protein Ectopic Localization in Transgenic Arabidopsis. Int J Mol Sci 2024; 25:5840. [PMID: 38892028 PMCID: PMC11172308 DOI: 10.3390/ijms25115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Amino acid permeases (AAPs) transporters are crucial for the long-distance transport of amino acids in plants, from source to sink. While Arabidopsis and rice have been extensively studied, research on foxtail millet is limited. This study identified two transcripts of SiAAP9, both of which were induced by NO3- and showed similar expression patterns. The overexpression of SiAAP9L and SiAAP9S in Arabidopsis inhibited plant growth and seed size, although SiAAP9 was found to transport more amino acids into seeds. Furthermore, SiAAP9-OX transgenic Arabidopsis showed increased tolerance to high concentrations of glutamate (Glu) and histidine (His). The high overexpression level of SiAAP9 suggested its protein was not only located on the plasma membrane but potentially on other organelles, as well. Interestingly, sequence deletion reduced SiAAP9's sensitivity to Brefeldin A (BFA), and SiAAP9 had ectopic localization on the endoplasmic reticulum (ER). Protoplast amino acid uptake experiments indicated that SiAAP9 enhanced Glu transport into foxtail millet cells. Overall, the two transcripts of SiAAP9 have similar functions, but SiAAP9L shows a higher colocalization with BFA compartments compared to SiAAP9S. Our research identifies a potential candidate gene for enhancing the nutritional quality of foxtail millet through breeding.
Collapse
Affiliation(s)
- Ru Meng
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Zhipeng Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Xueting Kang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Yujia Zhang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Yiru Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Yuchao Ma
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Yanfeng Wu
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaorui Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Jinzhong 030801, China
| | - Lulu Gao
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Xiaoqian Chu
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Guanghui Yang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Jinzhong 030801, China
| | - Jiagang Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.M.); (Z.L.); (X.K.); (Y.Z.); (Y.W.); (Y.M.); (Y.W.); (S.D.); (X.L.); (L.G.); (X.C.); (G.Y.)
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
14
|
Thibault E, Brandizzi F. Post-translational modifications: emerging directors of cell-fate decisions during endoplasmic reticulum stress in Arabidopsis thaliana. Biochem Soc Trans 2024; 52:831-848. [PMID: 38600022 PMCID: PMC11088923 DOI: 10.1042/bst20231025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Homeostasis of the endoplasmic reticulum (ER) is critical for growth, development, and stress responses. Perturbations causing an imbalance in ER proteostasis lead to a potentially lethal condition known as ER stress. In ER stress situations, cell-fate decisions either activate pro-life pathways that reestablish homeostasis or initiate pro-death pathways to prevent further damage to the organism. Understanding the mechanisms underpinning cell-fate decisions in ER stress is critical for crop development and has the potential to enable translation of conserved components to ER stress-related diseases in metazoans. Post-translational modifications (PTMs) of proteins are emerging as key players in cell-fate decisions in situations of imbalanced ER proteostasis. In this review, we address PTMs orchestrating cell-fate decisions in ER stress in plants and provide evidence-based perspectives for where future studies may focus to identify additional PTMs involved in ER stress management.
Collapse
Affiliation(s)
- Ethan Thibault
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
| | - Federica Brandizzi
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
15
|
Sato H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. Complex plant responses to drought and heat stress under climate change. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1873-1892. [PMID: 38168757 DOI: 10.1111/tpj.16612] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Global climate change is predicted to result in increased yield losses of agricultural crops caused by environmental conditions. In particular, heat and drought stress are major factors that negatively affect plant development and reproduction, and previous studies have revealed how these stresses induce plant responses at physiological and molecular levels. Here, we provide a comprehensive overview of current knowledge concerning how drought, heat, and combinations of these stress conditions affect the status of plants, including crops, by affecting factors such as stomatal conductance, photosynthetic activity, cellular oxidative conditions, metabolomic profiles, and molecular signaling mechanisms. We further discuss stress-responsive regulatory factors such as transcription factors and signaling factors, which play critical roles in adaptation to both drought and heat stress conditions and potentially function as 'hubs' in drought and/or heat stress responses. Additionally, we present recent findings based on forward genetic approaches that reveal natural variations in agricultural crops that play critical roles in agricultural traits under drought and/or heat conditions. Finally, we provide an overview of the application of decades of study results to actual agricultural fields as a strategy to increase drought and/or heat stress tolerance. This review summarizes our current understanding of plant responses to drought, heat, and combinations of these stress conditions.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Junya Mizoi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuraoka, Setagara-ku, Tokyo, 156-8502, Japan
| |
Collapse
|
16
|
Ayaz A, Jalal A, Qian Z, Khan KA, Liu L, Hu C, Li Y, Hou X. Investigating the effects of tauroursodeoxycholic acid (TUDCA) in mitigating endoplasmic reticulum stress and cellular responses in Pak choi. PHYSIOLOGIA PLANTARUM 2024; 176:e14246. [PMID: 38467573 DOI: 10.1111/ppl.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
The accumulation of misfolded proteins in the endoplasmic reticulum (ER) within plant cells due to unfavourable conditions leads to ER stress. This activates interconnected pathways involving reactive oxygen species (ROS) and unfolded protein response (UPR), which play vital roles in regulating ER stress. The aim of this study is to investigate the underlying mechanisms of tunicamycin (TM) induced ER stress and explore the potential therapeutic applications of tauroursodeoxycholic acid (TUDCA) in mitigating cellular responses to ER stress in Pak choi (Brassica campestris subsp. chinensis). The study revealed that ER stress in Pak choi leads to detrimental effects on plant morphology, ROS levels, cellular membrane integrity, and the antioxidant defence system. However, treatment with TUDCA in TM-induced ER stressed Pak choi improved morphological indices, pigment contents, ROS accumulation, cellular membrane integrity, and antioxidant defence system restoration. Additionally, TUDCA also modulates the transcription levels of ER stress sensors genes, ER chaperone genes, and ER-associated degradation (ERAD) genes during ER stress in Pak choi. Furthermore, TUDCA has demonstrated its ability to alleviate ER stress, stabilize the UPR, reduce oxidative stress, prevent apoptosis, and positively influence plant growth and development. These results collectively comprehend TUDCA as a promising agent for mitigating ER stress-induced damage in Pak choi plants and provide valuable insights for further research and potential applications in crop protection and stress management.
Collapse
Affiliation(s)
- Aliya Ayaz
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/ National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Abdul Jalal
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Zhou Qian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/ National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Liwang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/ National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Chunmei Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/ National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/ National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/ National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Todaka D, Quynh DTN, Tanaka M, Utsumi Y, Utsumi C, Ezoe A, Takahashi S, Ishida J, Kusano M, Kobayashi M, Saito K, Nagano AJ, Nakano Y, Mitsuda N, Fujiwara S, Seki M. Application of ethanol alleviates heat damage to leaf growth and yield in tomato. FRONTIERS IN PLANT SCIENCE 2024; 15:1325365. [PMID: 38439987 PMCID: PMC10909983 DOI: 10.3389/fpls.2024.1325365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Chemical priming has emerged as a promising area in agricultural research. Our previous studies have demonstrated that pretreatment with a low concentration of ethanol enhances abiotic stress tolerance in Arabidopsis and cassava. Here, we show that ethanol treatment induces heat stress tolerance in tomato (Solanum lycopersicon L.) plants. Seedlings of the tomato cultivar 'Micro-Tom' were pretreated with ethanol solution and then subjected to heat stress. The survival rates of the ethanol-pretreated plants were significantly higher than those of the water-treated control plants. Similarly, the fruit numbers of the ethanol-pretreated plants were greater than those of the water-treated ones. Transcriptome analysis identified sets of genes that were differentially expressed in shoots and roots of seedlings and in mature green fruits of ethanol-pretreated plants compared with those in water-treated plants. Gene ontology analysis using these genes showed that stress-related gene ontology terms were found in the set of ethanol-induced genes. Metabolome analysis revealed that the contents of a wide range of metabolites differed between water- and ethanol-treated samples. They included sugars such as trehalose, sucrose, glucose, and fructose. From our results, we speculate that ethanol-induced heat stress tolerance in tomato is mainly the result of increased expression of stress-related genes encoding late embryogenesis abundant (LEA) proteins, reactive oxygen species (ROS) elimination enzymes, and activated gluconeogenesis. Our results will be useful for establishing ethanol-based chemical priming technology to reduce heat stress damage in crops, especially in Solanaceae.
Collapse
Affiliation(s)
- Daisuke Todaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Do Thi Nhu Quynh
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Agricultural Genetics Institute, Hanoi, Vietnam
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Chikako Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Akihiro Ezoe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Junko Ishida
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Miyako Kusano
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Makoto Kobayashi
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kazuki Saito
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Atsushi J. Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Yoshimi Nakano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Sumire Fujiwara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan
| |
Collapse
|
18
|
Ko DK, Brandizzi F. Multi-omics Resources for Understanding Gene Regulation in Response to ER Stress in Plants. Methods Mol Biol 2024; 2772:261-272. [PMID: 38411820 PMCID: PMC11139047 DOI: 10.1007/978-1-0716-3710-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Proteotoxic stress of the endoplasmic reticulum (ER) is a potentially lethal condition that ensues when the biosynthetic capacity of the ER is overwhelmed. A sophisticated and largely conserved signaling, known as the unfolded protein response (UPR), is designed to monitor and alleviate ER stress. In plants, the emerging picture of gene regulation by the UPR now appears to be more complex than ever before, requiring multi-omics-enabled network-level approaches to be untangled. In the past decade, with an increasing access and decreasing costs of next-generation sequencing (NGS) and high-throughput protein-DNA interaction (PDI) screening technologies, multitudes of global molecular measurements, known as omics, have been generated and analyzed by the research community to investigate the complex gene regulation of plant UPR. In this chapter, we present a comprehensive catalog of omics resources at different molecular levels (transcriptomes, protein-DNA interactomes, and networks) along with the introduction of key concepts in experimental and computational tools in data generation and analyses. This chapter will serve as a starting point for both experimentalists and bioinformaticians to explore diverse omics datasets for their biological questions in the plant UPR, with likely applications also in other species for conserved mechanisms.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
19
|
Zhang C, Atanasov KE, Murillo E, Vives-Peris V, Zhao J, Deng C, Gómez-Cadenas A, Alcázar R. Spermine deficiency shifts the balance between jasmonic acid and salicylic acid-mediated defence responses in Arabidopsis. PLANT, CELL & ENVIRONMENT 2023; 46:3949-3970. [PMID: 37651604 DOI: 10.1111/pce.14706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Polyamines are small aliphatic polycations present in all living organisms. In plants, the most abundant polyamines are putrescine (Put), spermidine (Spd) and spermine (Spm). Polyamine levels change in response to different pathogens, including Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). However, the regulation of polyamine metabolism and their specific contributions to defence are not fully understood. Here we report that stimulation of Put biosynthesis by Pst DC3000 is dependent on coronatine (COR) perception and jasmonic acid (JA) signalling, independently of salicylic acid (SA). Conversely, lack of Spm in spermine synthase (spms) mutant stimulated galactolipids and JA biosynthesis, and JA signalling under basal conditions and during Pst DC3000 infection, whereas compromised SA-pathway activation and defence outputs through SA-JA antagonism. The dampening of SA responses correlated with COR and Pst DC3000-inducible deregulation of ANAC019 expression and its key SA-metabolism gene targets. Spm deficiency also led to enhanced disease resistance to the necrotrophic fungal pathogen Botrytis cinerea and stimulated endoplasmic reticulum (ER) stress signalling in response to Pst DC3000. Overall, our findings provide evidence for the integration of polyamine metabolism in JA- and SA-mediated defence responses, as well as the participation of Spm in buffering ER stress during defence.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Kostadin E Atanasov
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Ester Murillo
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Vicente Vives-Peris
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Castelló de la Plana, Spain
| | - Jiaqi Zhao
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Cuiyun Deng
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Castelló de la Plana, Spain
| | - Rubén Alcázar
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Yu Y, Wang S, Wang Z, Gao R, Lee J. Arabidopsis thaliana: a powerful model organism to explore histone modifications and their upstream regulations. Epigenetics 2023; 18:2211362. [PMID: 37196184 DOI: 10.1080/15592294.2023.2211362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Histones are subjected to extensive covalent modifications that affect inter-nucleosomal interactions as well as alter chromatin structure and DNA accessibility. Through switching the corresponding histone modifications, the level of transcription and diverse downstream biological processes can be regulated. Although animal systems are widely used in studying histone modifications, the signalling processes that occur outside the nucleus prior to histone modifications have not been well understood due to the limitations including non viable mutants, partial lethality, and infertility of survivors. Here, we review the benefits of using Arabidopsis thaliana as the model organism to study histone modifications and their upstream regulations. Similarities among histones and key histone modifiers such as the Polycomb group (PcG) and Trithorax group (TrxG) in Drosophila, Human, and Arabidopsis are examined. Furthermore, prolonged cold-induced vernalization system has been well-studied and revealed the relationship between the controllable environment input (duration of vernalization), its chromatin modifications of FLOWERING LOCUS C (FLC), following gene expression, and the corresponding phenotypes. Such evidence suggests that research on Arabidopsis can bring insights into incomplete signalling pathways outside of the histone box, which can be achieved through viable reverse genetic screenings based on the phenotypes instead of direct monitoring of histone modifications among individual mutants. The potential upstream regulators in Arabidopsis can provide cues or directions for animal research based on the similarities between them.
Collapse
Affiliation(s)
- Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Sihan Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Ziqin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Renwei Gao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
21
|
Cavalcante FLP, da Silva SJ, de Sousa Lopes L, de Oliveira Paula-Marinho S, Guedes MIF, Gomes-Filho E, de Carvalho HH. Unveiling a differential metabolite modulation of sorghum varieties under increasing tunicamycin-induced endoplasmic reticulum stress. Cell Stress Chaperones 2023; 28:889-907. [PMID: 37775652 PMCID: PMC10746676 DOI: 10.1007/s12192-023-01382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 06/28/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
Plants trigger endoplasmic reticulum (ER) pathways to survive stresses, but the assistance of ER in plant tolerance still needs to be explored. Thus, we selected sensitive and tolerant contrasting abiotic stress sorghum varieties to test if they present a degree of tolerance to ER stress. Accordingly, this work evaluated crescent concentrations of tunicamycin (TM µg mL-1): control (0), lower (0.5), mild (1.5), and higher (2.5) on the initial establishment of sorghum seedlings CSF18 and CSF20. ER stress promoted growth and metabolism reductions, mainly in CSF18, from mild to higher TM. The lowest TM increased SbBiP and SbPDI chaperones, as well as SbbZIP60, and SbbIRE1 gene expressions, but mild and higher TM decreased it. However, CSF20 exhibited higher levels of SbBiP and SbbIRE1 transcripts. It corroborated different metabolic profiles among all TM treatments in CSF18 shoots and similarities between profiles of mild and higher TM in CSF18 roots. Conversely, TM profiles of both shoots and roots of CSF20 overlapped, although it was not complete under low TM treatment. Furthermore, ER stress induced an increase of carbohydrates (dihydroxyacetone in shoots, and cellobiose, maltose, ribose, and sucrose in roots), and organic acids (pyruvic acid in shoots, and butyric and succinic acids in roots) in CSF20, which exhibited a higher degree of ER stress tolerance compared to CSF18 with the root being the most affected plant tissue. Thus, our study provides new insights that may help to understand sorghum tolerance and the ER disturbance as significant contributor for stress adaptation and tolerance engineering.
Collapse
Affiliation(s)
| | - Sávio Justino da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, CEP-60440-554, Brazil
| | - Lineker de Sousa Lopes
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, CEP-60440-554, Brazil
| | | | - Maria Izabel Florindo Guedes
- Biotechnology and Molecular Biology Laboratory, State University of Ceará (UECE), Av. Dr. Silas Munguba, 1700, Fortaleza, CE, 60714-903, Brazil
| | - Enéas Gomes-Filho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, CEP-60440-554, Brazil
| | - Humberto Henrique de Carvalho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, CEP-60440-554, Brazil.
| |
Collapse
|
22
|
Endo N, Tsukimoto R, Isono K, Hosoi A, Yamaguchi R, Tanaka K, Iuchi S, Yotsui I, Sakata Y, Taji T. MOS4-associated complex contributes to proper splicing and suppression of ER stress under long-term heat stress in Arabidopsis. PNAS NEXUS 2023; 2:pgad329. [PMID: 38024402 PMCID: PMC10644990 DOI: 10.1093/pnasnexus/pgad329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
Plants are often exposed not only to short-term (S-) but also to long-term (L-)heat stress over several consecutive days. A few Arabidopsis mutants defective in L-heat tolerance have been identified, but the molecular mechanisms are less understood for this tolerance than for S-heat stress tolerance. To elucidate the mechanisms of the former, we used a forward genetic screen for sensitive to long-term heat (sloh) mutants and isolated sloh3 and sloh63. The mutants were hypersensitive to L- but not to S-heat stress, and sloh63 was also hypersensitive to salt stress. We identified the causal genes, SLOH3 and SLOH63, both of which encoded splicing-related components of the MOS4-associated complex (MAC). This complex is widely conserved in eukaryotes and has been suggested to interact with spliceosomes. Both genes were induced by L-heat stress in a time-dependent manner, and some abnormal splicing events were observed in both mutants under L-heat stress. In addition, endoplasmic reticulum (ER) stress and subsequent unfolded protein response occurred in both mutants under L-heat stress and were especially prominent in sloh63, suggesting that enhanced ER stress is due to the salt hypersensitivity of sloh63. Splicing inhibitor pladienolide B led to concentration-dependent disturbance of splicing, decreased L-heat tolerance, and enhanced ER stress. These findings suggest that maintenance of precise mRNA splicing under L-heat stress by the MAC is important for L-heat tolerance and suppressing ER stress in Arabidopsis.
Collapse
Affiliation(s)
- Naoya Endo
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Ryo Tsukimoto
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Kazuho Isono
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Akito Hosoi
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Ryo Yamaguchi
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Satoshi Iuchi
- RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Izumi Yotsui
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| |
Collapse
|
23
|
Wang LY, Li J, Gong B, Wang RH, Chen YL, Yin J, Yang C, Lin JT, Liu HZ, Yang Y, Li J, Li C, Yao N. Orosomucoid proteins limit endoplasmic reticulum stress in plants. THE NEW PHYTOLOGIST 2023; 240:1134-1148. [PMID: 37606093 DOI: 10.1111/nph.19200] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023]
Abstract
Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants. In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana. Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER-associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS-O 12 (MLO-12). ORM1 and ORM2 bind to EMS-MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant-specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis. Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses.
Collapse
Affiliation(s)
- Ling-Yan Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jian Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Benqiang Gong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Rui-Hua Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yi-Li Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chang Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jia-Ting Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao-Zhuo Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yubing Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianfeng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chunyu Li
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
24
|
Liu X, Li T, Sun J, Wang Z. The Role of Endoplasmic Reticulum Stress in Calcific Aortic Valve Disease. Can J Cardiol 2023; 39:1571-1580. [PMID: 37516250 DOI: 10.1016/j.cjca.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023] Open
Abstract
Calcific aortic valve disease (CAVD), which is involved in osteogenic reprogramming of valvular interstitial cells, is the most common form of valve disease. It still lacks effective pharmacologic intervention, as its cellular biological mechanisms remain unclear. Congenital abnormality (bicuspid valve) and older age are considered to be the most powerful risk factors for CAVD. Aortic valve sclerosis (AVS) and calcific aortic stenosis (CAS), 2 subclinical forms of CAVD, represent 2 distinct stages of aortic valve calcification. During the AVS stage, the disease is characterised by endothelial activation/damage, inflammatory response, and lipid infiltration accompanied by microcalcification. The CAS stage is dominated by calcification, resulting in valvular dysfunction and severe obstruction to cardiac outflow, which is life threatening if surgery is not performed in time. Endoplasmic reticulum (ER) stress, a state in which conditions disrupting ER homeostasis cause an accumulation of unfolded and misfolded proteins in the ER lumen, has been shown to promote osteogenic differentiation and aortic valve calcification. Therefore, identifying targets or drugs for suppressing ER stress may be a novel approach for CAVD treatment.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Medicial Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Ting Li
- School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Jun Sun
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhengjun Wang
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
25
|
Vu BN, Vu TV, Yoo JY, Nguyen NT, Ko KS, Kim JY, Lee KO. CRISPR-Cas-mediated unfolded protein response control for enhancing plant stress resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1271368. [PMID: 37908833 PMCID: PMC10613997 DOI: 10.3389/fpls.2023.1271368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Plants consistently encounter environmental stresses that negatively affect their growth and development. To mitigate these challenges, plants have developed a range of adaptive strategies, including the unfolded protein response (UPR), which enables them to manage endoplasmic reticulum (ER) stress resulting from various adverse conditions. The CRISPR-Cas system has emerged as a powerful tool for plant biotechnology, with the potential to improve plant tolerance and resistance to biotic and abiotic stresses, as well as enhance crop productivity and quality by targeting specific genes, including those related to the UPR. This review highlights recent advancements in UPR signaling pathways and CRISPR-Cas technology, with a particular focus on the use of CRISPR-Cas in studying plant UPR. We also explore prospective applications of CRISPR-Cas in engineering UPR-related genes for crop improvement. The integration of CRISPR-Cas technology into plant biotechnology holds the promise to revolutionize agriculture by producing crops with enhanced resistance to environmental stresses, increased productivity, and improved quality traits.
Collapse
Affiliation(s)
- Bich Ngoc Vu
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| | - Tien Van Vu
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae Yong Yoo
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Ngan Thi Nguyen
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| | - Ki Seong Ko
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio Inc., Jinju, Republic of Korea
| | - Kyun Oh Lee
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
26
|
Ko DK, Kim JY, Thibault EA, Brandizzi F. An IRE1-proteasome system signalling cohort controls cell fate determination in unresolved proteotoxic stress of the plant endoplasmic reticulum. NATURE PLANTS 2023; 9:1333-1346. [PMID: 37563456 PMCID: PMC10481788 DOI: 10.1038/s41477-023-01480-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/04/2023] [Indexed: 08/12/2023]
Abstract
Excessive accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, which is an underlying cause of major crop losses and devastating human conditions. ER proteostasis surveillance is mediated by the conserved master regulator of the unfolded protein response (UPR), Inositol Requiring Enzyme 1 (IRE1), which determines cell fate by controlling pro-life and pro-death outcomes through as yet largely unknown mechanisms. Here we report that Arabidopsis IRE1 determines cell fate in ER stress by balancing the ubiquitin-proteasome system (UPS) and UPR through the plant-unique E3 ligase, PHOSPHATASE TYPE 2CA (PP2CA)-INTERACTING RING FINGER PROTEIN 1 (PIR1). Indeed, PIR1 loss leads to suppression of pro-death UPS and the lethal phenotype of an IRE1 loss-of-function mutant in unresolved ER stress in addition to activating pro-survival UPR. Specifically, in ER stress, PIR1 loss stabilizes ABI5, a basic leucine zipper (bZIP) transcription factor, that directly activates expression of the critical UPR regulator gene, bZIP60, triggering transcriptional cascades enhancing pro-survival UPR. Collectively, our results identify new cell fate effectors in plant ER stress by showing that IRE1's coordination of cell death and survival hinges on PIR1, a key pro-death component of the UPS, which controls ABI5, a pro-survival transcriptional activator of bZIP60.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Joo Yong Kim
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - Ethan A Thibault
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
27
|
Breeze E, Vale V, McLellan H, Pecrix Y, Godiard L, Grant M, Frigerio L. A tell tail sign: a conserved C-terminal tail-anchor domain targets a subset of pathogen effectors to the plant endoplasmic reticulum. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3188-3202. [PMID: 36860200 DOI: 10.1093/jxb/erad075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/27/2023] [Indexed: 05/21/2023]
Abstract
The endoplasmic reticulum (ER) is the entry point to the secretory pathway and, as such, is critical for adaptive responses to biotic stress, when the demand for de novo synthesis of immunity-related proteins and signalling components increases significantly. Successful phytopathogens have evolved an arsenal of small effector proteins which collectively reconfigure multiple host components and signalling pathways to promote virulence; a small, but important, subset of which are targeted to the endomembrane system including the ER. We identified and validated a conserved C-terminal tail-anchor motif in a set of pathogen effectors known to localize to the ER from the oomycetes Hyaloperonospora arabidopsidis and Plasmopara halstedii (downy mildew of Arabidopsis and sunflower, respectively) and used this protein topology to develop a bioinformatic pipeline to identify putative ER-localized effectors within the effectorome of the related oomycete, Phytophthora infestans, the causal agent of potato late blight. Many of the identified P. infestans tail-anchor effectors converged on ER-localized NAC transcription factors, indicating that this family is a critical host target for multiple pathogens.
Collapse
Affiliation(s)
- Emily Breeze
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Victoria Vale
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Hazel McLellan
- Division of Plant Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Yann Pecrix
- CIRAD, UMR PVBMT, Peuplements Végétaux et Bioagresseurs en Milieu Tropical (UMR C53), Ligne Paradis, 97410 St Pierre, La Réunion, France
| | - Laurence Godiard
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Castanet-Tolosan, France
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Lorenzo Frigerio
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
28
|
Zhang H, Chen G, Xu H, Jing S, Jiang Y, Liu Z, Zhang H, Wang F, Hu X, Zhu Y. Transcriptome Analysis of Rice Embryo and Endosperm during Seed Germination. Int J Mol Sci 2023; 24:ijms24108710. [PMID: 37240056 DOI: 10.3390/ijms24108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Seed germination is a complex, multistage developmental process that is an important step in plant development. In this study, RNA-Seq was conducted in the embryo and endosperm of unshelled germinating rice seeds. A total of 14,391 differentially expressed genes (DEGs) were identified between the dry seeds and the germinating seeds. Of these DEGs, 7109 were identified in both the embryo and endosperm, 3953 were embryo specific, and 3329 were endosperm specific. The embryo-specific DEGs were enriched in the plant-hormone signal-transduction pathway, while the endosperm-specific DEGs were enriched in phenylalanine, tyrosine, and tryptophan biosynthesis. We categorized these DEGs into early-, intermediate-, and late-stage genes, as well as consistently responsive genes, which can be enriched in various pathways related to seed germination. Transcription-factor (TF) analysis showed that 643 TFs from 48 families were differentially expressed during seed germination. Moreover, 12 unfolded protein response (UPR) pathway genes were induced by seed germination, and the knockout of OsBiP2 resulted in reduced germination rates compared to the wild type. This study enhances our understanding of gene responses in the embryo and endosperm during seed germination and provides insight into the effects of UPR on seed germination in rice.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guang Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Heng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sasa Jing
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yingying Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ziwen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hua Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fulin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
29
|
Cuypers A, Vanbuel I, Iven V, Kunnen K, Vandionant S, Huybrechts M, Hendrix S. Cadmium-induced oxidative stress responses and acclimation in plants require fine-tuning of redox biology at subcellular level. Free Radic Biol Med 2023; 199:81-96. [PMID: 36775109 DOI: 10.1016/j.freeradbiomed.2023.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Cadmium (Cd) is one of the most toxic compounds released into our environment and is harmful to human health, urging the need to remediate Cd-polluted soils. To this end, it is important to increase our insight into the molecular mechanisms underlying Cd stress responses in plants, ultimately leading to acclimation, and to develop novel strategies for economic validation of these soils. Albeit its non-redox-active nature, Cd causes a cellular oxidative challenge, which is a crucial determinant in the onset of diverse signalling cascades required for long-term acclimation and survival of Cd-exposed plants. Although it is well known that Cd affects reactive oxygen species (ROS) production and scavenging, the contribution of individual organelles to Cd-induced oxidative stress responses is less well studied. Here, we provide an overview of the current information on Cd-induced organellar responses with special attention to redox biology. We propose that an integration of organellar ROS signals with other signalling pathways is essential to finetune plant acclimation to Cd stress.
Collapse
Affiliation(s)
- Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium.
| | - Isabeau Vanbuel
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Verena Iven
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Kris Kunnen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Stéphanie Vandionant
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| |
Collapse
|
30
|
Jeon H, Segonzac C. Manipulation of the Host Endomembrane System by Bacterial Effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:208-217. [PMID: 36645655 DOI: 10.1094/mpmi-09-22-0190-fi] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The endomembrane system, extending from the nuclear envelope to the plasma membrane, is critical to the plant response to pathogen infection. Synthesis and transport of immunity-related proteins and antimicrobial compounds to and from the plasma membrane are supported by conventional and unconventional processes of secretion and internalization of vesicles, guided by the cytoskeleton networks. Although plant bacterial pathogens reside mostly in the apoplast, major structural and functional modifications of the endomembrane system in the host cell occur during bacterial infection. Here, we review the dynamics of these cellular compartments, briefly, for their essential contributions to the plant defense responses and, in parallel, for their emerging roles in bacterial pathogenicity. We further focus on Pseudomonas syringae, Xanthomonas spp., and Ralstonia solanacearum type III secreted effectors that one or both localize to and associate with components of the host endomembrane system or the cytoskeleton network to highlight the diversity of virulence strategies deployed by bacterial pathogens beyond the inhibition of the secretory pathway. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Hyelim Jeon
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Cécile Segonzac
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Agricultural and Life Science Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
31
|
Wang P, Duckney P, Gao E, Hussey PJ, Kriechbaumer V, Li C, Zang J, Zhang T. Keep in contact: multiple roles of endoplasmic reticulum-membrane contact sites and the organelle interaction network in plants. THE NEW PHYTOLOGIST 2023; 238:482-499. [PMID: 36651025 DOI: 10.1111/nph.18745] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Functional regulation and structural maintenance of the different organelles in plants contribute directly to plant development, reproduction and stress responses. To ensure these activities take place effectively, cells have evolved an interconnected network amongst various subcellular compartments, regulating rapid signal transduction and the exchange of biomaterial. Many proteins that regulate membrane connections have recently been identified in plants, and this is the first step in elucidating both the mechanism and function of these connections. Amongst all organelles, the endoplasmic reticulum is the key structure, which likely links most of the different subcellular compartments through membrane contact sites (MCS) and the ER-PM contact sites (EPCS) have been the most intensely studied in plants. However, the molecular composition and function of plant MCS are being found to be different from other eukaryotic systems. In this article, we will summarise the most recent advances in this field and discuss the mechanism and biological relevance of these essential links in plants.
Collapse
Affiliation(s)
- Pengwei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Patrick Duckney
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Erlin Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Chengyang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jingze Zang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
32
|
Sasaki S, Murakami T, Yasumuro M, Makita A, Oi Y, Hiragori Y, Watanabe S, Kudo R, Hayashi N, Ohbayashi I, Sugiyama M, Yamashita Y, Naito S, Onouchi H. Upstream open reading frame-mediated upregulation of ANAC082 expression in response to nucleolar stress in Arabidopsis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:21-30. [PMID: 38213914 PMCID: PMC10777128 DOI: 10.5511/plantbiotechnology.22.1215a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2024]
Abstract
Perturbations in ribosome biogenesis cause a type of cellular stress called nucleolar or ribosomal stress, which triggers adaptive responses in both animal and plant cells. The Arabidopsis ANAC082 transcription factor has been identified as a key mediator of the plant nucleolar stress response. The 5'-untranslated region (5'-UTR) of ANAC082 mRNA contains an upstream ORF (uORF) encoding an evolutionarily conserved amino acid sequence. Here, we report that this uORF mediates the upregulation of ANAC082 expression in response to nucleolar stress. When transgenic Arabidopsis plants containing a luciferase reporter gene under the control of the ANAC082 promoter and 5'-UTR were treated with reagents that induced nucleolar stress, expression of the reporter gene was enhanced in a uORF sequence-dependent manner. Additionally, we examined the effect of an endoplasmic reticulum (ER) stress-inducing reagent on reporter gene expression because the closest homolog of ANAC082 in Arabidopsis, ANAC103, is involved in the ER stress response. However, the ANAC082 uORF did not respond to ER stress. Interestingly, although ANAC103 has a uORF with an amino acid sequence similar to that of the ANAC082 uORF, the C-terminal sequence critical for regulation is not well conserved among ANAC103 homologs in Brassicaceae. Transient expression assays revealed that unlike the ANAC082 uORF, the ANAC103 uORF does not exert a sequence-dependent repressive effect. Altogether, our findings suggest that the ANAC082 uORF is important for the nucleolar stress response but not for the ER stress response, and that for this reason, the uORF sequence-dependent regulation was lost in ANAC103 during evolution.
Collapse
Affiliation(s)
- Shun Sasaki
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Toru Murakami
- Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Miharu Yasumuro
- Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Ayaka Makita
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Yutaro Oi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Yuta Hiragori
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Shun Watanabe
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Rin Kudo
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Noriya Hayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Iwai Ohbayashi
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan R.O.C
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan R.O.C
| | - Munetaka Sugiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Satoshi Naito
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
33
|
Musetti R, Pagliari L, Mian G, De Oliveira Cantao FR, Bernardini C, Santi S, van Bel AJE. The sieve-element endoplasmic reticulum: A focal point of phytoplasma-host plant interaction? Front Microbiol 2023; 14:1030414. [PMID: 36819061 PMCID: PMC9932721 DOI: 10.3389/fmicb.2023.1030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
The rough endoplasmic reticulum (r-ER) is of paramount importance for adaptive responses to biotic stresses due to an increased demand for de novo synthesis of immunity-related proteins and signaling components. In nucleate cells, disturbance of r-ER integrity and functionality leads to the "unfolded protein response" (UPR), which is an important component of innate plant immune signalling. In contrast to an abundance of reports on r-ER responses to biotic challenges, sieve-element endoplasmic reticulum (SE-ER) responses to phytoplasma infection have not been investigated. We found that morphological SE-ER changes, associated with phytoplasma infection, are accompanied by differential expression of genes encoding proteins involved in shaping and anchoring the reticulum. Phytoplasma infection also triggers an increased release of bZIP signals from the (SE-ER)/r-ER and consequent differential expression of UPR-related genes. The modified expression patterns seem to reflect a trade-off between survival of host cells, needed for the phytoplasmic biotrophic lifestyle, and phytoplasmas. Specialized plasmodesmata between sieve element and companion cell may provide a corridor for transfer of phytoplasma effectors inducing UPR-related gene expression in companion cells.
Collapse
Affiliation(s)
- Rita Musetti
- Department of Land, Environment, Agriculture and Forestry (TESAF), Università di Padova, via dell' Università, Legnaro, Italy,*Correspondence: Rita Musetti,
| | - Laura Pagliari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | - Giovanni Mian
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | - Fernando R. De Oliveira Cantao
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | - Chiara Bernardini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | - Simonetta Santi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | | |
Collapse
|
34
|
Paraskevaidis I, Farmakis D, Papingiotis G, Tsougos E. Inflammation and Heart Failure: Searching for the Enemy-Reaching the Entelechy. J Cardiovasc Dev Dis 2023; 10:jcdd10010019. [PMID: 36661914 PMCID: PMC9866611 DOI: 10.3390/jcdd10010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
The pivotal role of inflammation in the pathophysiology of heart-failure (HF) development and progression has long been recognized. High blood levels of pro-inflammatory and inflammatory markers are present and associated with adverse outcomes in patients with HF. In addition, there seems to be an interrelation between inflammation and neurohormonal activation, the cornerstone of HF pathophysiology and management. However, clinical trials involving anti-inflammatory agents have shown inconclusive or even contradictory results in improving HF outcomes. In the present review, we try to shed some light on the reciprocal relationship between inflammation and HF in an attempt to identify the central regulating factors, such as inflammatory cells and soluble mediators and the related inflammatory pathways as potential therapeutic targets.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- 6th Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| | - Dimitrios Farmakis
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
- Correspondence: ; Tel.: +357-22-895235
| | - Georgios Papingiotis
- Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| |
Collapse
|
35
|
Kim JS, Mochida K, Shinozaki K. ER Stress and the Unfolded Protein Response: Homeostatic Regulation Coordinate Plant Survival and Growth. PLANTS (BASEL, SWITZERLAND) 2022; 11:3197. [PMID: 36501237 PMCID: PMC9735958 DOI: 10.3390/plants11233197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The endoplasmic reticulum (ER), a eukaryotic organelle, is the major site of protein biosynthesis. The disturbance of ER function by biotic or abiotic stress triggers the accumulation of misfolded or unfolded proteins in the ER. The unfolded protein response (UPR) is the best-studied ER stress response. This transcriptional regulatory system senses ER stress, activates downstream genes that function to mitigate stress, and restores homeostasis. In addition to its conventional role in stress responses, recent reports indicate that the UPR is involved in plant growth and development. In this review, we summarize the current knowledge of ER stress sensing and the activation and downstream regulation of the UPR. We also describe how the UPR modulates both plant growth and stress tolerance by maintaining ER homeostasis. Lastly, we propose that the UPR is a major component of the machinery that balances the trade-off between plant growth and survival in a dynamic environment.
Collapse
Affiliation(s)
- June-Sik Kim
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| |
Collapse
|
36
|
Matsui A, Todaka D, Tanaka M, Mizunashi K, Takahashi S, Sunaoshi Y, Tsuboi Y, Ishida J, Bashir K, Kikuchi J, Kusano M, Kobayashi M, Kawaura K, Seki M. Ethanol induces heat tolerance in plants by stimulating unfolded protein response. PLANT MOLECULAR BIOLOGY 2022; 110:131-145. [PMID: 35729482 DOI: 10.1007/s11103-022-01291-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/26/2022] [Indexed: 05/24/2023]
Abstract
Ethanol priming induces heat stress tolerance by the stimulation of unfolded protein response. Global warming increases the risk of heat stress-related yield losses in agricultural crops. Chemical priming, using safe agents, that can flexibly activate adaptive regulatory responses to adverse conditions, is a complementary approach to genetic improvement for stress adaptation. In the present study, we demonstrated that pretreatment of Arabidopsis with a low concentration of ethanol enhances heat tolerance without suppressing plant growth. We also demonstrated that ethanol pretreatment improved leaf growth in lettuce (Lactuca sativa L.) plants grown in the field conditions under high temperatures. Transcriptome analysis revealed a set of genes that were up-regulated in ethanol-pretreated plants, relative to water-pretreated controls. Binding Protein 3 (BIP3), an endoplasmic reticulum (ER)-stress marker chaperone gene, was among the identified up-regulated genes. The expression levels of BIP3 were confirmed by RT-qPCR. Root-uptake of ethanol was metabolized to organic acids, nucleic acids, amines and other molecules, followed by an increase in putrescine content, which substantially promoted unfolded protein response (UPR) signaling and high-temperature acclimation. We also showed that inhibition of polyamine production and UPR signaling negated the heat stress tolerance induced by ethanol pretreatment. These findings collectively indicate that ethanol priming activates UPR signaling via putrescine accumulation, leading to enhanced heat stress tolerance. The information gained from this study will be useful for establishing ethanol-mediated chemical priming strategies that can be used to help maintain crop production under heat stress conditions.
Collapse
Affiliation(s)
- Akihiro Matsui
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Daisuke Todaka
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kayoko Mizunashi
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoshi Takahashi
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuji Sunaoshi
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Yuuri Tsuboi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Junko Ishida
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Khurram Bashir
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Jun Kikuchi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Miyako Kusano
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Makoto Kobayashi
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, Plant Genomic Network Research Team, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
37
|
Czékus Z, Szalai G, Tari I, Khan MIR, Poór P. Role of ethylene in ER stress and the unfolded protein response in tomato (Solanum lycopersicum L.) plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 181:1-11. [PMID: 35421744 DOI: 10.1016/j.plaphy.2022.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The unfolded protein response (UPR) plays a significant role in the maintenance of cellular homeostasis under endoplasmic reticulum (ER) stress, which is highly dependent on the regulation of defense-related phytohormones. In this study, the role of ethylene (ET) in ER stress and UPR was investigated in the leaves of intact tomato (Solanum lycopersicum) plants. Exogenous application of the ET precursor 1-aminocyclopropane-1-carboxylic acid not only resulted in higher ET emission from leaves but also increased the expression of the UPR marker gene SlBiP and the transcript levels of the ER stress sensor SlIRE1, as well as the levels of SlbZIP60, after 24 h in tomato leaves. Using ET receptor Never ripe (Nr) mutants, a significant role of ET in tunicamycin (Tm)-induced ER stress sensing and signaling was confirmed based on the changes in the expression levels of SlIRE1b and SlBiP. Furthermore, the analysis of other defense-related phytohormones showed that the Tm-induced ET can affect positively the levels of and response to salicylic acid. Additionally, it was found that nitric oxide production and lipid peroxidation, as well as the electrolyte leakage induced by Tm, is regulated by ET, whereas the levels of H2O2 and proteolytic activity seemed to be independent of ET under ER stress in the leaves of tomato plants.
Collapse
Affiliation(s)
- Zalán Czékus
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Gabriella Szalai
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Irma Tari
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | | | - Péter Poór
- Department of Plant Biology, University of Szeged, Szeged, Hungary.
| |
Collapse
|
38
|
Ko DK, Brandizzi F. Transcriptional competition shapes proteotoxic ER stress resolution. NATURE PLANTS 2022; 8:481-490. [PMID: 35577961 PMCID: PMC9187302 DOI: 10.1038/s41477-022-01150-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Through dynamic activities of conserved master transcription factors (mTFs), the unfolded protein response (UPR) relieves proteostasis imbalance of the endoplasmic reticulum (ER), a condition known as ER stress1,2. Because dysregulated UPR is lethal, the competence for fate changes of the UPR mTFs must be tightly controlled3,4. However, the molecular mechanisms underlying regulatory dynamics of mTFs remain largely elusive. Here, we identified the abscisic acid-related regulator G-class bZIP TF2 (GBF2) and the cis-regulatory element G-box as regulatory components of the plant UPR led by the mTFs, bZIP28 and bZIP60. We demonstrate that, by competing with the mTFs at G-box, GBF2 represses UPR gene expression. Conversely, a gbf2 null mutation enhances UPR gene expression and suppresses the lethality of a bzip28 bzip60 mutant in unresolved ER stress. By demonstrating that GBF2 functions as a transcriptional repressor of the UPR, we address the long-standing challenge of identifying shared signalling components for a better understanding of the dynamic nature and complexity of stress biology. Furthermore, our results identify a new layer of UPR gene regulation hinged upon an antagonistic mTFs-GFB2 competition for proteostasis and cell fate determination.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
39
|
El-Sappah AH, Rather SA, Wani SH, Elrys AS, Bilal M, Huang Q, Dar ZA, Elashtokhy MMA, Soaud N, Koul M, Mir RR, Yan K, Li J, El-Tarabily KA, Abbas M. Heat Stress-Mediated Constraints in Maize ( Zea mays) Production: Challenges and Solutions. FRONTIERS IN PLANT SCIENCE 2022; 13:879366. [PMID: 35615131 PMCID: PMC9125997 DOI: 10.3389/fpls.2022.879366] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/30/2022] [Indexed: 05/05/2023]
Abstract
An increase in temperature and extreme heat stress is responsible for the global reduction in maize yield. Heat stress affects the integrity of the plasma membrane functioning of mitochondria and chloroplast, which further results in the over-accumulation of reactive oxygen species. The activation of a signal cascade subsequently induces the transcription of heat shock proteins. The denaturation and accumulation of misfolded or unfolded proteins generate cell toxicity, leading to death. Therefore, developing maize cultivars with significant heat tolerance is urgently required. Despite the explored molecular mechanism underlying heat stress response in some plant species, the precise genetic engineering of maize is required to develop high heat-tolerant varieties. Several agronomic management practices, such as soil and nutrient management, plantation rate, timing, crop rotation, and irrigation, are beneficial along with the advanced molecular strategies to counter the elevated heat stress experienced by maize. This review summarizes heat stress sensing, induction of signaling cascade, symptoms, heat stress-related genes, the molecular feature of maize response, and approaches used in developing heat-tolerant maize varieties.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Shabir A. Rather
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops Khudwani Anantnag, SKUAST–Kashmir, Srinagar, India
| | - Ahmed S. Elrys
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Muhammad Bilal
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Qiulan Huang
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
- College of Tea Science, Yibin University, Yibin, China
| | - Zahoor Ahmad Dar
- Dryland Agriculture Research Station, SKUAST–Kashmir, Srinagar, India
| | | | - Nourhan Soaud
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Monika Koul
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), SKUAST–Kashmir, Sopore, India
| | - Kuan Yan
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| |
Collapse
|
40
|
Angelos E, Brandizzi F. The UPR regulator IRE1 promotes balanced organ development by restricting TOR-dependent control of cellular differentiation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1229-1248. [PMID: 34902186 PMCID: PMC8978258 DOI: 10.1111/tpj.15629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 05/03/2023]
Abstract
Proteostasis of the endoplasmic reticulum (ER) is controlled by sophisticated signaling pathways that are collectively called the unfolded protein response (UPR) and are initiated by specialized ER membrane-associated sensors. The evidence that complete loss-of-function mutations of the most conserved of the UPR sensors, inositol-requiring enzyme 1 (IRE1), dysregulates tissue growth and development in metazoans and plants raises the fundamental question as to how IRE1 is connected to organismal growth. To address this question, we interrogated the Arabidopsis primary root, an established model for organ development, using the tractable Arabidopsis IRE1 mutant ire1a ire1b, which has marked root development defects in the absence of exogenous stress. We demonstrate that IRE1 is required to reach maximum rates of cell elongation and root growth. We also established that in the actively growing ire1a ire1b mutant root tips the Target of Rapamycin (TOR) kinase, a widely conserved pro-growth regulator, is hyperactive, and that, unlike cell proliferation, the rate of cell differentiation is enhanced in ire1a ire1b in a TOR-dependent manner. By functionally connecting two essential growth regulators, these results underpin a novel and critical role of IRE1 in organ development and indicate that, as cells exit an undifferentiated state, IRE1 is required to monitor TOR activity to balance cell expansion and maturation during organ biogenesis.
Collapse
Affiliation(s)
- Evan Angelos
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
- For correspondence ()
| |
Collapse
|
41
|
Reggiori F, Molinari M. ER-phagy: mechanisms, regulation and diseases connected to the lysosomal clearance of the endoplasmic reticulum. Physiol Rev 2022; 102:1393-1448. [PMID: 35188422 PMCID: PMC9126229 DOI: 10.1152/physrev.00038.2021] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ER-phagy (reticulo-phagy) defines the degradation of portions of the endoplasmic reticulum (ER) within lysosomes or vacuoles. It is part of the self-digestion (i.e., auto-phagic) programs recycling cytoplasmic material and organelles, which rapidly mobilize metabolites in cells confronted with nutrient shortage. Moreover, selective clearance of ER subdomains participates to the control of ER size and activity during ER stress, the re-establishment of ER homeostasis after ER stress resolution and the removal of ER parts, in which aberrant and potentially cytotoxic material has been segregated. ER-phagy relies on the individual and/or concerted activation of the ER-phagy receptors, ER peripheral or integral membrane proteins that share the presence of LC3/Atg8-binding motifs in their cytosolic domains. ER-phagy involves the physical separation of portions of the ER from the bulk ER network, and their delivery to the endolysosomal/vacuolar catabolic district. This last step is accomplished by a variety of mechanisms including macro-ER-phagy (in which ER fragments are sequestered by double-membrane autophagosomes that eventually fuse with lysosomes/vacuoles), micro-ER-phagy (in which ER fragments are directly engulfed by endosomes/lysosomes/vacuoles), or direct fusion of ER-derived vesicles with lysosomes/vacuoles. ER-phagy is dysfunctional in specific human diseases and its regulators are subverted by pathogens, highlighting its crucial role for cell and organism life.
Collapse
Affiliation(s)
- Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, grid.4830.fUniversity of Groningen, Netherlands
| | - Maurizio Molinari
- Protein Folding and Quality Control, grid.7722.0Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
42
|
OsbZIP60-mediated unfolded protein response regulates grain chalkiness in rice. J Genet Genomics 2022; 49:414-426. [DOI: 10.1016/j.jgg.2022.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
|
43
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
44
|
Endoplasmic Reticulum Stress and Unfolded Protein Response Signaling in Plants. Int J Mol Sci 2022; 23:ijms23020828. [PMID: 35055014 PMCID: PMC8775474 DOI: 10.3390/ijms23020828] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Plants are sensitive to a variety of stresses that cause various diseases throughout their life cycle. However, they have the ability to cope with these stresses using different defense mechanisms. The endoplasmic reticulum (ER) is an important subcellular organelle, primarily recognized as a checkpoint for protein folding. It plays an essential role in ensuring the proper folding and maturation of newly secreted and transmembrane proteins. Different processes are activated when around one-third of newly synthesized proteins enter the ER in the eukaryote cells, such as glycosylation, folding, and/or the assembling of these proteins into protein complexes. However, protein folding in the ER is an error-prone process whereby various stresses easily interfere, leading to the accumulation of unfolded/misfolded proteins and causing ER stress. The unfolded protein response (UPR) is a process that involves sensing ER stress. Many strategies have been developed to reduce ER stress, such as UPR, ER-associated degradation (ERAD), and autophagy. Here, we discuss the ER, ER stress, UPR signaling and various strategies for reducing ER stress in plants. In addition, the UPR signaling in plant development and different stresses have been discussed.
Collapse
|
45
|
Ko DK, Brandizzi F. Advanced genomics identifies growth effectors for proteotoxic ER stress recovery in Arabidopsis thaliana. Commun Biol 2022; 5:16. [PMID: 35017639 PMCID: PMC8752741 DOI: 10.1038/s42003-021-02964-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022] Open
Abstract
Adverse environmental and pathophysiological situations can overwhelm the biosynthetic capacity of the endoplasmic reticulum (ER), igniting a potentially lethal condition known as ER stress. ER stress hampers growth and triggers a conserved cytoprotective signaling cascade, the unfolded protein response (UPR) for ER homeostasis. As ER stress subsides, growth is resumed. Despite the pivotal role of the UPR in growth restoration, the underlying mechanisms for growth resumption are yet unknown. To discover these, we undertook a genomics approach in the model plant species Arabidopsis thaliana and mined the gene reprogramming roles of the UPR modulators, basic leucine zipper28 (bZIP28) and bZIP60, in ER stress resolution. Through a network modeling and experimental validation, we identified key genes downstream of the UPR bZIP-transcription factors (bZIP-TFs), and demonstrated their functional roles. Our analyses have set up a critical pipeline for functional gene discovery in ER stress resolution with broad applicability across multicellular eukaryotes. Ko and Brandizzi use Arabidopsis thaliana to investigate the downstream regulators of two major endoplasmic reticulum (ER) stress-related transcription factors, bZIP60 and bZIP28. Their results provide further insight on how two modulators of the unfolded protein response contribute to growth recovery from ER stress.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.,Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA. .,Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA. .,Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
46
|
Wang T, Zhou J, Zhang X, Wu Y, Jin K, Wang Y, Xu R, Yang G, Li W, Jiao L. X-box Binding Protein 1: An Adaptor in the Pathogenesis of Atherosclerosis. Aging Dis 2022; 14:350-369. [PMID: 37008067 PMCID: PMC10017146 DOI: 10.14336/ad.2022.0824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis (AS), the formation of fibrofatty lesions in the vessel wall, is the primary cause of heart disease and stroke and is closely associated with aging. Disrupted metabolic homeostasis is a primary feature of AS and leads to endoplasmic reticulum (ER) stress, which is an abnormal accumulation of unfolded proteins. By orchestrating signaling cascades of the unfolded protein response (UPR), ER stress functions as a double-edged sword in AS, where adaptive UPR triggers synthetic metabolic processes to restore homeostasis, whereas the maladaptive response programs the cell to the apoptotic pathway. However, little is known regarding their precise coordination. Herein, an advanced understanding of the role of UPR in the pathological process of AS is reviewed. In particular, we focused on a critical mediator of the UPR, X-box binding protein 1 (XBP1), and its important role in balancing adaptive and maladaptive responses. The XBP1 mRNA is processed from the unspliced isoform (XBP1u) to the spliced isoform of XBP1 (XBP1s). Compared with XBP1u, XBP1s predominantly functions downstream of inositol-requiring enzyme-1α (IRE1α) and transcript genes involved in protein quality control, inflammation, lipid metabolism, carbohydrate metabolism, and calcification, which are critical for the pathogenesis of AS. Thus, the IRE1α/XBP1 axis is a promising pharmaceutical candidate against AS.
Collapse
Affiliation(s)
- Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Jia Zhou
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| | - Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| |
Collapse
|
47
|
Lima KRP, Cavalcante FLP, Paula-Marinho SDO, Pereira IMC, Lopes LDS, Nunes JVS, Coutinho ÍAC, Gomes-Filho E, Carvalho HHD. Metabolomic profiles exhibit the influence of endoplasmic reticulum stress on sorghum seedling growth over time. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:192-205. [PMID: 34902782 DOI: 10.1016/j.plaphy.2021.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Environmental stresses disturb the endoplasmic reticulum (ER) protein folding. However, primary metabolic responses induced by ER stress remain unclear. Thus, we investigated the morphophysiological and metabolomic changes under ER stress, induced by dithiothreitol (DTT) and tunicamycin (TM) treatments in sorghum seedlings from 24 to 96 h. The ER stress caused lipid peroxidation and increased the expression of SbBiP1, SbPDI, and SbIRE1. The development impairment was more pronounced in roots than in shoots as distinct metabolomic profiles were observed. DTT decreased root length, lateral roots, and root hair, while TM decreased mainly the root length. At 24 h, under ER stresses, the glutamic acid and o-acetyl-serine were biomarkers in the shoots. While homoserine, pyroglutamic acid, and phosphoric acid were candidates for roots. At the latest time (96 h), kestose and galactinol were key metabolites for shoots under DTT and TM, respectively. In roots, palatinose, trehalose, and alanine were common markers for DTT and TM late exposure. The accumulation of sugars such as arabinose and kestose occurred mainly in roots in the presence of DTT at a later time, which also inhibited glycolysis and the tricarboxylic acid cycle (TCA). Amino acid metabolism was induced, which also contributed TCA components decreasing, such as succinate in shoots and citrate in roots. Thus, our study may provide new insights into primary metabolism modulated by ER stress and seedling development.
Collapse
Affiliation(s)
- Karollyny Roger Pereira Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP-60440-554, Fortaleza, CE, Brazil
| | | | | | - Isabelle Mary Costa Pereira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP-60440-554, Fortaleza, CE, Brazil
| | - Lineker de Sousa Lopes
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP-60440-554, Fortaleza, CE, Brazil
| | | | | | - Enéas Gomes-Filho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP-60440-554, Fortaleza, CE, Brazil
| | - Humberto Henrique de Carvalho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, CEP-60440-554, Fortaleza, CE, Brazil.
| |
Collapse
|
48
|
Simoni EB, Oliveira CC, Fraga OT, Reis PAB, Fontes EPB. Cell Death Signaling From Endoplasmic Reticulum Stress: Plant-Specific and Conserved Features. FRONTIERS IN PLANT SCIENCE 2022; 13:835738. [PMID: 35185996 PMCID: PMC8850647 DOI: 10.3389/fpls.2022.835738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 05/06/2023]
Abstract
The endoplasmic reticulum (ER) stress response is triggered by any condition that disrupts protein folding and promotes the accumulation of unfolded proteins in the lumen of the organelle. In eukaryotic cells, the evolutionarily conserved unfolded protein response is activated to clear unfolded proteins and restore ER homeostasis. The recovery from ER stress is accomplished by decreasing protein translation and loading into the organelle, increasing the ER protein processing capacity and ER-associated protein degradation activity. However, if the ER stress persists and cannot be reversed, the chronically prolonged stress leads to cellular dysfunction that activates cell death signaling as an ultimate attempt to survive. Accumulating evidence implicates ER stress-induced cell death signaling pathways as significant contributors for stress adaptation in plants, making modulators of ER stress pathways potentially attractive targets for stress tolerance engineering. Here, we summarize recent advances in understanding plant-specific molecular mechanisms that elicit cell death signaling from ER stress. We also highlight the conserved features of ER stress-induced cell death signaling in plants shared by eukaryotic cells.
Collapse
|
49
|
Jha SG, Borowsky AT, Cole BJ, Fahlgren N, Farmer A, Huang SSC, Karia P, Libault M, Provart NJ, Rice SL, Saura-Sanchez M, Agarwal P, Ahkami AH, Anderton CR, Briggs SP, Brophy JAN, Denolf P, Di Costanzo LF, Exposito-Alonso M, Giacomello S, Gomez-Cano F, Kaufmann K, Ko DK, Kumar S, Malkovskiy AV, Nakayama N, Obata T, Otegui MS, Palfalvi G, Quezada-Rodríguez EH, Singh R, Uhrig RG, Waese J, Van Wijk K, Wright RC, Ehrhardt DW, Birnbaum KD, Rhee SY. Vision, challenges and opportunities for a Plant Cell Atlas. eLife 2021; 10:e66877. [PMID: 34491200 PMCID: PMC8423441 DOI: 10.7554/elife.66877] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.
Collapse
Affiliation(s)
- Suryatapa Ghosh Jha
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Alexander T Borowsky
- Department of Botany and Plant Sciences, University of California, RiversideRiversideUnited States
| | - Benjamin J Cole
- Joint Genome Institute, Lawrence Berkeley National LaboratoryWalnut CreekUnited States
| | - Noah Fahlgren
- Donald Danforth Plant Science CenterSt. LouisUnited States
| | - Andrew Farmer
- National Center for Genome ResourcesSanta FeUnited States
| | | | - Purva Karia
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Marc Libault
- Department of Agronomy and Horticulture, University of Nebraska-LincolnLincolnUnited States
| | - Nicholas J Provart
- Department of Cell and Systems Biology and the Centre for the Analysis of Genome Evolution and Function, University of TorontoTorontoCanada
| | - Selena L Rice
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Maite Saura-Sanchez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos AiresBuenos AiresArgentina
| | - Pinky Agarwal
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Amir H Ahkami
- Environmental Molecular Sciences Division, Pacific Northwest National LaboratoryRichlandUnited States
| | - Christopher R Anderton
- Environmental Molecular Sciences Division, Pacific Northwest National LaboratoryRichlandUnited States
| | - Steven P Briggs
- Department of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | | | | | - Luigi F Di Costanzo
- Department of Agricultural Sciences, University of Naples Federico IINapoliItaly
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
- Department of Plant Biology, Carnegie Institution for ScienceTübingenGermany
| | | | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
| | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universitaet zu BerlinBerlinGermany
| | - Dae Kwan Ko
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast LansingUnited States
| | - Sagar Kumar
- Department of Plant Breeding & Genetics, Mata Gujri College, Fatehgarh Sahib, Punjabi UniversityPatialaIndia
| | - Andrey V Malkovskiy
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Naomi Nakayama
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Toshihiro Obata
- Department of Biochemistry, University of Nebraska-LincolnMadisonUnited States
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-MadisonMadisonUnited States
| | - Gergo Palfalvi
- Division of Evolutionary Biology, National Institute for Basic BiologyOkazakiJapan
| | - Elsa H Quezada-Rodríguez
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de MéxicoLeónMexico
| | - Rajveer Singh
- School of Agricultural Biotechnology, Punjab Agricultural UniversityLudhianaIndia
| | - R Glen Uhrig
- Department of Science, University of AlbertaEdmontonCanada
| | - Jamie Waese
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of TorontoTorontoCanada
| | - Klaas Van Wijk
- School of Integrated Plant Science, Plant Biology Section, Cornell UniversityIthacaUnited States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia TechBlacksburgUnited States
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| |
Collapse
|
50
|
Zang J, Kriechbaumer V, Wang P. Plant cytoskeletons and the endoplasmic reticulum network organization. JOURNAL OF PLANT PHYSIOLOGY 2021; 264:153473. [PMID: 34298331 DOI: 10.1016/j.jplph.2021.153473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Plant endoplasmic reticulum (ER) remodelling is likely to be important for its function in targeted protein secretion, organelle interaction and signal exchange. It has been known for decades that the structure and movement of the ER network is mainly regulated by the actin cytoskeleton through actin motor proteins and membrane-cytoskeleton adaptors. Recent discoveries also revealed alternative pathways that influence ER movement, through a microtubule-based machinery. Therefore, plants utilize both cytoskeletal components to drive ER dynamics, a process that is likely to be dependent on the cell type and the developmental stages. On the other hand, the ER membrane also has a direct effect towards the organization of the cytoskeletal network and disrupting the tethering factors at the ER-PM interface also rearranges the cytoskeletal structure. However, the influence of the ER network on the cytoskeleton organization has not been studied. In this review, we will provide an overview of the ER-cytoskeleton network in plants, and discuss the most recent discoveries in the field.
Collapse
Affiliation(s)
- Jingze Zang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Verena Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|