1
|
Villeneuve DL, Bush K, Hazemi M, Hoang JX, Le M, Blackwell BR, Stacy E, Flynn KM. Derivation of Transcriptomics-Based Points of Departure for 20 Per- or Polyfluoroalkyl Substances Using a Larval Fathead Minnow (Pimephales promelas) Reduced Transcriptome Assay. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38415853 DOI: 10.1002/etc.5825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
Traditional toxicity testing has been unable to keep pace with the introduction of new chemicals into commerce. Consequently, there are limited or no toxicity data for many chemicals to which fish and wildlife may be exposed. Per- and polyfluoroalkyl substances (PFAS) are emblematic of this issue in that ecological hazards of most PFAS remain uncharacterized. The present study employed a high-throughput assay to identify the concentration at which 20 PFAS, with diverse properties, elicited a concerted gene expression response (termed a transcriptomics-based point of departure [tPOD]) in larval fathead minnows (Pimephales promelas; 5-6 days postfertilization) exposed for 24 h. Based on a reduced transcriptome approach that measured whole-body expression of 1832 genes, the median tPOD for the 20 PFAS tested was 10 µM. Longer-chain carboxylic acids (12-13 C-F); an eight-C-F dialcohol, N-alkyl sulfonamide; and telomer sulfonic acid were among the most potent PFAS, eliciting gene expression responses at concentrations <1 µM. With a few exceptions, larval fathead minnow tPODs were concordant with those based on whole-transcriptome response in human cell lines. However, larval fathead minnow tPODs were often greater than those for Daphnia magna exposed to the same PFAS. The tPODs overlapped concentrations at which other sublethal effects have been reported in fish (available for 10 PFAS). Nonetheless, fathead minnow tPODs were orders of magnitude higher than aqueous PFAS concentrations detected in tributaries of the North American Great Lakes, suggesting a substantial margin of safety. Overall, results broadly support the use of a fathead minnow larval transcriptomics assay to derive screening-level potency estimates for use in ecological risk-based prioritization. Environ Toxicol Chem 2024;00:1-16. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Kendra Bush
- Research Participant at Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, Duluth, Minnesota, USA
| | - Monique Hazemi
- Research Participant at Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, Duluth, Minnesota, USA
| | - John X Hoang
- Research Participant at Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, Duluth, Minnesota, USA
| | - Michelle Le
- Research Participant at Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, Duluth, Minnesota, USA
| | - Brett R Blackwell
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
- Bioscience Division, Biochemistry and Biotechnology Group, Los Alamos National Laboratory, Los Alamos, Minnesota, USA
| | - Emma Stacy
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Kevin M Flynn
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| |
Collapse
|
2
|
Identification of potential pathways and microRNA-mRNA networks associated with benzene metabolite hydroquinone-induced hematotoxicity in human leukemia K562 cells. BMC PHARMACOLOGY AND TOXICOLOGY 2022; 23:20. [PMID: 35366954 PMCID: PMC8976366 DOI: 10.1186/s40360-022-00556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
Abstract
Background Hydroquinone (HQ) is a phenolic metabolite of benzene with a potential risk for hematological disorders and hematotoxicity in humans. In the present study, an integrative analysis of microRNA (miRNA) and mRNA expressions was performed to identify potential pathways and miRNA-mRNA network associated with benzene metabolite hydroquinone-induced hematotoxicity. Methods K562 cells were treated with 40 μM HQ for 72 h, mRNA and miRNA expression changes were examined using transcriptomic profiles and miRNA microarray, and then bioinformatics analysis was performed. Results Out of all the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) induced by HQ, 1482 DEGs and 10 DEMs were up-regulated, and 1594 DEGs and 42 DEMs were down-regulated. HQ-induced DEGs were involved in oxidative stress, apoptosis, DNA methylation, histone acetylation and cellular response to leukemia inhibitory factor GO terms, as well as metabolic, Wnt/β-catenin, NF-κB, and leukemia-related pathways. The regulatory network of mRNAs and miRNAs includes 23 miRNAs, 1108 target genes, and 2304 potential miRNAs-mRNAs pairs. MiR-1246 and miR-224 had the potential to be major regulators in HQ-exposed K562 cells based on the miRNAs-mRNAs network. Conclusions This study reinforces the use of in vitro model of HQ exposure and bioinformatic approaches to advance our knowledge on molecular mechanisms of benzene hematotoxicity at the RNA level. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00556-8.
Collapse
|
3
|
Chain FJJ, Finlayson S, Crease T, Cristescu M. Variation in transcriptional responses to copper exposure across Daphnia pulex lineages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:85-97. [PMID: 30836324 DOI: 10.1016/j.aquatox.2019.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Copper pollution is pervasive in aquatic habitats and is particularly harmful to invertebrates sensitive to environmental changes such as Daphnia pulex. Mechanisms of toxicity and tolerance to copper are not well understood. We used RNA-sequencing to investigate these mechanisms in three genetically distinct D. pulex clonal lineages with different histories of copper exposure. Upregulated genes after copper exposure were enriched with Gene Ontology (GO) categories involved in digestion, molting and growth, whereas downregulated genes after copper exposure were enriched in the metal-regulatory system, immune response and epigenetic modifications. The three D. pulex clones in our study show largely similar transcriptional patterns in response to copper, with only a total of twenty genes differentially expressed in a single clonal lineages. We also detected lower relative expression of some genes known to be important for copper tolerance, metallothionein and glutathione-S-transferase, in a sensitive lineage sampled from an uncontaminated habitat. Daphnia-specific genes (without orthologs outside the genus) and Daphnia-specific duplications (genes duplicated in the Daphnia lineage) were overrepresented in differentially expressed genes, highlighting an important role for newly emerged genes in tolerating environmental stressors. The results indicate that the D. pulex lineages tested in this study generally respond to copper stress using the same major pathways, but that the more resistant clone with previous copper exposure might be better able to regulate key genes. This finding highlights the important nuances in gene expression among clones, shaped by historical exposure and influencing copper tolerance.
Collapse
Affiliation(s)
- Frédéric J J Chain
- Department of Biology, McGill University, QC, H3A 1B1, Canada; Department of Biological Sciences, University of Massachusetts Lowell, MA, 01854, USA
| | - Sarah Finlayson
- Department of Biology, McGill University, QC, H3A 1B1, Canada
| | - Teresa Crease
- Department of Integrative Biology, University of Guelph, ON, N1G 2W1, Canada
| | | |
Collapse
|
4
|
Hidalgo K, Ratel J, Mercier F, Gauriat B, Bouchard P, Engel E. Volatolomics in Bacterial Ecotoxicology, A Novel Method for Detecting Signatures of Pesticide Exposure? Front Microbiol 2019; 9:3113. [PMID: 30671028 PMCID: PMC6332697 DOI: 10.3389/fmicb.2018.03113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Volatile organic compounds (VOC) produced by microorganisms in response to chemical stressor showed recently increasing attention, because of possible environmental applications. In this work, we aimed to bring the first proof of concept that volatolomic (i.e., VOCs analysis) can be used to determine candidate VOC markers of two soil bacteria strains (Pseudomonas fluorescens SG-1 and Bacillus megaterium Mes11) exposure to pesticides. VOC determination was based on solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Accordingly, we highlighted a set of bacterial VOCs modulated in each strains according to the nature of the pesticide used. Three out these VOCs were specifically modulated in P. fluorescens SG-1 when exposed with two pyrethroid pesticides (deltamethrine and cypermethrine): 2-hexanone; 1,3-ditertbutylbenzene and malonic acid, hexyl 3-methylbutyl ester. Our results thus suggest the possible existence of generic VOC markers of pyrethroids in this strain. Of particular interest, two out of these three VOCs, the 1,3-ditertbutylbenzene and the malonic acid, hexyl 3-methylbutyl ester were found also in B. megaterium Mes11 when exposed with cypermethrine. This result highlighted the possible existence of interspecific VOC markers of pyrethroid in these two bacteria. Altogether, our work underlined the relevance of volatolomic to detect signatures of pesticides exposure in microorganisms and more generally to microbial ecotoxicology. Based on these first results, considerations of volatolomics for the chemical risk assessment in environment such as soils can be indirectly explored in longer terms.
Collapse
Affiliation(s)
- Kevin Hidalgo
- INRA UR370 QuaPA, MASS Group, Saint-Genès-Champanelle, France.,Thermo Fisher Scientific ZA de Courtaboeuf, Villebon-sur-Yvette, France
| | - Jeremy Ratel
- INRA UR370 QuaPA, MASS Group, Saint-Genès-Champanelle, France
| | | | - Benedicte Gauriat
- Thermo Fisher Scientific ZA de Courtaboeuf, Villebon-sur-Yvette, France
| | - Philippe Bouchard
- CNRS, Laboratoire Microorganismes: Genome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Erwan Engel
- INRA UR370 QuaPA, MASS Group, Saint-Genès-Champanelle, France
| |
Collapse
|
5
|
Maeno T, Uzawa T, Kono I, Okano K, Iino T, Fukita K, Oshikawa Y, Ogawa T, Iwata O, Ito T, Suzuki K, Goda K, Hosokawa Y. Targeted delivery of fluorogenic peptide aptamers into live microalgae by femtosecond laser photoporation at single-cell resolution. Sci Rep 2018; 8:8271. [PMID: 29844463 PMCID: PMC5974127 DOI: 10.1038/s41598-018-26565-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/09/2018] [Indexed: 02/01/2023] Open
Abstract
Microalgae-based metabolic engineering has been proven effective for producing valuable substances such as food supplements, pharmaceutical drugs, biodegradable plastics, and biofuels in the past decade. The ability to accurately visualize and quantify intracellular metabolites in live microalgae is essential for efficient metabolic engineering, but remains a major challenge due to the lack of characterization methods. Here we demonstrate it by synthesizing fluorogenic peptide aptamers with specific binding affinity to a target metabolite and delivering them into live microalgae by femtosecond laser photoporation at single-cell resolution. As a proof-of-principle demonstration of our method, we use it to characterize Euglena gracilis, a photosynthetic unicellular motile microalgal species, which is capable of producing paramylon (a carbohydrate granule similar to starch). Specifically, we synthesize a peptide aptamer containing a paramylon-binding fluorescent probe, 7-nitrobenzofurazan, and introduce it into E. gracilis cells one-by-one by suppressing their mobility with mannitol and transiently perforating them with femtosecond laser pulses at 800 nm for photoporation. To demonstrate the method’s practical utility in metabolic engineering, we perform spatially and temporally resolved fluorescence microscopy of single live photoporated E. gracilis cells under different culture conditions. Our method holds great promise for highly efficient microalgae-based metabolic engineering.
Collapse
Affiliation(s)
- Takanori Maeno
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Takanori Uzawa
- Nano Medical Engineering Laboratory, RIKEN, Wako, 351-0198, Japan. .,RIKEN Center for Emergent Matter Science, Wako, 351-1098, Japan.
| | - Izumi Kono
- RIKEN Center for Emergent Matter Science, Wako, 351-1098, Japan
| | - Kazunori Okano
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Takanori Iino
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Keisuke Fukita
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Yuki Oshikawa
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Taro Ogawa
- euglena Co., Ltd, Yokohama, 230-0046, Japan
| | | | - Takuro Ito
- Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan
| | | | - Keisuke Goda
- Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan. .,Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan.
| | - Yoichiroh Hosokawa
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.
| |
Collapse
|
6
|
Bahamonde PA, Feswick A, Isaacs MA, Munkittrick KR, Martyniuk CJ. Defining the role of omics in assessing ecosystem health: Perspectives from the Canadian environmental monitoring program. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:20-35. [PMID: 26771350 DOI: 10.1002/etc.3218] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/16/2015] [Accepted: 08/20/2015] [Indexed: 05/22/2023]
Abstract
Scientific reviews and studies continue to describe omics technologies as the next generation of tools for environmental monitoring, while cautioning that there are limitations and obstacles to overcome. However, omics has not yet transitioned into national environmental monitoring programs designed to assess ecosystem health. Using the example of the Canadian Environmental Effects Monitoring (EEM) program, the authors describe the steps that would be required for omics technologies to be included in such an established program. These steps include baseline collection of omics endpoints across different species and sites to generate a range of what is biologically normal within a particular ecosystem. Natural individual variability in the omes is not adequately characterized and is often not measured in the field, but is a key component to an environmental monitoring program, to determine the critical effect size or action threshold for management. Omics endpoints must develop a level of standardization, consistency, and rigor that will allow interpretation of the relevance of changes across broader scales. To date, population-level consequences of routinely measured endpoints such as reduced gonad size or intersex in fish is not entirely clear, and the significance of genome-wide molecular, proteome, or metabolic changes on organism or population health is further removed from the levels of ecological change traditionally managed. The present review is not intended to dismiss the idea that omics will play a future role in large-scale environmental monitoring studies, but rather outlines the necessary actions for its inclusion in regulatory monitoring programs focused on assessing ecosystem health.
Collapse
Affiliation(s)
- Paulina A Bahamonde
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - April Feswick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Meghan A Isaacs
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Kelly R Munkittrick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Christopher J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| |
Collapse
|
7
|
Gil FN, Moreira-Santos M, Chelinho S, Pereira C, Feliciano JR, Leitão JH, Sousa JP, Ribeiro R, Viegas CA. Suitability of a Saccharomyces cerevisiae-based assay to assess the toxicity of pyrimethanil sprayed soils via surface runoff: comparison with standard aquatic and soil toxicity assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 505:161-171. [PMID: 25461018 DOI: 10.1016/j.scitotenv.2014.09.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/27/2014] [Accepted: 09/28/2014] [Indexed: 06/04/2023]
Abstract
The present study is aimed at evaluating whether a gene expression assay with the microbial eukaryotic model Saccharomyces cerevisiae could be used as a suitable warning tool for the rapid preliminary screening of potential toxic effects on organisms due to scenarios of soil and water contamination with pyrimethanil. The assay consisted of measuring changes in the expression of the selected pyrimethanil-responsive genes ARG3 and ARG5,6 in a standardized yeast population. Evaluation was held by assessing the toxicity of surface runoff, a major route of pesticide exposure in aquatic systems due to non-point-source pollution, which was simulated with a pyrimethanil formulation at a semifield scale mimicking worst-case scenarios of soil contamination (e.g. accident or improper disposal). Yeast cells 2-h exposure to the runoff samples led to a significant 2-fold increase in the expression of both indicator genes. These results were compared with those from assays with organisms relevant for the aquatic and soil compartments, namely the nematode Caenorhabditis elegans (reproduction), the freshwater cladoceran Daphnia magna (survival and reproduction), the benthic midge Chironomus riparius (growth), and the soil invertebrates Folsomia candida and Enchytraeus crypticus (survival and reproduction). Under the experimental conditions used to simulate accidental discharges into soil, runoff waters were highly toxic to the standard test organisms, except for C. elegans. Overall, results point out the usefulness of the yeast assay to provide a rapid preview of the toxicity level in preliminary screenings of environmental samples in situations of inadvertent high pesticide contamination. Advantages and limitations of this novel method are discussed.
Collapse
Affiliation(s)
- Fátima N Gil
- IBB-Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Matilde Moreira-Santos
- IMAR-Instituto do Mar & MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal
| | - Sónia Chelinho
- IMAR-Instituto do Mar & MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal
| | - Carla Pereira
- IMAR-Instituto do Mar & MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal
| | - Joana R Feliciano
- IBB-Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge H Leitão
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; IBB-Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - José P Sousa
- IMAR-Instituto do Mar & MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal
| | - Rui Ribeiro
- IMAR-Instituto do Mar & MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal
| | - Cristina A Viegas
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; IBB-Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
8
|
Gómez-Sagasti MT, Becerril JM, Martín I, Epelde L, Garbisu C. cDNA microarray assessment of early gene expression profiles in Escherichia coli cells exposed to a mixture of heavy metals. Cell Biol Toxicol 2014; 30:207-32. [DOI: 10.1007/s10565-014-9281-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 06/12/2014] [Indexed: 12/30/2022]
|
9
|
Gil FN, Becker JD, Viegas CA. Potential mechanisms underlying response to effects of the fungicide pyrimethanil from gene expression profiling in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5237-5247. [PMID: 24835131 DOI: 10.1021/jf5007775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Pyrimethanil is a fungicide mostly applied in vineyards. When misused, residue levels detected in grape must or in the environment may be of concern. The present work aimed to analyze mechanisms underlying response to deleterious effects of pyrimethanil in the eukaryotic model Saccharomyces cerevisiae. Pyrimethanil concentration-dependent effects at phenotypic (inhibition of growth) and transcriptomic levels were examined. For transcriptional profiling, analysis focused on two sublethal exposure conditions that inhibited yeast growth by 20% or 50% compared with control cells not exposed to the fungicide. Gene expression modifications increased with the magnitude of growth inhibition, in numbers and fold-change of differentially expressed genes and in diversity of over-represented functional categories. These included mostly biosynthesis of arginine and sulfur amino acids metabolism, as well as energy conservation, antioxidant response, and multidrug transport. Several pyrimethanil-responsive genes encoded proteins sharing significant homology with proteins from phytopathogenic fungi and ecologically relevant higher eukaryotes.
Collapse
Affiliation(s)
- Fátima N Gil
- Department of Bioengineering, Instituto Superior Técnico, and †IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa , Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | |
Collapse
|
10
|
Castro-Ferreira MP, de Boer TE, Colbourne JK, Vooijs R, van Gestel CAM, van Straalen NM, Soares AMVM, Amorim MJB, Roelofs D. Transcriptome assembly and microarray construction for Enchytraeus crypticus, a model oligochaete to assess stress response mechanisms derived from soil conditions. BMC Genomics 2014; 15:302. [PMID: 24758194 PMCID: PMC4234436 DOI: 10.1186/1471-2164-15-302] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 04/17/2014] [Indexed: 12/02/2022] Open
Abstract
Background The soil worm Enchytraeus crypticus (Oligochaeta) is an ecotoxicology model species that, until now, was without genome or transcriptome sequence information. The present research aims at studying the transcriptome of Enchytraeus crypticus, sampled from multiple test conditions, and the construction of a high-density microarray for functional genomic studies. Results Over 1.5 million cDNA sequence reads were obtained representing 645 million nucleotides. After assembly, 27,296 contigs and 87,686 singletons were obtained, from which 44% and 25% are annotated as protein-coding genes, respectively, sharing homology with other animal proteomes. Concerning assembly quality, 84% of the contig sequences contain an open reading frame with a start codon while E. crypticus homologs were identified for 92% of the core eukaryotic genes. Moreover, 65% and 77% of the singletons and contigs without known homologs, respectively, were shown to be transcribed in an independent microarray experiment. An Agilent 180 K microarray platform was designed and validated by hybridizing cDNA from 4 day zinc- exposed E. crypticus to the concentration corresponding to 50% reduction in reproduction after three weeks (EC50). Overall, 70% of all probes signaled expression above background levels (mean signal + 1x standard deviation). More specifically, the probes derived from contigs showed a wider range of average intensities when compared to probes derived from singletons. In total, 522 significantly differentially regulated transcripts were identified upon zinc exposure. Several significantly regulated genes exerted predicted functions (e.g. zinc efflux, zinc transport) associated with zinc stress. Unexpectedly, the microarray data suggest that zinc exposure alters retro transposon activity in the E. crypticus genome. Conclusion An initial investigation of the E. crypticus transcriptome including an associated microarray platform for future studies proves to be a valuable resource to investigate functional genomics mechanisms of toxicity in soil environments and to annotate a potentially large number of lineage specific genes that are responsive to environmental stress conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dick Roelofs
- Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Williams TD, Mirbahai L, Chipman JK. The toxicological application of transcriptomics and epigenomics in zebrafish and other teleosts. Brief Funct Genomics 2014; 13:157-71. [DOI: 10.1093/bfgp/elt053] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
12
|
Oliveira E, Casado M, Faria M, Soares AMVM, Navas JM, Barata C, Piña B. Transcriptomic response of zebrafish embryos to polyaminoamine (PAMAM) dendrimers. Nanotoxicology 2013; 8 Suppl 1:92-9. [PMID: 24266889 DOI: 10.3109/17435390.2013.858376] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The progressive practical applications of engineered nanoparticles results in their ever-increasing release into the environment. Accurate assessment of their environmental and health risks requires the development of methods allowing their monitoring in different environmental compartments and the evaluation of their potential toxicity at different levels of organization. Toxic effects of third-generation (G3) and fourth-generation (G4) poly(amidoamine) dendrimers (ethylenediamine cored, imine-terminated) were assessed on zebrafish embryos during the first two days post-fertilization. Particle characterization by dynamic light scattering showed no tendency to form aggregates in the assay conditions. G3 particles showed somewhat a higher acute toxicity than G4 particles, with LC50 values of 1.8 and 2.3 mg/L, respectively. At sublethal concentrations, both particles affected the zebrafish transcriptome following similar patterns, suggesting a similar mode of action. About 700 transcripts were affected by at least one of the treatments, following a pattern with significant correlations to the effects of bacterial infection in zebrafish embryos. We concluded that the response to G3 and G4 dendrimers was consistent with the activation of the innate immune response, a still unreported potential effect of these particles. These data may contribute to the characterization of hazards of these nanomaterials for both human health and the environment.
Collapse
|
13
|
de Boer TE, Taş N, Braster M, Temminghoff EJM, Röling WFM, Roelofs D. The influence of long-term copper contaminated agricultural soil at different pH levels on microbial communities and springtail transcriptional regulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:60-8. [PMID: 21882881 DOI: 10.1021/es2013598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Copper has long been applied for agricultural practises. Like other metals, copper is highly persistent in the environment and biologically active long after its use has ceased. Here we present a unique study on the long-term effects (27 years) of copper and pH on soil microbial communities and on the springtail Folsomia candida an important representative of the soil macrofauna, in an experiment with a full factorial, random block design. Bacterial communities were mostly affected by pH. These effects were prominent in Acidobacteria, while Actinobacteria and Gammaroteobacteria communities were affected by original and bioavailable copper. Reproduction and survival of the collembolan F. candida was not affected by the studied copper concentrations. However, the transcriptomic responses to copper reflected a mechanism of copper transport and detoxification, while pH exerted effects on nucleotide and protein metabolism and (acute) inflammatory response. We conclude that microbial community structure reflected the history of copper contamination, while gene expression analysis of F. candida is associated with the current level of bioavailable copper. The study is a first step in the development of a molecular strategy aiming at a more comprehensive assessment of various aspects of soil quality and ecotoxicology.
Collapse
Affiliation(s)
- Tjalf E de Boer
- Department of Ecological Sciences, VU University, de Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Gil FN, Gonçalves AC, Jacinto MJ, Becker JD, Viegas CA. Transcriptional profiling in Saccharomyces cerevisiae relevant for predicting alachlor mechanisms of toxicity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2506-2518. [PMID: 21842488 DOI: 10.1002/etc.640] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/18/2011] [Accepted: 07/12/2011] [Indexed: 05/31/2023]
Abstract
Alachlor has been a commonly applied herbicide and is a substance of ecotoxicological concern. The present study aims to identify molecular biomarkers in the eukaryotic model Saccharomyces cerevisiae that can be used to predict potential cytotoxic effects of alachlor, while providing new mechanistic clues with possible relevance for experimentally less accessible eukaryotes. It focuses on genome-wide expression profiling in a yeast population in response to two exposure scenarios exerting effects from slight to moderate magnitude at phenotypic level. In particular, 100 and 264 genes, respectively, were found as differentially expressed on a 2-h exposure of yeast cells to the lowest observed effect concentration (110 mg/L) and the 20% inhibitory concentration (200 mg/L) of alachlor, in comparison with cells not exposed to the herbicide. The datasets of alachlor-responsive genes showed functional enrichment in diverse metabolic, transmembrane transport, cell defense, and detoxification categories. In general, the modifications in transcript levels of selected candidate biomarkers, assessed by quantitative reverse transcriptase polymerase chain reaction, confirmed the microarray data and varied consistently with the growth inhibitory effects of alachlor. Approximately 16% of the proteins encoded by alachlor-differentially expressed genes were found to share significant homology with proteins from ecologically relevant eukaryotic species. The biological relevance of these results is discussed in relation to new insights into the potential adverse effects of alachlor in health of organisms from ecosystems, particularly in worst-case situations such as accidental spills or careless storage, usage, and disposal.
Collapse
Affiliation(s)
- Fátima N Gil
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, IST, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
15
|
Pierron F, Normandeau E, Defo MA, Campbell PGC, Bernatchez L, Couture P. Effects of chronic metal exposure on wild fish populations revealed by high-throughput cDNA sequencing. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:1388-1399. [PMID: 21557025 DOI: 10.1007/s10646-011-0696-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2011] [Indexed: 05/30/2023]
Abstract
Given the inherent variability of aquatic systems, predicting the in situ effects of contaminants on such ecosystems still represents a major challenge for ecotoxicology. In this context, transcriptomic tools can help identify and investigate the mechanisms of toxicity beyond the traditional morphometric, physiological and population-level endpoints. In this study, we used the 454 sequencing technology to examine the in situ effects of chronic metal (Cd, Cu) exposure on the yellow perch (Perca flavescens) transcriptome. Total hepatic mRNA from fish sampled along a polymetallic gradient was extracted, reverse transcribed, labeled with unique barcode sequences and sequenced. This approach allowed us to identify correlations between the transcription level of single genes and the hepatic concentrations of individual metals; 71% of the correlations established were negative. Chronic metal exposure was thus associated with a decrease in the transcription levels of numerous genes involved in protein biosynthesis, in the immune system, and in lipid and energy metabolism. Our results suggest that this marked decrease could result from an impairment of bile acid metabolism by Cd and energy restriction but also from the recruitment of several genes involved in epigenetic modifications of histones and DNA that lead to gene silencing.
Collapse
Affiliation(s)
- Fabien Pierron
- Institut National de La Recherche Scientifique, INRS-Centre Eau Terre Environnement, 490 de la Couronne, Quebec, QC, G1K 9A9, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Shaw JP, Dondero F, Moore MN, Negri A, Dagnino A, Readman JW, Lowe DR, Frickers PE, Beesley A, Thain JE, Viarengo A. Integration of biochemical, histochemical and toxicogenomic indices for the assessment of health status of mussels from the Tamar Estuary, U.K. MARINE ENVIRONMENTAL RESEARCH 2011; 72:13-24. [PMID: 21683998 DOI: 10.1016/j.marenvres.2011.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 05/17/2011] [Accepted: 05/23/2011] [Indexed: 05/30/2023]
Abstract
The aim of this study was to examine whether a combination of biochemical, histopathological and toxicogenomic data could be used as a valuable tool for the assessment of biological risk associated with pollutants within the Tamar River and Estuary, S.W. England, U.K. Accordingly, biochemical and histopathological biomarkers (protein carbonyls, lipofuscin, neutral lipids, lysosomal stability [N-acetyl-β-hexosaminidase and neutral red], lysosomal volume, ferric reducing antioxidant power [FRAP] and malonaldehyde [MDA]) and gene expression profiles were assessed in 5 sites from the Tamar River and Estuary (Neal Point, Town Quay, Wilcove, Cremyll Ferry and Whitsand; and a reference site, Trebarwith Strand, N. Cornwall). PAHs were measured in mussel tissue and sediment and metals were measured in mussel tissue only. Data from the biomarkers was integrated into a Mussel Expert System (MES) model to produce a simple assessment of mussel stress. Clear gradients of mussel toxicity were identified by the biomarkers (with the exception of neutral lipids) with the highest impacted animals found furthest up the Tamar, whilst the MES was unable to identify a gradient of effect. Gene expression profiles also indicated a gradient of stress with the greatest number of significantly up- or down- regulated genes found at the uppermost 2 sites. The MES did, however, determine that mussels from all sites, except the reference site, were highly stressed; a conclusion that could not be inferred from the biomarker data alone. It is concluded that the MES is a valuable tool that permits integration and interpretation of complex sets of biomarker data by identifying the biological meaning of biomarker changes.
Collapse
Affiliation(s)
- J P Shaw
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL13DH, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dom N, Nobels I, Knapen D, Blust R. Bacterial gene profiling assay applied as an alternative method for mode of action classification: pilot study using chlorinated anilines. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:1059-1068. [PMID: 21309029 DOI: 10.1002/etc.476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/16/2010] [Accepted: 12/07/2010] [Indexed: 05/30/2023]
Abstract
Polar narcotic structural analogues (e.g., chlorinated anilines with a differing degree of chlorosubstitution, such as aniline, 4-chloroaniline, 3,5-dichloroaniline, and 2,3,4-trichloroaniline) are assumed to induce their toxic effects via the same predominant mode of action (MOA; membrane damage) at equitoxic exposure concentrations. In this study, a bacterial gene profiling assay consisting of 14 general stress genes was used to test this hypothesis for these four compounds. Although we found a consistent induction of membrane damage, the response cascade and the extent of the response differed among the different chemical treatments. The higher chlorosubstituted anilines also triggered significantly more genes involved in other general stress MOA classes (oxidative stress and protein perturbation). These findings illustrate that, along with the commonly used physicochemistry-based MOA categorization methods, alternative tests such as the bacterial gene profiling assay can yield valuable biological information on the MOA of a certain chemical or group of chemicals that is crucial in high-quality environmental risk assessment. In a second phase, the experimental gene profiling data sets of the chlorinated anilines were analyzed and weighed against existing data on other polar and non polar narcotic compounds to obtain a broader comparison in which the predefined chemical MOAs (narcosis and polar narcosis) were contrasted with the biological MOAs (gene expression profiles). Although additional optimization of the assay is needed, our results show that the bacterial gene profiling assay opens new perspectives for biology-based chemical grouping, thereby further enabling targeted MOA-based risk assessment.
Collapse
Affiliation(s)
- Nathalie Dom
- Department of Biology, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | | | | | | |
Collapse
|
18
|
Hook SE. Promise and progress in environmental genomics: a status report on the applications of gene expression-based microarray studies in ecologically relevant fish species. JOURNAL OF FISH BIOLOGY 2010; 77:1999-2022. [PMID: 21133914 DOI: 10.1111/j.1095-8649.2010.02814.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The advent of any new technology is typically met with great excitement. So it was a few years ago, when the combination of advances in sequencing technology and the development of microarray technology made measurements of global gene expression in ecologically relevant species possible. Many of the review papers published around that time promised that these new technologies would revolutionize environmental biology as they had revolutionized medicine and related fields. A few years have passed since these technological advancements have been made, and the use of microarray studies in non-model fish species has been adopted in many laboratories internationally. Has the relatively widespread adoption of this technology really revolutionized the fields of environmental biology, including ecotoxicology, aquaculture and ecology, as promised? Or have these studies merely become a novelty and a potential distraction for scientists addressing environmentally relevant questions? In this review, the promises made in early review papers, in particular about the advances that the use of microarrays would enable, are summarized; these claims are compared to the results of recent studies to determine whether the forecasted changes have materialized. Some applications, as discussed in the paper, have been realized and have led to advances in their field, others are still under development.
Collapse
Affiliation(s)
- S E Hook
- Battelle Pacific Northwest Division, 1529 W. Sequim Bay Road, Sequim, WA 98382, USA.
| |
Collapse
|
19
|
Oggier DM, Lenard A, Küry M, Hoeger B, Affolter M, Fent K. Effects of the Protein Kinase Inhibitor PKC412 on Gene Expression and Link to Physiological Effects in Zebrafish Danio rerio Eleuthero-Embryos. Toxicol Sci 2010; 119:104-15. [DOI: 10.1093/toxsci/kfq330] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
20
|
Oggier DM, Weisbrod CJ, Stoller AM, Zenker AK, Fent K. Effects of diazepam on gene expression and link to physiological effects in different life stages in zebrafish Danio rerio. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7685-91. [PMID: 20804179 DOI: 10.1021/es100980r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We applied zebrafish whole genome microarrays to identify molecular effects of diazepam, a neuropharmaceutical encountered in wastewater-contaminated environments, and to elucidate its neurotoxic mode of action. Behavioral studies were performed to analyze for correlations between altered gene expression with effects on the organism level. Male zebrafish and zebrafish eleuthero-embryos were exposed for 14 d or up to 3 d after hatching, respectively, to nominal levels of 273 ng/L and 273 μg/L (determined water concentrations in the adult experiment 235 ng/L and 291 μg/L). Among the 51 and 103 altered transcripts at both concentrations, respectively, the expression of genes involved in the circadian rhythm in adult zebrafish and eleuthero-embryos were of particular significance, as revealed both by microarrays and quantitative PCR. The swimming behavior of eleuthero-embryos was significantly altered at 273 μg/L. The study leads to the conclusion that diazepam-induced alterations of genes involved in circadian rhythm are paralleled by effects in neurobehavior at high, but not at low diazepam concentrations that may occur in polluted environments.
Collapse
Affiliation(s)
- Daniela M Oggier
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Vindimian E. Toxicity assessment and public policies: an urgent need for research. ENVIRONMENTAL TOXICOLOGY 2010; 25:440-445. [PMID: 20549618 DOI: 10.1002/tox.20588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The new European regulation on chemicals triggers a huge number of new testing. However, more than 2 years after the enforcement of this policy, toxicity assessment and risk assessment are still using single species tests that deliver little information. As it is often the case, the link between science and policy seems to be disrupted. However, policy makers need more than ever information on the fate and effects of chemicals on living systems. Without relevant knowledge for decision making, the application of the precautionary principle is the only reasonable way to manage risks. It is necessary to develop new risk assessment strategies using the last innovations from biology: the omics tools, ecology, ecosystem modeling, chemistry, and computing. This article highlights some of the recent trends in ecotoxicology and calls for a new research strategy. This strategy implies research to be funded by its users.
Collapse
Affiliation(s)
- Eric Vindimian
- Centre de Montpellier, Cemagref, SGMO, 361 rue Jean-François Breton, F-34196 Montpellier, France
| |
Collapse
|
22
|
Rawat A, Gust KA, Deng Y, Garcia-Reyero N, Quinn MJ, Johnson MS, Indest KJ, Elasri MO, Perkins EJ. From raw materials to validated system: the construction of a genomic library and microarray to interpret systemic perturbations in Northern bobwhite. Physiol Genomics 2010; 42:219-35. [PMID: 20406850 PMCID: PMC3032282 DOI: 10.1152/physiolgenomics.00022.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/16/2010] [Indexed: 01/02/2023] Open
Abstract
The limited availability of genomic tools and data for nonmodel species impedes computational and systems biology approaches in nonmodel organisms. Here we describe the development, functional annotation, and utilization of genomic tools for the avian wildlife species Northern bobwhite (Colinus virginianus) to determine the molecular impacts of exposure to 2,6-dinitrotoluene (2,6-DNT), a field contaminant of military concern. Massively parallel pyrosequencing of a normalized multitissue library of Northern bobwhite cDNAs yielded 71,384 unique transcripts that were annotated with gene ontology (GO), pathway information, and protein domain analysis. Comparative genome analyses with model organisms revealed functional homologies in 8,825 unique Northern bobwhite genes that are orthologous to 48% of Gallus gallus protein-coding genes. Pathway analysis and GO enrichment of genes differentially expressed in livers of birds exposed for 60 days (d) to 10 and 60 mg/kg/d 2,6-DNT revealed several impacts validated by RT-qPCR including: prostaglandin pathway-mediated inflammation, increased expression of a heme synthesis pathway in response to anemia, and a shift in energy metabolism toward protein catabolism via inhibition of control points for glucose and lipid metabolic pathways, PCK1 and PPARGC1, respectively. This research effort provides the first comprehensive annotated gene library for Northern bobwhite. Transcript expression analysis provided insights into the metabolic perturbations underlying several observed toxicological phenotypes in a 2,6-DNT exposure case study. Furthermore, the systemic impact of dinitrotoluenes on liver function appears conserved across species as PPAR signaling is similarly affected in fathead minnow liver tissue after exposure to 2,4-DNT.
Collapse
Affiliation(s)
- Arun Rawat
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fedorenkova A, Vonk JA, Lenders HJR, Ouborg NJ, Breure AM, Hendriks AJ. Ecotoxicogenomics: bridging the gap between genes and populations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:4328-4333. [PMID: 20459122 DOI: 10.1021/es9037287] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Ecotoxicogenomics might help solving open questions that cannot be answered by standard ecotoxicity tests currently used in environmental risk assessment. Changes in gene expression are claimed to serve potentially as early warning indicators for environmental effects and as sensitive and specific ecotoxicological end points. Ecotoxicogenomics focus on the lowest rather than the highest levels of biological organization. Our aim was to explore the links between gene expression responses and population level responses, both mechanistically (conceptual framework) and correlatively (Species Sensitivity Distribution). The effects of cadmium on aquatic species were compared for gene level responses (Lowest Observed Effect Concentrations) and individual level responses (median Lethal Concentrations, LC(50), and No Observed Effect Concentrations, NOEC). Responses in gene expression were on average four times above the NOEC and eleven times below the LC(50) values. Currently, use of gene expression changes as early warning indicators of environmental effects is not underpinned due to a lack of data. To confirm the sensitivity claimed by ecotoxicogenomics more testing at low concentrations is needed. From the conceptual framework, we conclude that for a mechanistic gene population link in risk management, research is required that includes at least one meaningful end point at each level of organization.
Collapse
Affiliation(s)
- Anastasia Fedorenkova
- Department of Environmental Science, Radboud University, Heyendaalseweg, AJ Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
Crop improvement using small RNAs: applications and predictive ecological risk assessments. Trends Biotechnol 2009; 27:644-51. [DOI: 10.1016/j.tibtech.2009.08.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/31/2009] [Accepted: 08/17/2009] [Indexed: 01/31/2023]
|
25
|
Cusick KD, Boyer GL, Wilhelm SW, Sayler GS. Transcriptional profiling of Saccharomyces cerevisiae upon exposure to saxitoxin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:6039-6045. [PMID: 19731715 DOI: 10.1021/es900581q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Saxitoxin is a potent neurotoxin produced by several species of dinoflagellates and cyanobacteria. The molecular target of saxitoxin in higher eukaryotes is the voltage-gated sodium channel; however, its target in lower eukaryotic organisms remains unknown. The goal of this study was to obtain the transcriptional fingerprint of the model lower eukaryote Saccharomyces cerevisiae upon exposure to saxitoxin to identify potential genes suitable for biomarker development. Microarray analyses identified multiple genes associated with copper and iron homeostasis and sulfur metabolism as significantly differentially expressed upon exposure to saxitoxin; these results were verified with quantitative reverse-transcriptase PCR (qRT-PCR). Additionally, the qRT-PCR assays were used to generate expression profiles in a subset of the differentially regulated genes across multiple exposure times and concentrations, the results of which demonstrated that overall, genes tended to respond in a consistent manner to the toxin. In general, the genes encoding the metallothioneins CUP1 and CRS5 were induced following exposure to saxitoxin, while those encoding the ferric/ cupric reductase FRE1 and the copper uptake transporter CTR1 were repressed. The gene encoding the multicopper ferroxidase FET3, part of the high-affinity iron uptake system, was also induced in all treatments, along with the STR3 gene, which codes for the cystathionine beta-lyase found in the methionine biosynthetic pathway.
Collapse
Affiliation(s)
- Kathleen D Cusick
- Center for Environmental Biotechnology, The University of Tennessee 676 Dabney Hall, Knoxville, Tennessee 37966, USA
| | | | | | | |
Collapse
|
26
|
Ki JS, Raisuddin S, Lee KW, Hwang DS, Han J, Rhee JS, Kim IC, Park HG, Ryu JC, Lee JS. Gene expression profiling of copper-induced responses in the intertidal copepod Tigriopus japonicus using a 6K oligochip microarray. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 93:177-187. [PMID: 19515434 DOI: 10.1016/j.aquatox.2009.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 04/08/2009] [Accepted: 04/13/2009] [Indexed: 05/27/2023]
Abstract
The intertidal copepod Tigriopus japonicus has shown promising results in classical acute and chronic toxicity studies. Recently, a large number of genes have been identified from this species and their mRNA expression has been studied independently against exposure to marine environmental pollutants. T. japonicus is a promising organism for the study of mechanistic aspects of marine environmental pollutants using genomics. In this study, a 6K oligochip for T. japonicus that included mostly unique sets of genes from approximately 26K ESTs, was developed. A total of 5463 spots (2313 mRNAs upregulated and 3150 downregulated) were identified to be significantly expressed on microarray by hierarchical clustering of genes after exposure to copper for different time durations (10 microg/L for 6, 12 and 24h). However, mRNAs of only 138 and 375 genes were observed to be consistently upregulated and downregulated, respectively, at all time points. Most of the changes of mRNA expression were observed at the short exposure of 6h. It was observed that mRNA expression of several genes involved in growth, metabolism, reproduction and hormonal regulation was modulated in Cu-exposed T. japonicus. mRNA expression of genes involved in detoxification and antioxidant functions was also modulated. This indicates that Cu-induced gene transcription is complicated in T. japonicus similar to other crustaceans. Cu specifically upregulated mRNAs of genes of some isoforms of cytochrome P450 (CYP). On the other hand, a majority of downregulated mRNAs were of genes encoding for proteins important for growth and development. The expression profile of mRNAs of selected genes was verified by the quantitative real time RT-PCR. The mRNA expression profiles provide insight into the mechanism of action of copper in T. japonicus. These results demonstrate the suitability of a T. japonicus oligochip microarray for risk assessment of trace metals in the marine environment. As yet, major breakthroughs in invertebrate toxicogenomics have mainly been in Daphnia and Drosophila. Daphnia's use is limited to freshwater ecotoxicogenomics. Here we propose an oligochip microarray-based approach for risk assessment of trace metals in a potential model marine test species.
Collapse
Affiliation(s)
- Jang-Seu Ki
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Miracle A, Denslow ND, Kroll KJ, Liu MC, Wang KKW. Spillway-induced salmon head injury triggers the generation of brain alphaII-spectrin breakdown product biomarkers similar to mammalian traumatic brain injury. PLoS One 2009; 4:e4491. [PMID: 19214235 PMCID: PMC2637428 DOI: 10.1371/journal.pone.0004491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 01/01/2009] [Indexed: 02/05/2023] Open
Abstract
Recent advances in biomedical research have resulted in the development of specific biomarkers for diagnostic testing of disease condition or physiological risk. Of specific interest are alphaII-spectrin breakdown products (SBDPs), which are produced by proteolytic events in traumatic brain injury and have been used as biomarkers to predict the severity of injury in humans and other mammalian brain injury models. This study describes and demonstrates the successful use of antibody-based mammalian SBDP biomarkers to detect head injury in migrating juvenile Chinook salmon (Oncorhynchus tshawytscha) that have been injured during passage through high-energy hydraulic environments present in spillways under different operational configurations. Mortality and injury assessment techniques currently measure only near-term direct mortality and easily observable acute injury. Injury-based biomarkers may serve as a quantitative indicator of subacute physical injury and recovery, and aid hydropower operators in evaluation of safest passage configuration and operation actions for migrating juvenile salmonids. We describe a novel application of SBDP biomarkers for head injury for migrating salmon. To our knowledge, this is the first documented cross-over use of a human molecular biomarker in a wildlife and operational risk management scenario.
Collapse
Affiliation(s)
- Ann Miracle
- Environmental Sustainability Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America.
| | | | | | | | | |
Collapse
|
28
|
Nakamori T, Fujimori A, Kinoshita K, Ban-Nai T, Kubota Y, Yoshida S. Application of HiCEP to screening of radiation stress-responsive genes in the soil microarthropod Folsomia candida (Collembola). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:6997-7002. [PMID: 18853822 DOI: 10.1021/es801128q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The field of ecotoxicogenomics has received increasing attention for its potential to provide insight into pressing ecological issues. However, its applications are limited due to a lack of genetic sequence information for organisms used in ecotoxicological studies. We used high-coverage expression profiling (HiCEP), a method that requires no prior sequence knowledge, to examine stress-responsive genes and their dose dependence in the springtail Folsomia candida using gamma radiation as the stressor. Radiation-responsive genes and their dose dependency were detected at effective doses for reproduction, and 16 up-regulated transcript-derived fragments (TDFs) were sequenced. Quantitative PCR analysis also found that most of the TDFs were up-regulated. The sequences of the TDFs showed resemblance to known genes, such as glutathione S-transferase and poly(ADP-ribose) polymerase, but most showed no similarity to any genes in the gene databases. These results suggest that HiCEP is effective for discovering differently expressed genes and their dose dependence, even in organisms for which few sequence data are available. The limited length of the TDFs, however, may impede functional annotation of the genes. In conclusion, HiCEP is useful for ecotoxicogenomic studies in which various organisms with few available genomic resources are involved.
Collapse
Affiliation(s)
- Taizo Nakamori
- Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Transcription and metabolite analysis is a powerful way to reveal physiological shifts in response to environmental pollution. Recent studies on earthworms, including one in BMC Biology, show that the type of pollution and its availability for uptake by organisms can differentially affect transcription and metabolism.
Collapse
Affiliation(s)
- Nico M van Straalen
- Institute of Ecological Science, VU University, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
30
|
Systems toxicology: using the systems biology approach to assess chemical pollutants in the environment. COMPARATIVE TOXICOGENOMICS 2008. [DOI: 10.1016/s1872-2423(08)00007-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|