1
|
Li B, Meng X, Liu W. An overview of engineering microbial production of nicotinamide mononucleotide. J Biotechnol 2024; 396:80-88. [PMID: 39491727 DOI: 10.1016/j.jbiotec.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
As the human body gradually ages, the cellular level of NAD+ will decline, which has been found to be related to a variety of age-related diseases. As a precursor of NAD+, NMN is able to effectively promote the synthesis of NAD+ with no significant side effects. Microbial production of NMN holds the potential to lower the production cost and facilitate its wide application. In this review, based on the metabolic pathway of NAD+, we summarize recent advances of metabolic engineering strategies for NMN biosynthesis. An outlook for future optimization to improve NMN production is also discussed.
Collapse
Affiliation(s)
- Boting Li
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China.
| |
Collapse
|
2
|
Ramatla T, Motlhaping T, Ndlovu N, Mileng K, Howard J, Khasapane G, Ramaili T, Mokgokong P, Nkhebenyane J, Ndou R, Lekota K, Thekisoe O. Molecular Detection of Shiga Toxin-Producing Escherichia coli O177 Isolates, Their Antibiotic Resistance, and Virulence Profiles From Broiler Chickens. Int J Microbiol 2024; 2024:9778058. [PMID: 39665069 PMCID: PMC11634401 DOI: 10.1155/ijm/9778058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
The World Health Organization (WHO) describes Shiga toxin-producing Escherichia coli (STEC) as a bacterium that can cause severe food-borne diseases. Common sources of infection include undercooked meat products and faecal contamination in vegetables. This study aimed to isolate, identify and assess the virulence and antibiotic resistance profiles of STEC isolates from broiler chicken faeces. Faecal samples were cultured, and polymerase chain reaction (PCR) was utilized to identify the isolates. Subsequently, the confirmed isolates were screened for seven virulence markers using PCR. The antibiotic susceptibility of the isolates to 13 different antibiotics was determined using the disk diffusion method. PCR was also employed to screen for antibiotic resistance genes. The uidA gene, which encodes the beta-glucuronidase enzyme, was detected in 62 (64.6%) of the 91 presumptively identified E. coli isolates. Of these, 23 isolates (37.1%) were confirmed to be E. coli O177 serogroup through amplification of wzy gene. All E. coli O177 isolates possessed the virulence stx2 gene, while 65% carried the stx1 gene. Among the E. coli O177 isolates, three harboured a combination of vir + stx2 + stx1 + hlyA genes, while one isolate contained a combination of eaeA + stx2 + stx1 + hlyA genes. All E. coli O177 isolates carried one or more antimicrobial resistance (AMR) genes, with 17 isolates (73.7%) identified as multidrug resistance (MDR). This is the first study to report the presence of E. coli O177 serotype from broiler chickens in South Africa. The findings reveal that broiler chicken faeces are a significant reservoir for MDR E. coli O177 and a potential source of AMR genes. These results underscore the importance of continuous surveillance and monitoring of the spread of AMR infectious bacteria in food-producing animals and their environments. The study also emphasizes that monitoring and control of poultry meat should be considered a major public health concern.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
- Department of Life Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Tshepang Motlhaping
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Nkanyezenhle Ndlovu
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Kealeboga Mileng
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Jody Howard
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - George Khasapane
- Department of Life Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Taole Ramaili
- Department of Animal Health, School of Agriculture, North-West University, Mmabatho 2735, South Africa
| | - Prudent Mokgokong
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Jane Nkhebenyane
- Department of Life Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Rendani Ndou
- Department of Animal Health, School of Agriculture, North-West University, Mmabatho 2735, South Africa
| | - Kgaugelo Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
3
|
Huang L, Sui L, Yao Y, Ma Y, Zhou J, Zhang B, Liu Z, Zheng Y. Enhancing D-pantothenate production in Escherichia coli through multiplex combinatorial strategies. Bioprocess Biosyst Eng 2024:10.1007/s00449-024-03105-1. [PMID: 39560716 DOI: 10.1007/s00449-024-03105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
D-pantothenate, universally acknowledged as vitamin B5, has garnered considerable interest owing to its crucial functionality in the feed, pharmaceutical, and cosmeceutical sectors. Development of microbial strains for D-pantothenate hyperproducer has emerged as a prominent research direction in recent years. Herein, we converted an engineered Escherichia coli with low yield to a plasmid-free hyperproducer of D-pantothenate using multiplex combinatorial strategies. First, an initial strain was obtained through prolonging the cell lifespan. To promote the accumulation of D-pantothenic acid, the supply of cofactors was adaptively enhanced. Additionally, the heterologous gene panE from Pseudomonas aeruginosa, which encodes ketopantoate reductase (EC 1.1.1.169) catalyzing the synthesis of d-pantoate from α-ketopantoate, was screened and integrated into the chromosome. Subsequently, a strategy of acetate recycling and NOG pathway reconstruction were introduced and successfully to improve the D-pantothenate titer to 5.48 g/L. Additionally, we screened the regulatory factors and optimized its second codon to further increase the DPA yield of the engineered strains to 6.02 g/L in shake flask. The final engineered strain DS6 could efficiently produce 72.40 g/L D-pantothenate, which is 3.18-fold higher than the original strain. This study proposed a novel multiplex combination strategy for developing microbial cell factory of D-pantothenate, which was beneficial for the advancement of efficient D-pantothenate production.
Collapse
Affiliation(s)
- Lianggang Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Landuo Sui
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yuan Yao
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yixuan Ma
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Junping Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
4
|
Tian Y, Wang S, Ma Y, Li Y, Li R, Fu Y, Zhang R, Zhu R, Zhao F. Gene expression screening and cell factory engineering for enhancing echinocandin B production in Aspergillus nidulans NRRL8112. Microb Cell Fact 2024; 23:305. [PMID: 39533300 PMCID: PMC11559128 DOI: 10.1186/s12934-024-02577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Echinocandin B (ECB) is a key precursor of the antifungal drug anidulafungin and its biosynthesis occurs via ani gene cluster in Aspergillus nidulans NRRL8112. Strain improvement for industrial ECB production has mainly relied on mutation breeding due to the lack of genetic tools. RESULTS Here, a CRISPR-base-editing tool was developed in A. nidulans NRRL8112 for simultaneous inactivation of the nkuA gene and two marker genes, pryoA and riboB, which enabled efficient genetic manipulation. Then, in-vivo plasmid assembly was harnessed for ani gene expression screening, identifying the rate-limiting enzyme AniA and a pathway-specific transcription factor AniJ. Stepwise titer enhancement was achieved by overexpressing aniA and/or aniJ, and ECB production reached 1.5 g/L during 5-L fed-batch fermentation, an increase of ~ 30-fold compared with the parent strain. CONCLUSION This study, for the first time, revealed the regulatory mechanism of ECB biosynthesis and harnessed genetic engineering for the development of an efficient ECB-producing strain.
Collapse
Affiliation(s)
- Yuan Tian
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Shumin Wang
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Youchu Ma
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yanling Li
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Rui Li
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Youxiu Fu
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Rui Zhang
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Rui Zhu
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Fanglong Zhao
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
5
|
Liang L, Shan-Shan X, Yan-Jun J. Ergothioneine biosynthesis: The present state and future prospect. Synth Syst Biotechnol 2024; 10:314-325. [PMID: 39717282 PMCID: PMC11664081 DOI: 10.1016/j.synbio.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 12/25/2024] Open
Abstract
Ergothioneine (ERG), a rare natural thio-histidine derivative with potent antioxidant properties and diverse biological functions, is widely utilized in food processing, cosmetics, pharmaceuticals, and nutritional supplements. Current bioproduction methods for ERG primarily depend on fermenting edible mushrooms. However, with the advancement in synthetic biology, an increasing number of genetically engineered microbial hosts have been developed for ERG production, including Escherichia coli, Saccharomyces cerevisiae, and Corynebacterium glutamicum. Given the involvement of multiple precursor substances in ERG synthesis, it is crucial to employ diverse strategies to regulate the metabolic flux of ERG synthesis. This review comprehensively evaluates the physiological effects and safety considerations associated with ERG, along with the recent advancements in catalytic metabolic pathway for ERG production using synthetic biology tools. Finally, the review discusses the challenges in achieving efficient ERG production and the strategies to address these challenges using synthetic biology tools. This review provides a literature analysis and strategies guidance for the further application of novel synthetic biology tools and strategies to improve ERG yield.
Collapse
Affiliation(s)
- Li Liang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| | - Xu Shan-Shan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| | - Jiang Yan-Jun
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
6
|
Liu Q, Chen X, Hu G, Chu R, Liu J, Li X, Gao C, Liu L, Wei W, Song W, Wu J. Systems metabolic engineering of Escherichia coli for high-yield production of Para-hydroxybenzoic acid. Food Chem 2024; 457:140165. [PMID: 38936118 DOI: 10.1016/j.foodchem.2024.140165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Para-hydroxybenzoic acid (PHBA) is extensively used as an additive in the food and cosmetics industries, significantly enhancing product shelf life and stability. While microbial fermentation offers an environment-friendly and sustainable method for producing PHBA, the titer and productivity are limited due to product toxicity and complex metabolic flux distributions. Here, we initially redesigned a L-phenylalanine-producing Escherichia coli by employing rational metabolic engineering strategies, resulting in the production of PHBA reached the highest reported level of 14.17 g/L. Subsequently, a novel accelerated evolution system was devised comprising deaminase, the alpha subunit of RNA polymerase, an uracil-DNA glycosylase inhibitor, and the PHBA-responsive promoter PyhcN. This system enabled us to obtain a mutant strain exhibiting a 47% increase in the half-inhibitory concentration (IC50) for PHBA within 15 days. Finally, the evolved strain achieved a production of 21.35 g/L PHBA in a 5-L fermenter, with a yield of 0.19 g/g glucose and a productivity rate of 0.44 g/L/h. This engineered strain emerges as a promising candidate for industrial production of PHBA through an eco-friendly approach.
Collapse
Affiliation(s)
- Quan Liu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Ruyin Chu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Li C, Shi T, Fan W, Yuan M, Li L, Yu Z, Chen Z, Xu Q. High-level and -yield orotic acid production in Escherichia coli through systematic modular engineering and "Chaos to Order Cycles" fermentation. BIORESOURCE TECHNOLOGY 2024; 411:131345. [PMID: 39182798 DOI: 10.1016/j.biortech.2024.131345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Orotic acid is widely used in healthcare and cosmetic industries. However, orotic acid-producing microorganisms are auxotrophic, which results in inefficient microbial production. Herein, a plasmid-free, uninduced, non-auxotrophic orotic acid hyperproducer was constructed from Escherichia coli W3110. Initially, the orotic acid degradation pathway was blocked and the carbamoyl phosphate supply was enriched. Subsequently, pyr operon from Bacillus subtilis F126 was heterologously expressed and precursors' supply was optimized. Thereafter, pyrE was dynamically regulated to reconstruct the non-auxotrophic pathway. Employing fed-batch cultivation, orotic acid titer, yield, and productivity of strain Ora21 reached 182.5 g/L, 0.58 g/g, and 3.80 g/L/h, respectively, the highest levels reported so far. Finally, a novel "Chaos to Order Cycles (COC)" fermentation was developed, which effectively increased the yield to 0.63 g/g. This research is a remarkable achievement in orotic acid production by microbial fermentation and has vast potential for industrial applications.
Collapse
Affiliation(s)
- Changgeng Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Tangen Shi
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Wenjing Fan
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Meng Yuan
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Lanxiao Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Zichen Yu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Zhichao Chen
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Qingyang Xu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| |
Collapse
|
8
|
Zhou S, Zhang Q, Yuan M, Yang H, Deng Y. Static and Dynamic Regulation of Precursor Supply Pathways to Enhance Raspberry Ketone Synthesis from Glucose in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23411-23421. [PMID: 39378372 DOI: 10.1021/acs.jafc.4c07423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Raspberry ketone (RK), a natural product derived from raspberry fruit, is commonly utilized as a flavoring agent in foods and as an active component for weight loss. Metabolic engineering has enabled microorganisms to produce RK more efficiently and cost-effectively. However, the biosynthesis of RK is hindered by an unbalanced synthetic pathway and a deficiency of precursors, including tyrosine and malonyl-CoA. In this study, we constructed and optimized the RK synthetic pathway in Escherichia coli using a static metabolic engineering strategy to enhance the biosynthesis of tyrosine from glucose, thereby achieving the de novo production of RK. Additionally, the synthetic and consumption pathways of malonyl-CoA were dynamically regulated by p-coumaric acid-responsive biosensor to balance the metabolic flux distribution between cell growth and RK biosynthesis. Following pathway optimization, the medium components and fermentation conditions were further refined, resulting in a significant increase in the RK titer to 415.56 mg/L. The optimized strain demonstrated a 32.4-fold increase in the RK titer while maintaining a comparable final OD600 to the initial strain. Overall, the implemented static and dynamic regulatory strategies provide a novel approach for the efficient production of RK, taking into account cell viability and growth.
Collapse
Affiliation(s)
- Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiyue Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Manwen Yuan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Haining Yang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yu Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Zhang Y, Wu D, Zhou C, Bai M, Wan Y, Zheng Q, Fan Z, Wang X, Yang C. Engineered extracellular vesicles for tissue repair and regeneration. BURNS & TRAUMA 2024; 12:tkae062. [PMID: 39439545 PMCID: PMC11495891 DOI: 10.1093/burnst/tkae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are heterogeneous membrane-like vesicles secreted by living cells that are involved in many physiological and pathological processes and act as intermediaries of intercellular communication and molecular transfer. Recent studies have shown that EVs from specific sources regulate tissue repair and regeneration by delivering proteins, lipids, and nucleic acids to target cells as signaling molecules. Nanotechnology breakthroughs have facilitated the development and exploration of engineered EVs for tissue repair. Enhancements through gene editing, surface modification, and content modification have further improved their therapeutic efficacy. This review summarizes the potential of EVs in tissue repair and regeneration, their mechanisms of action, and their research progress in regenerative medicine. This review highlights their design logic through typical examples and explores the development prospects of EVs in tissue repair. The aim of this review is to provide new insights into the design of EVs for tissue repair and regeneration applications, thereby expanding their use in regenerative medicine.
Collapse
Affiliation(s)
- Yan Zhang
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
- School of Public Health, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Dan Wu
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Chen Zhou
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025 Shennan Middle Road, Futian District, Shenzhen, China
| | - Muran Bai
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Yucheng Wan
- Hospital of Stomatology, Zunyi Medical University, No. 89, Wujiang East Road, Xinpu New District, Zunyi City, Guizhou Province, China
| | - Qing Zheng
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Zhijin Fan
- Institute for Engineering Medicine, Kunming Medical University, No. 1168 Chunrong West Road, Yuhua Street, Chenggong District, Kunming City, Yunnan Province China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, No.81 Meishan Road, Shushan District, Hefei 230032, China
| | - Chun Yang
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| |
Collapse
|
10
|
Chen A, Dong Y, Jiang H, Yang S, Zhang J, Wei D. Identification and analysis of the key genes for Escherichia coli heterologous protein expression by transcriptomic profiling. Mol Biol Rep 2024; 51:1074. [PMID: 39425817 DOI: 10.1007/s11033-024-10011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Escherichia coli is a frequently used host for heterologous protein expression, but its expression efficiency is hindered by several limitations, such as formation of inclusion bodies and proteolytic degradation. METHODS AND RESULTS In this study, we employed high-density fermentation of heterologous protein production in a 5-L bioreactor, resulting in a yield 2.25 times higher than that of the control group. Transcriptional analysis was conducted at three time points after induction for 0 h, 4 h, and 12 h, revealing 420, 301, and 570 upregulated differentially expressed genes, as well as 424, 202, and 525 downregulated genes, respectively. By conducting enrichment analysis, we constructed strains that relieved without iron limitation, exhibiting a 36% increase in biomass and a 32% increase in protein expression. Furthermore, no overflow metabolism of acetic acid was detected during the protein expression process when utilizing chemostat culture, which indicated that the utilization efficiency of glucose was significantly enhanced without iron limitation. CONCLUSIONS This study presents a novel approach to better comprehend the mechanism of high-yield production of heterologous proteins in Escherichia coli.
Collapse
Affiliation(s)
- Anxiang Chen
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuguo Dong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Huaigu Jiang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shengli Yang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
11
|
Zhang X, Niu P, Liu H, Fang H. Production of pyrimidine nucleosides in microbial systems via metabolic engineering: Theoretical analysis research and prospects. Biotechnol Adv 2024; 75:108419. [PMID: 39053562 DOI: 10.1016/j.biotechadv.2024.108419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Pyrimidine nucleosides, as intermediate materials of significant commercial value, find extensive applications in the pharmaceutical industry. However, the current production of pyrimidine nucleosides largely relies on chemical synthesis, creating environmental problems that do not align with sustainable development goals. Recent progress in systemic metabolic engineering and synthetic biology has enabled the synthesis of natural products like pyrimidine nucleosides through microbial fermentation, offering a more sustainable alternative. Nevertheless, the intricate and tightly regulated biosynthetic pathways involved in the microbial production of pyrimidine nucleosides pose a formidable challenge. This study focuses on metabolic engineering and synthetic biology strategies aimed at enhancing pyrimidine nucleoside production. These strategies include gene modification, transcriptional regulation, metabolic flux analysis, cofactor balance optimization, and transporter engineering. Finally, this research highlights the challenges involved in the further development of pyrimidine nucleoside-producing strains and offers potential solutions in order to provide theoretical guidance for future research endeavors in this field.
Collapse
Affiliation(s)
- Xiangjun Zhang
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Pilian Niu
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Huiyan Liu
- School of Food Science and Engineering, Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Haitian Fang
- School of Food Science and Engineering, Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
12
|
Winegar PH, Hudson GA, Dell LB, Astolfi MCT, Reed J, Payet RD, Ombredane HCJ, Iavarone AT, Chen Y, Gin JW, Petzold CJ, Osbourn AE, Keasling JD. Verazine biosynthesis from simple sugars in engineered Saccharomyces cerevisiae. Metab Eng 2024; 85:145-158. [PMID: 39074544 PMCID: PMC11421371 DOI: 10.1016/j.ymben.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Steroidal alkaloids are FDA-approved drugs (e.g., Zytiga) and promising drug candidates/leads (e.g., cyclopamine); yet many of the ≥697 known steroidal alkaloid natural products remain underutilized as drugs because it can be challenging to scale their biosynthesis in their producing organisms. Cyclopamine is a steroidal alkaloid produced by corn lily (Veratrum spp.) plants, and it is an inhibitor of the Hedgehog (Hh) signaling pathway. Therefore, cyclopamine is an important drug candidate/lead to treat human diseases that are associated with dysregulated Hh signaling, such as basal cell carcinoma and acute myeloid leukemia. Cyclopamine and its semi-synthetic derivatives have been studied in (pre)clinical trials as Hh inhibitor-based drugs. However, challenges in scaling the production of cyclopamine have slowed efforts to improve its efficacy and safety profile through (bio)synthetic derivatization, often limiting drug development to synthetic analogs of cyclopamine such as the FDA-approved drugs Odomzo, Daurismo, and Erivedge. If a platform for the scalable and sustainable production of cyclopamine were established, then its (bio)synthetic derivatization, clinical development, and, ultimately, widespread distribution could be accelerated. Ongoing efforts to achieve this goal include the biosynthesis of cyclopamine in Veratrum plant cell culture and the semi-/total chemical synthesis of cyclopamine. Herein, this work advances efforts towards a promising future approach: the biosynthesis of cyclopamine in engineered microorganisms. We completed the heterologous microbial production of verazine (biosynthetic precursor to cyclopamine) from simple sugars (i.e., glucose and galactose) in engineered Saccharomyces cerevisiae (S. cerevisiae) through the inducible upregulation of the native yeast mevalonate and lanosterol biosynthetic pathways, diversion of biosynthetic flux from ergosterol (i.e., native sterol in S. cerevisiae) to cholesterol (i.e., biosynthetic precursor to verazine), and expression of a refactored five-step verazine biosynthetic pathway. The engineered S. cerevisiae strain that produced verazine contains eight heterologous enzymes sourced from seven different species. Importantly, S. cerevisiae-produced verazine was indistinguishable via liquid chromatography-mass spectrometry from both a commercial standard (Veratrum spp. plant-produced) and Nicotiana benthamiana-produced verazine. To the best of our knowledge, this is the first report describing the heterologous production of a steroidal alkaloid in an engineered yeast. Verazine production was ultimately increased through design-build-test-learn cycles to a final titer of 83 ± 3 μg/L (4.1 ± 0.1 μg/g DCW). Together, this research lays the groundwork for future microbial biosynthesis of cyclopamine, (bio)synthetic derivatives of cyclopamine, and other steroidal alkaloid natural products.
Collapse
Affiliation(s)
- Peter H Winegar
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA
| | - Graham A Hudson
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA
| | - Luisa B Dell
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Maria C T Astolfi
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - James Reed
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rocky D Payet
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Anthony T Iavarone
- California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer W Gin
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anne E Osbourn
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jay D Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences (QB3 Institute), University of California, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; The Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, Kemitorvet, Building 220, Kongens, Lyngby, 2800, Denmark.
| |
Collapse
|
13
|
Zhang H, Guo L, Su Y, Wang R, Yang W, Mu W, Xuan L, Huang L, Wang J, Gao W. Hosts engineering and in vitro enzymatic synthesis for the discovery of novel natural products and their derivatives. Crit Rev Biotechnol 2024; 44:1121-1139. [PMID: 37574211 DOI: 10.1080/07388551.2023.2236787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/23/2023] [Accepted: 06/17/2023] [Indexed: 08/15/2023]
Abstract
Novel natural products (NPs) and their derivatives are important sources for drug discovery, which have been broadly applied in the fields of agriculture, livestock, and medicine, making the synthesis of NPs and their derivatives necessarily important. In recent years, biosynthesis technology has received increasing attention due to its high efficiency in the synthesis of high value-added novel products and its advantages of green, environmental protection, and controllability. In this review, the technological advances of biosynthesis strategies in the discovery of novel NPs and their derivatives are outlined, with an emphasis on two areas of host engineering and in vitro enzymatic synthesis. In terms of hosts engineering, multiple microorganisms, including Streptomyces, Aspergillus, and Penicillium, have been used as the biosynthetic gene clusters (BGCs) provider and host strain for the expression of BGCs to discover new compounds over the past years. In addition, the use of in vitro enzymatic synthesis strategy to generate novel compounds such as triterpenoid saponins and flavonoids is also hereby described.
Collapse
Affiliation(s)
- Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Wenrong Mu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Liangshuang Xuan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
14
|
Byndloss M, Devkota S, Duca F, Niess JH, Nieuwdorp M, Orho-Melander M, Sanz Y, Tremaroli V, Zhao L. The gut microbiota and diabetes: research, translation, and clinical applications - 2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetologia 2024; 67:1760-1782. [PMID: 38910152 PMCID: PMC11410996 DOI: 10.1007/s00125-024-06198-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
This article summarises the state of the science on the role of the gut microbiota (GM) in diabetes from a recent international expert forum organised by Diabetes, Diabetes Care, and Diabetologia, which was held at the European Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum participants included clinicians and basic scientists who are leading investigators in the field of the intestinal microbiome and metabolism. Their conclusions were as follows: (1) the GM may be involved in the pathophysiology of type 2 diabetes, as microbially produced metabolites associate both positively and negatively with the disease, and mechanistic links of GM functions (e.g. genes for butyrate production) with glucose metabolism have recently emerged through the use of Mendelian randomisation in humans; (2) the highly individualised nature of the GM poses a major research obstacle, and large cohorts and a deep-sequencing metagenomic approach are required for robust assessments of associations and causation; (3) because single time point sampling misses intraindividual GM dynamics, future studies with repeated measures within individuals are needed; and (4) much future research will be required to determine the applicability of this expanding knowledge to diabetes diagnosis and treatment, and novel technologies and improved computational tools will be important to achieve this goal.
Collapse
Affiliation(s)
- Mariana Byndloss
- Vanderbilt University Medical Center, Nashville, TN, USA
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suzanne Devkota
- Cedars-Sinai Medical Center, Human Microbiome Research Institute, Los Angeles, CA, USA
| | | | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, Basel, Switzerland
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Diabeter Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain.
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
15
|
Pathom-Aree W, Sattayawat P, Inwongwan S, Cheirsilp B, Liewtrakula N, Maneechote W, Rangseekaew P, Ahmad F, Mehmood MA, Gao F, Srinuanpan S. Microalgae growth-promoting bacteria for cultivation strategies: Recent updates and progress. Microbiol Res 2024; 286:127813. [PMID: 38917638 DOI: 10.1016/j.micres.2024.127813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Microalgae growth-promoting bacteria (MGPB), both actinobacteria and non-actinobacteria, have received considerable attention recently because of their potential to develop microalgae-bacteria co-culture strategies for improved efficiency and sustainability of the water-energy-environment nexus. Owing to their diverse metabolic pathways and ability to adapt to diverse conditions, microalgal-MGPB co-cultures could be promising biological systems under uncertain environmental and nutrient conditions. This review proposes the recent updates and progress on MGPB for microalgae cultivation through co-culture strategies. Firstly, potential MGPB strains for microalgae cultivation are introduced. Following, microalgal-MGPB interaction mechanisms and applications of their co-cultures for biomass production and wastewater treatment are reviewed. Moreover, state-of-the-art studies on synthetic biology and metabolic network analysis, along with the challenges and prospects of opting these approaches for microalgal-MGPB co-cultures are presented. It is anticipated that these strategies may significantly improve the sustainability of microalgal-MGPB co-cultures for wastewater treatment, biomass valorization, and bioproducts synthesis in a circular bioeconomy paradigm.
Collapse
Affiliation(s)
- Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamas Cheirsilp
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Naruepon Liewtrakula
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Wageeporn Maneechote
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pharada Rangseekaew
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Fiaz Ahmad
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muhammad Aamer Mehmood
- Bioenergy Research Center, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Fengzheng Gao
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Zurich 8092, Switzerland; Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; Biorefinery and Bioprocess Engineering Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
16
|
Zeng J, Zhou Y, Lyu M, Huang X, Xie M, Huang M, Chen BX, Wei T. Cordyceps militaris: A novel mushroom platform for metabolic engineering. Biotechnol Adv 2024; 74:108396. [PMID: 38906495 DOI: 10.1016/j.biotechadv.2024.108396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Cordyceps militaris, widely recognized as a medicinal and edible mushroom in East Asia, contains a variety of bioactive compounds, including cordycepin (COR), pentostatin (PTN) and other high-value compounds. This review explores the potential of developing C. militaris as a cell factory for the production of high-value chemicals and nutrients. This review comprehensively summarizes the fermentation advantages, metabolic networks, expression elements, and genome editing tools specific to C. militaris and discusses the challenges and barriers to further research on C. militaris across various fields, including computational biology, existing DNA elements, and genome editing approaches. This review aims to describe specific and promising opportunities for the in-depth study and development of C. militaris as a new chassis cell. Additionally, to increase the practicability of this review, examples of the construction of cell factories are provided, and promising strategies for synthetic biology development are illustrated.
Collapse
Affiliation(s)
- Jiapeng Zeng
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Yue Zhou
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Mengdi Lyu
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Xinchang Huang
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China
| | - Muyun Xie
- School of Bioengineering, Zunyi Medical University, Zhuhai, Guangdong 519090, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China.
| | - Bai-Xiong Chen
- School of Bioengineering, Zunyi Medical University, Zhuhai, Guangdong 519090, China.
| | - Tao Wei
- Institute of Food Biotechnology & College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
17
|
Guo Y, Hu SY, Wu C, Gao CX, Hui CY. Biosynthesis of Indigo Dyes and Their Application in Green Chemical and Visual Biosensing for Heavy Metals. ACS OMEGA 2024; 9:33868-33881. [PMID: 39130558 PMCID: PMC11308077 DOI: 10.1021/acsomega.4c03613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
Fermentative production of natural colorants using microbial strains has emerged as a cost-effective and sustainable alternative to chemical synthesis. Visual pigments are used as signal outputs in colorimetric bacterial biosensors, a promising method for monitoring environmental pollutants. In this study, we engineered four self-sufficient indigo-forming enzymes, including HbpAv, bFMO, cFMO, and rFPMO, in a model bacterium E. coli. TrxA-bFMO was chosen for its strong ability to produce indigo under T7 lac and mer promoters' regulation. The choice of bacterial hosts, the supplementation of substrate l-tryptophan, and ventilation were crucial factors affecting indigo production. The indigo reporter validated the biosensors for Hg(II), Pb(II), As(III), and Cd(II). The biosensors reported Hg(II) as low as 14.1 nM, Pb(II) as low as 1.5 nM, and As(III) as low as 4.5 nM but increased to 25 μM for Cd(II). The detection ranges for Hg(II), Pb(II), As(III), and Cd(II) were quantified from 14.1 to 225 nM, 1.5 to 24.4 nM, 4.5 to 73.2 nM, and 25 to 200 μM, respectively. The sensitivity, responsive concentration range, and selectivity are comparable to β-galactosidase and luciferase reporter enzymes. This study suggests that engineered enzymes for indigo production have great potential for green chemical synthesis. Additionally, heterologous biosynthesis of indigo production can lead to the development of novel, low-cost, and mini-equipment bacterial biosensors with zero background noise for visual monitoring of pollutant heavy metals.
Collapse
Affiliation(s)
- Yan Guo
- National
Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Shun-Yu Hu
- Department
of Pathology and Toxicology, Shenzhen Prevention
and Treatment Center for Occupational Diseases, Shenzhen 518020, China
- Department
of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Can Wu
- Department
of Pathology and Toxicology, Shenzhen Prevention
and Treatment Center for Occupational Diseases, Shenzhen 518020, China
- Department
of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Chao-Xian Gao
- Department
of Pathology and Toxicology, Shenzhen Prevention
and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Chang-Ye Hui
- Department
of Pathology and Toxicology, Shenzhen Prevention
and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| |
Collapse
|
18
|
Ding N, Yuan Z, Sun L, Yin L. Dynamic and Static Regulation of Nicotinamide Adenine Dinucleotide Phosphate: Strategies, Challenges, and Future Directions in Metabolic Engineering. Molecules 2024; 29:3687. [PMID: 39125091 PMCID: PMC11314019 DOI: 10.3390/molecules29153687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is a crucial cofactor in metabolic networks. The efficient regeneration of NADPH is one of the limiting factors for productivity in biotransformation processes. To date, many metabolic engineering tools and static regulation strategies have been developed to regulate NADPH regeneration. However, traditional static regulation methods often lead to the NADPH/NADP+ imbalance, causing disruptions in cell growth and production. These methods also fail to provide real-time monitoring of intracellular NADP(H) or NADPH/NADP+ levels. In recent years, various biosensors have been developed for the detection, monitoring, and dynamic regulate of the intracellular NADP(H) levels or the NADPH/NADP+ balance. These NADPH-related biosensors are mainly used in the cofactor engineering of bacteria, yeast, and mammalian cells. This review analyzes and summarizes the NADPH metabolic regulation strategies from both static and dynamic perspectives, highlighting current challenges and potential solutions, and discusses future directions for the advanced regulation of the NADPH/NADP+ balance.
Collapse
Affiliation(s)
- Nana Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Z.Y.); (L.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Zenan Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Z.Y.); (L.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Lei Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Z.Y.); (L.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Z.Y.); (L.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
19
|
Nonaka D, Hirata Y, Kishida M, Mori A, Fujiwara R, Kondo A, Mori Y, Noda S, Tanaka T. Parallel metabolic pathway engineering for aerobic 1,2-propanediol production in Escherichia coli. Biotechnol J 2024; 19:e2400210. [PMID: 39167552 DOI: 10.1002/biot.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
The demand for the essential commodity chemical 1,2-propanediol (1,2-PDO) is on the rise, as its microbial production has emerged as a promising method for a sustainable chemical supply. However, the reliance of 1,2-PDO production in Escherichia coli on anaerobic conditions, as enhancing cell growth to augment precursor availability remains a substantial challenge. This study presents glucose-based aerobic production of 1,2-PDO, with xylose utilization facilitating cell growth. An engineered strain was constructed capable of exclusively producing 1,2-PDO from glucose while utilizing xylose to support cell growth. This was accomplished by deleting the gloA, eno, eda, sdaA, sdaB, and tdcG genes for 1,2-PDO production from glucose and introducing the Weimberg pathway for cell growth using xylose. Enhanced 1,2-PDO production was achieved via yagF overexpression and disruption of the ghrA gene involved in the 1,2-PDO-competing pathway. The resultant strain, PD72, produced 2.48 ± 0.15 g L-1 1,2-PDO with a 0.27 ± 0.02 g g-1-glucose yield after 72 h cultivation. Overall, this study demonstrates aerobic 1,2-PDO synthesis through the isolation of the 1,2-PDO synthetic pathway from the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Daisuke Nonaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Mayumi Kishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Ayana Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Ryosuke Fujiwara
- Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Yutaro Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Shuhei Noda
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| |
Collapse
|
20
|
Ren R, Yu H, Teng J, Mao S, Bian Z, Tao Y, Yau SST. CAPE: a deep learning framework with Chaos-Attention net for Promoter Evolution. Brief Bioinform 2024; 25:bbae398. [PMID: 39120645 PMCID: PMC11311715 DOI: 10.1093/bib/bbae398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Predicting the strength of promoters and guiding their directed evolution is a crucial task in synthetic biology. This approach significantly reduces the experimental costs in conventional promoter engineering. Previous studies employing machine learning or deep learning methods have shown some success in this task, but their outcomes were not satisfactory enough, primarily due to the neglect of evolutionary information. In this paper, we introduce the Chaos-Attention net for Promoter Evolution (CAPE) to address the limitations of existing methods. We comprehensively extract evolutionary information within promoters using merged chaos game representation and process the overall information with modified DenseNet and Transformer structures. Our model achieves state-of-the-art results on two kinds of distinct tasks related to prokaryotic promoter strength prediction. The incorporation of evolutionary information enhances the model's accuracy, with transfer learning further extending its adaptability. Furthermore, experimental results confirm CAPE's efficacy in simulating in silico directed evolution of promoters, marking a significant advancement in predictive modeling for prokaryotic promoter strength. Our paper also presents a user-friendly website for the practical implementation of in silico directed evolution on promoters. The source code implemented in this study and the instructions on accessing the website can be found in our GitHub repository https://github.com/BobYHY/CAPE.
Collapse
Affiliation(s)
- Ruohan Ren
- Zhili College, Tsinghua University, Beijing 100084, China
| | - Hongyu Yu
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
| | - Jiahao Teng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sihui Mao
- Zhili College, Tsinghua University, Beijing 100084, China
| | - Zixuan Bian
- Weiyang College, Tsinghua University, Beijing 100084, China
| | - Yangtianze Tao
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
| | - Stephen S-T Yau
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
- Beijing Institute of Mathematical Sciences and Applications (Bimsa), Beijing 101408, China
| |
Collapse
|
21
|
Wang F, Zang Z, Zhao Q, Xiaoyang C, Lei X, Wang Y, Ma Y, Cao R, Song X, Tang L, Deyholos MK, Zhang J. Advancement of Research Progress on Synthesis Mechanism of Cannabidiol (CBD). ACS Synth Biol 2024; 13:2008-2018. [PMID: 38900848 PMCID: PMC11264327 DOI: 10.1021/acssynbio.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Cannabis sativa L. is a multipurpose crop with high value for food, textiles, and other industries. Its secondary metabolites, including cannabidiol (CBD), have potential for broad application in medicine. With the CBD market expanding, traditional production may not be sufficient. Here we review the potential for the production of CBD using biotechnology. We describe the chemical and biological synthesis of cannabinoids, the associated enzymes, and the application of metabolic engineering, synthetic biology, and heterologous expression to increasing production of CBD.
Collapse
Affiliation(s)
- Fu Wang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Zhenyuan Zang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Qian Zhao
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Chunxiao Xiaoyang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xiujuan Lei
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Yingping Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Yiqiao Ma
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Rongan Cao
- College
of Food Science, Heilongjiang Bayi Agricultural
University, Daqing 163319, China
| | - Xixia Song
- Institute
of Industrial Crops of Heilongjiang Academy of Agricultural Sciences, Haerbin 150000, China
| | - Lili Tang
- Institute
of Industrial Crops of Heilongjiang Academy of Agricultural Sciences, Haerbin 150000, China
| | - Michael K. Deyholos
- Department
of Biology, University of British Columbia,
Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Jian Zhang
- Faculty
of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Department
of Biology, University of British Columbia,
Okanagan, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
22
|
Quintieri L, Caputo L, Nicolotti O. Recent Advances in the Discovery of Novel Drugs on Natural Molecules. Biomedicines 2024; 12:1254. [PMID: 38927461 PMCID: PMC11200856 DOI: 10.3390/biomedicines12061254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Natural products (NPs) are always a promising source of novel drugs for tackling unsolved diseases [...].
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy;
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy;
| | - Orazio Nicolotti
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy;
| |
Collapse
|
23
|
Eun H, Lee SY. Metabolic engineering and fermentation of microorganisms for carotenoids production. Curr Opin Biotechnol 2024; 87:103104. [PMID: 38447325 DOI: 10.1016/j.copbio.2024.103104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Carotenoids are natural pigments that exhibit a wide range of red, orange, and yellow colors and are extensively used in the food, nutraceuticals, cosmetics, and aquaculture industries. While advances in systems metabolic engineering have established a foundation for constructing carotenoid-producing microbial cell factories at a laboratory scale, translating these technologies to industrial scales remains a big challenge. Moreover, there is a need to devise cost-effective methods for downstream processing and purification of carotenoids. In this review, we discuss recent strategies in metabolic engineering, such as metabolic flux optimization, enzyme assembly, and storage capacity engineering, aimed at constructing high-performance carotenoid-producing microbial strains. We also review recent approaches for cost-effective downstream processing and purification of carotenoids.
Collapse
Affiliation(s)
- Hyunmin Eun
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Engineering Biology, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
24
|
Wang Y, Di Z, Qin M, Qu S, Zhong W, Yuan L, Zhang J, Hibberd JM, Yu Z. Advancing Engineered Plant Living Materials through Tobacco BY-2 Cell Growth and Transfection within Tailored Granular Hydrogel Scaffolds. ACS CENTRAL SCIENCE 2024; 10:1094-1104. [PMID: 38799669 PMCID: PMC11117683 DOI: 10.1021/acscentsci.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
In this study, an innovative approach is presented in the field of engineered plant living materials (EPLMs), leveraging a sophisticated interplay between synthetic biology and engineering. We detail a 3D bioprinting technique for the precise spatial patterning and genetic transformation of the tobacco BY-2 cell line within custom-engineered granular hydrogel scaffolds. Our methodology involves the integration of biocompatible hydrogel microparticles (HMPs) primed for 3D bioprinting with Agrobacterium tumefaciens capable of plant cell transfection, serving as the backbone for the simultaneous growth and transformation of tobacco BY-2 cells. This system facilitates the concurrent growth and genetic modification of tobacco BY-2 cells within our specially designed scaffolds. These scaffolds enable the cells to develop into predefined patterns while remaining conducive to the uptake of exogenous DNA. We showcase the versatility of this technology by fabricating EPLMs with unique structural and functional properties, exemplified by EPLMs exhibiting distinct pigmentation patterns. These patterns are achieved through the integration of the betalain biosynthetic pathway into tobacco BY-2 cells. Overall, our study represents a groundbreaking shift in the convergence of materials science and plant synthetic biology, offering promising avenues for the evolution of sustainable, adaptive, and responsive living material systems.
Collapse
Affiliation(s)
- Yujie Wang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Zhengao Di
- Department
of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K.
- Earlham
Institute, Norwich Research Park, Norwich NR4 7UG, U.K.
| | - Minglang Qin
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Shenming Qu
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Wenbo Zhong
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Lingfeng Yuan
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Jing Zhang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Julian M. Hibberd
- Department
of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K.
| | - Ziyi Yu
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| |
Collapse
|
25
|
Nieto-Domínguez M, Sako A, Enemark-Rasmussen K, Gotfredsen CH, Rago D, Nikel PI. Enzymatic synthesis of mono- and trifluorinated alanine enantiomers expands the scope of fluorine biocatalysis. Commun Chem 2024; 7:104. [PMID: 38724655 PMCID: PMC11082193 DOI: 10.1038/s42004-024-01188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Fluorinated amino acids serve as an entry point for establishing new-to-Nature chemistries in biological systems, and novel methods are needed for the selective synthesis of these building blocks. In this study, we focused on the enzymatic synthesis of fluorinated alanine enantiomers to expand fluorine biocatalysis. The alanine dehydrogenase from Vibrio proteolyticus and the diaminopimelate dehydrogenase from Symbiobacterium thermophilum were selected for in vitro production of (R)-3-fluoroalanine and (S)-3-fluoroalanine, respectively, using 3-fluoropyruvate as the substrate. Additionally, we discovered that an alanine racemase from Streptomyces lavendulae, originally selected for setting an alternative enzymatic cascade leading to the production of these non-canonical amino acids, had an unprecedented catalytic efficiency in β-elimination of fluorine from the monosubstituted fluoroalanine. The in vitro enzymatic cascade based on the dehydrogenases of V. proteolyticus and S. thermophilum included a cofactor recycling system, whereby a formate dehydrogenase from Pseudomonas sp. 101 (either native or engineered) coupled formate oxidation to NAD(P)H formation. Under these conditions, the reaction yields for (R)-3-fluoroalanine and (S)-3-fluoroalanine reached >85% on the fluorinated substrate and proceeded with complete enantiomeric excess. The selected dehydrogenases also catalyzed the conversion of trifluoropyruvate into trifluorinated alanine as a first-case example of fluorine biocatalysis with amino acids carrying a trifluoromethyl group.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Aboubakar Sako
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
26
|
Feng J, Wang Q, Qin Z, Guo X, Fu H, Yang ST, Wang J. Development of inducible promoters for regulating gene expression in Clostridium tyrobutyricum for biobutanol production. Biotechnol Bioeng 2024; 121:1518-1531. [PMID: 38548678 DOI: 10.1002/bit.28701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 04/14/2024]
Abstract
Clostridium tyrobutyricum is an anaerobe known for its ability to produce short-chain fatty acids, alcohols, and esters. We aimed to develop inducible promoters for fine-tuning gene expression in C. tyrobutyricum. Synthetic inducible promoters were created by employing an Escherichia coli lac operator to regulate the thiolase promoter (PCathl) from Clostridium acetobutylicum, with the best one (LacI-Pto4s) showing a 5.86-fold dynamic range with isopropyl β- d-thiogalactoside (IPTG) induction. A LT-Pt7 system with a dynamic range of 11.6-fold was then created by combining LacI-Pto4s with a T7 expression system composing of RNA polymerase (T7RNAP) and Pt7lac promoter. Furthermore, two inducible expression systems BgaR-PbgaLA and BgaR-PbgaLB with a dynamic range of ~40-fold were developed by optimizing a lactose-inducible expression system from Clostridium perfringens with modified 5' untranslated region (5' UTR) and ribosome-binding site (RBS). BgaR-PbgaLB was then used to regulate the expressions of a bifunctional aldehyde/alcohol dehydrogenase encoded by adhE2 and butyryl-CoA/acetate Co-A transferase encoded by cat1 in C. tyrobutyricum wild type and Δcat1::adhE2, respectively, demonstrating its efficient inducible gene regulation. The regulated cat1 expression also confirmed that the Cat1-catalyzed reaction was responsible for acetate assimilation in C. tyrobutyricum. The inducible promoters offer new tools for tuning gene expression in C. tyrobutyricum for industrial applications.
Collapse
Affiliation(s)
- Jun Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Qingke Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Zhen Qin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xiaolong Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
27
|
Yu L, Gao Y, He Y, Liu Y, Shen J, Liang H, Gong R, Duan H, Price NPJ, Song X, Deng Z, Chen W. Developing the E. coli platform for efficient production of UMP-derived chemicals. Metab Eng 2024; 83:61-74. [PMID: 38522576 DOI: 10.1016/j.ymben.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
5-Methyluridine (5-MU) is a prominent intermediate for industrial synthesis of several antiviral-drugs, however, its availability over the past decades has overwhelmingly relied on chemical and enzymatic strategies. Here, we have realized efficient production of 5-MU in E. coli, for the first time, via a designer artificial pathway consisting of a two-enzyme cascade (UMP 5-methylase and phosphatase). More importantly, we have engineered the E. coli cell factory to boost 5-MU production by systematic evaluation of multiple strategies, and as a proof of concept, we have further developed an antibiotic-free fermentation strategy to realize 5-MU production (10.71 g/L) in E. coli MB229 (a ΔthyA strain). Remarkably, we have also established a versatile and robust platform with exploitation of the engineered E. coli for efficient production of diversified UMP-derived chemicals. This study paves the way for future engineering of E. coli as a synthetic biology platform for acceleratively accessing UMP-derived chemical diversities.
Collapse
Affiliation(s)
- Le Yu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yaojie Gao
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuanyuan He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yang Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jianning Shen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Han Liang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rong Gong
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - He Duan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Neil P J Price
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Xuemin Song
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenqing Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
28
|
Hamrick GS, Maddamsetti R, Son HI, Wilson ML, Davis HM, You L. Programming Dynamic Division of Labor Using Horizontal Gene Transfer. ACS Synth Biol 2024; 13:1142-1151. [PMID: 38568420 DOI: 10.1021/acssynbio.3c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The metabolic engineering of microbes has broad applications, including biomanufacturing, bioprocessing, and environmental remediation. The introduction of a complex, multistep pathway often imposes a substantial metabolic burden on the host cell, restraining the accumulation of productive biomass and limiting pathway efficiency. One strategy to alleviate metabolic burden is the division of labor (DOL) in which different subpopulations carry out different parts of the pathway and work together to convert a substrate into a final product. However, the maintenance of different engineered subpopulations is challenging due to competition and convoluted interstrain population dynamics. Through modeling, we show that dynamic division of labor (DDOL), which we define as the DOL between indiscrete populations capable of dynamic and reversible interchange, can overcome these limitations and enable the robust maintenance of burdensome, multistep pathways. We propose that DDOL can be mediated by horizontal gene transfer (HGT) and use plasmid genomics to uncover evidence that DDOL is a strategy utilized by natural microbial communities. Our work suggests that bioengineers can harness HGT to stabilize synthetic metabolic pathways in microbial communities, enabling the development of robust engineered systems for deployment in a variety of contexts.
Collapse
Affiliation(s)
- Grayson S Hamrick
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Rohan Maddamsetti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
| | - Hye-In Son
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
| | - Maggie L Wilson
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
| | - Harris M Davis
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for Quantitative Biodesign, Duke University, Durham, North Carolina 27708, United States
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27708, United States
| |
Collapse
|
29
|
Wang J, Ma W, Ma W, Fang Z, Jiang Y, Jiang W, Kong X, Xin F, Zhang W, Jiang M. Strategies for the efficient biosynthesis of β-carotene through microbial fermentation. World J Microbiol Biotechnol 2024; 40:160. [PMID: 38607448 DOI: 10.1007/s11274-024-03955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
β-Carotene is an orange fat-soluble compound, which has been widely used in fields such as food, medicine and cosmetics owing to its anticancer, antioxidant and cardiovascular disease prevention properties. Currently, natural β-carotene is mainly extracted from plants and algae, which cannot meet the growing market demand, while chemical synthesis of β-carotene cannot satisfy the pursuit for natural products of consumers. The β-carotene production through microbial fermentation has become a promising alternative owing to its high efficiency and environmental friendliness. With the rapid development of synthetic biology and in-depth study on the synthesis pathway of β-carotene, microbial fermentation has shown promising applications in the β-carotene synthesis. Accordingly, this review aims to summarize the research progress and strategies of natural carotenoid producing strain and metabolic engineering strategies in the heterologous synthesis of β-carotene by engineered microorganisms. Moreover, it also summarizes the adoption of inexpensive carbon sources to synthesize β-carotene as well as proposes new strategies that can further improve the β-carotene production.
Collapse
Affiliation(s)
- Jingnan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wenqi Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Weixu Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Zhanyang Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Xiangping Kong
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, People's Republic of China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| |
Collapse
|
30
|
Wu X, Chen R, Liang P, Zha J. Identification of Escherichia coli multidrug resistance transporters involved in anthocyanin biosynthesis. Front Microbiol 2024; 15:1357794. [PMID: 38646631 PMCID: PMC11026601 DOI: 10.3389/fmicb.2024.1357794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
The anthocyanin compound cyanidin 3-O-glucoside (C3G) is a natural pigment widely used in food and nutraceutical industries. Its microbial synthesis by E. coli is a promising alternative to the traditional extraction methods. However, part of the synthesized C3G accumulates in the cytoplasm, thus potentially causing growth inhibition and product degradation. Therefore, it is necessary to enhance C3G secretion via exploration of native transporters facilitating C3G export. In this study, we report the screening and verification of native multidrug resistance transporters from 40 candidates in E. coli that can improve the extracellular C3G production when using catechin as the substrate. Overexpression of single transporter genes including fsr, yebQ, ynfM, mdlAB, and emrKY were found to increase C3G production by 0.5- to 4.8-fold. Genetic studies indicated that mdlAB and emrKY are vital transporters in the secretion of C3G. Our study reveals a set of new multidrug resistance transporters for the improvement of microbial biosynthesis of C3G and other anthocyanins.
Collapse
Affiliation(s)
- Xia Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, China
| | - Rongxia Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Ping Liang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Jian Zha
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, China
| |
Collapse
|
31
|
Hao Y, Pan X, You J, Li G, Xu M, Rao Z. Microbial production of branched chain amino acids: Advances and perspectives. BIORESOURCE TECHNOLOGY 2024; 397:130502. [PMID: 38417463 DOI: 10.1016/j.biortech.2024.130502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Branched-chain amino acids (BCAAs) such as L-valine, L-leucine, and L-isoleucine are widely used in food and feed. To comply with sustainable development goals, commercial production of BCAAs has been completely replaced with microbial fermentation. However, the efficient production of BCAAs by microorganisms remains a serious challenge due to their staggered metabolic networks and cell growth. To overcome these difficulties, systemic metabolic engineering has emerged as an effective and feasible strategy for the biosynthesis of BCAA. This review firstly summarizes the research advances in the microbial synthesis of BCAAs and representative engineering strategies. Second, systematic methods, such as high-throughput screening, adaptive laboratory evolution, and omics analysis, can be used to analyses the synthesis of BCAAs at the whole-cell level and further improve the titer of target chemicals. Finally, new tools and engineering strategies that may increase the production output and development direction of the microbial production of BCAAs are discussed.
Collapse
Affiliation(s)
- Yanan Hao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guomin Li
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
32
|
Devi M, Ramakrishnan E, Deka S, Parasar DP. Bacteria as a source of biopigments and their potential applications. J Microbiol Methods 2024; 219:106907. [PMID: 38387652 DOI: 10.1016/j.mimet.2024.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
From the prehistoric period, the utilization of pigments as colouring agents was an integral part of human life. Early people may have utilized paint for aesthetic motives, according to archaeologists. The pigments are either naturally derived or synthesized in the laboratory. Different studies reported that certain synthetic colouring compounds were toxic and had adverse health and environmental effects. Therefore, knowing the drawbacks of these synthetic colouring agents now scientists are attracted towards the harmless natural pigments. The main sources of natural pigments are plants, animals or microorganisms. Out of these natural pigments, microorganisms are the most important source for the production and application of bioactive secondary metabolites. Among all kinds of microorganisms, bacteria have specific benefits due to their short life cycle, low sensitivity to seasonal and climatic variations, ease of scaling, and ability to create pigments of various colours. Based on these physical characteristics, bacterial pigments appear to be a promising sector for novel biotechnological applications, ranging from functional food production to the development of new pharmaceuticals and biomedical therapies. This review summarizes the need for bacterial pigments, biosynthetic pathways of carotenoids and different applications of bacterial pigments.
Collapse
Affiliation(s)
- Moitrayee Devi
- Faculty of Paramedical Science (Microbiology), Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam 781026, India
| | - Elancheran Ramakrishnan
- Department of Chemistry, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Tiruchirappalli, Tamil Nadu 621112, India
| | - Suresh Deka
- Faculty of Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam 781026, India
| | - Deep Prakash Parasar
- Faculty of Science (Biotechnology), Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam 781026, India.
| |
Collapse
|
33
|
Wu X, Ren J, Wang J, Koffas MAG, Zha J. A major facilitator superfamily transporter MdtH in Escherichia coli is involved in anthocyanin biosynthesis and secretion. Appl Environ Microbiol 2024; 90:e0207923. [PMID: 38349148 PMCID: PMC10952383 DOI: 10.1128/aem.02079-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 03/21/2024] Open
Abstract
Anthocyanin cyanidin 3-O-glucoside (C3G) is a natural pigment widely used in food and nutraceutical industries. Its microbial synthesis in Escherichia coli is a promising and efficient way toward large-scale production. The current production titer is low partly due to the accumulation of C3G inside the producing microbes; thus, it is important to explore native transporters responsible for anthocyanin secretion. Currently, there has been only one native E. coli transporter identified with C3G-transporting capability, and its overexpression has a very limited effect on the promotion of extracellular C3G production. In this study, we report the identification and verification of an efficient intrinsic C3G efflux transporter MdtH in E. coli through transcriptomic analysis and genetic/biochemical studies. MdtH could bind C3G with high affinity, and its overexpression increased the extracellular C3G biosynthesis in E. coli by 110%. Our study provides a new regulation target for microbial biosynthesis of C3G and other anthocyanins. IMPORTANCE Cyanidin 3-O-glucoside (C3G) is a natural colorant with health-promoting activities and is, hence, widely used in food, cosmetic, and nutraceutical industries. Its market supply is currently dependent on extraction from plants. As an alternative, C3G can be produced by the microbe Escherichia coli in a green and sustainable way. However, a large portion of this compound is retained inside the cell of E. coli, thus complicating the purification process and limiting the high-level production. We have identified and verified an efficient native transporter named MdtH in E. coli that can export C3G to the cultivation medium. Overexpression of MdtH could improve extracellular C3G production by 110% without modifications of the metabolic pathway genes or enzymes. This study reveals a new regulation target for C3G production in bacteria and provides guidance to the microbial biosynthesis of related compounds.
Collapse
Affiliation(s)
- Xia Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi, China
| | - Juan Ren
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi, China
| | - Jing Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi, China
| | - Mattheos A. G. Koffas
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Jian Zha
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi, China
| |
Collapse
|
34
|
Lv Y, Chang J, Zhang W, Dong H, Chen S, Wang X, Zhao A, Zhang S, Alam MA, Wang S, Du C, Xu J, Wang W, Xu P. Improving Microbial Cell Factory Performance by Engineering SAM Availability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3846-3871. [PMID: 38372640 DOI: 10.1021/acs.jafc.3c09561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Methylated natural products are widely spread in nature. S-Adenosyl-l-methionine (SAM) is the secondary abundant cofactor and the primary methyl donor, which confer natural products with structural and functional diversification. The increasing demand for SAM-dependent natural products (SdNPs) has motivated the development of microbial cell factories (MCFs) for sustainable and efficient SdNP production. Insufficient and unsustainable SAM availability hinders the improvement of SdNP MCF performance. From the perspective of developing MCF, this review summarized recent understanding of de novo SAM biosynthesis and its regulatory mechanism. SAM is just the methyl mediator but not the original methyl source. Effective and sustainable methyl source supply is critical for efficient SdNP production. We compared and discussed the innate and relatively less explored alternative methyl sources and identified the one involving cheap one-carbon compound as more promising. The SAM biosynthesis is synergistically regulated on multilevels and is tightly connected with ATP and NAD(P)H pools. We also covered the recent advancement of metabolic engineering in improving intracellular SAM availability and SdNP production. Dynamic regulation is a promising strategy to achieve accurate and dynamic fine-tuning of intracellular SAM pool size. Finally, we discussed the design and engineering constraints underlying construction of SAM-responsive genetic circuits and envisioned their future applications in developing SdNP MCFs.
Collapse
Affiliation(s)
- Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Jinmian Chang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Weiping Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, Shandong 250101, China
| | - Hanyu Dong
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Song Chen
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Xian Wang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Anqi Zhao
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China
| | - Shen Zhang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Chaojun Du
- Nanyang Research Institute of Zhengzhou University, Nanyang Institute of Technology, No. 80 Changjiang Road, Nanyang 473004, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
- National Key Laboratory of Biobased Transportation Fuel Technology, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Palo Alto, California 94305, United States
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China
| |
Collapse
|
35
|
Hebra T, Smrčková H, Elkatmis B, Převorovský M, Pluskal T. POMBOX: A Fission Yeast Cloning Toolkit for Molecular and Synthetic Biology. ACS Synth Biol 2024; 13:558-567. [PMID: 37991801 PMCID: PMC10877588 DOI: 10.1021/acssynbio.3c00529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
The fission yeast Schizosaccharomyces pombe is a popular model organism in molecular biology and cell physiology. With its ease of genetic manipulation and growth, supported by in-depth functional annotations in the PomBase database and genome-wide metabolic models,S. pombe is an attractive option for synthetic biology applications. However,S. pombe currently lacks modular tools for generating genetic circuits with more than 1 transcriptional unit. We developed a toolkit to address this gap. Adapted from the MoClo-YTK plasmid kit for Saccharomyces cerevisiae and using the same modular cloning grammar, our POMBOX toolkit is designed to facilitate fast, efficient, and modular construction of genetic circuits inS. pombe. It allows for interoperability when working with DNA sequences that are functional in bothS. cerevisiae and S. pombe (e.g., protein tags, antibiotic resistance cassettes, and coding sequences). Moreover, POMBOX enables the modular assembly of multigene pathways and increases the possible pathway length from 6 to 12 transcriptional units. We also adapted the stable integration vector homology arms to Golden Gate assembly and tested the genomic integration success rates depending on different sequence sizes, from 4 to 24 kb. We included 14 S. pombe promoters that we characterized using two fluorescent proteins, in both minimally defined (EMM2─Edinburgh minimal media) and complex (YES─yeast extract with supplements) media. Then, we examined the efficacy of 6 S. cerevisiae and 6 synthetic terminators in S. pombe. Finally, we used the POMBOX kit for a synthetic biology application in metabolic engineering and expressed plant enzymes in S. pombe to produce specialized metabolite precursors, namely, methylxanthine, amorpha-4,11-diene, and cinnamic acid from the purine, mevalonate, and aromatic amino acid pathways.
Collapse
Affiliation(s)
- Téo Hebra
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Helena Smrčková
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Büsra Elkatmis
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Martin Převorovský
- Department
of Cell Biology, Faculty of Science, Charles
University, 128 00 Prague, Czech
Republic
| | - Tomáš Pluskal
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic
| |
Collapse
|
36
|
Gu P, Li F, Huang Z, Gao J. Application of Acetate as a Substrate for the Production of Value-Added Chemicals in Escherichia coli. Microorganisms 2024; 12:309. [PMID: 38399713 PMCID: PMC10891810 DOI: 10.3390/microorganisms12020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
At present, the production of the majority of valuable chemicals is dependent on the microbial fermentation of carbohydrate substrates. However, direct competition is a potential problem for microbial feedstocks that are also used within the food/feed industries. The use of alternative carbon sources, such as acetate, has therefore become a research focus. As a common organic acid, acetate can be generated from lignocellulosic biomass and C1 gases, as well as being a major byproduct in microbial fermentation, especially in the presence of an excess carbon source. As a model microorganism, Escherichia coli has been widely applied in the production of valuable chemicals using different carbon sources. Recently, several valuable chemicals (e.g., succinic acid, itaconic acid, isobutanol, and mevalonic acid) have been investigated for synthesis in E. coli using acetate as the sole carbon source. In this review, we summarize the acetate metabolic pathway in E. coli and recent research into the microbial production of chemical compounds in E. coli using acetate as the carbon source. Although microbial synthetic pathways for different compounds have been developed in E. coli, the production titer and yield are insufficient for commercial applications. Finally, we discuss the development prospects and challenges of using acetate for microbial fermentation.
Collapse
Affiliation(s)
- Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China;
| | - Fangfang Li
- Yantai Food and Drug Control and Test Center, Yantai 264003, China;
| | - Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China;
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China;
| |
Collapse
|
37
|
Du H, Liang Y, Li J, Yuan X, Tao F, Dong C, Shen Z, Sui G, Wang P. Directed Evolution of 4-Hydroxyphenylpyruvate Biosensors Based on a Dual Selection System. Int J Mol Sci 2024; 25:1533. [PMID: 38338812 PMCID: PMC10855707 DOI: 10.3390/ijms25031533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Biosensors based on allosteric transcription factors have been widely used in synthetic biology. In this study, we utilized the Acinetobacter ADP1 transcription factor PobR to develop a biosensor activating the PpobA promoter when bound to its natural ligand, 4-hydroxybenzoic acid (4HB). To screen for PobR mutants responsive to 4-hydroxyphenylpyruvate(HPP), we developed a dual selection system in E. coli. The positive selection of this system was used to enrich PobR mutants that identified the required ligands. The following negative selection eliminated or weakened PobR mutants that still responded to 4HB. Directed evolution of the PobR library resulted in a variant where PobRW177R was 5.1 times more reactive to 4-hydroxyphenylpyruvate than PobRWT. Overall, we developed an efficient dual selection system for directed evolution of biosensors.
Collapse
Affiliation(s)
- Hongxuan Du
- School of Life Science, Northeast Forestry University, Harbin 150040, China; (H.D.); (Y.L.); (J.L.); (F.T.)
- NEFU-China iGEM Team, Northeast Forestry University, Harbin 150040, China;
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yaoyao Liang
- School of Life Science, Northeast Forestry University, Harbin 150040, China; (H.D.); (Y.L.); (J.L.); (F.T.)
- NEFU-China iGEM Team, Northeast Forestry University, Harbin 150040, China;
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jianing Li
- School of Life Science, Northeast Forestry University, Harbin 150040, China; (H.D.); (Y.L.); (J.L.); (F.T.)
- NEFU-China iGEM Team, Northeast Forestry University, Harbin 150040, China;
| | - Xinyao Yuan
- School of Life Science, Northeast Forestry University, Harbin 150040, China; (H.D.); (Y.L.); (J.L.); (F.T.)
- NEFU-China iGEM Team, Northeast Forestry University, Harbin 150040, China;
| | - Fenglin Tao
- School of Life Science, Northeast Forestry University, Harbin 150040, China; (H.D.); (Y.L.); (J.L.); (F.T.)
- NEFU-China iGEM Team, Northeast Forestry University, Harbin 150040, China;
| | - Chengjie Dong
- NEFU-China iGEM Team, Northeast Forestry University, Harbin 150040, China;
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Zekai Shen
- School of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Guangchao Sui
- School of Life Science, Northeast Forestry University, Harbin 150040, China; (H.D.); (Y.L.); (J.L.); (F.T.)
- NEFU-China iGEM Team, Northeast Forestry University, Harbin 150040, China;
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Pengchao Wang
- School of Life Science, Northeast Forestry University, Harbin 150040, China; (H.D.); (Y.L.); (J.L.); (F.T.)
- NEFU-China iGEM Team, Northeast Forestry University, Harbin 150040, China;
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
- Aulin College, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
38
|
Lu P, Bai R, Gao T, Chen J, Jiang K, Zhu Y, Lu Y, Zhang S, Xu F, Zhao H. Systemic metabolic engineering of Enterobacter aerogenes for efficient 2,3-butanediol production. Appl Microbiol Biotechnol 2024; 108:146. [PMID: 38240862 PMCID: PMC10798932 DOI: 10.1007/s00253-023-12911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 01/22/2024]
Abstract
2,3-Butanediol (2,3-BDO) is an important gateway molecule for many chemical derivatives. Currently, microbial production is gradually being recognized as a green and sustainable alternative to petrochemical synthesis, but the titer, yield, and productivity of microbial 2,3-BDO remain suboptimal. Here, we used systemic metabolic engineering strategies to debottleneck the 2,3-BDO production in Enterobacter aerogenes. Firstly, the pyruvate metabolic network was reconstructed by deleting genes for by-product synthesis to improve the flux toward 2,3-BDO synthesis, which resulted in a 90% increase of the product titer. Secondly, the 2,3-BDO productivity of the IAM1183-LPCT/D was increased by 55% due to the heterologous expression of DR1558 which boosted cell resistance to abiotic stress. Thirdly, carbon sources were optimized to further improve the yield of target products. The IAM1183-LPCT/D showed the highest titer of 2,3-BDO from sucrose, 20% higher than that from glucose, and the yield of 2,3-BDO reached 0.49 g/g. Finally, the titer of 2,3-BDO of IAM1183-LPCT/D in a 5-L fermenter reached 22.93 g/L, 85% higher than the wild-type strain, and the titer of by-products except ethanol was very low. KEY POINTS: Deletion of five key genes in E. aerogenes improved 2,3-BDO production The titer of 2,3-BDO was increased by 90% by regulating metabolic flux Response regulator DR1558 was expressed to increase 2,3-BDO productivity.
Collapse
Affiliation(s)
- Ping Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruoxuan Bai
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ting Gao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiale Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ke Jiang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yalun Zhu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ye Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shuting Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fangxu Xu
- Liaoning Province Key Laboratory of Cordyceps Militaris With Functional Value, Experimental Teaching Center, Shenyang Normal University, Shenyang, 110034, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
39
|
Popovic M, Šekularac G, Stevanović M. Thermodynamics of microbial consortia: Enthalpies and Gibbs energies of microorganism live matter and macromolecules of E. coli, G. oxydans, P. fluorescens, S. thermophilus and P. chrysogenum. J Biotechnol 2024; 379:6-17. [PMID: 37949121 DOI: 10.1016/j.jbiotec.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/11/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Every microorganism represents a biothermodynamic system, characterized by an empirical formula and thermodynamic properties of biosynthesis. Gibbs energy of biosynthesis influences the multiplication rate of a microorganism. In case of a mixed culture (microbial consortia) biosynthesis processes of microbial species are competitive. This is why Gibbs energy of biosynthesis determines the growth in a mixed culture. This paper gives a mechanistic model that explains growth of microorganisms in mixed culture and ability to grow in microbial consortia. Detailed biosynthesis reactions were formulated for the first time for five microorganism species, which include metallic elements. Moreover, thermodynamic properties of live matter and biosynthesis were calculated for the first time for five microorganism species and macromolecules.
Collapse
Affiliation(s)
- Marko Popovic
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade 11000, Serbia.
| | - Gavrilo Šekularac
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade 11000, Serbia
| | - Maja Stevanović
- Inovation Centre of the Faculty of Technology and Metallurgy, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
40
|
Yang H, Zhang K, Shen W, Xia Y, Li Y, Chen X. Boosting production of cembratriene-ol in Saccharomyces cerevisiae via systematic optimization. Biotechnol J 2024; 19:e2300324. [PMID: 37804156 DOI: 10.1002/biot.202300324] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
Cembratriene-ol is a good biodegradable biopesticide ingredient with future potential applications in the field of sustainable agriculture. Cembratriene-ol is a monocyclic diterpenoid compound that is synthesized only in the trichome gland of Nicotiana plants. In this study, geranylgeranyl diphosphate synthase gene ggpps from Taxus canadensis and cbts*Δp were heterologously expressed in Saccharomyces cerevisiae W303-1A to successfully synthesize cembratriene-ol. The titer of cembratriene-ol was increased by 1.84-fold compared to the control by overexpressing the S. cerevisiae bifunctional (2E,6E)-farnesyl diphosphate synthase genes ERG20 and cbts*Δp under one promoter PGAP . The titer of cembratriene-ol in the engineered S. cerevisiae BY4741 was increased by 1.39-fold compared to the engineered S. cerevisiae W303-1A. The titer of cembratriene-ol in the engineered S. cerevisiae BY4741 was increased by 2.22-fold compared to the control by overexpressing ERG20 and cbts*Δp, respectively, using two promoters PGAP . Cembratriene-ol was found to be successfully synthesized via the integrated expression of cbts*Δp, ggpps and ERG20 on the genome of S. cerevisiae BY4741. The titer of cembratriene-ol in S. cerevisiae S25 was further increased by 1.80-fold compared to the control via dynamic control of the squalene synthase gene ERG9. Overexpression of the genes cbts*Δp and ggpps using pY26-GPD-TEF in S. cerevisiae S25 with their integration expression increased the titer of cembratriene-ol by 26.1-fold compared to S. cerevisiae S25. The titer of cembratriene-ol was significantly enhanced by mitochondrial compartmentalized expression of cbts*Δp and ggpps, which was 76.3-fold higher than that of the initial strain constructed. It was indicated that the systematic optimization has great potential in facilitating high-level production of cembratriene-ol production in S. cerevisiae.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Kunjie Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Wei Shen
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yuanyuan Xia
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
41
|
Teng Y, Jiang T, Yan Y. The expanded CRISPR toolbox for constructing microbial cell factories. Trends Biotechnol 2024; 42:104-118. [PMID: 37500408 PMCID: PMC10808275 DOI: 10.1016/j.tibtech.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Microbial cell factories (MCFs) convert low-cost carbon sources into valuable compounds. The CRISPR/Cas9 system has revolutionized MCF construction as a remarkable genome editing tool with unprecedented programmability. Recently, the CRISPR toolbox has been significantly expanded through the exploration of new CRISPR systems, the engineering of Cas effectors, and the incorporation of other effectors, enabling multi-level regulation and gene editing free of double-strand breaks. This expanded CRISPR toolbox powerfully promotes MCF construction by facilitating pathway construction, enzyme engineering, flux redistribution, and metabolic burden control. In this article, we summarize different CRISPR tool designs and their applications in MCF construction for gene editing, transcriptional regulation, and enzyme modulation. Finally, we also discuss future perspectives for the development and application of the CRISPR toolbox.
Collapse
Affiliation(s)
- Yuxi Teng
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
42
|
McGregor NS, de Boer C, Foucart QPO, Beenakker T, Offen WA, Codée JDC, Willems LI, Overkleeft HS, Davies GJ. A Multiplexing Activity-Based Protein-Profiling Platform for Dissection of a Native Bacterial Xyloglucan-Degrading System. ACS CENTRAL SCIENCE 2023; 9:2306-2314. [PMID: 38161374 PMCID: PMC10755729 DOI: 10.1021/acscentsci.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Bacteria and yeasts grow on biomass polysaccharides by expressing and excreting a complex array of glycoside hydrolase (GH) enzymes. Identification and annotation of such GH pools, which are valuable commodities for sustainable energy and chemistries, by conventional means (genomics, proteomics) are complicated, as primary sequence or secondary structure alignment with known active enzymes is not always predictive for new ones. Here we report a "low-tech", easy-to-use, and sensitive multiplexing activity-based protein-profiling platform to characterize the xyloglucan-degrading GH system excreted by the soil saprophyte, Cellvibrio japonicus, when grown on xyloglucan. A suite of activity-based probes bearing orthogonal fluorophores allows for the visualization of accessory exo-acting glycosidases, which are then identified using biotin-bearing probes. Substrate specificity of xyloglucanases is directly revealed by imbuing xyloglucan structural elements into bespoke activity-based probes. Our ABPP platform provides a highly useful tool to dissect xyloglucan-degrading systems from various sources and to rapidly select potentially useful ones. The observed specificity of the probes moreover bodes well for the study of other biomass polysaccharide-degrading systems, by modeling probe structures to those of desired substrates.
Collapse
Affiliation(s)
| | - Casper de Boer
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Quentin P. O. Foucart
- Department
of Chemistry, The University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Thomas Beenakker
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Wendy A. Offen
- Department
of Chemistry, The University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Lianne I. Willems
- York
Structural Biology Laboratory and York Biomedical Research Institute,
Department of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Gideon J. Davies
- Department
of Chemistry, The University of York, Heslington, York YO10 5DD, United
Kingdom
| |
Collapse
|
43
|
Li Y, Wang X, Liu Z, Yang Y, Jiang L, Qu X, Pu X, Luo Y. Regioselective O-acetylation of various glucosides catalyzed by Escherichia coli maltose O-acetyltransferase. Appl Microbiol Biotechnol 2023; 107:7031-7042. [PMID: 37728626 DOI: 10.1007/s00253-023-12790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Escherichia coli, a well-known prokaryotic organism, has been widely employed as a versatile host for heterologous overexpression of proteins/biocatalysts and the production of pharmaceutically important intermediates/small molecules. However, some E. coli endogenous enzymes showing substrate promiscuity may disturb the heterologous metabolic flux, which will result in the reduction of substrates, intermediates, and target products. Here we reported an unexpected E. coli-catalyzed regioselective O-acetylation of various glucosides. The regioselectively O-acetylated products, 6'-O-acetyl-loganin and 6'-O-acetyl-loganic acid, were obtained and characterized from the enzymatic reaction in which the supernatants of E. coli expressing either CaCYP72A565 and CaCPR, the key enzymes involved in camptothecin biosynthesis, or empty vector were used as catalyst and loganin and loganic acid as independent substrate. An alkaloidal glucoside strictosamide was converted into the regioselectively O-acetylated product 6'-O-acetyl-strictosamide, implying substrate promiscuity of the E. coli-catalyzed O-acetylation reaction. Furthermore, 8 glucosides, including 5 iridoid glucosides and 3 flavonoid glucosides, were successfully converted into the regioselectively O-acetylated products by E. coli, indicating the wide substrate range for the unexpected E. coli-catalyzed O-acetylation. E. coli maltose O-acetyltransferase was demonstrated to be responsible for the mentioned regioselective O-acetylation at the 6-OH of the glucopyranosyl group of multiple classes of natural product glucosides through candidate acetyltransferase-encoding gene analysis, gene knock-out, gene complementation, and the relevant enzymatic reaction activity assays. The present study not only provides an efficient biocatalyst for regioselective O-acetylation but also notifies cautions for metabolic engineering and synthetic biology applications in E. coli. KEY POINTS: • 6-OH of glucosyl of multiple glucosides was regioselectively O-acetylated by E. coli. • Endogenous EcMAT is responsible for the regioselective O-acetylation reaction.
Collapse
Affiliation(s)
- Yi Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefei Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhan Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Liangzhen Jiang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xixing Qu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiang Pu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yinggang Luo
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
44
|
Zhao K, Tang H, Zhang B, Zou S, Liu Z, Zheng Y. Microbial production of vitamin B5: current status and prospects. Crit Rev Biotechnol 2023; 43:1172-1192. [PMID: 36210178 DOI: 10.1080/07388551.2022.2104690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
Vitamin B5, also called D-pantothenic acid (D-PA), is a necessary micronutrient that plays an essential role in maintaining the physiological function of an organism. It is widely used in: food, medicine, feed, cosmetics, and other fields. Currently, the production of D-PA in industry heavily relies on chemical processes and enzymatic catalysis. With an increasing demand on the market, replacing chemical-based production of D-PA with microbial fermentation utilizing renewable resources is necessary. In this review, the physiological role and applications of D-PA were firstly introduced, after which the biosynthesis pathways and enzymes will be summarized. Subsequently, a series of cell factory development strategies for excessive D-PA production are analyzed and discussed. Finally, the prospect of microbial production of D-PA production has been prospected.
Collapse
Affiliation(s)
- Kuo Zhao
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Heng Tang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Shuping Zou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| |
Collapse
|
45
|
Effendi SSW, Ng IS. Challenges and opportunities for engineered Escherichia coli as a pivotal chassis toward versatile tyrosine-derived chemicals production. Biotechnol Adv 2023; 69:108270. [PMID: 37852421 DOI: 10.1016/j.biotechadv.2023.108270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of high-volume fuels and high-value-added compounds. The shikimate pathway, an imperative pathway in most microorganisms, is branched with tyrosine as the rate-limiting step precursor of valuable aromatic substances. Such occurrence suggests the shikimate pathway as a promising route in developing microbial cell factories with multiple applications in the nutraceutical, pharmaceutical, and chemical industries. Therefore, an increasing number of studies have focused on this pathway to enable the biotechnological manufacture of pivotal and versatile aromatic products. With advances in genome databases and synthetic biology tools, genetically programmed Escherichia coli strains are gaining immense interest in the sustainable synthesis of chemicals. Engineered E. coli is expected to be the next bio-successor of fossil fuels and plants in commercial aromatics synthesis. This review summarizes successful and applicable genetic and metabolic engineering strategies to generate new chassis and engineer the iterative pathway of the tyrosine route in E. coli, thus addressing the opportunities and current challenges toward the realization of sustainable tyrosine-derived aromatics.
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
46
|
Cai M, Liu Z, Zhao Z, Wu H, Xu M, Rao Z. Microbial production of L-methionine and its precursors using systems metabolic engineering. Biotechnol Adv 2023; 69:108260. [PMID: 37739275 DOI: 10.1016/j.biotechadv.2023.108260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
L-methionine is an essential amino acid with versatile applications in food, feed, cosmetics and pharmaceuticals. At present, the production of L-methionine mainly relies on chemical synthesis, which conflicts with the concern over serious environmental problems and sustainable development goals. In recent years, microbial production of natural products has been amply rewarded with the emergence and rapid development of system metabolic engineering. However, efficient L-methionine production by microbial fermentation remains a great challenge due to its complicated biosynthetic pathway and strict regulatory mechanism. Additionally, the engineered production of L-methionine precursors, L-homoserine, O-succinyl-L-homoserine (OSH) and O-acetyl-L-homoserine (OAH), has also received widespread attention because they can be catalyzed to L-methionine via a high-efficiently enzymatic reaction in vitro, which is also a promising alternative to chemical route. This review provides a comprehensive overview on the recent advances in the microbial production of L-methionine and its precursors, highlighting the challenges and potential solutions for developing L-methionine microbial cell factories from the perspective of systems metabolic engineering, aiming to offer guidance for future engineering.
Collapse
Affiliation(s)
- Mengmeng Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhifei Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhenqiang Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Hongxuan Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
47
|
Ji N, Wang F, Wang M, Zhang W, Liu H, Su J. Engineered bacterial extracellular vesicles for central nervous system diseases. J Control Release 2023; 364:46-60. [PMID: 37866404 DOI: 10.1016/j.jconrel.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
The prevalence of central nervous system (CNS) diseases is on the rise as the population ages. The presence of various obstacles, particularly the blood-brain barrier (BBB), poses a challenge for drug delivery to the CNS. An expanding body of study suggests that gut microbiota (GM) plays an important role in CNS diseases. The communication between GM and CNS diseases has received increasing attention. Accumulating evidence indicates that the GM can modulate host signaling pathways to regulate distant organ functions by delivering bioactive substances to host cells via bacterial extracellular vesicles (BEVs). BEVs have emerged as a promising platform for the treatment of CNS diseases due to their nanostructure, ability to penetrate the BBB, as well as their low toxicity, high biocompatibility, ease of modification and large-scale culture. Here, we discuss the biogenesis, internalization mechanism and engineering modification methods of BEVs. We then focus on the use and potential role of BEVs in the treatment of CNS diseases. Finally, we outline the main challenges and future prospects for the application of BEVs in CNS diseases. We hope that the comprehensive understanding of the BEVs-based gut-brain axis will provide new insights into the treatment of CNS diseases.
Collapse
Affiliation(s)
- Ning Ji
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Miaomiao Wang
- Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Wencai Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangdong, Guangzhou 510630, China.
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
48
|
Hui CY, Ma BC, Wang YQ, Yang XQ, Cai JM. Designed bacteria based on natural pbr operons for detecting and detoxifying environmental lead: A mini-review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115662. [PMID: 37939554 DOI: 10.1016/j.ecoenv.2023.115662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Lead (Pb), a naturally occurring element, is redistributed in the environment mainly due to anthropogenic activities. Pb pollution is a crucial public health problem worldwide due to its adverse effects. Environmental bacteria have evolved various protective mechanisms against high levels of Pb. The pbr operon, first identified in Cupriavidus metallidurans CH34, encodes a unique Pb(II) resistance mechanism involving transport, efflux, sequestration, biomineralization, and precipitation. Similar pbr operons are gradually found in diverse bacterial strains. This review focuses on the pbr-encoded Pb(II) resistance system. It summarizes various whole-cell biosensors harboring artificially designed pbr operons for Pb(II) biomonitoring with fluorescent, luminescent, and colorimetric signal output. Optimization of genetic circuits, employment of pigment-based reporters, and screening of host cells are promising in improving the sensitivity, selectivity, and response range of whole-cell biosensors. Engineered bacteria displaying Pb(II) binding and sequestration proteins, including PbrR and its derivatives, PbrR2 and PbrD, for adsorption are involved. Although synthetic bacteria show great potential in determining and removing Pb at the nanomolar level for environmental protection and food safety, some challenges must be addressed to meet demanding application requirements.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China.
| | - Bing-Chan Ma
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yong-Qiang Wang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Xue-Qin Yang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Jin-Min Cai
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| |
Collapse
|
49
|
Feng H, Li F, Wang T, Xing XH, Zeng AP, Zhang C. Deep-learning-assisted Sort-Seq enables high-throughput profiling of gene expression characteristics with high precision. SCIENCE ADVANCES 2023; 9:eadg5296. [PMID: 37939173 PMCID: PMC10631719 DOI: 10.1126/sciadv.adg5296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Owing to the nondeterministic and nonlinear nature of gene expression, the steady-state intracellular protein abundance of a clonal population forms a distribution. The characteristics of this distribution, including expression strength and noise, are closely related to cellular behavior. However, quantitative description of these characteristics has so far relied on arrayed methods, which are time-consuming and labor-intensive. To address this issue, we propose a deep-learning-assisted Sort-Seq approach (dSort-Seq) in this work, enabling high-throughput profiling of expression properties with high precision. We demonstrated the validity of dSort-Seq for large-scale assaying of the dose-response relationships of biosensors. In addition, we comprehensively investigated the contribution of transcription and translation to noise production in Escherichia coli, from which we found that the expression noise is strongly coupled with the mean expression level. We also found that the transcriptional interference caused by overlapping RpoD-binding sites contributes to noise production, which suggested the existence of a simple and feasible noise control strategy in E. coli.
Collapse
Affiliation(s)
- Huibao Feng
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Fan Li
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tianmin Wang
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin-hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - An-ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg 21073, Germany
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
50
|
Jiménez NE, Acuña V, Cortés MP, Eveillard D, Maass AE. Unveiling abundance-dependent metabolic phenotypes of microbial communities. mSystems 2023; 8:e0049223. [PMID: 37668446 PMCID: PMC10654064 DOI: 10.1128/msystems.00492-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 09/06/2023] Open
Abstract
IMPORTANCE In nature, organisms live in communities and not as isolated species, and their interactions provide a source of resilience to environmental disturbances. Despite their importance in ecology, human health, and industry, understanding how organisms interact in different environments remains an open question. In this work, we provide a novel approach that, only using genomic information, studies the metabolic phenotype exhibited by communities, where the exploration of suboptimal growth flux distributions and the composition of a community allows to unveil its capacity to respond to environmental changes, shedding light of the degrees of metabolic plasticity inherent to the community.
Collapse
Affiliation(s)
- Natalia E. Jiménez
- Center for Mathematical Modeling, University of Chile, Santiago, Chile
- Center for Genome Regulation, Millennium Institute, University of Chile, Santiago, Chile
| | - Vicente Acuña
- Center for Mathematical Modeling, University of Chile, Santiago, Chile
- Center for Genome Regulation, Millennium Institute, University of Chile, Santiago, Chile
| | - María Paz Cortés
- Center for Mathematical Modeling, University of Chile, Santiago, Chile
| | | | - Alejandro Eduardo Maass
- Center for Mathematical Modeling, University of Chile, Santiago, Chile
- Center for Genome Regulation, Millennium Institute, University of Chile, Santiago, Chile
- Department of Mathematical Engineering, University of Chile, Santiago, Chile
| |
Collapse
|