1
|
Van Maldegem M, Vohryzek J, Atasoy S, Alnagger N, Cardone P, Bonhomme V, Vanhaudenhuyse A, Demertzi A, Jaquet O, Bahri MA, Nunez P, Kringelbach ML, Stamatakis EA, Luppi AI. Connectome harmonic decomposition tracks the presence of disconnected consciousness during ketamine-induced unresponsiveness. Br J Anaesth 2025:S0007-0912(25)00049-2. [PMID: 39933965 DOI: 10.1016/j.bja.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/22/2024] [Accepted: 12/07/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Ketamine, in doses suitable to induce anaesthesia in humans, gives rise to a unique state of unresponsiveness accompanied by vivid experiences and sensations, making it possible to disentangle the correlated but distinct concepts of conscious awareness and behavioural responsiveness. This distinction is often overlooked in the study of consciousness. METHODS The mathematical framework of connectome harmonic decomposition (CHD) was used to view functional magnetic resonance imaging (fMRI) signals during ketamine-induced unresponsiveness as distributed patterns across spatial scales. The connectome harmonic signature of this particular state was mapped onto signatures of other states of consciousness for comparison. RESULTS An increased prevalence of fine-grained connectome harmonics was found in fMRI signals obtained during ketamine-induced unresponsiveness, indicating higher granularity. After statistical assessment, the ketamine sedation harmonic signature showed alignment with signatures of LSD-induced (fixed effect =0.0113 [0.0099, 0.0127], P<0.001) or ketamine-induced (fixed effect =0.0087 [0.0071, 0.0103], P<0.001) psychedelic states, and misalignment with signatures seen in unconscious individuals owing to propofol sedation (fixed effect =-0.0213 [-0.0245, -0.0181], P<0.001) or brain injury (fixed effect =-0.0205 [-0.0234, -0.0178], P<0.001). CONCLUSIONS The CHD framework, which only requires resting-state fMRI data and can be applied retrospectively, has the ability to track alterations in conscious awareness in the absence of behavioural responsiveness on a group level. This is possible because of ketamine's unique property of decoupling these two facets, and is important for consciousness and anaesthesia research.
Collapse
Affiliation(s)
- Milan Van Maldegem
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK; Division of Anaesthesia, University of Cambridge, Cambridge, UK.
| | - Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Selen Atasoy
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Centre for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Naji Alnagger
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Paolo Cardone
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Vincent Bonhomme
- Anaesthesia and Perioperative Neuroscience, GIGA-Consciousness, University of Liege, Liege, Belgium; Department of Anesthesia and Intensive Care Medicine, University Hospital of Liege, Liege, Belgium
| | - Audrey Vanhaudenhuyse
- Conscious Care Lab, GIGA-Consciousness, University of Liege, Liege, Belgium; Algology Interdisciplinary Centre, University Hospital of Liege, Liege, Belgium
| | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-CRC Human Imaging Unit, University of Liege, Liege, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liege, Liege, Belgium
| | - Oceane Jaquet
- Department of Anesthesia and Intensive Care Medicine, University Hospital of Liege, Liege, Belgium
| | | | - Pablo Nunez
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Centre for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Andrea I Luppi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Division of Anaesthesia, University of Cambridge, Cambridge, UK; Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Division of Information Engineering, University of Cambridge, Cambridge, UK; St John's College, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Denzer S, Diezig S, Achermann P, Mast FW, Koenig T. Electrophysiological (EEG) microstates during dream-like bizarre experiences in a naturalistic scenario using immersive virtual reality. Eur J Neurosci 2024; 60:5815-5830. [PMID: 39258353 DOI: 10.1111/ejn.16530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 07/22/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
Monitoring the reality status of conscious experience is essential for a human being to interact successfully with the external world. Despite its importance for everyday functioning, reality monitoring can systematically become erroneous, for example, while dreaming or during hallucinatory experiences. To investigate brain processes associated with reality monitoring occurring online during an experience, i.e., perceptual reality monitoring, we assessed EEG microstates in healthy, young participants. In a within-subjects design, we compared the experience of reality when being confronted with dream-like bizarre elements versus realistic elements in an otherwise highly naturalistic real-world scenario in immersive virtual reality. Dream-like bizarreness induced changes in the subjective experience of reality and bizarreness, and led to an increase in the contribution of a specific microstate labelled C'. Microstate C' was related to the suspension of disbelief, i.e. the suppression of bizarre mismatches. Together with the functional interpretation of microstate C' as reported by previous studies, the findings of this study point to the importance of prefrontal meta-conscious control processes in perceptual reality monitoring.
Collapse
Affiliation(s)
- Simone Denzer
- Institute of Psychology, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Sarah Diezig
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Fred W Mast
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| |
Collapse
|
3
|
Dong K, Zhang L, Zhong Y, Xu T, Zhao Y, Chen S, Mahmoud SS, Fang Q. Meso-scale reorganization of local-global brain networks under mild sedation of propofol anesthesia. Neuroimage 2024; 297:120744. [PMID: 39033791 DOI: 10.1016/j.neuroimage.2024.120744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/30/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024] Open
Abstract
The fragmentation of the functional brain network has been identified through the functional connectivity (FC) analysis in studies investigating anesthesia-induced loss of consciousness (LOC). However, it remains unclear whether mild sedation of anesthesia can cause similar effects. This paper aims to explore the changes in local-global brain network topology during mild anesthesia, to better understand the macroscopic neural mechanism underlying anesthesia sedation. We analyzed high-density EEG from 20 participants undergoing mild and moderate sedation of propofol anesthesia. By employing a local-global brain parcellation in EEG source analysis, we established binary functional brain networks for each participant. Furthermore, we investigated the global-scale properties of brain networks by estimating global efficiency and modularity, and examined the changes in meso-scale properties of brain networks by quantifying the distribution of high-degree and high-betweenness hubs and their corresponding rich-club coefficients. It is evident from the results that the mild sedation of anesthesia does not cause a significant change in the global-scale properties of brain networks. However, network components centered on SomMot L show a significant decrease, while those centered on Default L, Vis L and Limbic L exhibit a significant increase during the transition from wakefulness to mild sedation (p<0.05). Compared to the baseline state, mild sedation almost doubled the number of high-degree hubs in Vis L, DorsAttn L, Limbic L, Cont L, and reduced by half the number of high-degree hubs in SomMot R, DorsAttn R, SalVentAttn R. Further, mild sedation almost doubled the number of high-betweenness hubs in Vis L, Vis R, Limbic R, Cont R, and reduced by half the number of high-betweenness hubs in SomMot L, SalVentAttn L, Default L, and SomMot R. Our results indicate that mild anesthesia cannot affect the global integration and segregation of brain networks, but influence meso-scale function for integrating different resting-state systems involved in various segregation processes. Our findings suggest that the meso-scale brain network reorganization, situated between global integration and local segregation, could reflect the autonomic compensation of the brain for drug effects. As a direct response and adjustment of the brain network system to drug administration, this spontaneous reorganization of the brain network aims at maintaining consciousness in the case of sedation.
Collapse
Affiliation(s)
- Kangli Dong
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou 515063, Guangdong, China.
| | - Lu Zhang
- Department of Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310027, Zhejiang, China.
| | - Yuming Zhong
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou 515063, Guangdong, China.
| | - Tao Xu
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou 515063, Guangdong, China.
| | - Yue Zhao
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen 361102, Fujian, China.
| | - Siya Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, Hong Kong, China.
| | - Seedahmed S Mahmoud
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou 515063, Guangdong, China.
| | - Qiang Fang
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou 515063, Guangdong, China.
| |
Collapse
|
4
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard J, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. A synergistic workspace for human consciousness revealed by Integrated Information Decomposition. eLife 2024; 12:RP88173. [PMID: 39022924 PMCID: PMC11257694 DOI: 10.7554/elife.88173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Pedro AM Mediano
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Center for Complexity Science, Imperial College LondonLondonUnited Kingdom
- Data Science Institute, Imperial College LondonLondonUnited Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - John Pickard
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Psychedelics Division - Neuroscape, Department of Neurology, University of CaliforniaSan FranciscoUnited States
| | - Guy B Williams
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Michael M Craig
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Paola Finoia
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Adrian M Owen
- Department of Psychology and Department of Physiology and Pharmacology, The Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity CollegeDublinIreland
| | - David K Menon
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Bor
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
5
|
Zhang Y, Wang Y, Cheng H, Yan F, Li D, Song D, Wang Q, Huang L. EEG spectral slope: A reliable indicator for continuous evaluation of consciousness levels during propofol anesthesia. Neuroimage 2023; 283:120426. [PMID: 37898378 DOI: 10.1016/j.neuroimage.2023.120426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023] Open
Abstract
The level of consciousness undergoes continuous alterations during anesthesia. Prior to the onset of propofol-induced complete unconsciousness, degraded levels of behavioral responsiveness can be observed. However, a reliable index to monitor altered consciousness levels during anesthesia has not been sufficiently investigated. In this study, we obtained 60-channel EEG data from 24 healthy participants during an ultra-slow propofol infusion protocol starting with an initial concentration of 1 μg/ml and a stepwise increase of 0.2 μg/ml in concentration. Consecutive auditory stimuli were delivered every 5 to 6 s, and the response time to the stimuli was used to assess the responsiveness levels. We calculated the spectral slope in a time-resolved manner by extracting 5-second EEG segments at each auditory stimulus and estimated their correlation with the corresponding response time. Our results demonstrated that during slow propofol infusion, the response time to external stimuli increased, while the EEG spectral slope, fitted at 15-45 Hz, became steeper, and a significant negative correlation was observed between them. Moreover, the spectral slope further steepened at deeper anesthetic levels and became flatter during anesthesia recovery. We verified these findings using an external dataset. Additionally, we found that the spectral slope of frontal electrodes over the prefrontal lobe had the best performance in predicting the response time. Overall, this study used a time-resolved analysis to suggest that the EEG spectral slope could reliably track continuously altered consciousness levels during propofol anesthesia. Furthermore, the frontal spectral slope may be a promising index for clinical monitoring of anesthesia depth.
Collapse
Affiliation(s)
- Yun Zhang
- School of Life Science and Technology, Xidian University, No.2 TaiBai South Road, Xi'an 710061, China
| | - Yubo Wang
- School of Life Science and Technology, Xidian University, No.2 TaiBai South Road, Xi'an 710061, China
| | - Huanhuan Cheng
- School of Life Science and Technology, Xidian University, No.2 TaiBai South Road, Xi'an 710061, China
| | - Fei Yan
- Department of Anesthesiology & Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Dingning Li
- School of Life Science and Technology, Xidian University, No.2 TaiBai South Road, Xi'an 710061, China
| | - Dawei Song
- Department of Anesthesiology & Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China.
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, No.2 TaiBai South Road, Xi'an 710061, China.
| |
Collapse
|
6
|
Deng F, Taylor N, Owen AM, Cusack R, Naci L. Responsiveness variability during anaesthesia relates to inherent differences in brain structure and function of the frontoparietal networks. Hum Brain Mapp 2023; 44:2142-2157. [PMID: 36617994 PMCID: PMC10028637 DOI: 10.1002/hbm.26199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/30/2022] [Accepted: 12/18/2022] [Indexed: 01/10/2023] Open
Abstract
Anaesthesia combined with functional neuroimaging provides a powerful approach for understanding the brain mechanisms of consciousness. Although propofol is used ubiquitously in clinical interventions that reversibly suppress consciousness, it shows large inter-individual variability, and the brain bases of this variability remain poorly understood. We asked whether three networks key to conscious cognition-the dorsal attention (DAN), executive control (ECN), and default mode (DMN)-underlie responsiveness variability under anaesthesia. Healthy participants (N = 17) were moderately anaesthetized during narrative understanding and resting-state conditions inside the Magnetic Resonance Imaging scanner. A target detection task measured behavioural responsiveness. An independent behavioural study (N = 25) qualified the attention demands of narrative understanding. Then, 30% of participants were unaffected in their response times, thus thwarting a key aim of anaesthesia-the suppression of behavioural responsiveness. Individuals with stronger functional connectivity within the DAN and ECN, between them, and to the DMN, and with larger grey matter volume in frontal regions were more resilient to anaesthesia. For the first time, we show that responsiveness variability during propofol anaesthesia relates to inherent differences in brain structure and function of the frontoparietal networks, which can be predicted prior to sedation. Results highlight novel markers for improving awareness monitoring during clinical anaesthesia.
Collapse
Affiliation(s)
- Feng Deng
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Nicola Taylor
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Adrian M Owen
- Brain and Mind Institute, Western University, London, Canada
- Department of Physiology and Pharmacology and Department of Psychology, Western University, London, Canada
| | - Rhodri Cusack
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Luppi AI, Vohryzek J, Kringelbach ML, Mediano PAM, Craig MM, Adapa R, Carhart-Harris RL, Roseman L, Pappas I, Peattie ARD, Manktelow AE, Sahakian BJ, Finoia P, Williams GB, Allanson J, Pickard JD, Menon DK, Atasoy S, Stamatakis EA. Distributed harmonic patterns of structure-function dependence orchestrate human consciousness. Commun Biol 2023; 6:117. [PMID: 36709401 PMCID: PMC9884288 DOI: 10.1038/s42003-023-04474-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/11/2023] [Indexed: 01/29/2023] Open
Abstract
A central question in neuroscience is how consciousness arises from the dynamic interplay of brain structure and function. Here we decompose functional MRI signals from pathological and pharmacologically-induced perturbations of consciousness into distributed patterns of structure-function dependence across scales: the harmonic modes of the human structural connectome. We show that structure-function coupling is a generalisable indicator of consciousness that is under bi-directional neuromodulatory control. We find increased structure-function coupling across scales during loss of consciousness, whether due to anaesthesia or brain injury, capable of discriminating between behaviourally indistinguishable sub-categories of brain-injured patients, tracking the presence of covert consciousness. The opposite harmonic signature characterises the altered state induced by LSD or ketamine, reflecting psychedelic-induced decoupling of brain function from structure and correlating with physiological and subjective scores. Overall, connectome harmonic decomposition reveals how neuromodulation and the network architecture of the human connectome jointly shape consciousness and distributed functional activation across scales.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK.
| | - Jakub Vohryzek
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08005, Spain
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Computing, Imperial College London, London, W12 0NN, UK
| | - Michael M Craig
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ram Adapa
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
- Psychedelics Division - Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Leor Roseman
- Center for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
| | - Ioannis Pappas
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Alexander R D Peattie
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anne E Manktelow
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Barbara J Sahakian
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Psychiatry, MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Paola Finoia
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Judith Allanson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - John D Pickard
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Selen Atasoy
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
8
|
Sevenius Nilsen A, Juel BE, Thürer B, Aamodt A, Storm JF. Are we really unconscious in "unconscious" states? Common assumptions revisited. Front Hum Neurosci 2022; 16:987051. [PMID: 36277049 PMCID: PMC9581328 DOI: 10.3389/fnhum.2022.987051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/08/2022] [Indexed: 12/05/2022] Open
Abstract
In the field of consciousness science, there is a tradition to categorize certain states such as slow-wave non-REM sleep and deep general anesthesia as "unconscious". While this categorization seems reasonable at first glance, careful investigations have revealed that it is not so simple. Given that (1) behavioral signs of (un-)consciousness can be unreliable, (2) subjective reports of (un-)consciousness can be unreliable, and, (3) states presumed to be unconscious are not always devoid of reported experience, there are reasons to reexamine our traditional assumptions about "states of unconsciousness". While these issues are not novel, and may be partly semantic, they have implications both for scientific progress and clinical practice. We suggest that focusing on approaches that provide a more pragmatic and nuanced characterization of different experimental conditions may promote clarity in the field going forward, and help us build stronger foundations for future studies.
Collapse
Affiliation(s)
- Andre Sevenius Nilsen
- Department of Physiology, Institute of Basic Medicine, University of Oslo, Oslo, Norway
| | - Bjørn E. Juel
- Department of Physiology, Institute of Basic Medicine, University of Oslo, Oslo, Norway
- School of Medicine and Public Health, Wisconsin Institute for Sleep and Consciousness, University of Wisconsin-Madison, Madison, WI, United States
| | - Benjamin Thürer
- Department of Physiology, Institute of Basic Medicine, University of Oslo, Oslo, Norway
| | - Arnfinn Aamodt
- Department of Physiology, Institute of Basic Medicine, University of Oslo, Oslo, Norway
| | - Johan F. Storm
- Department of Physiology, Institute of Basic Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Mainali S, Aiyagari V, Alexander S, Bodien Y, Boerwinkle V, Boly M, Brown E, Brown J, Claassen J, Edlow BL, Fink EL, Fins JJ, Foreman B, Frontera J, Geocadin RG, Giacino J, Gilmore EJ, Gosseries O, Hammond F, Helbok R, Claude Hemphill J, Hirsch K, Kim K, Laureys S, Lewis A, Ling G, Livesay SL, McCredie V, McNett M, Menon D, Molteni E, Olson D, O'Phelan K, Park S, Polizzotto L, Javier Provencio J, Puybasset L, Venkatasubba Rao CP, Robertson C, Rohaut B, Rubin M, Sharshar T, Shutter L, Sampaio Silva G, Smith W, Stevens RD, Thibaut A, Vespa P, Wagner AK, Ziai WC, Zink E, I Suarez J. Proceedings of the Second Curing Coma Campaign NIH Symposium: Challenging the Future of Research for Coma and Disorders of Consciousness. Neurocrit Care 2022; 37:326-350. [PMID: 35534661 PMCID: PMC9283342 DOI: 10.1007/s12028-022-01505-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/29/2022] [Indexed: 12/21/2022]
Abstract
This proceedings article presents actionable research targets on the basis of the presentations and discussions at the 2nd Curing Coma National Institutes of Health (NIH) symposium held from May 3 to May 5, 2021. Here, we summarize the background, research priorities, panel discussions, and deliverables discussed during the symposium across six major domains related to disorders of consciousness. The six domains include (1) Biology of Coma, (2) Coma Database, (3) Neuroprognostication, (4) Care of Comatose Patients, (5) Early Clinical Trials, and (6) Long-term Recovery. Following the 1st Curing Coma NIH virtual symposium held on September 9 to September 10, 2020, six workgroups, each consisting of field experts in respective domains, were formed and tasked with identifying gaps and developing key priorities and deliverables to advance the mission of the Curing Coma Campaign. The highly interactive and inspiring presentations and panel discussions during the 3-day virtual NIH symposium identified several action items for the Curing Coma Campaign mission, which we summarize in this article.
Collapse
Affiliation(s)
- Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - Venkatesh Aiyagari
- Neurological Surgery and Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sheila Alexander
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yelena Bodien
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Varina Boerwinkle
- Division of Neurology, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Melanie Boly
- Departments of Neurology and Psychiatry, Wisconsin Institute for Sleep and Consciousness, University of Wisconsin, Madison, WI, USA
| | - Emery Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeremy Brown
- Office of Emergency Care Research, Division of Clinical Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Brian L Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Ericka L Fink
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Joseph J Fins
- Division of Medical Ethics, Weill Cornell Medical College, New York, NY, USA
- Yale Law School, New Haven, CT, USA
| | - Brandon Foreman
- Division of Neurocritical Care, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jennifer Frontera
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Romergryko G Geocadin
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph Giacino
- Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Emily J Gilmore
- Comprehensive Epilepsy Center, Department of Neurology, Yale University, New Haven, CT, USA
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liege, Liege, Belgium
- Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Flora Hammond
- Indiana University Department of Physical Medicine and Rehabilitation, University of Indiana School of Medicine, Indianapolis, IN, USA
| | - Raimund Helbok
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - J Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Karen Hirsch
- Division of Neurocritical Care, Department of Neurology, Stanford University, Stanford, CA, USA
| | - Keri Kim
- College of Pharmacy, University of Illinois, Chicago, IL, USA
| | - Steven Laureys
- Coma Science Group, Cyclotron Research Center, University of Liege, Liege, Belgium
- Department of Neurology, Centre Hospitalier Universitaire Sart Tilman, University of Liege, Liege, Belgium
| | - Ariane Lewis
- Department of Neurology and Neurosurgery, New York University Langone Health, New York, NY, USA
| | - Geoffrey Ling
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah L Livesay
- Department of Adult Health and Gerontological Nursing, College of Nursing, Rush University, Chicago, IL, USA
| | - Victoria McCredie
- Interdepartmental Division of Critical Care, Department of Respirology, University of Toronto, Toronto, ON, Canada
| | - Molly McNett
- College of Nursing, Ohio State University, Columbus, OH, USA
| | - David Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Erika Molteni
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - DaiWai Olson
- Neuroscience Intensive Care Unit, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kristine O'Phelan
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Soojin Park
- Department of Neurology and Neurocritical Care, Columbia University, New York, NY, USA
| | - Len Polizzotto
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Jose Javier Provencio
- Department of Neurology and Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Louis Puybasset
- Department of Neuroradiology, University of Paris VI, Pierre et Marie Curie, Pitié-Salpêtrière Hospital, Paris, France
| | - Chethan P Venkatasubba Rao
- Division of Vascular Neurology and Neurocritical Care, CHI St. Luke's Health-Baylor St. Luke's Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - Courtney Robertson
- Departments of Anesthesiology and Critical Care Medicine, and Pediatrics, Johns Hopkins Children's Center, The Johns Hopkins University School of Medcine, Baltimore, MD, USA
| | - Benjamin Rohaut
- Neuroscience Intensive Care Unit, Department of Neurology, Sorbonne University, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
| | - Michael Rubin
- Neurological Surgery and Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tarek Sharshar
- Department of Intensive Care, Paris Descartes University, Paris, France
| | | | - Gisele Sampaio Silva
- Hospital Israelita Albert Einstein, Academic Research Organization and Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Wade Smith
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Robert D Stevens
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness, University of Liege, Liege, Belgium
- Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Paul Vespa
- Ronald Reagan UCLA Medical Center, UCLA Santa Monica Medical Center, Santa Monica, CA, USA
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wendy C Ziai
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Zink
- Department of Neuroscience Nursing, The Johns Hopkins Hospital, The Johns Hopkins University, Baltimore, MD, USA
| | - Jose I Suarez
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Presurgical Thalamus Volume in Postoperative Delirium: A Longitudinal Observational Cohort Study in Older Patients. Anesth Analg 2022; 135:136-142. [PMID: 35442218 DOI: 10.1213/ane.0000000000005987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Previous studies suggest a role of the thalamus in cognitive function, while others implicate it as a central effect site of anesthetics. Yet, its role in postoperative neurocognition in the aging brain remains uncertain. We used presurgical thalamic volume as a functional indicator and determined its association with postoperative delirium (POD). METHODS For this study, 301 older adults (aged ≥65) without dementia and scheduled for surgery were enrolled. Before surgery, participants underwent magnetic resonance imaging (MRI). Thalamus volume was segmented using Freesurfer (Version 5.3.). Participants were screened for POD twice a day until discharge or for a maximum of 7 days. POD was defined as a positive screening on ≥1 of 4 validated instruments: Richmond Agitation Sedation Scale (RASS), Nursing Delirium Screening Scale (Nu-DESC), Confusion Assessment Method (CAM), and Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) score. A logistic regression associated thalamus volume with POD with adjustment for age, global brain atrophy, and physical status according to the American Society of Anesthesiologists (ASA) classification. RESULTS In this cohort, 44 participants (14.6%) were diagnosed with POD. Independently of age, global brain atrophy, and physical status score, a higher preoperative thalamus volume was associated with a reduced odds of POD (odds ratio per 1-cm3 increment; 0.73 [95% confidence interval (CI), 0.58-0.92]; P = .008). CONCLUSIONS A larger thalamus volume was associated with reduced odds of POD. Thus, the thalamus marks a region of interest in POD in the aging brain. These findings may help to understand the neuronal basis of POD.
Collapse
|
11
|
Fislage M, Winzeck S, Stamatakis E, Correia MM, Preller J, Feinkohl I, Spies CD, Hendrikse J, J C Slooter A, Winterer G, Pischon T, Menon DK, Zacharias N. Presurgical diffusion metrics of the thalamus and thalamic nuclei in postoperative delirium: A prospective two-centre cohort study in older patients. Neuroimage Clin 2022; 36:103208. [PMID: 36201951 PMCID: PMC9668602 DOI: 10.1016/j.nicl.2022.103208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The thalamus seems to be important in the development of postoperative delirium (POD) as previously revealed by volumetric and diffusion magnetic resonance imaging. In this observational cohort study, we aimed to further investigate the impact of the microstructural integrity of the thalamus and thalamic nuclei on the incidence of POD by applying diffusion kurtosis imaging (DKI). METHODS Older patients without dementia (≥65 years) who were scheduled for major elective surgery received preoperative DKI at two study centres. The DKI metrics fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and free water (FW) were calculated for the thalamus and - as secondary outcome - for eight predefined thalamic nuclei and regions. Low FA and MK and, conversely, high MD and FW, indicate aspects of microstructural abnormality. To assess patients' POD status, the Nursing Delirium Screening Scale (Nu-DESC), Richmond Agitation Sedation Scale (RASS), Confusion Assessment Method (CAM) and Confusion Assessment Method for the Intensive Care Unit score (CAM-ICU) and chart review were applied twice a day after surgery for the duration of seven days or until discharge. For each metric and each nucleus, logistic regression was performed to assess the risk of POD. RESULTS This analysis included the diffusion scans of 325 patients, of whom 53 (16.3 %) developed POD. Independently of age, sex and study centre, thalamic MD was statistically significantly associated with POD [OR 1.65 per SD increment (95 %CI 1.17 - 2.34) p = 0.004]. FA (p = 0.84), MK (p = 0.41) and FW (p = 0.06) were not significantly associated with POD in the examined sample. Exploration of thalamic nuclei also indicated that only the MD in certain areas of the thalamus was associated with POD. MD was increased in bilateral hemispheres, pulvinar nuclei, mediodorsal nuclei and the left anterior nucleus. CONCLUSIONS Microstructural abnormalities of the thalamus and thalamic nuclei, as reflected by increased MD, appear to predispose to POD. These findings affirm the thalamus as a region of interest in POD research.
Collapse
Affiliation(s)
- Marinus Fislage
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Stefan Winzeck
- BioMedIA Group, Department of Computing, Imperial College London, London, United Kingdom; University Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Emmanuel Stamatakis
- University Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Marta M Correia
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Jacobus Preller
- Addenbrooke's Cambridge University Hospitals NHS Foundation Trust, United Kingdom
| | - Insa Feinkohl
- Witten/Herdecke University, Medical Biometry and Epidemiology Group, Witten, Germany; Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany
| | - Claudia D Spies
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| | - Arjen J C Slooter
- Department of Intensive Care and UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Neurology, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| | - Georg Winterer
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| | - Tobias Pischon
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany; Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Biobank Technology Platform, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Biobank, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - David K Menon
- University Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Norman Zacharias
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| | | |
Collapse
|
12
|
Fontan A, Lindgren L, Pedale T, Brorsson C, Bergström F, Eriksson J. A reduced level of consciousness affects non-conscious processes. Neuroimage 2021; 244:118571. [PMID: 34509624 DOI: 10.1016/j.neuroimage.2021.118571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/28/2022] Open
Abstract
Being conscious is a profound aspect of human existence, and understanding its function and its inception is considered one of the truly grand scientific challenges. However, the nature of consciousness remains enigmatic, to a large part because "being conscious" can refer to both the content (phenomenology) and the level (arousal) of consciousness, and how these different aspects are related remains unclear. To empirically assess the relation between level and content of consciousness, we manipulated these two aspects by presenting stimuli consciously or non-consciously and by using Propofol sedation, while brain activity was measured using fMRI. We observed that sedation affected both conscious and non-conscious processes but at different hierarchical levels; while conscious processing was altered in higher-order regions (the intraparietal sulcus) and spared sensory areas, the opposite effect was observed for non-conscious processing. The observation that Propofol affected non-conscious processing calls for a reconsideration of what kind of information one can gain on "consciousness" from recording neural responses to sedation without considering both (content) conscious and (content) non-conscious processing.
Collapse
Affiliation(s)
- A Fontan
- Department of Integrative medical biology, Umeå Center for Functional Brain Imaging, Umeå University, Sweden
| | - L Lindgren
- Department of Nursing, Umeå University, Umeå, Sweden
| | - T Pedale
- Department of Integrative medical biology, Umeå Center for Functional Brain Imaging, Umeå University, Sweden
| | - C Brorsson
- Department of Anaesthesia and Intensive Care, Department of Surgery and Perioperative Sciences, Umeå University, Sweden
| | - F Bergström
- Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - J Eriksson
- Department of Integrative medical biology, Umeå Center for Functional Brain Imaging, Umeå University, Sweden.
| |
Collapse
|
13
|
Wang J, Xu Y, Deshpande G, Li K, Sun P, Liang P. The Effect of Light Sedation with Midazolam on Functional Connectivity of the Dorsal Attention Network. Brain Sci 2021; 11:brainsci11081107. [PMID: 34439725 PMCID: PMC8392174 DOI: 10.3390/brainsci11081107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022] Open
Abstract
Altered connectivity within and between the resting-state networks (RSNs) brought about by anesthetics that induce altered consciousness remains incompletely understood. It is known that the dorsal attention network (DAN) and its anticorrelations with other RSNs have been implicated in consciousness. However, the role of DAN-related functional patterns in drug-induced sedative effects is less clear. In the current study, we investigated altered functional connectivity of the DAN during midazolam-induced light sedation. In a placebo-controlled and within-subjects experimental study, fourteen healthy volunteers received midazolam or saline with a 1-week interval. Resting-state fMRI data were acquired before and after intravenous drug administration. A multiple region of interest-driven analysis was employed to investigate connectivity within and between RSNs. It was found that functional connectivity was significantly decreased by midazolam injection in two regions located in the left inferior parietal lobule and the left middle temporal area within the DAN as compared with the saline condition. We also identified three clusters in anticorrelation between the DAN and other RSNs for the interaction effect, which included the left medial prefrontal cortex, the right superior temporal gyrus, and the right superior frontal gyrus. Connectivity between all regions and DAN was significantly decreased by midazolam injection. The sensorimotor network was minimally affected. Midazolam decreased functional connectivity of the dorsal attention network. These findings advance the understanding of the neural mechanism of sedation, and such functional patterns might have clinical implications in other medical conditions related to patients with cognitive impairment.
Collapse
Affiliation(s)
- Junkai Wang
- Department of Psychology, Tsinghua University, Haidian District, Beijing 100084, China;
| | - Yachao Xu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
| | - Gopikrishna Deshpande
- School of Psychology, Capital Normal University, Haidian District, Beijing 100048, China;
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing 100048, China
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, USA
- Department of Psychological Sciences, Auburn University, Auburn, AL 36849, USA
- Alabama Advanced Imaging Consortium, Birmingham, AL 35233, USA
- Center for Neuroscience, Auburn University, Auburn, AL 36849, USA
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560030, India
- Center for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing 100053, China
| | - Pei Sun
- Department of Psychology, Tsinghua University, Haidian District, Beijing 100084, China;
- Correspondence: (P.S.); (P.L.)
| | - Peipeng Liang
- School of Psychology, Capital Normal University, Haidian District, Beijing 100048, China;
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing 100048, China
- Correspondence: (P.S.); (P.L.)
| |
Collapse
|
14
|
Lemaire JJ, Pontier B, Chaix R, El Ouadih Y, Khalil T, Sinardet D, Achim V, Postelnicu A, Coste J, Germain V, Sarret C, Sontheimer A. Neural correlates of consciousness and related disorders: From phenotypic descriptors of behavioral and relative consciousness to cortico-subcortical circuitry. Neurochirurgie 2021; 68:212-222. [PMID: 34051246 DOI: 10.1016/j.neuchi.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/13/2021] [Accepted: 05/09/2021] [Indexed: 01/01/2023]
Abstract
We report a review of medical aspects of the consciousness. The behavioral dimension, phenotypic descriptors, relative consciousness and neural correlates of consciousness and related disorders were addressed successively in a holistic and chronological approach. Consciousness is relative, specific to each individual across time and space. Historically defined as the perception of the self and the environment, it cannot be separated from behaviors, entailing an idea of conscious behavior with metapractic and metagnostic aspects. Observation of spontaneous and evoked overt behavior distinguishes three main types of disorder of consciousness (DoC): coma, vegetative state or unresponsive wakefulness, and minimally conscious or relationally impoverished state. Modern functional exploration techniques, such as imaging, increase the understanding of DoCs and consciousness. Whether consciousness is a superior function and/or an instrumental function is discussed. Neural correlates can be subdivided into two wakefulness pathways (superior thalamic cholinergic and inferior extra-thalamic), and cortico-subcortical circuitry. The deep brain structures are those described in the well-known sensorimotor, associative and limbic loops, as illustrated in the mesolimbic model of DoC. The cortices can be segregated into several overlapping networks: (1) a global workspace including thalamo-cortical loops; (2) the default mode network (DMN) and related intrinsic connectivity networks (i.e., central executive, medial DMN and salience networks); (3) a 3-fold network comprising the fronto-parietal control system and its dorsal and ventral attentional sub-networks, the fronto-parietal executive control network, and the cingulo-opercular salience network; (4) the internal and external cortices, respectively medial, turned toward the self, and lateral, turned toward the environment. The network dynamics is the reflection of consciousness, notably anticorrelations such as the decrease in activity of the posterior cingulate-precuneus regions during attentional tasks. Thanks to recent advances in DoC pathophysiology, further significative therapeutic progress is expected, taking into account the societal context. This depends notably on the dissemination of medical knowledge and its transfer to a wider public.
Collapse
Affiliation(s)
- J-J Lemaire
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France; Institut Pascal, université Clermont Auvergne CNRS SIGMA, Clermont-Ferrand, France.
| | - B Pontier
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France; Institut Pascal, université Clermont Auvergne CNRS SIGMA, Clermont-Ferrand, France
| | - R Chaix
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Y El Ouadih
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - T Khalil
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France; Institut Pascal, université Clermont Auvergne CNRS SIGMA, Clermont-Ferrand, France
| | - D Sinardet
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - V Achim
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - A Postelnicu
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - J Coste
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France; Institut Pascal, université Clermont Auvergne CNRS SIGMA, Clermont-Ferrand, France
| | - V Germain
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France; Institut Pascal, université Clermont Auvergne CNRS SIGMA, Clermont-Ferrand, France
| | - C Sarret
- Institut Pascal, université Clermont Auvergne CNRS SIGMA, Clermont-Ferrand, France
| | - A Sontheimer
- Service de neurochirurgie, CHU Clermont-Ferrand, Clermont-Ferrand, France; Institut Pascal, université Clermont Auvergne CNRS SIGMA, Clermont-Ferrand, France
| |
Collapse
|
15
|
Luppi AI, Craig MM, Coppola P, Peattie ARD, Finoia P, Williams GB, Allanson J, Pickard JD, Menon DK, Stamatakis EA. Preserved fractal character of structural brain networks is associated with covert consciousness after severe brain injury. Neuroimage Clin 2021; 30:102682. [PMID: 34215152 PMCID: PMC8102619 DOI: 10.1016/j.nicl.2021.102682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/30/2021] [Accepted: 04/18/2021] [Indexed: 12/24/2022]
Abstract
Self-similarity is ubiquitous throughout natural phenomena, including the human brain. Recent evidence indicates that fractal dimension of functional brain networks, a measure of self-similarity, is diminished in patients diagnosed with disorders of consciousness arising from severe brain injury. Here, we set out to investigate whether loss of self-similarity is observed in the structural connectome of patients with disorders of consciousness. Using diffusion MRI tractography from N = 11 patients in a minimally conscious state (MCS), N = 10 patients diagnosed with unresponsive wakefulness syndrome (UWS), and N = 20 healthy controls, we show that fractal dimension of structural brain networks is diminished in DOC patients. Remarkably, we also show that fractal dimension of structural brain networks is preserved in patients who exhibit evidence of covert consciousness by performing mental imagery tasks during functional MRI scanning. These results demonstrate that differences in fractal dimension of structural brain networks are quantitatively associated with chronic loss of consciousness induced by severe brain injury, highlighting the close connection between structural organisation of the human brain and its ability to support cognitive function.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom.
| | - Michael M Craig
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom
| | - Peter Coppola
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom
| | - Alexander R D Peattie
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom
| | - Paola Finoia
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom
| | - Guy B Williams
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), Cambridge CB2 0QQ, United Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom
| | - John D Pickard
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), Cambridge CB2 0QQ, United Kingdom
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom; Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, United Kingdom
| |
Collapse
|
16
|
Wang J, Sun P, Liang P. Neuropsychopharmacological effects of midazolam on the human brain. Brain Inform 2020; 7:15. [PMID: 33170396 PMCID: PMC7655878 DOI: 10.1186/s40708-020-00116-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
As a commonly used anesthetic agent, midazolam has the properties of water-soluble, rapid onset, and short duration of action. With the rapid development in the field of neuroimaging, numerous studies have investigated how midazolam acts on the human brain to induce the alteration of consciousness. However, the neural bases of midazolam-induced sedation or anesthesia remain beginning to be understood in detail. In this review, we summarize findings from neuroimaging studies that have used midazolam to study altered consciousness at different levels and content. We also compare the results to those of neuroimaging studies using diverse anesthetic agents and describe the common neural correlates of anesthetic-induced alteration of consciousness.
Collapse
Affiliation(s)
- Junkai Wang
- School of Psychology, Capital Normal University, Haidian District, Beijing, 100048, China.,Beijing Key Laboratory of Learning and Cognition, Beijing, China.,Department of Psychology, Tsinghua University, Haidian District, Beijing, 100084, China
| | - Pei Sun
- Department of Psychology, Tsinghua University, Haidian District, Beijing, 100084, China.
| | - Peipeng Liang
- School of Psychology, Capital Normal University, Haidian District, Beijing, 100048, China. .,Beijing Key Laboratory of Learning and Cognition, Beijing, China.
| |
Collapse
|
17
|
Chen X, Hsu CF, Xu D, Yu J, Lei X. Loss of frontal regulator of vigilance during sleep inertia: A simultaneous EEG-fMRI study. Hum Brain Mapp 2020; 41:4288-4298. [PMID: 32652818 PMCID: PMC7502830 DOI: 10.1002/hbm.25125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/05/2020] [Accepted: 06/23/2020] [Indexed: 11/10/2022] Open
Abstract
Sleep inertia refers to a distinct physiological state of waking up from sleep accompanied by performance impairments and sleepiness. The neural substrates of sleep inertia are unknown, but growing evidence suggests that this inertia state maintains certain sleep features. To investigate the neurophysiological mechanisms of sleep inertia, a comparison of pre-sleep and post-sleep wakefulness with eyes-open resting-state was performed using simultaneous EEG-fMRI, which has the potential to reveal the dynamic details of neuroelectric and hemodynamic responses with high temporal resolution. Our data suggested sleep-like features of slow EEG power and decreased BOLD activity were persistent during sleep inertia. In the pre-sleep phase, participants with stronger EEG vigilance showed stronger activity in the fronto-parietal network (FPN), but this phenomenon disappeared during sleep inertia. A time course analysis confirmed a decreased correlation between EEG vigilance and the FPN activity during sleep inertia. This simultaneous EEG-fMRI study advanced our understanding of sleep inertia and revealed the importance of the FPN in maintaining awareness. This is the first study to reveal the dynamic brain network changes from multi-modalities perspective during sleep inertia.
Collapse
Affiliation(s)
- Xinyuan Chen
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Ching-Fen Hsu
- Research Center for Language Pathology and Developmental Neurosciences, College of Foreign Languages, Hunan University, Changsha, China
| | - Dan Xu
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Jing Yu
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| |
Collapse
|
18
|
Standage D, Areshenkoff CN, Nashed JY, Hutchison RM, Hutchison M, Heinke D, Menon RS, Everling S, Gallivan JP. Dynamic Reconfiguration, Fragmentation, and Integration of Whole-Brain Modular Structure across Depths of Unconsciousness. Cereb Cortex 2020; 30:5229-5241. [PMID: 32469053 PMCID: PMC7472202 DOI: 10.1093/cercor/bhaa085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/20/2020] [Indexed: 12/28/2022] Open
Abstract
General anesthetics are routinely used to induce unconsciousness, and much is known about their effects on receptor function and single neuron activity. Much less is known about how these local effects are manifest at the whole-brain level nor how they influence network dynamics, especially past the point of induced unconsciousness. Using resting-state functional magnetic resonance imaging (fMRI) with nonhuman primates, we investigated the dose-dependent effects of anesthesia on whole-brain temporal modular structure, following loss of consciousness. We found that higher isoflurane dose was associated with an increase in both the number and isolation of whole-brain modules, as well as an increase in the uncoordinated movement of brain regions between those modules. Conversely, we found that higher dose was associated with a decrease in the cohesive movement of brain regions between modules, as well as a decrease in the proportion of modules in which brain regions participated. Moreover, higher dose was associated with a decrease in the overall integrity of networks derived from the temporal modules, with the exception of a single, sensory-motor network. Together, these findings suggest that anesthesia-induced unconsciousness results from the hierarchical fragmentation of dynamic whole-brain network structure, leading to the discoordination of temporal interactions between cortical modules.
Collapse
Affiliation(s)
- Dominic Standage
- School of Psychology, University of Birmingham, B15 2TT, Birmingham, UK
| | - Corson N Areshenkoff
- Centre for Neuroscience Studies, Queen's University, Kingston, K7L 3N6, Ontario, Canada.,Department of Psychology, Queen's University, Kingston, K7L 3N6, Ontario, Canada
| | - Joseph Y Nashed
- Centre for Neuroscience Studies, Queen's University, Kingston, K7L 3N6, Ontario, Canada
| | | | | | - Dietmar Heinke
- School of Psychology, University of Birmingham, B15 2TT, Birmingham, UK
| | - Ravi S Menon
- Robarts Research Institute, University of Western Ontario, London, N6G 2V4, Ontario, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, N6G 2V4, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, N6A 5C1, London, Ontario, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen's University, Kingston, K7L 3N6, Ontario, Canada.,Department of Psychology, Queen's University, Kingston, K7L 3N6, Ontario, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, K7L 3N6, Kingston, Ontario, Canada
| |
Collapse
|
19
|
Eriksson J, Fontan A, Pedale T. Make the Unconscious Explicit to Boost the Science of Consciousness. Front Psychol 2020; 11:260. [PMID: 32140132 PMCID: PMC7042194 DOI: 10.3389/fpsyg.2020.00260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/03/2020] [Indexed: 11/25/2022] Open
Affiliation(s)
- Johan Eriksson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Physiology Section, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Aurelie Fontan
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Physiology Section, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Tiziana Pedale
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Physiology Section, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
20
|
Wang S, Li Y, Qiu S, Zhang C, Wang G, Xian J, Li T, He H. Reorganization of rich-clubs in functional brain networks during propofol-induced unconsciousness and natural sleep. NEUROIMAGE-CLINICAL 2020; 25:102188. [PMID: 32018124 PMCID: PMC6997627 DOI: 10.1016/j.nicl.2020.102188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/31/2019] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND General anesthesia (GA) provides an invaluable experimental tool to understand the essential neural mechanisms underlying consciousness. Previous neuroimaging studies have shown the functional integration and segregation of brain functional networks during anesthetic-induced alteration of consciousness. However, the organization pattern of hubs in functional brain networks remains unclear. Moreover, comparisons with the well-characterized physiological unconsciousness can help us understand the neural mechanisms of anesthetic-induced unconsciousness. METHODS Resting-state functional magnetic resonance imaging was performed during wakefulness, mild propofol-induced sedation (m-PIS), and deep PIS (d-PIS) with clinical unconsciousness on 8 healthy volunteers and wakefulness and natural sleep on 9 age- and sex-matched healthy volunteers. Large-scale functional brain networks of each volunteer were constructed based on 160 regions of interest. Then, rich-club organizations in brain functional networks and nodal properties (nodal strength and efficiency) were assessed and analyzed among the different states and groups. RESULTS Rich-clubs in the functional brain networks were reorganized during alteration of consciousness induced by propofol. Firstly, rich-club nodes were switched from the posterior cingulate cortex (PCC), angular gyrus, and anterior and middle insula to the inferior parietal lobule (IPL), inferior parietal sulcus (IPS), and cerebellum. When sedation was deepened to unconsciousness, the rich-club nodes were switched to the occipital and angular gyrus. These results suggest that the rich-club nodes were switched among the high-order cognitive function networks (default mode network [DMN] and fronto-parietal network [FPN]), sensory networks (occipital network [ON]), and cerebellum network (CN) from consciousness (wakefulness) to propofol-induced unconsciousness. At the same time, compared with wakefulness, local connections were switched to rich-club connections during propofol-induced unconsciousness, suggesting a strengthening of the overall information commutation of networks. Nodal efficiency of the anterior and middle insula and ventral frontal cortex was significantly decreased. Additionally, from wakefulness to natural sleep, a similar pattern of rich-club reorganization with propofol-induced unconsciousness was observed: rich-club nodes were switched from the DMN (including precuneus and PCC) to the sensorimotor network (SMN, including part of the frontal and temporal gyrus). Compared with natural sleep, nodal efficiency of the insula, frontal gyrus, PCC, and cerebellum significantly decreased during propofol-induced unconsciousness. CONCLUSIONS Our study demonstrated that the rich-club reorganization in functional brain networks is characterized by switching of rich-club nodes between the high-order cognitive and sensory and motor networks during propofol-induced alteration of consciousness and natural sleep. These findings will help understand the common neurological mechanism of pharmacological and physiological unconsciousness.
Collapse
Affiliation(s)
- Shengpei Wang
- Research Center for Brain-inspired Intelligence and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yun Li
- Department of Anesthesia, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shuang Qiu
- Research Center for Brain-inspired Intelligence and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Chuncheng Zhang
- Research Center for Brain-inspired Intelligence and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Guyan Wang
- Department of Anesthesia, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Tianzuo Li
- Department of Anesthesia, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Huiguang He
- Research Center for Brain-inspired Intelligence and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Fang Z, Ray LB, Houldin E, Smith D, Owen AM, Fogel SM. Sleep Spindle-dependent Functional Connectivity Correlates with Cognitive Abilities. J Cogn Neurosci 2019; 32:446-466. [PMID: 31659927 DOI: 10.1162/jocn_a_01488] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
EEG studies have shown that interindividual differences in the electrophysiological properties of sleep spindles (e.g., density, amplitude, duration) are highly correlated with trait-like "reasoning" abilities (i.e., "fluid intelligence"; problem-solving skills; the ability to employ logic or identify complex patterns), but not interindividual differences in STM or "verbal" intellectual abilities. Previous simultaneous EEG-fMRI studies revealed brain activations time-locked to spindles. Our group has recently demonstrated that the extent of activation in a subset of these regions was related to interindividual differences in reasoning intellectual abilities, specifically. However, spindles reflect communication between spatially distant and functionally distinct brain areas. The functional communication among brain regions related to spindles and their relationship to reasoning abilities have yet to be investigated. Using simultaneous EEG-fMRI sleep recordings and psychophysiological interaction analysis, we identified spindle-related functional communication among brain regions in the thalamo-cortical-BG system, the salience network, and the default mode network. Furthermore, the extent of the functional connectivity of the cortical-striatal circuitry and the thalamo-cortical circuitry was specifically related to reasoning abilities but was unrelated to STM or verbal abilities, thus suggesting that individuals with higher fluid intelligence have stronger functional coupling among these brain areas during spontaneous spindle events. This may serve as a first step in further understanding the function of sleep spindles and the brain network functional communication, which support the capacity for fluid intelligence.
Collapse
Affiliation(s)
- Zhuo Fang
- Brain & Mind Institute, Western University, London, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
| | - Laura B Ray
- Brain & Mind Institute, Western University, London, Canada.,Sleep Unit, the Royal's Institute for Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Evan Houldin
- Brain & Mind Institute, Western University, London, Canada.,Western University, London, Canada
| | - Dylan Smith
- University of Ottawa, Ottawa, Canada.,Sleep Unit, the Royal's Institute for Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Adrian M Owen
- Brain & Mind Institute, Western University, London, Canada.,Western University, London, Canada
| | - Stuart M Fogel
- Brain & Mind Institute, Western University, London, Canada.,Western University, London, Canada.,University of Ottawa, Ottawa, Canada.,Sleep Unit, the Royal's Institute for Mental Health Research, University of Ottawa, Ottawa, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
| |
Collapse
|
22
|
Luppi AI, Craig MM, Pappas I, Finoia P, Williams GB, Allanson J, Pickard JD, Owen AM, Naci L, Menon DK, Stamatakis EA. Consciousness-specific dynamic interactions of brain integration and functional diversity. Nat Commun 2019; 10:4616. [PMID: 31601811 PMCID: PMC6787094 DOI: 10.1038/s41467-019-12658-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/16/2019] [Indexed: 12/26/2022] Open
Abstract
Prominent theories of consciousness emphasise different aspects of neurobiology, such as the integration and diversity of information processing within the brain. Here, we combine graph theory and dynamic functional connectivity to compare resting-state functional MRI data from awake volunteers, propofol-anaesthetised volunteers, and patients with disorders of consciousness, in order to identify consciousness-specific patterns of brain function. We demonstrate that cortical networks are especially affected by loss of consciousness during temporal states of high integration, exhibiting reduced functional diversity and compromised informational capacity, whereas thalamo-cortical functional disconnections emerge during states of higher segregation. Spatially, posterior regions of the brain’s default mode network exhibit reductions in both functional diversity and integration with the rest of the brain during unconsciousness. These results show that human consciousness relies on spatio-temporal interactions between brain integration and functional diversity, whose breakdown may represent a generalisable biomarker of loss of consciousness, with potential relevance for clinical practice. How do diversity (entropy) and integration of activity across brain regions interact to support consciousness? Here the authors show that anaesthetised individuals and patients with disorders of consciousness exhibit overlapping reductions in both diversity and integration in the brain’s default mode network.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK
| | - Michael M Craig
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK
| | - Ioannis Pappas
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Helen Wills Neuroscience Institute, 210 Barker Hall, University of California - Berkeley, 94720, Berkeley, CA, USA
| | - Paola Finoia
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), CB2 0QQ, Cambridge, UK
| | - Judith Allanson
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK
| | - John D Pickard
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), CB2 0QQ, Cambridge, UK
| | - Adrian M Owen
- The Brain and Mind Institute, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.,Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), CB2 0QQ, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK. .,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, CB2 0SP, Cambridge, UK.
| |
Collapse
|
23
|
Physiological Considerations of Functional Magnetic Resonance Imaging in Animal Models. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:522-532. [DOI: 10.1016/j.bpsc.2018.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
|
24
|
Tsai FF, Fan SZ, Cheng HL, Yeh JR. Multi-timescale phase-amplitude couplings in transitions of anesthetic-induced unconsciousness. Sci Rep 2019; 9:7815. [PMID: 31127152 PMCID: PMC6534567 DOI: 10.1038/s41598-019-44238-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/08/2019] [Indexed: 11/08/2022] Open
Abstract
Under general anesthesia (GA), advanced analysis methods enhance the awareness of the electroencephalography (EEG) signature of transitions from consciousness to unconsciousness. For nonlinear and nonstationary signals, empirical mode decomposition (EMD) works as a dyadic filter bank to reserve local dynamical properties in decomposed components. Moreover, cross-frequency phase-amplitude coupling analysis illustrates that the coupling between the phase of low-frequency components and the amplitude of high-frequency components is correlated with the brain functions of sensory detection, working memory, consciousness, and attentional selection. To improve the functions of phase-amplitude coupling analysis, we utilized a multi-timescale approach based on EMD to assess changes in brain functions in anesthetic-induced unconsciousness using a measure of phase-amplitude coupling. Two groups of patients received two different anesthetic recipes (with or without ketamine) during the induction period of GA. Long-term (low-frequency) coupling represented a common transitional process of brain functions from consciousness to unconsciousness with a decay trend in both groups. By contrast, short-term coupling reflected a reverse trend to long-term coupling. However, the measures of short-term coupling also reflected a higher degree of coupling for the group with ketamine compared with that without ketamine. In addition, the coupling phase is a factor of interest. The phases for different combinations of coupling components showed significant changes in anesthetic-induced unconsciousness. The coupling between the delta-band phase and the theta-band amplitude changed from in-phase to out-phase coupling during the induction process from consciousness to unconsciousness. The changes in the coupling phase in EEG signals were abrupt and sensitive in anesthetic-induced unconsciousness.
Collapse
Affiliation(s)
- Feng-Fang Tsai
- Department of Anaesthesiology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Anaesthesiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shou-Zen Fan
- Department of Anaesthesiology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Anaesthesiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Liang Cheng
- Department of Anaesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jia-Rong Yeh
- Research Center for Adaptive Data Analysis, National Central University, Taoyuan, Taiwan.
- Center for Nonlinear Sciences, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
25
|
Harris SJ, Papathanassoglou EDE, Gee M, Hampshaw SM, Lindgren L, Haywood A. Interpersonal touch interventions for patients in intensive care: A design-oriented realist review. Nurs Open 2019; 6:216-235. [PMID: 30918674 PMCID: PMC6419112 DOI: 10.1002/nop2.200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/11/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022] Open
Abstract
AIM To develop a theoretical framework to inform the design of interpersonal touch interventions intended to reduce stress in adult intensive care unit patients. DESIGN Realist review with an intervention design-oriented approach. METHODS We searched CINAHL, MEDLINE, EMBASE, CENTRAL, Web of Science and grey literature sources without date restrictions. Subject experts suggested additional articles. Evidence synthesis drew on diverse sources of literature and was conducted iteratively with theory testing. We consulted stakeholders to focus the review. We performed systematic searches to corroborate our developing theoretical framework. RESULTS We present a theoretical framework based around six intervention construction principles. Theory testing provided some evidence in favour of treatment repetition, dynamic over static touch and lightening sedation. A lack of empirical evidence was identified for construction principles relating to intensity and positive/negative evaluation of emotional experience, moderate pressure touch for sedated patients and intervention delivery by relatives versus healthcare practitioners.
Collapse
Affiliation(s)
- Sansha J. Harris
- School of Health and Related Research (ScHARR)University of SheffieldSheffieldUK
| | | | - Melanie Gee
- Faculty of Health and WellbeingSheffield Hallam UniversitySheffieldUK
| | - Susan M. Hampshaw
- School of Health and Related Research (ScHARR)University of SheffieldSheffieldUK
| | | | - Annette Haywood
- School of Health and Related Research (ScHARR)University of SheffieldSheffieldUK
| |
Collapse
|
26
|
Yin D, Zhang Z, Wang Z, Zeljic K, Lv Q, Cai D, Wang Y, Wang Z. Brain Map of Intrinsic Functional Flexibility in Anesthetized Monkeys and Awake Humans. Front Neurosci 2019; 13:174. [PMID: 30873000 PMCID: PMC6403192 DOI: 10.3389/fnins.2019.00174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/14/2019] [Indexed: 01/15/2023] Open
Abstract
Emerging neuroimaging studies emphasize the dynamic organization of spontaneous brain activity in both human and non-human primates, even under anesthesia. In a recent study, we were able to characterize the heterogeneous architecture of intrinsic functional flexibility in the awake, resting human brain using time-resolved analysis and a probabilistic model. However, it is unknown whether this organizational principle is preserved in the anesthetized monkey brain, and how anesthesia affects dynamic and static measurements of spontaneous brain activity. To investigate these issues, we collected resting-state functional magnetic resonance imaging (fMRI) datasets from 178 awake humans and 11 anesthetized monkeys (all healthy). Our recently established method, a complexity measurement (i.e., Shannon entropy) of dynamic functional connectivity patterns of each brain region, was used to map the intrinsic functional flexibility across the cerebral cortex. To further explore the potential effects of anesthesia, we performed time series analysis and correlation analysis between dynamic and static measurements within awake human and anesthetized monkey brains, respectively. We observed a heterogeneous profile of intrinsic functional flexibility in the anesthetized monkey brain, which showed some similarities to that of awake humans (r = 0.30, p = 0.007). However, we found that brain activity in anesthetized monkeys generally shifted toward random fluctuations. Moreover, there is a negative correlation between nodal entropy for the distribution of dynamic functional connectivity patterns and static functional connectivity strength in anesthetized monkeys, but not in awake humans. Our findings indicate that the heterogeneous architecture of intrinsic functional flexibility across cortex probably reflects an evolutionarily conserved aspect of functional brain organization, which persists across levels of cognitive processing (states of consciousness). The coupling between nodal entropy for the distribution of dynamic functional connectivity patterns and static functional connectivity strength may serve as a potential signature of anesthesia. This study not only offers fresh insight into the evolution of brain functional architecture, but also advances our understanding of the dynamics of spontaneous brain activity.
Collapse
Affiliation(s)
- Dazhi Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kristina Zeljic
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qian Lv
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Danchao Cai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zheng Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
27
|
Bola M, Orłowski P, Baranowska K, Schartner M, Marchewka A. Informativeness of Auditory Stimuli Does Not Affect EEG Signal Diversity. Front Psychol 2018; 9:1820. [PMID: 30319513 PMCID: PMC6168660 DOI: 10.3389/fpsyg.2018.01820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/06/2018] [Indexed: 11/13/2022] Open
Abstract
Brain signal diversity constitutes a robust neuronal marker of the global states of consciousness. It has been demonstrated that, in comparison to the resting wakefulness, signal diversity is lower during unconscious states, and higher during psychedelic states. A plausible interpretation of these findings is that the neuronal diversity corresponds to the diversity of subjective conscious experiences. Therefore, in the present study we varied an information rate processed by the subjects and hypothesized that greater information rate will be related to richer and more differentiated phenomenology and, consequently, to greater signal diversity. To test this hypothesis speech recordings (excerpts from an audio-book) were presented to subjects at five different speeds (65, 83, 100, 117, and 135% of the original speed). By increasing or decreasing speed of the recordings we were able to, respectively, increase or decrease the presented information rate. We also included a backward (unintelligible) speech presentation and a resting-state condition (no auditory stimulation). We tested 19 healthy subjects and analyzed the recorded EEG signal (64 channels) in terms of Lempel-Ziv diversity (LZs). We report the following findings. First, our main hypothesis was not confirmed, as Bayes Factor indicates evidence for no effect when comparing LZs among five presentation speeds. Second, we found that LZs during the resting-state was greater than during processing of both meaningful and unintelligible speech. Third, an additional analysis uncovered a gradual decrease of diversity over the time-course of the experiment, which might reflect a decrease in vigilance. We thus speculate that higher signal diversity during the unconstrained resting-state might be due to a greater variety of experiences, involving spontaneous attention switching and mind wandering.
Collapse
Affiliation(s)
- Michał Bola
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Orłowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Institute of Philosophy, University of Warsaw, Warsaw, Poland.,Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| | - Karolina Baranowska
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
| | - Michael Schartner
- Département des Neurosciences Fondamentales, Université de Genève, Geneva, Switzerland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
28
|
Functional diversity of brain networks supports consciousness and verbal intelligence. Sci Rep 2018; 8:13259. [PMID: 30185912 PMCID: PMC6125486 DOI: 10.1038/s41598-018-31525-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/15/2018] [Indexed: 11/08/2022] Open
Abstract
How are the myriad stimuli arriving at our senses transformed into conscious thought? To address this question, in a series of studies, we asked whether a common mechanism underlies loss of information processing in unconscious states across different conditions, which could shed light on the brain mechanisms of conscious cognition. With a novel approach, we brought together for the first time, data from the same paradigm-a highly engaging auditory-only narrative-in three independent domains: anesthesia-induced unconsciousness, unconsciousness after brain injury, and individual differences in intellectual abilities during conscious cognition. During external stimulation in the unconscious state, the functional differentiation between the auditory and fronto-parietal systems decreased significantly relatively to the conscious state. Conversely, we found that stronger functional differentiation between these systems in response to external stimulation predicted higher intellectual abilities during conscious cognition, in particular higher verbal acuity scores in independent cognitive testing battery. These convergent findings suggest that the responsivity of sensory and higher-order brain systems to external stimulation, especially through the diversification of their functional responses is an essential feature of conscious cognition and verbal intelligence.
Collapse
|
29
|
Phillips WA, Bachmann T, Storm JF. Apical Function in Neocortical Pyramidal Cells: A Common Pathway by Which General Anesthetics Can Affect Mental State. Front Neural Circuits 2018; 12:50. [PMID: 30013465 PMCID: PMC6036169 DOI: 10.3389/fncir.2018.00050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/05/2018] [Indexed: 11/27/2022] Open
Abstract
It has been argued that general anesthetics suppress the level of consciousness, or the contents of consciousness, or both. The distinction between level and content is important because, in addition to clarifying the mechanisms of anesthesia, it may help clarify the neural bases of consciousness. We assess these arguments in the light of evidence that both the level and the content of consciousness depend upon the contribution of apical input to the information processing capabilities of neocortical pyramidal cells which selectively amplify relevant signals. We summarize research suggesting that what neocortical pyramidal cells transmit information about can be distinguished from levels of arousal controlled by sub-cortical nuclei and from levels of prioritization specified by interactions within the thalamocortical system. Put simply, on the basis of the observations reviewed, we hypothesize that when conscious we have particular, directly experienced, percepts, thoughts, feelings and intentions, and that general anesthetics affect consciousness by interfering with the subcellular processes by which particular activities are selectively amplified when relevant to the current context.
Collapse
Affiliation(s)
- William A. Phillips
- Faculty of Natural Sciences, Psychology, University of Stirling, Stirling, United Kingdom
| | - Talis Bachmann
- Department of Penal Law, University of Tartu, Tartu, Estonia
| | - Johan F. Storm
- IBMS Department of Physiology, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Lichtner G, Auksztulewicz R, Kirilina E, Velten H, Mavrodis D, Scheel M, Blankenburg F, von Dincklage F. Effects of propofol anesthesia on the processing of noxious stimuli in the spinal cord and the brain. Neuroimage 2018; 172:642-653. [DOI: 10.1016/j.neuroimage.2018.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/03/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022] Open
|
31
|
Liang P, Xu Y, Lan F, Ma D, Li K. Decreased Cerebral Blood Flow in Mesial Thalamus and Precuneus/PCC during Midazolam Induced Sedation Assessed with ASL. Neuroinformatics 2018; 16:403-410. [PMID: 29572600 DOI: 10.1007/s12021-018-9368-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While some previous work suggests that midazolam-induced light sedation results from the functional disconnection within resting state network, little is known about the underlying alterations of cerebral blood flow (CBF) associated with its effects. A randomized, double-blind, within-subject, cross-over design was adopted, while 12 healthy young volunteers were scanned with arterial spin-labeling (ASL) perfusion MRI both before and after an injection of either saline or midazolam. The contrast of MRI signal before and after midazolam administration revealed the CBF decrease in the bilateral mesial thalamus and precuneus/posterior cingulate cortex (PCC). These effects were confirmed after controlling for any effect of injection as well as head motions. These findings provide new evidences that midazolam-induced light sedation is related to the disruption of cortical functional integration, and have new implications to the neural basis of consciousness.
Collapse
Affiliation(s)
- Peipeng Liang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, 45 Chang Chun Street, Xuan Wu District, Beijing, 100053, China. .,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China.
| | - Yachao Xu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Fei Lan
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Daqing Ma
- Anaesthetcis, Pain Medicine and Intensive Care, Department of Surgery & Cancer, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, 45 Chang Chun Street, Xuan Wu District, Beijing, 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| |
Collapse
|
32
|
Yen CCC, Papoti D, Silva AC. Investigating the spatiotemporal characteristics of the deoxyhemoglobin-related and deoxyhemoglobin-unrelated functional hemodynamic response across cortical layers in awake marmosets. Neuroimage 2018; 164:121-130. [PMID: 28274833 PMCID: PMC5587354 DOI: 10.1016/j.neuroimage.2017.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 01/05/2023] Open
Abstract
Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) has become a major tool to map neural activity. However, the spatiotemporal characteristics of the BOLD functional hemodynamic response across the cortical layers remain poorly understood. While human fMRI studies suffer from low spatiotemporal resolution, the use of anesthesia in animal models introduces confounding factors. Additionally, inflow contributions to the fMRI signal become non-negligible when short repetition times (TRs) are used. In the present work, we mapped the BOLD fMRI response to somatosensory stimulation in awake marmosets. To address the above technical concerns, we used a dual-echo gradient-recalled echo planar imaging (GR-EPI) sequence to separate the deoxyhemoglobin-related response (absolute T2* differences) from the deoxyhemoglobin-unrelated response (relative S0 changes). We employed a spatial saturation pulse to saturate incoming arterial spins and reduce inflow effects. Functional GR-EPI images were obtained from a single coronal slice with two different echo times (13.5 and 40.5ms) and TR=0.2s. BOLD, T2*, and S0 images were calculated and their functional responses were detected in both hemispheres of primary somatosensory cortex, from which five laminar regions (L1+2, L3, L4, L5, and L6) were derived. The spatiotemporal distribution of the BOLD response across the cortical layers was heterogeneous, with the middle layers having the highest BOLD amplitudes and shortest onset times. ΔT2* also showed a similar trend. However, functional S0 changes were detected only in L1+2, with a fast onset time. Because inflow effects were minimized, the source of S0 functional changes in L1+2 could be attributed to a reduction of cerebrospinal fluid volume fraction due to the functional increase in cerebral blood volume and to unmodeled T2* changes in the extra- and intra-venous compartments. Caution should be exercised when interpreting laminar BOLD fMRI changes in superficial layers as surrogates of underlying neural activity.
Collapse
Affiliation(s)
- Cecil Chern-Chyi Yen
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Papoti
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Network Properties in Transitions of Consciousness during Propofol-induced Sedation. Sci Rep 2017; 7:16791. [PMID: 29196672 PMCID: PMC5711919 DOI: 10.1038/s41598-017-15082-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/20/2017] [Indexed: 01/10/2023] Open
Abstract
Reliable electroencephalography (EEG) signatures of transitions between consciousness and unconsciousness under anaesthesia have not yet been identified. Herein we examined network changes using graph theoretical analysis of high-density EEG during patient-titrated propofol-induced sedation. Responsiveness was used as a surrogate for consciousness. We divided the data into five states: baseline, transition into unresponsiveness, unresponsiveness, transition into responsiveness, and recovery. Power spectral analysis showed that delta power increased from responsiveness to unresponsiveness. In unresponsiveness, delta waves propagated from frontal to parietal regions as a traveling wave. Local increases in delta connectivity were evident in parietal but not frontal regions. Graph theory analysis showed that increased local efficiency could differentiate the levels of responsiveness. Interestingly, during transitions of responsive states, increased beta connectivity was noted relative to consciousness and unconsciousness, again with increased local efficiency. Abrupt network changes are evident in the transitions in responsiveness, with increased beta band power/connectivity marking transitions between responsive states, while the delta power/connectivity changes were consistent with the fading of consciousness using its surrogate responsiveness. These results provide novel insights into the neural correlates of these behavioural transitions and EEG signatures for monitoring the levels of consciousness under sedation.
Collapse
|
34
|
Bola M, Barrett AB, Pigorini A, Nobili L, Seth AK, Marchewka A. Loss of consciousness is related to hyper-correlated gamma-band activity in anesthetized macaques and sleeping humans. Neuroimage 2017; 167:130-142. [PMID: 29162522 DOI: 10.1016/j.neuroimage.2017.11.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022] Open
Abstract
Loss of consciousness can result from a wide range of causes, including natural sleep and pharmacologically induced anesthesia. Important insights might thus come from identifying neuronal mechanisms of loss and re-emergence of consciousness independent of a specific manipulation. Therefore, to seek neuronal signatures of loss of consciousness common to sleep and anesthesia we analyzed spontaneous electrophysiological activity recorded in two experiments. First, electrocorticography (ECoG) acquired from 4 macaque monkeys anesthetized with different anesthetic agents (ketamine, medetomidine, propofol) and, second, stereo-electroencephalography (sEEG) from 10 epilepsy patients in different wake-sleep stages (wakefulness, NREM, REM). Specifically, we investigated co-activation patterns among brain areas, defined as correlations between local amplitudes of gamma-band activity. We found that resting wakefulness was associated with intermediate levels of gamma-band coupling, indicating neither complete dependence, nor full independence among brain regions. In contrast, loss of consciousness during NREM sleep and propofol anesthesia was associated with excessively correlated brain activity, as indicated by a robust increase of number and strength of positive correlations. However, such excessively correlated brain signals were not observed during REM sleep, and were present only to a limited extent during ketamine anesthesia. This might be related to the fact that, despite suppression of behavioral responsiveness, REM sleep and ketamine anesthesia often involve presence of dream-like conscious experiences. We conclude that hyper-correlated gamma-band activity might be a signature of loss of consciousness common across various manipulations and independent of behavioral responsiveness.
Collapse
Affiliation(s)
- Michał Bola
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| | - Adam B Barrett
- Sackler Centre for Consciousness Science, Department of Informatics, University of Sussex, Brighton BN1 9QJ, UK
| | - Andrea Pigorini
- Department of Clinical Sciences, University of Milan, Milan 20157, Italy
| | - Lino Nobili
- Centre of Epilepsy Surgery "C. Munari", Niguarda Hospital, Milan, 20162, Italy
| | - Anil K Seth
- Sackler Centre for Consciousness Science, Department of Informatics, University of Sussex, Brighton BN1 9QJ, UK
| | - Artur Marchewka
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
35
|
The large-scale functional connectivity correlates of consciousness and arousal during the healthy and pathological human sleep cycle. Neuroimage 2017; 160:55-72. [DOI: 10.1016/j.neuroimage.2017.06.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/08/2017] [Accepted: 06/11/2017] [Indexed: 01/10/2023] Open
|
36
|
Kim M, Kim S, Mashour GA, Lee U. Relationship of Topology, Multiscale Phase Synchronization, and State Transitions in Human Brain Networks. Front Comput Neurosci 2017; 11:55. [PMID: 28713258 PMCID: PMC5492767 DOI: 10.3389/fncom.2017.00055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/07/2017] [Indexed: 12/29/2022] Open
Abstract
How the brain reconstitutes consciousness and cognition after a major perturbation like general anesthesia is an important question with significant neuroscientific and clinical implications. Recent empirical studies in animals and humans suggest that the recovery of consciousness after anesthesia is not random but ordered. Emergence patterns have been classified as progressive and abrupt transitions from anesthesia to consciousness, with associated differences in duration and electroencephalogram (EEG) properties. We hypothesized that the progressive and abrupt emergence patterns from the unconscious state are associated with, respectively, continuous and discontinuous synchronization transitions in functional brain networks. The discontinuous transition is explainable with the concept of explosive synchronization, which has been studied almost exclusively in network science. We used the Kuramato model, a simple oscillatory network model, to simulate progressive and abrupt transitions in anatomical human brain networks acquired from diffusion tensor imaging (DTI) of 82 brain regions. To facilitate explosive synchronization, distinct frequencies for hub nodes with a large frequency disassortativity (i.e., higher frequency nodes linking with lower frequency nodes, or vice versa) were applied to the brain network. In this simulation study, we demonstrated that both progressive and abrupt transitions follow distinct synchronization processes at the individual node, cluster, and global network levels. The characteristic synchronization patterns of brain regions that are “progressive and earlier” or “abrupt but delayed” account for previously reported behavioral responses of gradual and abrupt emergence from the unconscious state. The characteristic network synchronization processes observed at different scales provide new insights into how regional brain functions are reconstituted during progressive and abrupt emergence from the unconscious state. This theoretical approach also offers a principled explanation of how the brain reconstitutes consciousness and cognitive functions after physiologic (sleep), pharmacologic (anesthesia), and pathologic (coma) perturbations.
Collapse
Affiliation(s)
- Minkyung Kim
- Department of Physics, Pohang University of Science and TechnologyPohang, South Korea.,Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - Seunghwan Kim
- Department of Physics, Pohang University of Science and TechnologyPohang, South Korea
| | - George A Mashour
- Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States.,Department of Anesthesiology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - UnCheol Lee
- Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States.,Department of Anesthesiology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| |
Collapse
|
37
|
Colon E, Bittner EA, Kussman B, McCann ME, Soriano S, Borsook D. Anesthesia, brain changes, and behavior: Insights from neural systems biology. Prog Neurobiol 2017; 153:121-160. [PMID: 28189740 DOI: 10.1016/j.pneurobio.2017.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 02/08/2023]
Abstract
Long-term consequences of anesthetic exposure in humans are not well understood. It is possible that alterations in brain function occur beyond the initial anesthetic administration. Research in children and adults has reported cognitive and/or behavioral changes after surgery and general anesthesia that may be short lived in some patients, while in others, such changes may persist. The changes observed in humans are corroborated by a large body of evidence from animal studies that support a role for alterations in neuronal survival (neuroapoptosis) or structure (altered dendritic and glial morphology) and later behavioral deficits at older age after exposure to various anesthetic agents during fetal or early life. The potential of anesthetics to induce long-term alterations in brain function, particularly in vulnerable populations, warrants investigation. In this review, we critically evaluate the available preclinical and clinical data on the developing and aging brain, and in known vulnerable populations to provide insights into potential changes that may affect the general population of patients in a more, subtle manner. In addition this review summarizes underlying processes of how general anesthetics produce changes in the brain at the cellular and systems level and the current understanding underlying mechanisms of anesthetics agents on brain systems. Finally, we present how neuroimaging techniques currently emerge as promising approaches to evaluate and define changes in brain function resulting from anesthesia, both in the short and the long-term.
Collapse
Affiliation(s)
- Elisabeth Colon
- Center for Pain and the Brain, 1 Autumn Street, Boston Children's Hospital, Boston MA 02115, United States; Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| | - Edward A Bittner
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Barry Kussman
- Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Mary Ellen McCann
- Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Sulpicio Soriano
- Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - David Borsook
- Center for Pain and the Brain, 1 Autumn Street, Boston Children's Hospital, Boston MA 02115, United States; Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
38
|
Millière R. Looking for the Self: Phenomenology, Neurophysiology and Philosophical Significance of Drug-induced Ego Dissolution. Front Hum Neurosci 2017; 11:245. [PMID: 28588463 PMCID: PMC5441112 DOI: 10.3389/fnhum.2017.00245] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/25/2017] [Indexed: 12/17/2022] Open
Abstract
There is converging evidence that high doses of hallucinogenic drugs can produce significant alterations of self-experience, described as the dissolution of the sense of self and the loss of boundaries between self and world. This article discusses the relevance of this phenomenon, known as “drug-induced ego dissolution (DIED)”, for cognitive neuroscience, psychology and philosophy of mind. Data from self-report questionnaires suggest that three neuropharmacological classes of drugs can induce ego dissolution: classical psychedelics, dissociative anesthetics and agonists of the kappa opioid receptor (KOR). While these substances act on different neurotransmitter receptors, they all produce strong subjective effects that can be compared to the symptoms of acute psychosis, including ego dissolution. It has been suggested that neuroimaging of DIED can indirectly shed light on the neural correlates of the self. While this line of inquiry is promising, its results must be interpreted with caution. First, neural correlates of ego dissolution might reveal the necessary neurophysiological conditions for the maintenance of the sense of self, but it is more doubtful that this method can reveal its minimally sufficient conditions. Second, it is necessary to define the relevant notion of self at play in the phenomenon of DIED. This article suggests that DIED consists in the disruption of subpersonal processes underlying the “minimal” or “embodied” self, i.e., the basic experience of being a self rooted in multimodal integration of self-related stimuli. This hypothesis is consistent with Bayesian models of phenomenal selfhood, according to which the subjective structure of conscious experience ultimately results from the optimization of predictions in perception and action. Finally, it is argued that DIED is also of particular interest for philosophy of mind. On the one hand, it challenges theories according to which consciousness always involves self-awareness. On the other hand, it suggests that ordinary conscious experience might involve a minimal kind of self-awareness rooted in multisensory processing, which is what appears to fade away during DIED.
Collapse
Affiliation(s)
- Raphaël Millière
- Faculty of Philosophy, University of OxfordOxford, United Kingdom
| |
Collapse
|
39
|
Crone JS, Lutkenhoff ES, Bio BJ, Laureys S, Monti MM. Testing Proposed Neuronal Models of Effective Connectivity Within the Cortico-basal Ganglia-thalamo-cortical Loop During Loss of Consciousness. Cereb Cortex 2017; 27:2727-2738. [PMID: 27114177 DOI: 10.1093/cercor/bhw112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In recent years, a number of brain regions and connectivity patterns have been proposed to be crucial for loss and recovery of consciousness but have not been compared in detail. In a 3 T resting-state functional magnetic resonance imaging paradigm, we test the plausibility of these different neuronal models derived from theoretical and empirical knowledge. Specifically, we assess the fit of each model to the dynamic change in effective connectivity between specific cortical and subcortical regions at different consecutive levels of propofol-induced sedation by employing spectral dynamic causal modeling. Surprisingly, our findings indicate that proposed models of impaired consciousness do not fit the observed patterns of effective connectivity. Rather, the data show that loss of consciousness, at least in the context of propofol-induced sedation, is marked by a breakdown of corticopetal projections from the globus pallidus. Effective connectivity between the globus pallidus and the ventral posterior cingulate cortex, present during wakefulness, fades in the transition from lightly sedated to full loss of consciousness and returns gradually as consciousness recovers, thereby, demonstrating the dynamic shift in brain architecture of the posterior cingulate "hub" during changing states of consciousness. These findings highlight the functional role of a previously underappreciated direct pallido-cortical connectivity in supporting consciousness.
Collapse
Affiliation(s)
- Julia Sophia Crone
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Evan Scott Lutkenhoff
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Branden Joseph Bio
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Steven Laureys
- Coma Science Group, Cyclotron Research Center, University of Liège, 4000 Liège, Belgium
| | - Martin Max Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA.,Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
40
|
Weng L, Xie Q, Zhao L, Zhang R, Ma Q, Wang J, Jiang W, He Y, Chen Y, Li C, Ni X, Xu Q, Yu R, Huang R. Abnormal structural connectivity between the basal ganglia, thalamus, and frontal cortex in patients with disorders of consciousness. Cortex 2017; 90:71-87. [PMID: 28365490 DOI: 10.1016/j.cortex.2017.02.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/28/2016] [Accepted: 02/20/2017] [Indexed: 12/17/2022]
Abstract
Consciousness loss in patients with severe brain injuries is associated with reduced functional connectivity of the default mode network (DMN), fronto-parietal network, and thalamo-cortical network. However, it is still unclear if the brain white matter connectivity between the above mentioned networks is changed in patients with disorders of consciousness (DOC). In this study, we collected diffusion tensor imaging (DTI) data from 13 patients and 17 healthy controls, constructed whole-brain white matter (WM) structural networks with probabilistic tractography. Afterward, we estimated and compared topological properties, and revealed an altered structural organization in the patients. We found a disturbance in the normal balance between segregation and integration in brain structural networks and detected significantly decreased nodal centralities primarily in the basal ganglia and thalamus in the patients. A network-based statistical analysis detected a subnetwork with uniformly significantly decreased structural connections between the basal ganglia, thalamus, and frontal cortex in the patients. Further analysis indicated that along the WM fiber tracts linking the basal ganglia, thalamus, and frontal cortex, the fractional anisotropy was decreased and the radial diffusivity was increased in the patients compared to the controls. Finally, using the receiver operating characteristic method, we found that the structural connections within the NBS-derived component that showed differences between the groups demonstrated high sensitivity and specificity (>90%). Our results suggested that major consciousness deficits in DOC patients may be related to the altered WM connections between the basal ganglia, thalamus, and frontal cortex.
Collapse
Affiliation(s)
- Ling Weng
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, Institute of Brain Science and Rehabilitation, South China Normal University, Guangzhou 510631, PR China
| | - Qiuyou Xie
- Centre for Hyperbaric Oxygen and Neurorehabilitation, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, PR China
| | - Ling Zhao
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, Institute of Brain Science and Rehabilitation, South China Normal University, Guangzhou 510631, PR China
| | - Ruibin Zhang
- Department of Psychology, The University of Hong Kong, Hong Kong, PR China
| | - Qing Ma
- Centre for Hyperbaric Oxygen and Neurorehabilitation, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, PR China
| | - Junjing Wang
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, Institute of Brain Science and Rehabilitation, South China Normal University, Guangzhou 510631, PR China
| | - Wenjie Jiang
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, Institute of Brain Science and Rehabilitation, South China Normal University, Guangzhou 510631, PR China
| | - Yanbin He
- Centre for Hyperbaric Oxygen and Neurorehabilitation, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, PR China
| | - Yan Chen
- Centre for Hyperbaric Oxygen and Neurorehabilitation, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, PR China
| | - Changhong Li
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, Institute of Brain Science and Rehabilitation, South China Normal University, Guangzhou 510631, PR China
| | - Xiaoxiao Ni
- Centre for Hyperbaric Oxygen and Neurorehabilitation, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, PR China
| | - Qin Xu
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, Institute of Brain Science and Rehabilitation, South China Normal University, Guangzhou 510631, PR China
| | - Ronghao Yu
- Centre for Hyperbaric Oxygen and Neurorehabilitation, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, PR China.
| | - Ruiwang Huang
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, Institute of Brain Science and Rehabilitation, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
41
|
Qiu M, Scheinost D, Ramani R, Constable RT. Multi-modal analysis of functional connectivity and cerebral blood flow reveals shared and unique effects of propofol in large-scale brain networks. Neuroimage 2017; 148:130-140. [PMID: 28069540 PMCID: PMC5410383 DOI: 10.1016/j.neuroimage.2016.12.080] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/13/2016] [Accepted: 12/28/2016] [Indexed: 01/17/2023] Open
Abstract
Anesthesia-induced changes in functional connectivity and cerebral blow flow (CBF) in large-scale brain networks have emerged as key markers of reduced consciousness. However, studies of functional connectivity disagree on which large-scale networks are altered or preserved during anesthesia, making it difficult to find a consensus amount studies. Additionally, pharmacological alterations in CBF could amplify or occlude changes in connectivity due to the shared variance between CBF and connectivity. Here, we used data-driven connectivity methods and multi-modal imaging to investigate shared and unique neural correlates of reduced consciousness for connectivity in large-scale brain networks. Rs-fMRI and CBF data were collected from the same subjects during an awake and deep sedation condition induced by propofol. We measured whole-brain connectivity using the intrinsic connectivity distribution (ICD), a method not reliant on pre-defined seed regions, networks of interest, or connectivity thresholds. The shared and unique variance between connectivity and CBF were investigated. Finally, to account for shared variance, we present a novel extension to ICD that incorporates cerebral blood flow (CBF) as a scaling factor in the calculation of global connectivity, labeled CBF-adjusted ICD). We observed altered connectivity in multiple large-scale brain networks including the default mode (DMN), salience, visual, and motor networks and reduced CBF in the DMN, frontoparietal network, and thalamus. Regional connectivity and CBF were significantly correlated during both the awake and propofol condition. Nevertheless changes in connectivity and CBF between the awake and deep sedation condition were only significantly correlated in a subsystem of the DMN, suggesting that, while there is significant shared variance between the modalities, changes due to propofol are relatively unique. Similar, but less significant, results were observed in the CBF-adjusted ICD analysis, providing additional evidence that connectivity differences were not fully explained by CBF. In conclusion, these results provide further evidence of alterations in large-scale brain networks are associated with reduced consciousness and suggest that different modalities capture unique aspects of these large scale changes.
Collapse
Affiliation(s)
- Maolin Qiu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA; Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
42
|
Wu T, Grandjean J, Bosshard SC, Rudin M, Reutens D, Jiang T. Altered regional connectivity reflecting effects of different anaesthesia protocols in the mouse brain. Neuroimage 2017; 149:190-199. [PMID: 28159688 DOI: 10.1016/j.neuroimage.2017.01.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/17/2017] [Accepted: 01/30/2017] [Indexed: 01/19/2023] Open
Abstract
Studies in mice using resting-state functional magnetic resonance imaging (rs-fMRI) have provided opportunities to investigate the effects of pharmacological manipulations on brain function and map the phenotypes of mouse models of human brain disorders. Mouse rs-fMRI is typically performed under anaesthesia, which induces both regional suppression of brain activity and disruption of large-scale neural networks. Previous comparative studies using rodents investigating various drug effects on long-distance functional connectivity (FC) have reported agent-specific FC patterns, however, effects of regional suppression are sparsely explored. Here we examined changes in regional connectivity under six different anaesthesia conditions using mouse rs-fMRI with the goal of refining the framework of understanding the brain activation under anaesthesia at a local level. Regional homogeneity (ReHo) was used to map local synchronization in the brain, followed by analysis of several brain areas based on ReHo maps. The results revealed high local coherence in most brain areas. The primary somatosensory cortex and caudate-putamen showed agent-specific properties. Lower local coherence in the cingulate cortex was observed under medetomidine, particularly when compared to the combination of medetomidine and isoflurane. The thalamus was associated with retained local coherence across anaesthetic levels and multiple nuclei. These results show that anaesthesia induced by the investigated anaesthetics through different molecular targets promote agent-specific regional connectivity. In addition, ReHo is a data-driven method with minimum user interaction, easy to use and fast to compute. Given that examination of the brain at a local level is widely applied in human rs-fMRI studies, our results show its sensitivity to extract information on varied neuronal activity under six different regimens relevant to mouse functional imaging. These results, therefore, will inform future rs-fMRI studies on mice and the type of anaesthetic agent used, and will help to bridge observations between this burgeoning research field and ongoing human research across analytical scales.
Collapse
Affiliation(s)
- Tong Wu
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Joanes Grandjean
- Molecular Imaging and Functional Pharmacology, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; Singapore BioImaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Simone C Bosshard
- The Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Markus Rudin
- Molecular Imaging and Functional Pharmacology, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - David Reutens
- The Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Tianzi Jiang
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Brainnetome Centre, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 625014, China
| |
Collapse
|
43
|
Contributions of the Ventral Striatum to Conscious Perception: An Intracranial EEG Study of the Attentional Blink. J Neurosci 2016; 37:1081-1089. [PMID: 27986925 DOI: 10.1523/jneurosci.2282-16.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/04/2016] [Accepted: 11/11/2016] [Indexed: 11/21/2022] Open
Abstract
The brain is limited in its capacity to consciously process information, necessitating gating of information. While conscious perception is robustly associated with sustained, recurrent interactions between widespread cortical regions, subcortical regions, including the striatum, influence cortical activity. Here, we examined whether the ventral striatum, given its ability to modulate cortical information flow, contributes to conscious perception. Using intracranial EEG, we recorded ventral striatum activity while 7 patients performed an attentional blink task in which they had to detect two targets (T1 and T2) in a stream of distractors. Typically, when T2 follows T1 within 100-500 ms, it is often not perceived (i.e., the attentional blink). We found that conscious T2 perception was influenced and signaled by ventral striatal activity. Specifically, the failure to perceive T2 was foreshadowed by a T1-induced increase in α and low β oscillatory activity as early as 80 ms after T1, indicating that the attentional blink to T2 may be due to very early T1-driven attentional capture. Moreover, only consciously perceived targets were associated with an increase in θ activity between 200 and 400 ms. These unique findings shed new light on the mechanisms that give rise to the attentional blink by revealing that conscious target perception may be determined by T1 processing at a much earlier processing stage than traditionally believed. More generally, they indicate that ventral striatum activity may contribute to conscious perception, presumably by gating cortical information flow. SIGNIFICANCE STATEMENT What determines whether we become aware of a piece of information or not? Conscious access has been robustly associated with activity within a distributed network of cortical regions. Using intracranial electrophysiological recordings during an attentional blink task, we tested the idea that the ventral striatum, because of its ability to modulate cortical information flow, may contribute to conscious perception. We find that conscious perception is influenced and signaled by ventral striatal activity. Short-latency (80-140 ms) striatal responses to a first target determined conscious perception of a second target. Moreover, conscious perception of the second target was signaled by longer-latency (200-400 ms) striatal activity. These results suggest that the ventral striatum may be part of a subcortical network that influences conscious experience.
Collapse
|
44
|
Uhrig L, Janssen D, Dehaene S, Jarraya B. Cerebral responses to local and global auditory novelty under general anesthesia. Neuroimage 2016; 141:326-340. [PMID: 27502046 PMCID: PMC5635967 DOI: 10.1016/j.neuroimage.2016.08.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
Primate brains can detect a variety of unexpected deviations in auditory sequences. The local-global paradigm dissociates two hierarchical levels of auditory predictive coding by examining the brain responses to first-order (local) and second-order (global) sequence violations. Using the macaque model, we previously demonstrated that, in the awake state, local violations cause focal auditory responses while global violations activate a brain circuit comprising prefrontal, parietal and cingulate cortices. Here we used the same local-global auditory paradigm to clarify the encoding of the hierarchical auditory regularities in anesthetized monkeys and compared their brain responses to those obtained in the awake state as measured with fMRI. Both, propofol, a GABAA-agonist, and ketamine, an NMDA-antagonist, left intact or even enhanced the cortical response to auditory inputs. The local effect vanished during propofol anesthesia and shifted spatially during ketamine anesthesia compared with wakefulness. Under increasing levels of propofol, we observed a progressive disorganization of the global effect in prefrontal, parietal and cingulate cortices and its complete suppression under ketamine anesthesia. Anesthesia also suppressed thalamic activations to the global effect. These results suggest that anesthesia preserves initial auditory processing, but disturbs both short-term and long-term auditory predictive coding mechanisms. The disorganization of auditory novelty processing under anesthesia relates to a loss of thalamic responses to novelty and to a disruption of higher-order functional cortical networks in parietal, prefrontal and cingular cortices.
Collapse
Affiliation(s)
- Lynn Uhrig
- CEA DRF/I2BM, NeuroSpin Center, 91191 Gif-sur-Yvette, France; INSERM U992, Cognitive Neuroimaging Unit, 91191 Gif-sur-Yvette, France
| | - David Janssen
- CEA DRF/I2BM, NeuroSpin Center, 91191 Gif-sur-Yvette, France
| | - Stanislas Dehaene
- CEA DRF/I2BM, NeuroSpin Center, 91191 Gif-sur-Yvette, France; INSERM U992, Cognitive Neuroimaging Unit, 91191 Gif-sur-Yvette, France; Collège de France, 75231 Paris, France; Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Béchir Jarraya
- CEA DRF/I2BM, NeuroSpin Center, 91191 Gif-sur-Yvette, France; INSERM U992, Cognitive Neuroimaging Unit, 91191 Gif-sur-Yvette, France; Neuromodulation Unit, Department of Neurosurgery, Foch Hospital, 92150 Suresnes, France; University of Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
45
|
Cascella M, Schiavone V, Muzio MR, Cuomo A. Consciousness fluctuation during general anesthesia: a theoretical approach to anesthesia awareness and memory modulation. Curr Med Res Opin 2016; 32:1351-9. [PMID: 27046232 DOI: 10.1080/03007995.2016.1174679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
With anesthesia awareness as a model of study we debate the both fascinating and dangerous phenomenon called consciousness fluctuation that takes place during surgical anesthesia. In accordance with current scientific knowledge this paradox is the consequence of our limits in both precise knowledge of anesthesia mechanisms and our inability to accurately assess the level of anesthesia with brain monitoring. We also focus on the relationships between memory and anesthesia, as well as the possibility of interfering with memory during general anesthesia.
Collapse
Affiliation(s)
- Marco Cascella
- a Division of Anesthesia, Department of Anesthesia, Endoscopy and Cardiology , Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS , Naples , Italy
| | - Vincenzo Schiavone
- b Division of Anesthesia and Intensive Care , Hospital "Pineta Grande" , Castel Volturno , Italy
| | - Maria Rosaria Muzio
- c Division of Infantile Neuropsychiatry , UOMI - Maternal and Infant Health , Torre del Greco , Naples , Italy
| | - Arturo Cuomo
- a Division of Anesthesia, Department of Anesthesia, Endoscopy and Cardiology , Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS , Naples , Italy
| |
Collapse
|
46
|
|
47
|
|
48
|
Liang P, Zhang H, Xu Y, Jia W, Zang Y, Li K. Disruption of cortical integration during midazolam-induced light sedation. Hum Brain Mapp 2015; 36:4247-61. [PMID: 26314702 PMCID: PMC5049658 DOI: 10.1002/hbm.22914] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/08/2015] [Accepted: 07/14/2015] [Indexed: 11/05/2022] Open
Abstract
This work examines the effect of midazolam‐induced light sedation on intrinsic functional connectivity of human brain, using a randomized, double‐blind, placebo‐controlled, cross‐over, within‐subject design. Fourteen healthy young subjects were enrolled and midazolam (0.03 mg/kg of the participant's body mass, to a maximum of 2.5 mg) or saline were administrated with an interval of one week. Resting‐state fMRI was conducted before and after administration for each subject. We focus on two types of networks: sensory related lower‐level functional networks and higher‐order functions related ones. Independent component analysis (ICA) was used to identify these resting‐state functional networks. We hypothesize that the sensory (visual, auditory, and sensorimotor) related networks will be intact under midazolam‐induced light sedation while the higher‐order (default mode, executive control, salience networks, etc.) networks will be functionally disconnected. It was found that the functional integrity of the lower‐level networks was maintained, while that of the higher‐level networks was significantly disrupted by light sedation. The within‐network connectivity of the two types of networks was differently affected in terms of direction and extent. These findings provide direct evidence that higher‐order cognitive functions including memory, attention, executive function, and language were impaired prior to lower‐level sensory responses during sedation. Our result also lends support to the information integration model of consciousness. Hum Brain Mapp 36:4247–4261, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peipeng Liang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Han Zhang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China.,Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Yachao Xu
- Depart of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wenbin Jia
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
| | - Yufeng Zang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 310015, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| |
Collapse
|
49
|
Abstract
Aging involves changes in several physiologic processes that lead to decreased volumes of distribution, slowed metabolism, and increased end-organ sensitivity to anesthetics. These changes generally result in increased potency. Elderly patients require less anesthetic medication, but the true extent of reduction is underappreciated and less uniformly practiced. The impact of potential anesthetic drug overdosing on intermediate and long-term outcomes is not fully appreciated. It may be necessary to consider age as a continuous variable for anesthetic drug dosing in older patients rather than treating adult versus elderly patients. Further pharmacologic studies are required in people more than 85 years old.
Collapse
Affiliation(s)
- Shamsuddin Akhtar
- Department of Anesthesiology, Yale University School of Medicine, 333 Cedar Street, Tompkins # 3, New Haven, CT 06520, USA.
| | - Ramachandran Ramani
- Department of Anesthesiology, Yale University School of Medicine, 333 Cedar Street, Tompkins # 3, New Haven, CT 06520, USA
| |
Collapse
|