1
|
Ketterer-Sykes EB, Saraceno E, Hough F, Wyse M, Restifo-Bernstein G, Blais AY, Khondokar M, Hoen P, López HH. Anxiolytic treatment of a trapped rat reduces helping and anxiogenic treatment increases helping: Evidence for emotional contagion in altruism. Pharmacol Biochem Behav 2024; 244:173846. [PMID: 39127241 DOI: 10.1016/j.pbb.2024.173846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The present experiment used the trapped rat model to explore whether pharmacological manipulation of distress affects the likelihood of helping behavior. 120 Sprague-Dawley rats (30 male pairs and 30 female pairs) completed 12 consecutive, daily trials assessing helping behavior. During an individual trial, a trapped rat was placed in a restrainer in the center of an open field, while its cagemate could move around freely and possibly open the restrainer by lifting a door. Trapped rats received an intraperitoneal injection of either 1) physiological saline, 2) the anxiolytic midazolam (1.5 mg/kg), or 3) the anxiogenic yohimbine (2.5 mg/kg) 30 min prior to the start of each trial. Dependent variables measured were: 1) door opening latency (sec), 2) percentage of trials in which a door opening occurred, and 3) the number of free rats classified as "openers." Based on emotional contagion theory, we predicted that 1) free rats paired with midazolam-subjects would show attenuated helping behavior (e.g., higher door opening latency) compared to controls, and conversely 2) free rats paired with yohimbine-subjects would show enhanced helping behavior. First, a significant sex-difference was observed, in that more females were classified as openers than males. This supports previous evidence that females express higher altruistic motivation and experience stronger emotional contagion than males. Second, midazolam-treatment significantly attenuated helping behavior. From trials 4-12, free rats paired with midazolam-subjects expressed slower door opening latencies compared to controls. Third, yohimbine-treatment significantly increased helping behavior (e.g., reduced door opening latencies) - but only on trials 1-3; by trials 9-12, this pattern was reversed. These results are consistent with emotional contagion theory and indicate that intensity of distress directly modulates altruistic motivation through vicarious state-matching.
Collapse
Affiliation(s)
- Eleanor B Ketterer-Sykes
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Elisabeth Saraceno
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Frances Hough
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Maya Wyse
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Gabriella Restifo-Bernstein
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Allison Y Blais
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Maisha Khondokar
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Penn Hoen
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Hassan H López
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America.
| |
Collapse
|
2
|
Reimert I, Bolhuis JE. Possible relations between emotional contagion and social buffering. Sci Rep 2024; 14:25944. [PMID: 39472724 PMCID: PMC11522516 DOI: 10.1038/s41598-024-77394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Emotional contagion can be defined as the transfer of an emotional state from the demonstrator of that state towards an observer. Social buffering is a process by which the demonstrator has a reduced stress response due to the presence of one or more other individuals. While both processes are well studied separately, it is unknown whether and how both processes are related. Therefore, the aim of this study was to investigate the relation between emotional contagion and social buffering in pigs. Hereto correlations were performed between measures of emotional contagion (i.e., the difference in behaviour of observer pigs between a situation with and without demonstrator pigs present) and measures of social buffering (i.e., the difference in behaviour of demonstrator pigs in a negative situation with and without observer pigs present). The results did not point towards a clear and consistent relation as only few and contrasting correlations between measures of emotional contagion and social buffering were found, and after correcting for chance no significant correlations remained. To conclude, more research is needed on the relation between emotional contagion and social buffering to shed light on how and when emotions will spread through and/or are buffered in a group of animals.
Collapse
Affiliation(s)
- Inonge Reimert
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, PO Box 338, Wageningen, 6700 AH, The Netherlands.
| | - J Elizabeth Bolhuis
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, PO Box 338, Wageningen, 6700 AH, The Netherlands
| |
Collapse
|
3
|
Chen J, Putkinen V, Seppälä K, Hirvonen J, Ioumpa K, Gazzola V, Keysers C, Nummenmaa L. Endogenous opioid receptor system mediates costly altruism in the human brain. Commun Biol 2024; 7:1401. [PMID: 39462097 PMCID: PMC11513155 DOI: 10.1038/s42003-024-07084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Functional neuroimaging studies suggest that a large-scale brain network transforms others' pain into its vicarious representation in the observer, potentially modulating helping behavior. However, the neuromolecular basis of individual differences in vicarious pain and helping is poorly understood. We investigated the role of the endogenous μ-opioid receptor (MOR) system in altruistic costly helping. MOR density was measured using [11C]carfentanil. In a separate fMRI experiment, participants could donate money to reduce a confederate's pain from electric shocks. Participants were generally willing to help, and brain activity was observed in amygdala, anterior insula, anterior cingulate cortex (ACC), striatum, primary motor cortex, primary somatosensory cortex and thalamus when witnessing others' pain. Haemodynamic responses were negatively associated with MOR availability in emotion circuits. However, MOR availability positively associated with the ACC and hippocampus during helping. These findings suggest that the endogenous MOR system modulates altruism in the human brain.
Collapse
Affiliation(s)
- Jinglu Chen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland.
| | - Vesa Putkinen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Kerttu Seppälä
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Jussi Hirvonen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Kalliopi Ioumpa
- The Netherlands Institute for Neuroscience, KNAW research institute, Amsterdam, The Netherlands
| | - Valeria Gazzola
- The Netherlands Institute for Neuroscience, KNAW research institute, Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Christian Keysers
- The Netherlands Institute for Neuroscience, KNAW research institute, Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Lauri Nummenmaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Smolensky I, Zajac-Bakri K, Mallien AS, Gass P, Guzman R, Inta D. Effects of single housing on behavior, corticosterone level and body weight in male and female mice. Lab Anim Res 2024; 40:35. [PMID: 39342357 PMCID: PMC11439328 DOI: 10.1186/s42826-024-00221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Experimental mice are often single-housed either for an individual analysis (feeding behavior, imaging, calorimetry) or as a stress paradigm (social isolation) in translational biomedical research. Reports of the influence of single housing in rodents are conflicting and may depend on age and duration of isolation. Sex is often not included as a factor. In this study we investigated the effects of 4-week single housing in male and female mice on behavior, body weight, and serum corticosterone levels. RESULTS Behavioral tests showed no effect on anhedonia and stress coping, anxiety and motor exploration. Social avoidance occurred in both males and females. Regarding physiological effects, single housing did not induce changes in serum corticosterone levels, but reduced body weight gain. CONCLUSIONS While some mouse studies of chronic social isolation reported depression-related disturbances, our data suggest that single housing might be not necessarily be too stressful. This is important for animal welfare regulations and experiments in life science research.
Collapse
Affiliation(s)
- Ilya Smolensky
- Department of Community Health, University of Fribourg, Chemin du Musée 4, Fribourg, 1700, Switzerland.
- Department of Biomedicine, University of Basel, Hebelstrasse 20, Basel, 4056, Switzerland.
- Food Research and Innovation Center (FRIC), University of Fribourg, Fribourg, Switzerland.
| | - Kilian Zajac-Bakri
- Department of Community Health, University of Fribourg, Chemin du Musée 4, Fribourg, 1700, Switzerland
- Department of Biomedicine, University of Basel, Hebelstrasse 20, Basel, 4056, Switzerland
- Food Research and Innovation Center (FRIC), University of Fribourg, Fribourg, Switzerland
| | - Anne Stephanie Mallien
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Raphael Guzman
- Department of Biomedicine, University of Basel, Hebelstrasse 20, Basel, 4056, Switzerland
- Department of Neurosurgery, University Hospital Basel, Spitalstrasse 21/Petersgraben 4, Basel, 4031, Switzerland
| | - Dragos Inta
- Department of Community Health, University of Fribourg, Chemin du Musée 4, Fribourg, 1700, Switzerland
- Department of Biomedicine, University of Basel, Hebelstrasse 20, Basel, 4056, Switzerland
- Food Research and Innovation Center (FRIC), University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
5
|
Choi J, Jung S, Kim J, So D, Kim A, Kim S, Choi S, Yoo E, Kim JY, Jang YC, Lee H, Kim J, Shin HS, Chae S, Keum S. ARNT2 controls prefrontal somatostatin interneurons mediating affective empathy. Cell Rep 2024; 43:114659. [PMID: 39180750 DOI: 10.1016/j.celrep.2024.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Empathy, crucial for social interaction, is impaired across various neuropsychiatric conditions. However, the genetic and neural underpinnings of empathy variability remain elusive. By combining forward genetic mapping with transcriptome analysis, we discover that aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) is a key driver modulating observational fear, a basic form of affective empathy. Disrupted ARNT2 expression in the anterior cingulate cortex (ACC) reduces affect sharing in mice. Specifically, selective ARNT2 ablation in somatostatin (SST)-expressing interneurons leads to decreased pyramidal cell excitability, increased spontaneous firing, aberrant Ca2+ dynamics, and disrupted theta oscillations in the ACC, resulting in reduced vicarious freezing. We further demonstrate that ARNT2-expressing SST interneurons govern affective state discrimination, uncovering a potential mechanism by which ARNT2 polymorphisms associate with emotion recognition in humans. Our findings advance our understanding of the molecular mechanism controlling empathic capacity and highlight the neural substrates underlying social affective dysfunctions in psychiatric disorders.
Collapse
Affiliation(s)
- Jiye Choi
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Seungmoon Jung
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jieun Kim
- Department of Bio-Health Technology, College of Biomedicine Science, Kangwon National University, Chuncheon 24341, South Korea; Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Dahm So
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Arie Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sowon Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sungjoon Choi
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Eunsu Yoo
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jee Yeon Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Yoon Cheol Jang
- Research Solution Center, Institute for Basic Science, Daejeon 34126, South Korea
| | - Hyoin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jeongyeon Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sehyun Chae
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, South Korea; Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, South Korea.
| | - Sehoon Keum
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea.
| |
Collapse
|
6
|
Mohapatra AN, Jabarin R, Ray N, Netser S, Wagner S. Impaired emotion recognition in Cntnap2-deficient mice is associated with hyper-synchronous prefrontal cortex neuronal activity. Mol Psychiatry 2024:10.1038/s41380-024-02754-8. [PMID: 39289476 DOI: 10.1038/s41380-024-02754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Individuals diagnosed with autism spectrum disorder (ASD) show difficulty in recognizing emotions in others, a process termed emotion recognition. While human fMRI studies linked multiple brain areas to emotion recognition, the specific mechanisms underlying impaired emotion recognition in ASD are not clear. Here, we employed an emotional state preference (ESP) task to show that Cntnap2-knockout (KO) mice, an established ASD model, do not distinguish between conspecifics according to their emotional state. We assessed brain-wide local-field potential (LFP) signals during various social behavior tasks and found that Cntnap2-KO mice exhibited higher LFP theta and gamma rhythmicity than did C57BL/6J mice, even at rest. Specifically, Cntnap2-KO mice showed increased theta coherence, especially between the prelimbic cortex (PrL) and the hypothalamic paraventricular nucleus, during social behavior. Moreover, we observed significantly increased Granger causality of theta rhythmicity between these two brain areas, across several types of social behavior tasks. Finally, optogenetic stimulation of PrL pyramidal neurons in C57BL/6J mice impaired their social discrimination abilities, including in ESP. Together, these results suggest that increased rhythmicity of PrL pyramidal neuronal activity and its hyper-synchronization with specific brain regions are involved in the impaired emotion recognition exhibited by Cntnap2-KO mice.
Collapse
Affiliation(s)
- Alok Nath Mohapatra
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Renad Jabarin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Natali Ray
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
7
|
Keysers C, Silani G, Gazzola V. Predictive coding for the actions and emotions of others and its deficits in autism spectrum disorders. Neurosci Biobehav Rev 2024; 167:105877. [PMID: 39260714 DOI: 10.1016/j.neubiorev.2024.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Traditionally, the neural basis of social perception has been studied by showing participants brief examples of the actions or emotions of others presented in randomized order to prevent participants from anticipating what others do and feel. This approach is optimal to isolate the importance of information flow from lower to higher cortical areas. The degree to which feedback connections and Bayesian hierarchical predictive coding contribute to how mammals process more complex social stimuli has been less explored, and will be the focus of this review. We illustrate paradigms that start to capture how participants predict the actions and emotions of others under more ecological conditions, and discuss the brain activity measurement methods suitable to reveal the importance of feedback connections in these predictions. Together, these efforts draw a richer picture of social cognition in which predictive coding and feedback connections play significant roles. We further discuss how the notion of predicting coding is influencing how we think of autism spectrum disorder.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, Amsterdam 1105 BA, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Giorgia Silani
- Department of Clinical and Health Psychology, University of Vienna, Wien, Austria
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, Amsterdam 1105 BA, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Navarrete J, Schneider KN, Smith BM, Goodwin NL, Zhang YY, Salazar AS, Gonzalez YE, Anumolu P, Gross E, Tsai VS, Heshmati M, Golden SA. Individual Differences in Volitional Social Self-Administration and Motivation in Male and Female Mice Following Social Stress. Biol Psychiatry 2024; 96:309-321. [PMID: 38244753 PMCID: PMC11255129 DOI: 10.1016/j.biopsych.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/18/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND A key challenge in developing treatments for neuropsychiatric illness is the disconnect between preclinical models and the complexity of human social behavior. We integrate voluntary social self-administration into a rodent model of social stress as a platform for the identification of fundamental brain and behavior mechanisms underlying stress-induced individual differences in social motivation. METHODS Here, we introduced an operant social stress procedure in male and female mice composed of 3 phases: 1) social self-administration training, 2) social stress exposure concurrent with reinforced self-administration testing, and 3) poststress operant testing under nonreinforced and reinforced conditions. We used social-defeat and witness-defeat stress in male and female mice. RESULTS Social defeat attenuated social reward seeking in males but not females, whereas witness defeat had no effect in males but promoted seeking behavior in females. We resolved social stress-induced changes to social motivation by aggregating z-scored operant metrics into a cumulative social index score to describe the spectrum of individual differences exhibited during operant social stress. Clustering does not adequately describe the relative distributions of social motivation following stress and is better described as a nonbinary behavioral distribution defined by the social index score, capturing a dynamic range of stress-related alterations in social motivation inclusive of sex as a biological variable. CONCLUSIONS We demonstrated that operant social stress can detect stable individual differences in stress-induced changes to social motivation. The inclusion of volitional behavior in social procedures may enhance the understanding of behavioral adaptations that promote stress resiliency and their mechanisms under more naturalistic conditions.
Collapse
Affiliation(s)
- Jovana Navarrete
- Department of Biological Structure, University of Washington, Seattle, Washington; Graduate Program in Neuroscience, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Kevin N Schneider
- Department of Biological Structure, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Briana M Smith
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Nastacia L Goodwin
- Department of Biological Structure, University of Washington, Seattle, Washington; Graduate Program in Neuroscience, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Yizhe Y Zhang
- Department of Biological Structure, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Axelle S Salazar
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Yahir E Gonzalez
- Department of Biological Structure, University of Washington, Seattle, Washington; Undergraduate Neuroscience Program, University of Washington, Seattle, Washington
| | - Pranav Anumolu
- Department of Biological Structure, University of Washington, Seattle, Washington; Undergraduate Neuroscience Program, University of Washington, Seattle, Washington
| | - Ethan Gross
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Valerie S Tsai
- Department of Biological Structure, University of Washington, Seattle, Washington; Undergraduate Neuroscience Program, University of Washington, Seattle, Washington
| | - Mitra Heshmati
- Department of Biological Structure, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Sam A Golden
- Department of Biological Structure, University of Washington, Seattle, Washington; Graduate Program in Neuroscience, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington.
| |
Collapse
|
9
|
Gachomba MJM, Esteve-Agraz J, Márquez C. Prosocial behaviors in rodents. Neurosci Biobehav Rev 2024; 163:105776. [PMID: 38909642 DOI: 10.1016/j.neubiorev.2024.105776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Prosocial behaviors (i.e., actions that benefit others) are central for social interactions in humans and other animals, by fostering social bonding and cohesion. To study prosociality in rodents, scientists have developed behavioral paradigms where animals can display actions that benefit conspecifics in distress or need. These paradigms have provided insights into the role of social interactions and transfer of emotional states in the expression of prosociality, and increased knowledge of its neural bases. However, prosociality levels are variable: not all tested animals are prosocial. Such variation has been linked to differences in animals' ability to process another's state as well as to contextual factors. Moreover, evidence suggests that prosocial behaviors involve the orchestrated activity of multiple brain regions and neuromodulators. This review aims to synthesize findings across paradigms both at the level of behavior and neural mechanisms. Growing evidence confirms that these processes can be studied in rodents, and intense research in the past years is rapidly advancing our knowledge. We discuss a strong bias in the field towards the study of these processes in negative valence contexts (e.g., pain, fear, stress), which should be taken as an opportunity to open new venues for future research.
Collapse
Affiliation(s)
- Michael J M Gachomba
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Joan Esteve-Agraz
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Cristina Márquez
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
10
|
Kareklas K, Oliveira RF. Emotional contagion and prosocial behaviour in fish: An evolutionary and mechanistic approach. Neurosci Biobehav Rev 2024; 163:105780. [PMID: 38955311 DOI: 10.1016/j.neubiorev.2024.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
In this review, we consider the definitions and experimental approaches to emotional contagion and prosocial behaviour in mammals and explore their evolutionary conceptualisation for studying their occurrence in the evolutionarily divergent vertebrate group of ray-finned fish. We present evidence for a diverse set of fish phenotypes that meet definitional criteria for prosocial behaviour and emotional contagion and discuss conserved mechanisms that may account for some preserved social capacities in fish. Finally, we provide some considerations on how to address the question of interdependency between emotional contagion and prosocial response, highlighting the importance of recognition processes, decision-making systems, and ecological context for providing evolutionary explanations.
Collapse
Affiliation(s)
- Kyriacos Kareklas
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, Oeiras 2780-156, Portugal
| | - Rui F Oliveira
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, Oeiras 2780-156, Portugal; ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, Lisboa 1149-041, Portugal.
| |
Collapse
|
11
|
Rütgen M, Lamm C. Dissecting shared pain representations to understand their behavioral and clinical relevance. Neurosci Biobehav Rev 2024; 163:105769. [PMID: 38879099 DOI: 10.1016/j.neubiorev.2024.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Accounts of shared representations posit that the experience of pain and pain empathy rely on similar neural mechanisms. Experimental research employing novel analytical and methodological approaches has made significant advances in both the identification and targeted manipulation of such shared experiences and their neural underpinnings. This revealed that painful experiences can be shared on different representational levels, from pain-specific to domain-general features, such as negative affect and its regulation. In view of direct links between such representations and social behaviors such as prosocial behavior, conditions characterized by aberrant pain processing may come along with heavy impairments in the social domain, depending on the affected representational level. This has wide potential implications in light of the high prevalence of pain-related clinical conditions, their management, and the overuse of pain medication. In this review and opinion paper, we aim to chart the path toward a better understanding of the link between shared affect and prosocial behavior.
Collapse
Affiliation(s)
- Markus Rütgen
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden.
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Fusani B, Oliveira RF. "Why (Zebra)fish May Get Ulcers": Cognitive and Social Modulation of Stress in Fish. BRAIN, BEHAVIOR AND EVOLUTION 2024:1-9. [PMID: 39047702 DOI: 10.1159/000540113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND In the bestseller book "Why Zebras Don't Get Ulcers", Robert Sapolsky argues that animals do not suffer from stress-related diseases like humans because for them, stress is episodic, while humans in contrast suffer from chronic psychological stress. In particular, the idea that fish cannot experience psychological stress is still prevalent, partly due to the lack of a homologous brain area to the neocortex. However, emerging evidence suggests that teleosts can undergo psychological stress, defined as a subjective and perceptual experience of the stressor, and in recent years, the underlying mechanisms started to be unveiled. SUMMARY The occurrence of cognitive appraisal in the assessment of stressors has been demonstrated in fish, indicating that the subjective evaluation of stimulus valence and salience, rather than absolute intrinsic characteristics of the stimulus itself, play a key role in the activation of the stress response. Moreover, individual biases (i.e., cognitive bias) in the cognitive appraisal of stimuli have also been described in fish, with some individuals consistently evaluating ambiguous stimuli as positive (aka optimists) whereas other individuals (aka pessimists) appraise them as negative. As a result, optimists and pessimists show consistent differences in stress reactivity and susceptibility/resilience to disease. Finally, social context has also been shown to modulate the response to aversive stimuli with the behavior of conspecifics either buffering or enhancing the response (i.e., social buffering vs. social contagion). KEY MESSAGES Cognitive appraisal of stressors occurs in fish, implying that the stress response is modulated by a subjective and perceptual experience of the stressor. Moreover, interindividual consistent cognitive biases in the appraisal of stressors are also present in fish making some individuals more susceptible to stress-related diseases. Therefore, psychological stress has a health toll in fish, and psychologically stressed fish can potentially have ulcers.
Collapse
Affiliation(s)
- Bianca Fusani
- IGC - Instituto Gulbenkian de Ciencia, Oeiras, Portugal
- ISPA - Instituto Universitario, Lisbon, Portugal
- ISE - Institute of Science and Environment, University of Saint Joseph, Macau, Macau
| | - Rui F Oliveira
- IGC - Instituto Gulbenkian de Ciencia, Oeiras, Portugal
- ISPA - Instituto Universitario, Lisbon, Portugal
- Champalimaud Neuroscience Program, Lisbon, Portugal
| |
Collapse
|
13
|
Dautan D, Monai A, Maltese F, Chang X, Molent C, Mauro D, Galbusera A, Vecchia D, Antonelli F, Benedetti A, Drago F, Leggio GM, Pagani M, Fellin T, Gozzi A, Schumann G, Managò F, Papaleo F. Cortico-cortical transfer of socially derived information gates emotion recognition. Nat Neurosci 2024; 27:1318-1332. [PMID: 38769153 DOI: 10.1038/s41593-024-01647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Emotion recognition and the resulting responses are important for survival and social functioning. However, how socially derived information is processed for reliable emotion recognition is incompletely understood. Here, we reveal an evolutionarily conserved long-range inhibitory/excitatory brain network mediating these socio-cognitive processes. Anatomical tracing in mice revealed the existence of a subpopulation of somatostatin (SOM) GABAergic neurons projecting from the medial prefrontal cortex (mPFC) to the retrosplenial cortex (RSC). Through optogenetic manipulations and Ca2+ imaging fiber photometry in mice and functional imaging in humans, we demonstrate the specific participation of these long-range SOM projections from the mPFC to the RSC, and an excitatory feedback loop from the RSC to the mPFC, in emotion recognition. Notably, we show that mPFC-to-RSC SOM projections are dysfunctional in mouse models relevant to psychiatric vulnerability and can be targeted to rescue emotion recognition deficits in these mice. Our findings demonstrate a cortico-cortical circuit underlying emotion recognition.
Collapse
Affiliation(s)
- Daniel Dautan
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
- Bioclinicum, Karolinska Institute, Stockholm, Sweden
| | - Anna Monai
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Federica Maltese
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Xiao Chang
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, P. R. China
| | - Cinzia Molent
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Daniele Mauro
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Federica Antonelli
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Arianna Benedetti
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, P. R. China
- Centre for Population Neuroscience and Stratified Medicine (PONS), Charite Mental Health, Department of Psychiatry and Psychotherapy, CCM, Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Francesca Managò
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
14
|
Nowicki JP, Rodríguez C, Lee JC, Goolsby BC, Yang C, Cleland TA, O'Connell LA. Physiological state matching in a pair bonded poison frog. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240744. [PMID: 39076367 PMCID: PMC11285483 DOI: 10.1098/rsos.240744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/22/2024] [Indexed: 07/31/2024]
Abstract
More than a century ago, Charles Darwin hypothesized that the empathy-like phenotype is a phylogenetically widespread phenomenon. This idea remains contentious, due to the challenges of empirically examining emotions, and few investigations among non-mammalian vertebrates. We provide support for Darwin's hypothesis by discovering partial evidence for the most ancestral form of empathy, emotional contagion (i.e. matching another individual's emotional state), in the pair bonding mimetic poison frog, Ranitomeya imitator. We found that male corticosterone, a physiological biomarker of stress, positively correlates with female partners in experimental and semi-natural conditions. This does not appear to coincide with behavioural state-matching. However, it is specific to female partners relative to familiar female non-partners, and is independent of effects that commonly confound studies on emotional contagion. Furthermore, this physiological state-matching is irrespective of partnership longevity or lifetime reproductive output. These results physiologically indicate socially selective emotional contagion in a monogamous amphibian, and paradigms that elicit coinciding neural and behavioural indicators and morphogenic co-variation are needed for further corroboration. Further studies on ancestral forms of empathy in non-mammalian vertebrates are warranted.
Collapse
Affiliation(s)
| | | | - Julia C. Lee
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Chen Yang
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|
15
|
Brosnan A, Knapska E. Cheerful tails: Delving into positive emotional contagion. Neurosci Biobehav Rev 2024; 161:105674. [PMID: 38614451 DOI: 10.1016/j.neubiorev.2024.105674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
This review delves into the phenomenon of positive emotional contagion (PEC) in rodents, an area that remains relatively understudied compared to the well-explored realm of negative emotions such as fear or pain. Rodents exhibit clear preferences for individuals expressing positive emotions over neutral counterparts, underscoring the importance of detecting and responding to positive emotional signals from others. We thoroughly examine the adaptive function of PEC, highlighting its pivotal role in social learning and environmental adaptation. The developmental aspect of the ability to interpret positive emotions is explored, intricately linked to maternal care and social interactions, with oxytocin playing a central role in these processes. We discuss the potential involvement of the reward system and draw attention to persisting gaps in our understanding of the neural mechanisms governing PEC. Presenting a comprehensive overview of the existing literature, we focus on food-related protocols such as the Social Transmission of Food Preferences paradigm and tickling behaviour. Our review emphasizes the pressing need for further research to address lingering questions and advance our comprehension of positive emotional contagion.
Collapse
Affiliation(s)
- Adam Brosnan
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
16
|
Li J, Qin Y, Zhong Z, Meng L, Huang L, Li B. Pain experience reduces social avoidance to others in pain: a c-Fos-based functional connectivity network study in mice. Cereb Cortex 2024; 34:bhae207. [PMID: 38798004 DOI: 10.1093/cercor/bhae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Pain experience increases individuals' perception and contagion of others' pain, but whether pain experience affects individuals' affiliative or antagonistic responses to others' pain is largely unknown. Additionally, the neural mechanisms underlying how pain experience modulates individuals' responses to others' pain remain unclear. In this study, we explored the effects of pain experience on individuals' responses to others' pain and the underlying neural mechanisms. By comparing locomotion, social, exploration, stereotyped, and anxiety-like behaviors of mice without any pain experience (naïve observers) and mice with a similar pain experience (experienced observers) when they observed the pain-free demonstrator with intraperitoneal injection of normal saline and the painful demonstrator with intraperitoneal injection of acetic acid, we found that pain experience of the observers led to decreased social avoidance to the painful demonstrator. Through whole-brain c-Fos quantification, we discovered that pain experience altered neuronal activity and enhanced functional connectivity in the mouse brain. The analysis of complex network and graph theory exhibited that functional connectivity networks and activated hub regions were altered by pain experience. Together, these findings reveal that neuronal activity and functional connectivity networks are involved in the modulation of individuals' responses to others' pain by pain experience.
Collapse
Affiliation(s)
- Jiali Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
| | - Yuxin Qin
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
| | - Zifeng Zhong
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
| | - Linjie Meng
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
| | - Lianyan Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
| | - Boxing Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
| |
Collapse
|
17
|
Szczuka A, Sochacka-Marlowe A, Korczyńska J, Mazurkiewicz PJ, Symonowicz B, Kukina O, Godzińska EJ. Do They Know What They Are Doing? Cognitive Aspects of Rescue Behaviour Directed by Workers of the Red Wood Ant Formica polyctena to Nestmate Victims Entrapped in Artificial Snares. Life (Basel) 2024; 14:515. [PMID: 38672785 PMCID: PMC11051173 DOI: 10.3390/life14040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Ant rescue behaviour belongs to the most interesting subcategories of prosocial and altruistic behaviour encountered in the animal world. Several studies suggested that ants are able to identify what exactly restrains the movements of another individual and to direct their rescue behaviour precisely to that object. To shed more light on the question of how precise the identification of the source of restraint of another ant is, we investigated rescue behaviour of red wood ant Formica polyctena workers, using a new version of an artificial snare bioassay in which a nestmate victim bore two wire loops on its body, one (acting as a snare) placed on its petiole and an additional one on its leg. The tested ants did not preferentially direct their rescue behaviour towards the snare. Moreover, the overall strategy adopted by the most active rescuers was not limited to precisely targeted rescue attempts directed towards the snare, but consisted of frequent switching between various subcategories of rescue behaviour. These findings highlight the importance of precise identification of cognitive processes and overall behavioural strategies for better understanding of causal factors underlying animal helping behaviour in light of new facts discovered by testing of various successive research hypotheses.
Collapse
Affiliation(s)
- Anna Szczuka
- Laboratory of Ethology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Ludwika Pasteura St. 3, PL 02-093 Warsaw, Poland; (A.S.); (A.S.-M.); (J.K.); (P.J.M.); (B.S.); (O.K.)
| | - Alicja Sochacka-Marlowe
- Laboratory of Ethology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Ludwika Pasteura St. 3, PL 02-093 Warsaw, Poland; (A.S.); (A.S.-M.); (J.K.); (P.J.M.); (B.S.); (O.K.)
- Department of Biology and Integrated Bioscience Program, University of Akron, Akron, OH 44325, USA
| | - Julita Korczyńska
- Laboratory of Ethology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Ludwika Pasteura St. 3, PL 02-093 Warsaw, Poland; (A.S.); (A.S.-M.); (J.K.); (P.J.M.); (B.S.); (O.K.)
| | - Paweł Jarosław Mazurkiewicz
- Laboratory of Ethology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Ludwika Pasteura St. 3, PL 02-093 Warsaw, Poland; (A.S.); (A.S.-M.); (J.K.); (P.J.M.); (B.S.); (O.K.)
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences (MISMaP), University of Warsaw, Stefana Banacha St. 2c, PL 02-097 Warsaw, Poland
| | - Beata Symonowicz
- Laboratory of Ethology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Ludwika Pasteura St. 3, PL 02-093 Warsaw, Poland; (A.S.); (A.S.-M.); (J.K.); (P.J.M.); (B.S.); (O.K.)
| | - Olga Kukina
- Laboratory of Ethology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Ludwika Pasteura St. 3, PL 02-093 Warsaw, Poland; (A.S.); (A.S.-M.); (J.K.); (P.J.M.); (B.S.); (O.K.)
- Department of Entomology, Phytopathology and Physiology, Ukrainian Research Institute of Forestry and Forest Melioration, Pushkinska St. 86, 61024 Kharkiv, Ukraine
| | - Ewa Joanna Godzińska
- Laboratory of Ethology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Ludwika Pasteura St. 3, PL 02-093 Warsaw, Poland; (A.S.); (A.S.-M.); (J.K.); (P.J.M.); (B.S.); (O.K.)
| |
Collapse
|
18
|
Zhang Y, Yang X, Sun F, Zhang Y, Yao Y, Bai Z, Yu J, Liu X, Zhao Q, Li X, Bao J. Emotional "Contagion" in Piglets after Sensory Avoidance of Rewarding and Punishing Treatment. Animals (Basel) 2024; 14:1110. [PMID: 38612349 PMCID: PMC11011006 DOI: 10.3390/ani14071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
In the pig farming industry, it is recommended to avoid groups when treating individuals to reduce adverse reactions in the group. However, can this eliminate the adverse effects effectively? Piglets were assigned to the Rewarding Group (RG), the Punishing Group (PG), and the Paired Control Group (PCG). There were six replicates in each group, with two paired piglets per replicate. One piglet of the RG and PG was randomly selected as the Treated pig (TP), treated with food rewards or electric shock, and the other as the Naive pig (NP). The NPs in the RG and PG were unaware of the treatment process, and piglets in the PCG were not treated. The behavior and heart rate changes of all piglets were recorded. Compared to the RG, the NPs in the PG showed longer proximity but less contact behavior, and the TPs in the PG showed more freezing behavior. The percentage change in heart rate of the NPs was synchronized with the TPs. This shows that after sensory avoidance, the untreated pigs could also feel the emotions of their peers and their emotional state was affected by their peers, and the negative emotions in the pigs lasted longer than the positive emotions. The avoidance process does not prevent the transfer of negative emotions to peers via emotional contagion from the stimulated pig.
Collapse
Affiliation(s)
- Ye Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road No. 600, Harbin 150030, China; (Y.Z.); (X.Y.); (F.S.); (Y.Z.); (Y.Y.); (Z.B.); (J.Y.); (Q.Z.)
| | - Xuesong Yang
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road No. 600, Harbin 150030, China; (Y.Z.); (X.Y.); (F.S.); (Y.Z.); (Y.Y.); (Z.B.); (J.Y.); (Q.Z.)
| | - Fang Sun
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road No. 600, Harbin 150030, China; (Y.Z.); (X.Y.); (F.S.); (Y.Z.); (Y.Y.); (Z.B.); (J.Y.); (Q.Z.)
| | - Yaqian Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road No. 600, Harbin 150030, China; (Y.Z.); (X.Y.); (F.S.); (Y.Z.); (Y.Y.); (Z.B.); (J.Y.); (Q.Z.)
| | - Yuhan Yao
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road No. 600, Harbin 150030, China; (Y.Z.); (X.Y.); (F.S.); (Y.Z.); (Y.Y.); (Z.B.); (J.Y.); (Q.Z.)
| | - Ziyu Bai
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road No. 600, Harbin 150030, China; (Y.Z.); (X.Y.); (F.S.); (Y.Z.); (Y.Y.); (Z.B.); (J.Y.); (Q.Z.)
| | - Jiaqi Yu
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road No. 600, Harbin 150030, China; (Y.Z.); (X.Y.); (F.S.); (Y.Z.); (Y.Y.); (Z.B.); (J.Y.); (Q.Z.)
| | - Xiangyu Liu
- College of Life Science, Northeast Agricultural University, Changjiang Road No. 600, Harbin 150030, China;
| | - Qian Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road No. 600, Harbin 150030, China; (Y.Z.); (X.Y.); (F.S.); (Y.Z.); (Y.Y.); (Z.B.); (J.Y.); (Q.Z.)
| | - Xiang Li
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road No. 600, Harbin 150030, China; (Y.Z.); (X.Y.); (F.S.); (Y.Z.); (Y.Y.); (Z.B.); (J.Y.); (Q.Z.)
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Changjiang Road No. 600, Harbin 150030, China; (Y.Z.); (X.Y.); (F.S.); (Y.Z.); (Y.Y.); (Z.B.); (J.Y.); (Q.Z.)
| |
Collapse
|
19
|
Zhang M, Chen G, Hu RK. How is helping behavior regulated in the brain? Trends Cogn Sci 2024; 28:281-283. [PMID: 38418366 DOI: 10.1016/j.tics.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
In humans and other animals, individuals can actively respond to the specific needs of others. However, the neural circuits supporting helping behaviors are underspecified. In recent work, Zhang, Wu, and colleagues identified a new role for the anterior cingulate cortex (ACC) in the encoding and regulation of targeted helping behavior (allolicking) in mice.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Psychological Medicine, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China; Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Guohua Chen
- Department of Psychological Medicine, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Rongfeng K Hu
- Department of Psychological Medicine, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China.
| |
Collapse
|
20
|
Yu D, Bao L, Yin B. Emotional contagion in rodents: A comprehensive exploration of mechanisms and multimodal perspectives. Behav Processes 2024; 216:105008. [PMID: 38373472 DOI: 10.1016/j.beproc.2024.105008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/26/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Emotional contagion, a fundamental aspect of empathy, is an automatic and unconscious process in which individuals mimic and synchronize with the emotions of others. Extensively studied in rodents, this phenomenon is mediated through a range of sensory pathways, each contributing distinct insights. The olfactory pathway, marked by two types of pheromones modulated by oxytocin, plays a crucial role in transmitting emotional states. The auditory pathway, involving both squeaks and specific ultrasonic vocalizations, correlates with various emotional states and is essential for expression and communication in rodents. The visual pathway, though less relied upon, encompasses observational motions and facial expressions. The tactile pathway, a more recent focus, underscores the significance of physical interactions such as allogrooming and socio-affective touch in modulating emotional states. This comprehensive review not only highlights plausible neural mechanisms but also poses key questions for future research. It underscores the complexity of multimodal integration in emotional contagion, offering valuable insights for human psychology, neuroscience, animal welfare, and the burgeoning field of animal-human-AI interactions, thereby contributing to the development of a more empathetic intelligent future.
Collapse
Affiliation(s)
- Delin Yu
- School of Psychology, Fujian Normal University, Fuzhou, Fujian 350117, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Lili Bao
- School of Psychology, Fujian Normal University, Fuzhou, Fujian 350117, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Bin Yin
- School of Psychology, Fujian Normal University, Fuzhou, Fujian 350117, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China.
| |
Collapse
|
21
|
Xu JJ, Tang XT, Fu WC, Zheng JX, Jiang LP, Zhou YW, Yang QN. "Adjacent Bed Effect" of Total Knee Arthroplasty Patients During the Perioperative Period. Pain Manag Nurs 2024; 25:88-92. [PMID: 37867077 DOI: 10.1016/j.pmn.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Knee osteoarthropathy is one of the most common degenerative joint diseases in the elderly, total knee arthroplasty (TKA) is the most commonly used treatment for end-stage knee osteoarthropathy. Negative emotions such as anxiety have been extensively documented in knee osteoarthropathy patients. AIM This study aimed to investigate the Emotional Contagion during hospitalization in patients undergoing TKA. METHODS Eligible subjects were divided into three case groups according to their anxiety states and bed arrangement. All subjects underwent a unilateral, cemented TKA under general anesthesia. Post-operative recovery outcomes including pain, pain behavior and physical function were recorded pre-operation, 1-day, 1 week, 2-weeks, 1-month and 3-months post-operation. RESULTS A total of 38 subjects were included in the final analysis. Subjects with anxiety had higher Visual Analogue Scale pain scores, PROMIS-Pain Behavior scores than subjects without anxiety in the Contagion Group preoperation (p ≤ .05). Non-anxiety subjects hospitalized in beds physically adjacent to anxiety subjects experienced more severe pain and poorer function (p ≤ .05). After discharge, all clinical outcomes gradually became lower than anxiety subjects in the Contagion Group, reaching levels similar to non-anxiety subjects in the No Contagion Group within 1 month (p>.05). CONCLUSIONS This study showed that patients with anxiety may have an "Adjacent Bed Effect" on patients with TKA in the adjacent bed, which may be associated with poorer postoperative recovery, including pain and physical function. We speculate this phenomenon can be effectively avoided by the nursing team through accurately assessing psychological status and reasonable bed arrangements in the inpatient assessment phase.
Collapse
Affiliation(s)
- Jia-Jing Xu
- From the Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Zhejiang University, Jinhua City, Zhejiang Province, China
| | | | - Wei-Cong Fu
- From the Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Zhejiang University, Jinhua City, Zhejiang Province, China
| | - Jia-Xing Zheng
- From the Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Zhejiang University, Jinhua City, Zhejiang Province, China
| | - Lian-Ping Jiang
- From the Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Zhejiang University, Jinhua City, Zhejiang Province, China
| | - Yong-Wei Zhou
- From the Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Zhejiang University, Jinhua City, Zhejiang Province, China
| | - Qi-Ning Yang
- From the Department of Joint Orthopaedic Surgery, Jinhua Municipal Central Hospital, Zhejiang University, Jinhua City, Zhejiang Province, China.
| |
Collapse
|
22
|
Zhang M, Wu YE, Jiang M, Hong W. Cortical regulation of helping behaviour towards others in pain. Nature 2024; 626:136-144. [PMID: 38267578 PMCID: PMC10925558 DOI: 10.1038/s41586-023-06973-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
Humans and animals exhibit various forms of prosocial helping behaviour towards others in need1-3. Although previous research has investigated how individuals may perceive others' states4,5, the neural mechanisms of how they respond to others' needs and goals with helping behaviour remain largely unknown. Here we show that mice engage in a form of helping behaviour towards other individuals experiencing physical pain and injury-they exhibit allolicking (social licking) behaviour specifically towards the injury site, which aids the recipients in coping with pain. Using microendoscopic imaging, we found that single-neuron and ensemble activity in the anterior cingulate cortex (ACC) encodes others' state of pain and that this representation is different from that of general stress in others. Furthermore, functional manipulations demonstrate a causal role of the ACC in bidirectionally controlling targeted allolicking. Notably, this behaviour is represented in a population code in the ACC that differs from that of general allogrooming, a distinct type of prosocial behaviour elicited by others' emotional stress. These findings advance our understanding of the neural coding and regulation of helping behaviour.
Collapse
Affiliation(s)
- Mingmin Zhang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ye Emily Wu
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mengping Jiang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Weizhe Hong
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Breton JM, Cort Z, Demaestri C, Critz M, Nevins S, Downend K, Ofray D, Romeo RD, Bath KG. Early life adversity reduces affiliative behavior with a stressed cagemate and leads to sex-specific alterations in corticosterone responses in adult mice. Horm Behav 2024; 158:105464. [PMID: 38070354 PMCID: PMC10872397 DOI: 10.1016/j.yhbeh.2023.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Experiencing early life adversity (ELA) alters stress physiology and increases the risk for developing psychiatric disorders. The social environment can influence dynamics of stress responding and buffer and/or transfer stress across individuals. Yet, the impact of ELA on sensitivity to the stress of others and social behavior following stress is unknown. Here, to test the impact of ELA on social and physiological responses to stress, circulating blood corticosterone (CORT) and social behaviors were assessed in adult male and female mice reared under limited bedding and nesting (LBN) or control conditions. To induce stress, one cagemate of a pair-housed cage underwent a footshock paradigm and was then returned to their unshocked partner. CORT was measured in both groups of mice 20 or 90 min after stress exposure, and social behaviors were recorded and analyzed. ELA rearing influenced the CORT response to stress in a sex-specific manner. In males, both control and ELA-reared mice exhibited similar stress transfer to unshocked cagemates and similar CORT dynamics. In contrast, ELA females showed a heightened stress transfer to unshocked cagemates, and sustained elevation of CORT relative to controls, indicating enhanced stress contagion and a failure to terminate the stress response. Behaviorally, ELA females displayed decreased allogrooming and increased investigative behaviors, while ELA males showed reduced huddling. Together, these findings demonstrate that ELA influenced HPA axis dynamics, social stress contagion and social behavior. Further research is needed to unravel the underlying mechanisms and long-term consequences of ELA on stress systems and their impact on behavioral outcomes.
Collapse
Affiliation(s)
- Jocelyn M Breton
- Columbia University, Department of Psychiatry, New York, NY, USA; New York State Psychiatric Institute, Division of Developmental Neuroscience, New York, NY, 10032, USA
| | - Zoey Cort
- Barnard College of Columbia University, Department of Neuroscience and Behavior, New York, NY, USA
| | - Camila Demaestri
- Columbia University, Department of Psychiatry, New York, NY, USA
| | - Madalyn Critz
- Columbia University, Department of Psychiatry, New York, NY, USA; New York State Psychiatric Institute, Division of Developmental Neuroscience, New York, NY, 10032, USA
| | - Samuel Nevins
- Brown University, Department of Cognitive, Linguistic and Psychological Sciences, Providence, RI, USA
| | - Kendall Downend
- Barnard College of Columbia University, Department of Neuroscience and Behavior, New York, NY, USA
| | - Dayshalis Ofray
- Columbia University, Department of Psychiatry, New York, NY, USA; New York State Psychiatric Institute, Division of Developmental Neuroscience, New York, NY, 10032, USA
| | - Russell D Romeo
- Barnard College of Columbia University, Department of Neuroscience and Behavior, New York, NY, USA
| | - Kevin G Bath
- Columbia University, Department of Psychiatry, New York, NY, USA; New York State Psychiatric Institute, Division of Developmental Neuroscience, New York, NY, 10032, USA.
| |
Collapse
|
24
|
Yokose J, Marks WD, Kitamura T. Visuotactile integration facilitates mirror-induced self-directed behavior through activation of hippocampal neuronal ensembles in mice. Neuron 2024; 112:306-318.e8. [PMID: 38056456 DOI: 10.1016/j.neuron.2023.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/28/2023] [Accepted: 10/17/2023] [Indexed: 12/08/2023]
Abstract
Remembering the visual features of oneself is critical for self-recognition. However, the neural mechanisms of how the visual self-image is developed remain unknown because of the limited availability of behavioral paradigms in experimental animals. Here, we demonstrate a mirror-induced self-directed behavior (MSB) in mice, resembling visual self-recognition. Mice displayed increased mark-directed grooming to remove ink placed on their heads when an ink-induced visual-tactile stimulus contingency occurred. MSB required mirror habituation and social experience. The chemogenetic inhibition of dorsal or ventral hippocampal CA1 (vCA1) neurons attenuated MSB. Especially, a subset of vCA1 neurons activated during the mirror exposure was significantly reactivated during re-exposure to the mirror and was necessary for MSB. The self-responding vCA1 neurons were also reactivated when mice were exposed to a conspecific of the same strain. These results suggest that visual self-image may be developed through social experience and mirror habituation and stored in a subset of vCA1 neurons.
Collapse
Affiliation(s)
- Jun Yokose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - William D Marks
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
25
|
Keysers C, Michon F. Can mirror self-recognition in mice unpack the neural underpinnings of self-awareness? Neuron 2024; 112:177-179. [PMID: 38237554 DOI: 10.1016/j.neuron.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
In this issue of Neuron, Yokose et al. show that mice groom a mark on their forehead when exposed to a mirror. Comparing this behavior with hominids' helps carve self-awareness into its component parts and explore the neural mechanisms of its shared components.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, 1105 BA, Amsterdam, the Netherlands; University of Amsterdam, Department of Psychology, Brain & Cognition, Amsterdam, The Netherlands.
| | - Frédéric Michon
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, 1105 BA, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Keysers C, Gazzola V. Vicarious Emotions of Fear and Pain in Rodents. AFFECTIVE SCIENCE 2023; 4:662-671. [PMID: 38156261 PMCID: PMC10751282 DOI: 10.1007/s42761-023-00198-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/24/2023] [Indexed: 12/30/2023]
Abstract
Affective empathy, the ability to share the emotions of others, is an important contributor to the richness of our emotional experiences. Here, we review evidence that rodents show signs of fear and pain when they witness the fear and pain of others. This emotional contagion creates a vicarious emotion in the witness that mirrors some level of detail of the emotion of the demonstrator, including its valence and the vicinity of threats, and depends on brain regions such as the cingulate, amygdala, and insula that are also at the core of human empathy. Although it remains impossible to directly know how witnessing the distress of others feels for rodents, and whether this feeling is similar to the empathy humans experience, the similarity in neural structures suggests some analogies in emotional experience across rodents and humans. These neural homologies also reveal that feeling distress while others are distressed must serve an evolutionary purpose strong enough to warrant its stability across ~ 100 millions of years. We propose that it does so by allowing observers to set in motion the very emotions that have evolved to prepare them to deal with threats - with the benefit of triggering them socially, by harnessing conspecifics as sentinels, before the witness personally faces that threat. Finally, we discuss evidence that rodents can engage in prosocial behaviors that may be motivated by vicarious distress or reward.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Chen Y, Chen W, Zhang L, Wei Y, Hu P. The Reward-Related Shift of Emotional Contagion from the Observer's Perspective Correlates to Their Intimacy with the Expresser. Behav Sci (Basel) 2023; 13:934. [PMID: 37998681 PMCID: PMC10669892 DOI: 10.3390/bs13110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Although previous studies have found a bidirectional relationship between emotional contagion and reward, there is insufficient research to prove the effect of reward on the social function of emotional contagion. To explore this issue, the current study used electroencephalography (EEG) and the interactive way in which the expresser played games to help participants obtain reward outcomes. The results demonstrated a significant correlation between changes in emotional contagion and closeness, indicating that emotional contagion has a social regulatory function. Regarding the impact of reward outcomes, the results showed that compared to the context of a loss, in the context of a win, participants' closeness toward the expresser shifted to a more intimate level, their emotional contagion changed in a more positive direction, and the activity of the late positive component (LPC) of the event-related potentials (ERPs) changed to a greater extent. Significantly, the mediation results demonstrated the effect of reward and indicated that changes in the LPC elicited while experiencing the expressers' emotion predicted the subsequent shifts in closeness through alterations in emotional contagion of the anger emotion in the winning context and the happy emotion in the loss context. This study provides empirical evidence regarding the social function of emotional contagion and proves for the first time that the reward context plays a role in it.
Collapse
Affiliation(s)
| | | | | | | | - Ping Hu
- Department of Psychology, Renmin University of China, No. 59 of Zhongguancun Street, Haidian District, Beijing 100872, China; (Y.C.); (W.C.); (L.Z.); (Y.W.)
| |
Collapse
|
28
|
Kaźmierowska AM, Kostecki M, Szczepanik M, Nikolaev T, Hamed A, Michałowski JM, Wypych M, Marchewka A, Knapska E. Rats respond to aversive emotional arousal of human handlers with the activation of the basolateral and central amygdala. Proc Natl Acad Sci U S A 2023; 120:e2302655120. [PMID: 37934822 PMCID: PMC10655214 DOI: 10.1073/pnas.2302655120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023] Open
Abstract
Reading danger signals may save an animal's life, and learning about threats from others allows avoiding first-hand aversive and often fatal experiences. Fear expressed by other individuals, including those belonging to other species, may indicate the presence of a threat in the environment and is an important social cue. Humans and other animals respond to conspecifics' fear with increased activity of the amygdala, the brain structure crucial for detecting threats and mounting an appropriate response to them. It is unclear, however, whether the cross-species transmission of threat information involves similar mechanisms, e.g., whether animals respond to the aversively induced emotional arousal of humans with activation of fear-processing circuits in the brain. Here, we report that when rats interact with a human caregiver who had recently undergone fear conditioning, they show risk assessment behavior and enhanced amygdala activation. The amygdala response involves its two major parts, the basolateral and central, which detect a threat and orchestrate defensive responses. Further, we show that humans who learn about a threat by observing another aversively aroused human, similar to rats, activate the basolateral and centromedial parts of the amygdala. Our results demonstrate that rats detect the emotional arousal of recently aversively stimulated caregivers and suggest that cross-species social transmission of threat information may involve similar neural circuits in the amygdala as the within-species transmission.
Collapse
Affiliation(s)
- Anna M. Kaźmierowska
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
- Laboratory of Emotions Neurobiology, BRAINCITY–Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| | - Mateusz Kostecki
- Laboratory of Emotions Neurobiology, BRAINCITY–Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| | - Michał Szczepanik
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
- Laboratory of Emotions Neurobiology, BRAINCITY–Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
- Institute of Neuroscience and Medicine, Brain & Behavior, Research Center Jülich, Jülich52428, Germany
| | - Tomasz Nikolaev
- Laboratory of Emotions Neurobiology, BRAINCITY–Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| | - Adam Hamed
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| | - Jarosław M. Michałowski
- Laboratory of Affective Neuroscience in Poznan, University of Social Sciences and Humanities, Poznań61-719, Poland
| | - Marek Wypych
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, BRAINCITY–Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| |
Collapse
|
29
|
Packheiser J, Soyman E, Paradiso E, Michon F, Ramaaker E, Sahin N, Muralidharan S, Wöhr M, Gazzola V, Keysers C. Audible pain squeaks can mediate emotional contagion across pre-exposed rats with a potential effect of auto-conditioning. Commun Biol 2023; 6:1085. [PMID: 37880354 PMCID: PMC10600148 DOI: 10.1038/s42003-023-05474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Footshock self-experience enhances rodents' reactions to the distress of others. Here, we tested one potential mechanism supporting this phenomenon, namely that animals auto-condition to their own pain squeaks during shock pre-exposure. In Experiment 1, shock pre-exposure increased freezing and 22 kHz distress vocalizations while animals listened to the audible pain-squeaks of others. In Experiment 2 and 3, to test the auto-conditioning theory, we weakened the noxious pre-exposure stimulus not to trigger pain squeaks, and compared pre-exposure protocols in which we paired it with squeak playback against unpaired control conditions. Although all animals later showed fear responses to squeak playbacks, these were weaker than following typical pre-exposure (Experiment 1) and not stronger following paired than unpaired pre-exposure. Experiment 1 thus demonstrates the relevance of audible pain squeaks in the transmission of distress but Experiment 2 and 3 highlight the difficulty to test auto-conditioning: stimuli weak enough to decouple pain experience from hearing self-emitted squeaks are too weak to trigger the experience-dependent increase in fear transmission that we aimed to study. Although our results do not contradict the auto-conditioning hypothesis, they fail to disentangle it from sensitization effects. Future studies could temporarily deafen animals during pre-exposure to further test this hypothesis.
Collapse
Affiliation(s)
- Julian Packheiser
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Efe Soyman
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Social Cognitive and Affective Neuroscience Lab, Koc University, Istanbul, Turkey
| | - Enrica Paradiso
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Frédéric Michon
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Eline Ramaaker
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Neslihan Sahin
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | | | - Markus Wöhr
- Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
30
|
Song D, Wang C, Jin Y, Deng Y, Yan Y, Wang D, Zhu Z, Ke Z, Wang Z, Wu Y, Ni J, Qing H, Quan Z. Mediodorsal thalamus-projecting anterior cingulate cortex neurons modulate helping behavior in mice. Curr Biol 2023; 33:4330-4342.e5. [PMID: 37734375 DOI: 10.1016/j.cub.2023.08.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/06/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
Many species living in groups can perform prosocial behaviors via voluntarily helping others with or without benefits for themselves. To provide a better understanding of the neural basis of such prosocial behaviors, we adapted a preference lever-switching task in which mice can prevent harm to others by switching from using a lever that causes shocks to a conspecific one that does not. We found the harm avoidance behavior was mediated by self-experience and visual and social contact but not by gender or familiarity. By combining single-unit recordings and analysis of neural trajectory decoding, we demonstrated the dynamics of anterior cingulate cortex (ACC) neural activity changes synchronously with the harm avoidance performance of mice. In addition, ACC neurons projected to the mediodorsal thalamus (MDL) to modulate the harm avoidance behavior. Optogenetic activation of the ACC-MDL circuit during non-preferred lever pressing (nPLP) and inhibition of this circuit during preferred lever pressing (PLP) both resulted in the loss of harm avoidance ability. This study revealed the ACC-MDL circuit modulates prosocial behavior to avoid harm to conspecifics and may shed light on the treatment of neuropsychiatric disorders with dysfunction of prosocial behavior.
Collapse
Affiliation(s)
- Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Chunjian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yue Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yujun Deng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Deheng Wang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zilu Zhu
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zunji Ke
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Wang
- Advanced Innovation Center for Human Brain Protection and The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing 100069, China
| | - Yili Wu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
31
|
Pan Y, Vinding MC, Zhang L, Lundqvist D, Olsson A. A Brain-To-Brain Mechanism for Social Transmission of Threat Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304037. [PMID: 37544901 PMCID: PMC10558655 DOI: 10.1002/advs.202304037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 08/08/2023]
Abstract
Survival and adaptation in environments require swift and efficacious learning about what is dangerous. Across species, much of such threat learning is acquired socially, e.g., through the observation of others' ("demonstrators'") defensive behaviors. However, the specific neural mechanisms responsible for the integration of information shared between demonstrators and observers remain largely unknown. This dearth of knowledge is addressed by performing magnetoencephalography (MEG) neuroimaging in demonstrator-observer dyads. A set of stimuli are first shown to a demonstrator whose defensive responses are filmed and later presented to an observer, while neuronal activity is recorded sequentially from both individuals who never interacted directly. These results show that brain-to-brain coupling (BtBC) in the fronto-limbic circuit (including insula, ventromedial, and dorsolateral prefrontal cortex) within demonstrator-observer dyads predict subsequent expressions of learning in the observer. Importantly, the predictive power of BtBC magnifies when a threat is imminent to the demonstrator. Furthermore, BtBC depends on how observers perceive their social status relative to the demonstrator, likely driven by shared attention and emotion, as bolstered by dyadic pupillary coupling. Taken together, this study describes a brain-to-brain mechanism for social threat learning, involving BtBC, which reflects social relationships and predicts adaptive, learned behaviors.
Collapse
Affiliation(s)
- Yafeng Pan
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhou310058China
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
| | - Mikkel C. Vinding
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital ‐ Amager and HvidovreCopenhagen2650Denmark
| | - Lei Zhang
- Centre for Human Brain HealthSchool of PsychologyUniversity of BirminghamBirminghamB15 2TTUK
- Institute for Mental HealthSchool of PsychologyUniversity of BirminghamBirminghamB15 2TTUK
- SocialCognitive and Affective Neuroscience UnitDepartment of CognitionEmotionand Methods in PsychologyFaculty of PsychologyUniversity of ViennaVienna1010Austria
| | - Daniel Lundqvist
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
| | - Andreas Olsson
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
| |
Collapse
|
32
|
Ng AJ, Vincelette LK, Li J, Brady BH, Christianson JP. Serotonin modulates social responses to stressed conspecifics via insular 5-HT 2C receptors in rat. Neuropharmacology 2023; 236:109598. [PMID: 37230216 PMCID: PMC10330840 DOI: 10.1016/j.neuropharm.2023.109598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
Behaviors associated with distress can affect the anxiety-like states in observers and this social transfer of affect shapes social interactions among stressed individuals. We hypothesized that social reactions to stressed individuals engage the serotonergic dorsal raphe nucleus (DRN) which promotes anxiety-like behavior via postsynaptic action of serotonin at serotonin 2C (5-HT2C) receptors in the forebrain. First, we inhibited the DRN by administering an agonist (8-OH-DPAT, 1 μg in 0.5 μL) for the inhibitory 5-HT1A autoreceptors which silences 5-HT neuronal activity. 8-OH-DPAT prevented the approach and avoidance, respectively, of stressed juvenile (PN30) or stressed adult (PN60) conspecifics in the social affective preference (SAP) test in rats. Similarly, systemic administration of a 5-HT2C receptor antagonist (SB242084, 1 mg/kg, i.p.) prevented approach and avoidance of stressed juvenile or adult conspecifics, respectively. Seeking a locus of 5-HT2C action, we considered the posterior insular cortex which is critical for social affective behaviors and rich with 5-HT2C receptors. SB242084 administered directly into the insular cortex (5 μM in 0.5 μL bilaterally) interfered with the typical approach and avoidance behaviors observed in the SAP test. Finally, using fluorescent in situ hybridization, we found that 5-HT2C receptor mRNA (htr2c) is primarily colocalized with mRNA associated with excitatory glutamatergic neurons (vglut1) in the posterior insula. Importantly, the results of these treatments were the same in male and female rats. These data suggest that interactions with stressed others require the serotonergic DRN and that serotonin modulates social affective decision-making via action at insular 5-HT2C receptors.
Collapse
Affiliation(s)
- Alexandra J Ng
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - Lindsay K Vincelette
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Jiayi Li
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Bridget H Brady
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - John P Christianson
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
33
|
Michon F, Packheiser J, Gazzola V, Keysers C. Sharing Positive Affective States Amongst Rodents. AFFECTIVE SCIENCE 2023; 4:475-479. [PMID: 37744971 PMCID: PMC10513973 DOI: 10.1007/s42761-023-00201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/28/2023] [Indexed: 09/26/2023]
Abstract
Group living is thought to benefit from the ability to empathize with others. Much attention has been paid to empathy for the pain of others as an inhibitor of aggression. Empathizing with the positive affect of others has received less attention although it could promote helping by making it vicariously rewarding. Here, we review this latter, nascent literature to show that three components of the ability to empathize with positive emotions are already present in rodents, namely, the ability to perceive, share, and prefer actions that promote positive emotional states of conspecifics. While it has often been argued that empathy evolved as a motivation to care for others, we argue that these tendencies may have selfish benefits that could have stabilized their evolution: approaching others in a positive state can provide information about the source of valuable resources; becoming calmer and optimistic around animals in a calm or positive mood can help adapt to the socially sensed safety level in the environment; and preferring actions also benefiting others can optimize foraging, reduce aggression, and trigger reciprocity. Together, these findings illustrate an emerging field shedding light on the emotional world of rodents and on the biology and evolution of our ability to cooperate in groups.
Collapse
Affiliation(s)
- Frédéric Michon
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Julian Packheiser
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Breton JM, Cort Z, Demaestri C, Critz M, Nevins S, Downend K, Ofray D, Romeo RD, Bath KG. Early life adversity reduces affiliative behavior towards a distressed cagemate and leads to sex-specific alterations in corticosterone responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549876. [PMID: 37502995 PMCID: PMC10370200 DOI: 10.1101/2023.07.20.549876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Experiencing early life adversity (ELA) alters stress physiology and increases the risk for developing psychiatric disorders. The social environment can influence dynamics of stress responding and buffer and/or transfer stress across individuals. Yet, the impact of ELA on sensitivity to the stress of others and social behavior following stress is unknown. Here, to test the impact of ELA on social and physiological responses to stress, circulating blood corticosterone (CORT) and social behaviors were assessed in adult male and female mice reared under limited bedding and nesting (LBN) or control conditions. To induce stress, one cagemate of a pair-housed cage underwent a footshock paradigm and was then returned to their unshocked partner. CORT was measured in both mice 20 or 90 minutes after stress exposure, and social behaviors were recorded and analyzed. ELA rearing influenced the CORT response to stress in a sex-specific manner. In males, both control and ELA-reared mice exhibited similar stress transfer to unshocked cagemates and similar CORT dynamics. In contrast, ELA females showed a heightened stress transfer to unshocked cagemates, and sustained elevation of CORT relative to controls, indicating enhanced stress contagion and a failure to terminate the stress response. Behaviorally, ELA females displayed decreased allogrooming and increased investigative behaviors, while ELA males showed reduced huddling. Together, these findings demonstrate that ELA influenced HPA axis dynamics, social stress contagion and social behavior. Further research is needed to unravel the underlying mechanisms and long-term consequences of ELA on stress systems and their impact on behavioral outcomes.
Collapse
Affiliation(s)
- Jocelyn M Breton
- Columbia University, Department of Psychiatry, New York, NY, USA
| | - Zoey Cort
- Barnard College of Columbia University, Department of Neuroscience and Behavior, New York, NY, USA
| | - Camila Demaestri
- Columbia University, Department of Psychiatry, New York, NY, USA
| | - Madalyn Critz
- Columbia University, Department of Psychiatry, New York, NY, USA
| | - Samuel Nevins
- Brown University, Department of Cognitive, Linguistic and Psychological Sciences, Providence, RI, USA
| | - Kendall Downend
- Barnard College of Columbia University, Department of Neuroscience and Behavior, New York, NY, USA
| | - Dayshalis Ofray
- Columbia University, Department of Psychiatry, New York, NY, USA
| | - Russell D Romeo
- Barnard College of Columbia University, Department of Neuroscience and Behavior, New York, NY, USA
| | - Kevin G Bath
- Columbia University, Department of Psychiatry, New York, NY, USA
| |
Collapse
|
35
|
Terranova JI, Yokose J, Osanai H, Ogawa SK, Kitamura T. Systems consolidation induces multiple memory engrams for a flexible recall strategy in observational fear memory in male mice. Nat Commun 2023; 14:3976. [PMID: 37407567 DOI: 10.1038/s41467-023-39718-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Observers learn to fear the context in which they witnessed a demonstrator's aversive experience, called observational contextual fear conditioning (CFC). The neural mechanisms governing whether recall of the observational CFC memory occurs from the observer's own or from the demonstrator's point of view remain unclear. Here, we show in male mice that recent observational CFC memory is recalled in the observer's context only, but remote memory is recalled in both observer and demonstrator contexts. Recall of recent memory in the observer's context requires dorsal hippocampus activity, while recall of remote memory in both contexts requires the medial prefrontal cortex (mPFC)-basolateral amygdala pathway. Although mPFC neurons activated by observational CFC are involved in remote recall in both contexts, distinct mPFC subpopulations regulate remote recall in each context. Our data provide insights into a flexible recall strategy and the functional reorganization of circuits and memory engram cells underlying observational CFC memory.
Collapse
Affiliation(s)
- Joseph I Terranova
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Anatomy, Midwestern University, Downers Grove, IL, 60615, USA
| | - Jun Yokose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sachie K Ogawa
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
36
|
Huang Z, Chung M, Tao K, Watarai A, Wang MY, Ito H, Okuyama T. Ventromedial prefrontal neurons represent self-states shaped by vicarious fear in male mice. Nat Commun 2023; 14:3458. [PMID: 37400435 DOI: 10.1038/s41467-023-39081-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/26/2023] [Indexed: 07/05/2023] Open
Abstract
Perception of fear induced by others in danger elicits complex vicarious fear responses and behavioral outputs. In rodents, observing a conspecific receive aversive stimuli leads to escape and freezing behavior. It remains unclear how these behavioral self-states in response to others in fear are neurophysiologically represented. Here, we assess such representations in the ventromedial prefrontal cortex (vmPFC), an essential site for empathy, in an observational fear (OF) paradigm in male mice. We classify the observer mouse's stereotypic behaviors during OF using a machine-learning approach. Optogenetic inhibition of the vmPFC specifically disrupts OF-induced escape behavior. In vivo Ca2+ imaging reveals that vmPFC neural populations represent intermingled information of other- and self-states. Distinct subpopulations are activated and suppressed by others' fear responses, simultaneously representing self-freezing states. This mixed selectivity requires inputs from the anterior cingulate cortex and the basolateral amygdala to regulate OF-induced escape behavior.
Collapse
Affiliation(s)
- Ziyan Huang
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Myung Chung
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Tao
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, Japan
| | - Akiyuki Watarai
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, Japan
| | - Mu-Yun Wang
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, Japan
| | - Hiroh Ito
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Teruhiro Okuyama
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
37
|
Maurício LS, Leme DP, Hötzel MJ. How to Understand Them? A Review of Emotional Indicators in Horses. J Equine Vet Sci 2023; 126:104249. [PMID: 36806715 DOI: 10.1016/j.jevs.2023.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
Stabled horses often experience negative emotions due to the inappropriate living conditions imposed by humans. However, identifying what emotions horses experience and what can trigger positive and negative emotions in stabled horses can be challenging. In this article we present a brief history of the study of emotions and models that explain emotions from a scientific point of view and the physiological bases and functions of emotions. We then review and discuss physiological and behavioral indicators and cognitive bias tests developed to assess emotions in horses. Hormone concentrations, body temperature, the position of the ears, facial expressions and behaviors, such as approach and avoidance behaviors, can provide valuable information about emotional states in horses. The cognitive bias paradigm is a recent and robust tool to assess emotions in horses. Knowing how to evaluate the intensity and frequency of an individual's emotions can guide horse owners and caretakers to identify practices and activities that should be stimulated, avoided or even banned from the individual's life, in favor of a life worth living. The development and validation of novel indicators of emotions considering positive and negative contexts can help in these actions.
Collapse
Affiliation(s)
- Letícia Santos Maurício
- Laboratory of Applied Ethology and Animal Welfare, Department of Animal Science and Rural Development, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Denise Pereira Leme
- Laboratory of Applied Ethology and Animal Welfare, Department of Animal Science and Rural Development, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Maria José Hötzel
- Laboratory of Applied Ethology and Animal Welfare, Department of Animal Science and Rural Development, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
38
|
Lim KY, Hong W. Neural mechanisms of comforting: Prosocial touch and stress buffering. Horm Behav 2023; 153:105391. [PMID: 37301130 PMCID: PMC10853048 DOI: 10.1016/j.yhbeh.2023.105391] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Comforting is a crucial form of prosocial behavior that is important for maintaining social unity and improving the physical and emotional well-being of social species. It is often expressed through affiliative social touch toward someone in distress, providing relief for their distressed state. In the face of increasing global distress, these actions are paramount to the continued improvement of individual welfare and the collective good. Understanding the neural mechanisms responsible for promoting actions focused on benefitting others is particularly important and timely. Here, we review prosocial comforting behavior, emphasizing synthesizing recent studies carried out using rodent models. We discuss its underlying behavioral expression and motivations, and then explore both the neurobiology of prosocial comforting in a helper animal and the neurobiology of stress relief following social touch in a recipient as part of a feedback loop interaction.
Collapse
Affiliation(s)
- Kayla Y Lim
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Weizhe Hong
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
39
|
Riddell C, Kret M, Zijlstra T, Nikolic M. Fearful apes, happy apes: Is fearfulness associated with uniquely human cooperation? Behav Brain Sci 2023; 46:e76. [PMID: 37154364 DOI: 10.1017/s0140525x22001911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In the fearful ape hypothesis, Grossmann argues that heightened fearfulness increases human-unique cooperation. We suggest that this conclusion, however, may be premature. In particular, we question Grossmann's singling out of fear as the affective trait that enhances cooperative care. Additionally, we problematize the extent to which heightened fearfulness in humans, and its association with human-unique cooperation, are supported empirically.
Collapse
Affiliation(s)
- Christopher Riddell
- Cognitive Psychology Unit, Leiden University, 2333AK Leiden, the ; https://www.universiteitleiden.nl/en/staffmembers/chris-riddell ; https://www.universiteitleiden.nl/en/staffmembers/mariska-kret ; https://www.universiteitleiden.nl/en/staffmembers/tonko-zijlstra
| | - Mariska Kret
- Cognitive Psychology Unit, Leiden University, 2333AK Leiden, the ; https://www.universiteitleiden.nl/en/staffmembers/chris-riddell ; https://www.universiteitleiden.nl/en/staffmembers/mariska-kret ; https://www.universiteitleiden.nl/en/staffmembers/tonko-zijlstra
| | - Tonko Zijlstra
- Cognitive Psychology Unit, Leiden University, 2333AK Leiden, the ; https://www.universiteitleiden.nl/en/staffmembers/chris-riddell ; https://www.universiteitleiden.nl/en/staffmembers/mariska-kret ; https://www.universiteitleiden.nl/en/staffmembers/tonko-zijlstra
| | - Milica Nikolic
- Research Institute of Child Development and Education, University of Amsterdam, 1018 WS Amsterdam, The Netherlands ; https://www.uva.nl/en/profile/n/i/m.nikolic/m.nikolic.html
| |
Collapse
|
40
|
Cortés-Patiño DM, Neira VM, Ballesteros-Acosta H, Bustos-Rangel A, Lamprea MR. Interaction of Nicotine and Social reward in group-reared male adolescent rats. Behav Brain Res 2023; 447:114432. [PMID: 37054992 DOI: 10.1016/j.bbr.2023.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
Adolescents exhibit great sensitivity to nicotine and social interaction; accordingly, when both stimuli are presented together, they interact to enhance the incentive value of the context in which they occur. Noteworthy, most studies assessing the interaction between nicotine and social reward have used isolated-reared rats. Adolescent isolation is an adverse condition that impacts brain development and behavior, so it is not known if the interaction also occurs in rats without social deprivation. The present study used a conditioned place preference model (CPP) to examine the interaction between nicotine and social reward in group-reared male adolescent rats. At weaning, Wistar rats were randomly assigned to four groups: vehicle, vehicle and a social partner, nicotine (0.1mg/Kg s.c.), and nicotine and a social partner. Conditioning trials occurred on eight consecutive days followed by a test session in which the preference change was assessed. Besides the establishment of CPP, we examined the effects of nicotine on (1) social behaviors during CPP trials and (2) tyrosine hydroxylase (TH) and oxytocin (OT) as markers of changes in the neuronal mechanisms for reward and social affiliation. Similar to previous results, the joint presentation of nicotine and social reward induced CPP, whereas either nicotine or social interaction presented alone did not. This finding coincided with an increase in TH levels observed after nicotine administration only in socially conditioned rats. The interaction between nicotine and social reward is not related to the effects of nicotine on social investigation or social play.
Collapse
|
41
|
Ng AJ, Vincelette LK, Li J, Brady BH, Christianson JP. Serotonin modulates social responses to stressed conspecifics via insular 5-HT 2C receptors in rat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529065. [PMID: 36824837 PMCID: PMC9949146 DOI: 10.1101/2023.02.18.529065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Social interaction allows for the transfer of affective states among individuals, and the behaviors and expressions associated with pain and fear can evoke anxiety-like states in observers which shape subsequent social interactions. We hypothesized that social reactions to stressed individuals engage the serotonergic dorsal raphe nucleus (DRN) which promotes anxiety-like behavior via postsynaptic action of serotonin at serotonin 2C (5-HT 2C ) receptors in the forebrain. First, we inhibited the DRN by administering an agonist (8-OH-DPAT, 1µg in 0.5µL) for the inhibitory 5-HT 1A autoreceptors which silences 5-HT neuronal activity via G-protein coupled inward rectifying potassium channels. 8-OH-DPAT prevented the approach and avoidance, respectively, of stressed juvenile (PN30) or stressed adult (PN50) conspecifics in the social affective preference (SAP) test in rats. Similarly, systemic administration of a 5-HT 2C receptor antagonist (SB242084, 1mg/kg, i.p.) prevented approach and avoidance of stressed juvenile or adult conspecifics, respectively. Seeking a locus of 5-HT 2C action, we considered the posterior insular cortex which is critical for social affective behaviors and rich with 5-HT 2C receptors. SB242084 administered directly into the insular cortex (5µM bilaterally in 0.5µL ) interfered with the typical approach and avoidance behaviors observed in the SAP test. Finally, using fluorescent in situ hybridization, we found that 5-HT 2C receptor mRNA ( htr2c) is primarily colocalized with mRNA associated with excitatory glutamatergic neurons ( vglut1 ) in the posterior insula. Importantly, the results of these treatments were the same in male and female rats. These data suggest that interactions with stressed others require the serotonergic DRN and that serotonin modulates social affective decision-making via action at insular 5-HT 2C receptors.
Collapse
|
42
|
Wu WY, Cheng Y, Liang KC, Lee RX, Yen CT. Affective mirror and anti-mirror neurons relate to prosocial help in rats. iScience 2023; 26:105865. [PMID: 36632059 PMCID: PMC9826941 DOI: 10.1016/j.isci.2022.105865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Although empathic emotion is closely related to prosocial behavior, neuronal substrate that accounts for empathy-associated prosocial action remains poorly understood. We recorded neurons in the anterior cingulate cortex (ACC) and insular cortex (InC) in rats when they observed another rat in pain. We discovered neurons with anti-mirror properties in the ACC and InC, in addition to those with mirror properties. ACC neurons show higher coupling between activation of self-in-pain and others-in-pain, whereas the InC has a higher ratio of neurons with anti-mirror properties. During others-in-pain, ACC neurons activated more when actively nose-poking toward others and InC neurons activated more when freezing. To further illustrate prosocial function, we examined neuronal activities in the helping behavior test. Both ACC and InC neurons showed specific activation to rat rescuing which is contributed by mirror, but not anti-mirror neurons. Our work indicates the functional involvement of mirror neuron system in prosocial behaviors.
Collapse
Affiliation(s)
- Wen-Yi Wu
- Department of Psychology, Cornell University, Ithaca, NY 14850, USA
| | - Yawei Cheng
- Institute of Neuroscience, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Keng-Chen Liang
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan
| | - Ray X. Lee
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA
- Program in Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, 1 Roosevelt Road Sec. 4, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
43
|
Sakamoto N, Kakeno H, Ozaki N, Miyazaki Y, Kobayashi K, Murata T. Marker-less tracking system for multiple mice using Mask R-CNN. Front Behav Neurosci 2023; 16:1086242. [PMID: 36688129 PMCID: PMC9853548 DOI: 10.3389/fnbeh.2022.1086242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Although the appropriate evaluation of mouse behavior is crucial in pharmacological research, most current methods focus on single mouse behavior under light conditions, owing to the limitations of human observation and experimental tools. In this study, we aimed to develop a novel marker-less tracking method for multiple mice with top-view videos using deep-learning-based techniques. The following stepwise method was introduced: (i) detection of mouse contours, (ii) assignment of identifiers (IDs) to each mouse, and (iii) correction of mis-predictions. The behavior of C57BL/6 mice was recorded in an open-field arena, and the mouse contours were manually annotated for hundreds of frame images. Then, we trained the mask regional convolutional neural network (Mask R-CNN) with all annotated images. The mouse contours predicted by the trained model in each frame were assigned to IDs by calculating the similarities of every mouse pair between frames. After assigning IDs, correction steps were applied to remove the predictive errors semi-automatically. The established method could accurately predict two to four mice for first-look videos recorded under light conditions. The method could also be applied to videos recorded under dark conditions, extending our ability to accurately observe and analyze the sociality of nocturnal mice. This technology would enable a new approach to understand mouse sociality and advance the pharmacological research.
Collapse
Affiliation(s)
- Naoaki Sakamoto
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Kakeno
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Noriko Ozaki
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Miyazaki
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Kobayashi
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahisa Murata
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Reciprocal cortico-amygdala connections regulate prosocial and selfish choices in mice. Nat Neurosci 2022; 25:1505-1518. [PMID: 36280797 PMCID: PMC7613781 DOI: 10.1038/s41593-022-01179-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/06/2022] [Indexed: 01/13/2023]
Abstract
Decisions that favor one's own interest versus the interest of another individual depend on context and the relationships between individuals. The neurobiology underlying selfish choices or choices that benefit others is not understood. We developed a two-choice social decision-making task in which mice can decide whether to share a reward with their conspecifics. Preference for altruistic choices was modulated by familiarity, sex, social contact, hunger, hierarchical status and emotional state matching. Fiber photometry recordings and chemogenetic manipulations demonstrated that basolateral amygdala (BLA) neurons are involved in the establishment of prosocial decisions. In particular, BLA neurons projecting to the prelimbic (PL) region of the prefrontal cortex mediated the development of a preference for altruistic choices, whereas PL projections to the BLA modulated self-interest motives for decision-making. This provides a neurobiological model of altruistic and selfish choices with relevance to pathologies associated with dysfunctions in social decision-making.
Collapse
|
45
|
Wu YE, Hong W. Neural basis of prosocial behavior. Trends Neurosci 2022; 45:749-762. [PMID: 35853793 PMCID: PMC10039809 DOI: 10.1016/j.tins.2022.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/10/2023]
Abstract
The ability to behave in ways that benefit other individuals' well-being is among the most celebrated human characteristics crucial for social cohesiveness. Across mammalian species, animals display various forms of prosocial behaviors - comforting, helping, and resource sharing - to support others' emotions, goals, and/or material needs. In this review, we provide a cross-species view of the behavioral manifestations, proximate and ultimate drives, and neural mechanisms of prosocial behaviors. We summarize key findings from recent studies in humans and rodents that have shed light on the neural mechanisms underlying different processes essential for prosocial interactions, from perception and empathic sharing of others' states to prosocial decisions and actions.
Collapse
Affiliation(s)
- Ye Emily Wu
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Weizhe Hong
- Department of Neurobiology and Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
46
|
Abstract
In their "social contextual view" of emotional mimicry, authors Hess and Fischer (2022) put forward emotional mimicry as a social regulator, considering it a social act, bound to certain affiliative contexts or goals. In this commentary, we argue that the core function of mimicry is to ease predicting conspecifics' behaviours and the environment, and that as a consequence, this often smoothens social interactions. Accordingly, we make three main points. First, we argue that there is no good reason to believe that the mimicry of negative expressions is fundamentally different than the mimicry of positive or ambiguous or autonomic expressions. Second, we give examples of empirical evidence that mimicry is not always a social act. Third, we show that mimicry has primary benefits for the mimicker. As such, we will briefly summarise and elaborate on the relevant findings in these respects, and propose a comparative, multi-method and ecologically valid approach which can explain the multifaceted character of the phenomenon.
Collapse
Affiliation(s)
- M E Kret
- Cognitive Psychology Unit, Leiden University, Leiden, the Netherlands.,Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - R Akyüz
- Cognitive Psychology Unit, Leiden University, Leiden, the Netherlands.,Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| |
Collapse
|