1
|
Osete-Alcaraz L, Gómez-Plaza E, Jørgensen B, Oliva J, Cámara MA, Jurado R, Bautista-Ortín AB. The composition and structure of plant fibers affect their fining performance in wines. Food Chem 2024; 460:140657. [PMID: 39106809 DOI: 10.1016/j.foodchem.2024.140657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
In recent years, the wine industry has shifted towards plant-based fining agents for food safety reasons and consumer preferences. This study analysed the interaction of five plant fibers with red wine phenolic compounds to determinate their performance as fining agents. Chemical composition, polysaccharide profile, and physical properties were examined. Pea, cellulose, and Sauvignon Blanc pomace fibers effectively reduced tannin content while minimally affecting the concentration of anthocyanins, flavonols and wine color. Contrary to previous beliefs, the presence of pectins in fibers didn't play a crucial role in phenolic compound interaction since cellulose-rich fibers with low pectin concentration also bound tannins effectively, especially those with small particle size and high contact surface. Pea fiber, rich in cellulose and pectins, showed remarkable tannin retention while minimally affecting wine color. This research highlights the potential of plant fibers as effective fining agents in wine production and how their composition affects their performance.
Collapse
Affiliation(s)
- Lucía Osete-Alcaraz
- Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100, Murcia, Spain
| | - Encarna Gómez-Plaza
- Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100, Murcia, Spain.
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - José Oliva
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, 30100, Murcia, Spain
| | - Miguel Angel Cámara
- Department of Agricultural Chemistry, Faculty of Chemistry, University of Murcia, 30100, Murcia, Spain
| | - Ricardo Jurado
- Agrovin S.A., Avenida de los Vinos s/n, 13600 Alcázar de San Juan, Ciudad Real, Spain
| | - Ana Belén Bautista-Ortín
- Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
2
|
Cheng Y, Watrelot AA. Synergetic effect of Accentuated Cut Edges (ACE) and macerating enzymes on the phenolic composition of Marquette red wines. Food Res Int 2024; 195:114968. [PMID: 39277237 DOI: 10.1016/j.foodres.2024.114968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
One of the challenges of cold-hardy grape cultivars is their typical low content of tannins, alongside the presence of anthocyanin diglucoside and high acidity, which can lead to unbalanced red wines. This study hypothesized that the combination of Accentuated Cut Edges (ACE) and macerating enzymes would improve phenolics extraction from grape skins after disruption. The effects of those two winemaking techniques, either used separately or together, on red wine quality characteristics were investigated at crushing, bottling, and after six or nine months of aging. Overall, the combination of treatments improved the concentration of monomeric phenolics (20 %) and tannins (21 %) after nine months of aging. ACE or enzyme treatment separately applied had little impact on phenolics extraction in finished wines. This study exhibited a potential strategy to modify phenolics profile through the synergistic effect of ACE and macerating enzymes by causing cellular breakdown in a cold-hardy red grape cultivar.
Collapse
Affiliation(s)
- Yiliang Cheng
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Lane, Ames, IA 50011, USA
| | - Aude A Watrelot
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Lane, Ames, IA 50011, USA.
| |
Collapse
|
3
|
Cui D, Ling M, Huang Y, Duan C, Lan Y. Micro‑oxygenation in red wines: Current status and future perspective. Food Chem 2024; 464:141678. [PMID: 39454438 DOI: 10.1016/j.foodchem.2024.141678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Micro‑oxygenation (MOX) is the technology providing a slow and continuous oxidation reaction in the whole winemaking process to improve wine quality. However, traditional methods of oxygen management struggle to achieve a precise control over oxygen at critical process points, failing to meet the personalized and diverse production demands of wine. In this paper, an overview of three application stages of MOX, and the detailed dosage and duration at each stage were summarized. In addition, the application prospect of the new MOX application facility in wine production was proposed. Compared to passive MOX, active MOX could allow a more precise control of oxygen. The innovation of MOX equipment based on active MOX technique will be an inspiring interest in the research of winemaking. The integration and development of precise MOX will achieve the targeted control of wine quality and the creation of distinctive characteristics of wine style.
Collapse
Affiliation(s)
- Dongsheng Cui
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Mengqi Ling
- College of Food Science and Engineering, "The Belt and Road" International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing 102206, China
| | - Yongce Huang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
4
|
Teshigawara Y, Sato S, Asada T, Nojiri M, Suzuki S, Aoki Y. Anthocyanin Accumulation in Grape Berry Skin Promoted by Endophytic Microbacterium sp. che218 Isolated from Wine Grape Shoot Xylem. Microorganisms 2024; 12:1906. [PMID: 39338581 PMCID: PMC11434312 DOI: 10.3390/microorganisms12091906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Grape berry skin coloration is a key determinant of the commercial value of red wines. Global warming caused by climate change has inhibited anthocyanin biosynthesis in berry skins, leading to poor coloration. Through two-year field experiments, the endophyte che218 isolated from grape shoot xylem promoted anthocyanin accumulation in berry skins. The che218 enhanced anthocyanin biosynthesis in grapevine cultured cells. In the 2022 growing season, applying che218 to grape bunches enhanced anthocyanin accumulation in berry skins on day 20 post-treatment. However, the anthocyanin accumulation enhancing effect of che218 became negligible at harvest. In the 2023 growing season, che218 enhanced anthocyanin accumulation in berry skins on day 15 post-treatment and at harvest (day 30 post-treatment) and also upregulated the transcription of mybA1 and UFGT, two genes that regulate anthocyanin biosynthesis in berry skins. Whole genome sequencing demonstrated that che218 is an unidentified Microbacterium species. However, it remains unknown how che218 is involved in the biosynthesis of anthocyanin in berry skins. This study provides insights into the development of an eco-friendly endophyte-mediated technique for improving grape berry skin coloration, thereby mitigating the effects of global warming on berry skin coloration.
Collapse
Affiliation(s)
- Yuka Teshigawara
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1, Kofu 400-0005, Yamanashi, Japan
| | - Shiori Sato
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1, Kofu 400-0005, Yamanashi, Japan
| | - Takayuki Asada
- Agri-Bio Research Center, Kaneka Corporation, Iwata-shi 438-0802, Shizuoka, Japan
| | - Masutoshi Nojiri
- Agri-Bio Research Center, Kaneka Corporation, Iwata-shi 438-0802, Shizuoka, Japan
| | - Shunji Suzuki
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1, Kofu 400-0005, Yamanashi, Japan
| | - Yoshinao Aoki
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1, Kofu 400-0005, Yamanashi, Japan
| |
Collapse
|
5
|
Akcay FA, Avci A. Direct hydrolysis of einkorn whole grain flour proteins for the generation of bioactive peptides using various proteases. Int J Biol Macromol 2024; 275:133565. [PMID: 38950800 DOI: 10.1016/j.ijbiomac.2024.133565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
In this study, it was aimed to investigate the direct release of BAPs from einkorn flour in one-step process. Thus, the protein extraction step was eliminated, thereby reducing processing cost. Commercial proteases (Alcalase, Flavourzyme, Neutrase, and Trypsin), and crude enzyme from Bacillus mojavensis sp. EBTA7 were used for hydrolyzing einkorn flour (30 %, w/v) solutions at 50-60 °C. The supernatants after centrifugation were used for bioactivity and techno-functionality tests. All hydrolysates demonstrated significant antioxidant capacities, with values ranging from 17.7 to 33.0 μmol TE/g for DPPH, 107 to 190 μmol TE/g for ABTS, and 0.09 to 3.08 mg EDTA/g for ion-chelating activities. Alcalase and Flavourzyme hydrolysis had the highest DPPH activities, while Bacillus mojavensis sp. EBTA7 enzyme yielded relatively high ABTS and ion-chelating activities. Notably, Bacillus mojavensis sp. EBTA7 crude enzyme hydrolysates demonstrated higher oil absorption capacity (2.94 g oil/g hydrolysate), robust emulsion (227 min), and foam stability (94 %) compared to commercial enzymes. FTIR spectroscopy confirmed variations in the secondary structure of peptides. All hydrolysates exhibited negative zeta potentials. The SDS-PAGE showcased MW ranged from 14 to 70 kDa, which was influenced by both the enzyme type and the degree of hydrolysis. Overall, Bacillus mojavensis sp. EBTA7 hydrolysates revealed considerable bio and techno-functional characteristics.
Collapse
Affiliation(s)
- Fikriye Alev Akcay
- Sakarya University, Faculty of Engineering, Department of Food Engineering, 54050, Serdivan, Sakarya, Türkiye.
| | - Ayse Avci
- Sakarya University, Faculty of Engineering, Department of Food Engineering, 54050, Serdivan, Sakarya, Türkiye.
| |
Collapse
|
6
|
Yang Y, Ye Z, Qin Y, Pathirana S, Araujo LD, Culley NJ, Kilmartin PA. Effects of post-fermentation addition of green tea extract for sulfur dioxide replacement on Sauvignon Blanc wine phenolic composition, antioxidant capacity, colour, and mouthfeel attributes. Food Chem 2024; 447:138976. [PMID: 38492300 DOI: 10.1016/j.foodchem.2024.138976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
This study examines the feasibility of replacing SO2 in a New Zealand Sauvignon Blanc wine with a green tea extract. The treatments included the control with no preservatives (C), the addition of green tea extract at 0.1 and 0.2 g/L (T1 and T2), and an SO2 treatment at 50 mg/L (T3). Five monomeric phenolic compounds were detected in the green tea extract used for the experiment, and their concentrations ranged in the order (-)-epigallocatechin gallate > (-)-epigallocatechin > (-)-epicatechin > (-)-epicatechin gallate > gallic acid. At the studied addition rates, these green tea-derived phenolic compounds contributed to ∼70% of the antioxidant capacity (ABTS), ∼71% of the total phenolic index (TPI), and ∼ 84% of tannin concentration (MCPT) of the extract dissolved in a model wine solution. Among wine treatments, T1 and T2 significantly increased the wine's colour absorbance at 420 nm, MCPT, gallic acid and total monomeric phenolic content. TPI and ABTS were significantly higher in wines with preservatives (i.e., T2 > T1 ≅ T3 > C, p < 0.05). These variations were observed both two weeks after the treatments and again after five months of wine aging. Additionally, an accelerated browning test and a quantitative sensory analysis of wine colour and mouthfeel attributes were performed after 5 months of wine aging. When exposed to excessive oxygen and high temperature (50 °C), T1 and T2 exhibited ∼29% and 24% higher browning capacity than the control, whereas T3 reduced the wine's browning capacity by ∼20%. Nonetheless, the results from sensory analysis did not show significant variations between the treatments. Thus, using green tea extract to replace SO2 at wine bottling appears to be a viable option, without inducing a negative impact on the perceptible colour and mouthfeel attributes of Sauvignon Blanc wine.
Collapse
Affiliation(s)
- Yi Yang
- Wine Science Programme, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand.
| | - Zhijing Ye
- School of Viticulture and Wine Science, The Eastern Institute of Technology, 501 Gloucester Street, Napier 4112, New Zealand
| | - Yunxuan Qin
- School of Viticulture and Wine Science, The Eastern Institute of Technology, 501 Gloucester Street, Napier 4112, New Zealand
| | - Sreeni Pathirana
- Food Science Programme, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand
| | - Leandro Dias Araujo
- Department of Wine Food & Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| | - Neill J Culley
- Wine Science Programme, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand
| | - Paul A Kilmartin
- Wine Science Programme, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand.
| |
Collapse
|
7
|
Bai Y, Chen Q, Liu X, Yue W, Tian X, Han F. Effect of exogenous organic acids on chemical compositions and sensory attributes of fortified sweet wines from dehydrated grapes. Food Chem 2024; 445:138745. [PMID: 38364500 DOI: 10.1016/j.foodchem.2024.138745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
In this study, acidity was regulated with the addition of exogenous tartaric acid and citric acid before bottling. The effect of exogenous organic acids on chemical compositions and sensory attributes of fortified sweet wines from dehydrated grapes were investigated. The results indicated that exogenous organic acids promoted the conversion of monomeric anthocyanins to copigmented anthocyanins in wines. Specifically, the combination of malvidin-3-O-glucoside and flavanols (catechin and epicatechin) was facilitated to form copigmented anthocyanins. Sensory analysis suggested that exogenous organic acids improved the balance of sugar and acidity and benefited the harmony in wines on the taste. Wines with a residual sugar and titratable acidity ratio of about 11:1 exhibited the more harmonious taste. In addition, it was also observed changes in the aroma profile related to volatile compounds, namely, more intense fruity aroma in wines with the addition of organic acids.
Collapse
Affiliation(s)
- Yangyang Bai
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiaomin Chen
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinyang Liu
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenxiu Yue
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaolu Tian
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fuliang Han
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, Shaanxi, China; Heyang Experimental Demonstration Station, Northwest A&F University, Weinan 715300, Shaanxi, China.
| |
Collapse
|
8
|
Lopes Francisco CR, Soltanahmadi S, Porto Santos T, Lopes Cunha R, Sarkar A. Addressing astringency of grape seed extract by covalent conjugation with lupin protein. Curr Res Food Sci 2024; 9:100795. [PMID: 39036623 PMCID: PMC11260025 DOI: 10.1016/j.crfs.2024.100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Astringency of phenolic-rich foods is a key tactile perception responsible for acceptability/rejection of plant extracts as ingredients in formulations. Covalent conjugation of phenolic extracts with plant proteins might be a promising strategy to control astringency, but suffers from a lack of mechanistic understanding from the lubrication point of view. To shed light on this, this ex vivo study evaluated the effect of conjugation of a phenolic grape seed extract (GSE) with legume protein (lupin, LP) on tribological and surface adsorption performance of GSE in the absence and presence of human saliva (ex vivo). Tribological results confirmed GSE had an inferior lubrication capacity as compared to LP. The lubrication performance of LP-GSE dispersions was comparable to their corresponding LP dispersion (p > 0.05) when covalently conjugated with LP (LP-GSE) with increasing LP:GSE ratio up to 1:0.04 w/w and at a specific degree of conjugation (DC: 2%). Tribological and surface adsorption measurements confirmed the tendency of GSE to interact with human saliva (ex vivo, n = 17 subjects), impairing the lubricity of salivary films. The covalent bonding of LP to GSE hindered GSE's interaction with human saliva, implying the potential influence of covalent conjugation on attenuating astringency. LP appeared to compete with human saliva for surface adsorption and governed the lubrication behaviour in LP-GSE dispersions. Findings from this study provide valuable knowledge to guide the rational design of sustainable, functional foods using conjugation of phenolics with plant proteins to incorporate larger proportions of health-promoting phenolics while controlling astringency, which needs validation by sensory trials.
Collapse
Affiliation(s)
- Cristhian Rafael Lopes Francisco
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
- Laboratory of Process Engineering, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato 80, 13083-862, São Paulo, Campinas, Brazil
| | - Siavash Soltanahmadi
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Tatiana Porto Santos
- Laboratory of Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Rosiane Lopes Cunha
- Laboratory of Process Engineering, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato 80, 13083-862, São Paulo, Campinas, Brazil
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
9
|
Sarkar A. Oral Astringency in Plant Proteins: An Underestimated Issue in Formulating Next-Generation Plant-Based Foods. Annu Rev Food Sci Technol 2024; 15:103-123. [PMID: 38316152 DOI: 10.1146/annurev-food-072023-034510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Ensuring the supply of affordable, palatable, healthy, and sustainable nutrients to feed the growing population without transgressing the planetary boundaries remains a key challenge in the food science community. A dietary transition toward low-emission, plant-based foods, with less reliance on animal agriculture, is advocated for sustainability, health, and ethical reasons. A major hurdle for mainstream adoption of plant-based foods is their poor sensorial performance, such as nonjuicy and astringent textures as well as various off-flavors. This review presents the current understanding of astringency and oral friction of plant-based foods. It focuses on plant proteins and their application in plant-based meat and dairy analogs. In addition, the latest advances in the quantitative characterization of astringency using tribology, electrochemistry, and cellular tools are covered. Finally, we examine factors influencing astringency and propose easy-to-implement colloidal strategies that may mitigate astringency issues, thereby underpinning the design of the next generation of sustainable and pleasurable plant-based foods.
Collapse
Affiliation(s)
- Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom;
| |
Collapse
|
10
|
Oyón-Ardoiz M, Manjón E, Escribano-Bailón MT, García-Estévez I. Potential Use of Torulaspora delbrueckii As a New Source of Mannoproteins of Oenological Interest. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11606-11616. [PMID: 38722802 PMCID: PMC11117404 DOI: 10.1021/acs.jafc.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/23/2024]
Abstract
In this work, three MP extracts obtained from Torulaspora delbrueckii were added to red wine, and the changes in phenolic composition, color, and astringency were evaluated by HPLC-DAD-ESI-MS, tristimulus colorimetry, and sensory analysis, respectively. The MP extracts modified wine phenolic composition differently depending on the type of MP. Moreover, two MP extracts were able to reduce wine astringency. The fact that the MP-treated wines showed an increased flavanol content suggests the formation of MP-flavanol aggregates that remain in solution. Furthermore, the formation of these aggregates may hinder the interaction of flavanols with salivary proteins in the mouth. The effect of these MPs might be associated with their larger size, which could influence their ability to bind flavanols and salivary proteins. However, one of the astringent-modulating MPs also produced a loss of color, highlighting the importance of assessing the overall impact of MPs on the organoleptic properties of wine.
Collapse
Affiliation(s)
- María Oyón-Ardoiz
- Department of Analytical
Chemistry, Nutrition and Food Science, Universidad
de Salamanca, Salamanca E37007, Spain
| | - Elvira Manjón
- Department of Analytical
Chemistry, Nutrition and Food Science, Universidad
de Salamanca, Salamanca E37007, Spain
| | | | - Ignacio García-Estévez
- Department of Analytical
Chemistry, Nutrition and Food Science, Universidad
de Salamanca, Salamanca E37007, Spain
| |
Collapse
|
11
|
Zicarelli F, Iommelli P, Musco N, Wanapat M, Lotito D, Lombardi P, Infascelli F, Tudisco R. Growth Performance of Buffalo Calves in Response to Different Diets with and without Saccharomyces cerevisiae Supplementation. Animals (Basel) 2024; 14:1245. [PMID: 38672393 PMCID: PMC11047708 DOI: 10.3390/ani14081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of the present trial was to evaluate the growth performance of buffalo calves fed on diets characterized by different forage/concentrate ratios, with or without Saccharomyces cerevisiae supplementation (CBS 493.94, Yea-Sacc®). Twenty-four male buffalo calves (mean age of 145.1 ± 16.1 days; mean weight of 108.0 ± 18.7 kg) were assigned randomly to 4 groups, homogeneous in age, that were fed four different diets: diet 1, F:C ratio 50:50; diet 2, F:C ratio 30:70; diet 3, F:C ratio 50:50 + Yea-Sacc®; and diet 4, F:C ratio 30:70 + Yea-Sacc®. Buffalo calves were individually weighted before the start of the experiment and the data were used as a covariate, being taken monthly until the end of the trial. Dry matter intake (DMI), daily weight gain (DWG) and feed conversion ratio (FCR) were calculated. The differences in diets composition significantly (p < 0.01) affected all these parameters. In particular, the animals fed diet 1 and diet 3 showed higher values of DWG (0.91 and 0.88 g/d vs. 0.68 and 0.66 for group 2 and 4) and DMI (5.8 and 5.3 kg/d, respectively) compared to the other groups (4.3 and 4.4 kg/d for group 2 and 4), as well as a higher final body weight (370.5 and 334.1 kg for group 1 and 3 vs. 272.8 and 273.1 kg of group 2 and 4, respectively). Indeed, the supplementation with Yea-Sacc® at the dosage of 1 × 10E8 did not affect buffaloes' growth performance.
Collapse
Affiliation(s)
- Fabio Zicarelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.Z.); (P.I.); (D.L.); (P.L.); (F.I.); (R.T.)
| | - Piera Iommelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.Z.); (P.I.); (D.L.); (P.L.); (F.I.); (R.T.)
| | - Nadia Musco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.Z.); (P.I.); (D.L.); (P.L.); (F.I.); (R.T.)
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Daria Lotito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.Z.); (P.I.); (D.L.); (P.L.); (F.I.); (R.T.)
| | - Pietro Lombardi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.Z.); (P.I.); (D.L.); (P.L.); (F.I.); (R.T.)
| | - Federico Infascelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.Z.); (P.I.); (D.L.); (P.L.); (F.I.); (R.T.)
| | - Raffaella Tudisco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.Z.); (P.I.); (D.L.); (P.L.); (F.I.); (R.T.)
| |
Collapse
|
12
|
Amarowicz R, Pegg RB. Condensed tannins-Their content in plant foods, changes during processing, antioxidant and biological activities. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:327-398. [PMID: 38906590 DOI: 10.1016/bs.afnr.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Condensed tannins are considered nutritionally undesirable, because they precipitate proteins, inhibit digestive enzymes, and can affect the absorption of vitamins and minerals. From the consumer's point of view, they impart astringency to foods. Yet, they are viewed as a double-edged sword, since they possess antioxidant and anti-inflammatory activities. Intake of a small quantity of the right kind of tannins may in fact be beneficial to human health. This chapter reports on the chemical structure of condensed tannins, their content in plants and food of plant origin, how they are extracted, and methods for their determination. A description of the effects of processing on condensed tannins is discussed and includes soaking, dehulling, thermal processing (i.e., cooking, boiling, autoclaving, extrusion), and germination. The astringency of condensed tannins is described in relation to their interactions with proteins. Finally, details about the biological properties of condensed tannins, including their antimicrobial, anti-inflammatory, anticancer, anti-diabetic, and anti-obesity activities, are reviewed.
Collapse
Affiliation(s)
- Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Ronald B Pegg
- Department of Food Science & Technology, The University of Georgia, Athens, GA, United States
| |
Collapse
|
13
|
Pu D, Meng R, Qiao K, Cao B, Shi Y, Wang Y, Zhang Y. Electronic tongue, proton-transfer-reaction mass spectrometry, spectral analysis, and molecular docking characterization for determining the effect of α-amylase on flavor perception. Food Res Int 2024; 181:114078. [PMID: 38448095 DOI: 10.1016/j.foodres.2024.114078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
The effects of α-amylase on of flavor perception were investigated via spectrum analysis, electronic tongue, on-line mass spectrometry, and molecular docking. Aroma release results showed that α-amylase exhibited variable release patterns of different aroma compounds. Electronic tongue analysis showed that the perception of bitterness, sweetness, sour, and saltiness was subtly increased and that of umami was significantly increased (p < 0.01) along with the increasing enzyme activity of α-amylase. Ultraviolet absorption and fluorescence spectroscopy analyses showed that static quenching occurred between α-amylase and eight flavor compounds and their interaction effects were spontaneous. One binding pocket was confirmed between the α-amylase and flavor compounds, and molecular docking simulation results showed that the hydrogen, electrostatic, and hydrophobic bonds were the main force interactions. The TYP82, TRP83, LEU173, HIS80, HIS122, ASP297, ASP206, and ARG344 were the key α-amylase amino acid residues that interacted with the eight flavor compounds.
Collapse
Affiliation(s)
- Dandan Pu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Ruixin Meng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Kaina Qiao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Boya Cao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Yige Shi
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China.
| |
Collapse
|
14
|
Ferrero-Del-Teso S, Arapitsas P, Jeffery DW, Ferreira C, Mattivi F, Fernández-Zurbano P, Sáenz-Navajas MP. Exploring UPLC-QTOF-MS-based targeted and untargeted approaches for understanding wine mouthfeel: A sensometabolomic approach. Food Chem 2024; 437:137726. [PMID: 37907002 DOI: 10.1016/j.foodchem.2023.137726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/13/2023] [Accepted: 10/08/2023] [Indexed: 11/02/2023]
Abstract
This study aimed to establish relationships between wine composition and in-mouth sensory properties using a sensometabolomic approach. Forty-two red wines were sensorially assessed and chemically characterised using UPLC-QTOF-MS for targeted and untargeted analyses. Suitable partial least squares regression models were obtained for "dry", "sour", "oily", "prickly", and "unctuous". "Dry" was positively contributed by flavan-3-ols, anthocyanin derivatives (AntD), valine, gallic acid and its ethyl ester, and peptides, and negatively by sulfonated flavan-3-ols, anthocyanin-ethyl-flavan-3-ols, tartaric acid, flavonols (FOL), hydroxycinnamic acids (HA), protocatechuic ethyl ester, and proline. The "sour" model included molecules involved in "dry" and "bitter", ostensibly as a result of cognitive interactions. Derivatives of FOLs, epicatechin gallate, and N-acetyl-glucosamine phosphate contributed positively to "oily", as did vanillic acid, HAs, pyranoanthocyanins, and malvidin-flavan-3-ol derivatives for "prickly", and sugars, glutathione disulfide, AntD, FOL, and one HA for "unctuous". The presented approach offers an interesting tool for deciphering the sensory-active compounds involved in mouthfeel perception.
Collapse
Affiliation(s)
- Sara Ferrero-Del-Teso
- Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja-Consejo Superior de Investigaciones Científicas-Gobierno de La Rioja), Departamento de Enología, Logroño, La Rioja, Spain
| | - Panagiotis Arapitsas
- Unit of Metabolomics, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all'Adige, Italy; Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Ag. Spyridonos 28, Egaleo, 12243 Athens, Greece
| | - David W Jeffery
- School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Chelo Ferreira
- Laboratorio de Análisis del Aroma y Enología (LAAE), Instituto Universitario de Matemáticas y Aplicaciones (IUMA-UNIZAR), Universidad de Zaragoza, c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Fulvio Mattivi
- Unit of Metabolomics, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Purificación Fernández-Zurbano
- Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja-Consejo Superior de Investigaciones Científicas-Gobierno de La Rioja), Departamento de Enología, Logroño, La Rioja, Spain
| | - María-Pilar Sáenz-Navajas
- Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja-Consejo Superior de Investigaciones Científicas-Gobierno de La Rioja), Departamento de Enología, Logroño, La Rioja, Spain.
| |
Collapse
|
15
|
Zhao K, Lan Y, Shi Y, Duan C, Yu K. Metabolite and transcriptome analyses reveal the effects of salinity stress on the biosynthesis of proanthocyanidins and anthocyanins in grape suspension cells. FRONTIERS IN PLANT SCIENCE 2024; 15:1351008. [PMID: 38576780 PMCID: PMC10993317 DOI: 10.3389/fpls.2024.1351008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Proanthocyanidins (PAs) and anthocyanins are flavonoids that contribute to the quality and health benefits of grapes and wine. Salinity affects their biosynthesis, but the underlying mechanism is still unclear. We studied the effects of NaCl stress on PA and anthocyanin biosynthesis in grape suspension cells derived from berry skins of Vitis vinifera L. Cabernet Sauvignon using metabolite profiling and transcriptome analysis. We treated the cells with low (75 mM NaCl) and high (150 mM NaCl) salinity for 4 and 7 days. High salinity inhibited cell growth and enhanced PA and anthocyanin accumulation more than low salinity. The salinity-induced PAs and anthocyanins lacked C5'-hydroxylation modification, suggesting the biological significance of delphinidin- and epigallocatechin-derivatives in coping with stress. The genes up-regulated by salinity stress indicated that the anthocyanin pathway was more sensitive to salt concentration than the PA pathway, and WGCNA analysis revealed the coordination between flavonoid biosynthesis and cell wall metabolism under salinity stress. We identified transcription factors potentially involved in regulating NaCl dose- and time-dependent PA and anthocyanin accumulation, showing the dynamic remodeling of flavonoid regulation network under different salinity levels and durations. Our study provides new insights into regulator candidates for tailoring flavonoid composition and molecular indicators of salt stress in grape cells.
Collapse
Affiliation(s)
- Kainan Zhao
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
16
|
Feng J, Zhang W, Wang W, Nieuwenhuizen NJ, Atkinson RG, Gao L, Hu H, Zhao W, Ma R, Zheng H, Tao J. Integrated Transcriptomic and Proteomic Analysis Identifies Novel Regulatory Genes Associated with Plant Growth Regulator-Induced Astringency in Grape Berries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4433-4447. [PMID: 38354220 DOI: 10.1021/acs.jafc.3c04408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Astringency influences the sensory characteristics and flavor quality of table grapes. We tested the astringency sensory attributes of berries and investigated the concentration of flavan-3-ols/proanthocyanidins (PAs) in skins after the application of the plant growth regulators CPPU and GA3 to the flowers and young berries of the "Summer Black" grape. Our results showed that CPPU and GA3 applications increase sensory astringency perception scores and flavan-3-ol/proanthocyanidin concentrations. Using integrated transcriptomic and proteomic analysis, differentially expressed transcripts and proteins associated with growth regulator treatment were identified, including those for flavonoid biosynthesis that contribute to the changes in sensory astringency levels. Transient overexpression of candidate astringency-related regulatory genes in grape leaves revealed that VvWRKY71, in combination with VvMYBPA1 and VvMYC1, could promote the biosynthesis of proanthocyanidins, while overexpression of VvNAC83 reduced the accumulation of proanthocyanidins. However, in transient promoter studies in Nicotiana benthamiana, VvWRKY71 repressed the promoter of VvMYBPA2, while VvNAC83 had no significant effect on the promoter activity of four PA-related genes, and VvMYBPA1 was shown to activate its own promoter. This study provides new insights into the molecular mechanisms of sensory astringency formation induced by plant growth regulators in grape berries.
Collapse
Affiliation(s)
- Jiao Feng
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Wen Zhang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi,Xinjiang 830001, China
| | - Wu Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 92169, New Zealand
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Auckland 92169, New Zealand
| | - Lei Gao
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Haipeng Hu
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Wanli Zhao
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Ruiyang Ma
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Huan Zheng
- College of Horticulture, Sanya Institute of Nanjing Agricultural University (NJAU), Nanjing 210095, China
| | - Jianmin Tao
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science, Urumqi,Xinjiang 830001, China
| |
Collapse
|
17
|
López-Solís R, Cortés-Araya K, Medel-Marabolí M, Obreque-Slier E. Different physicochemical interactions between varietal wines and human saliva: Correspondence with astringency. Food Res Int 2024; 178:113964. [PMID: 38309881 DOI: 10.1016/j.foodres.2024.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Astringency corresponds to the sensation of dryness and roughness that is experienced in the oral cavity in association with the interaction between salivary proteins and food polyphenols. In this study, the phenolic composition of seven varietal wines, the intensity of astringency they evoke and the physicochemical reactivity of these wines with whole human saliva were evaluated. Phenolic composition of wines was characterized by spectrophotometry and HPLC chromatography. Intensity of astringency was evaluated by trained sensory panels. Saliva from a single volunteer subject was used to assess wine-saliva interactions. To this end, binary mixtures were produced at different v/v wine/saliva ratios and each of them assayed for the ability of the salivary protein to diffuse on a cellulose membrane (diffusion test) and to remain in solution (precipitation test). Physicochemical reactivities between wine components and the protein fraction of saliva were contrasted against the astringency and the phenolic profile of each varietal wine. The study supports the view that astringency depends on physicochemical interactions between two complex matrices -wine and saliva- and not between some of their particular components.
Collapse
Affiliation(s)
- Remigio López-Solís
- Program of Cellular and Molecular Biology, Faculty of Medicine-ICBM, University of Chile, Independencia 1027, Santiago, Chile
| | - Katherine Cortés-Araya
- Department of Agro-Industry and Enology, Faculty of Agronomical Sciences,University of Chile, P.O. Box 1004, Santiago, Chile
| | - Marcela Medel-Marabolí
- Department of Agro-Industry and Enology, Faculty of Agronomical Sciences,University of Chile, P.O. Box 1004, Santiago, Chile
| | - Elías Obreque-Slier
- Department of Agro-Industry and Enology, Faculty of Agronomical Sciences,University of Chile, P.O. Box 1004, Santiago, Chile.
| |
Collapse
|
18
|
Longo E, Merkytė V, Romanini E, Lambri M, Boselli E. Effects of grape variety and roasting on the proanthocyanidin oligomers distribution, cyclic proanthocyanidins, and total polyphenol content in grape seed powders. Food Res Int 2024; 176:113826. [PMID: 38163688 DOI: 10.1016/j.foodres.2023.113826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Grape seeds are a valuable source of natural phenolic compounds, particularly flavan-3-ol derivatives such as condensed tannins. Recent studies have shown that grape seed powder can be applied to reduce the undesirable effects of protein instability in wine. One pretreatment method applied to grape seeds is roasting. Roasting causes the heavier proanthocyanidins (PAC) oligomers to break down, thereby increasing the concentration of smaller oligomers available for interaction with proteins. In addition, roasting can prolong grape seed storage. Among the subclasses of proanthocyanidins, oligomeric macrocyclic proanthocyanidins have also shown potential effects in terms of wine stabilization, particularly by presenting selective interactions with metal cations such as potassium and calcium. However, their composition in grape seed extracts has never been studied. Here, the characterization of condensed tannins according to the degree of polymerization in grape seeds, the profile of cyclic proanthocyanidins and the total polyphenol content were characterized in relation to different grape varieties and the application of roasting. Roasting greatly influenced the distribution of PAC according to the degree of polymerization, increasing the abundance of almost all classes of PAC. However, the overall effect of roasting was highly dependent on grape variety. PAC were analyzed according to the degree of polymerization. Grape seed roasting of red varieties (Croatina and Sangiovese) showed an increase in all classes of PAC except trimers. The white variety (Ortrugo) and the mix of Nebbiolo and Barbera varieties (80% and 20% w/w, respectively) showed no clear effect on the profile of PAC upon roasting. Notably, cyclic procyanidins were identified for the first time in grape seeds: a cyclic tetrameric procyanidin (ESI + m/z 1153) and cyclic pentameric procyanidin (ESI + m/z 1441) were found. The abundances of these cyclic PAC were found to be completely stable upon roasting, also in agreement with the already known stability of these compounds against depolymerizing conditions. Interestingly, the cyclic pentameric procyanidin was significantly more abundant in Ortrugo (white variety), than in Sangiovese and Croatina (red varieties). Besides, no effect of roasting occurred on the profile of cyclic procyanidins in grape seed powder. Finally, the total polyphenol content was evaluated, showing that roasting caused an increase of polyphenolic molecular species potentially available for protein stabilization, but only in GSP of red varieties. Overall, the grape variety was found to be a significant factor in determining how much the roasting would change the PAC profile, providing valuable information for future applications of GSP in enology.
Collapse
Affiliation(s)
- Edoardo Longo
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOI Techpark, via Alessandro Volta 13B, 39100 Bolzano, Italy
| | - Vakarė Merkytė
- Oenolab, NOI Techpark, via Alessandro Volta 13B, 39100 Bolzano, Italy
| | - Elia Romanini
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Milena Lambri
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Emanuele Boselli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOI Techpark, via Alessandro Volta 13B, 39100 Bolzano, Italy
| |
Collapse
|
19
|
Wang S, Smyth HE, Olarte Mantilla SM, Stokes JR, Smith PA. Astringency and its sub-qualities: a review of astringency mechanisms and methods for measuring saliva lubrication. Chem Senses 2024; 49:bjae016. [PMID: 38591722 DOI: 10.1093/chemse/bjae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Indexed: 04/10/2024] Open
Abstract
Astringency is an important mouthfeel attribute that influences the sensory experiences of many food and beverage products. While salivary lubricity loss and increased oral friction were previously believed to be the only astringency mechanisms, recent research has demonstrated that nontactile oral receptors can trigger astringency by responding to astringents without mechanical stimulation. Various human factors have also been identified that affect individual responses to astringents. This article presents a critical review of the key research milestones contributing to the current understanding of astringency mechanisms and the instrumental approaches used to quantify perceived astringency intensity. Although various chemical assays or physical measures mimic in-mouth processes involved in astringent mouthfeel, this review highlights how one chemical or physical approach can only provide a single measure of astringency determined by a specific mechanism. Subsequently, using a single measurement to predict astringency perception is overly idealistic. Astringency has not been quantified beyond the loss of saliva lubrication; therefore, nontactile receptor-based responses must also be explored. An important question remains about whether astringency is a single perception or involves distinct sub-qualities such as pucker, drying, and roughness. Although these sub-quality lexicons have been frequently cited, most studies currently view astringency as a single perception rather than dividing it into sub-qualities and investigating the potentially independent mechanisms of each. Addressing these knowledge gaps should be an important priority for future research.
Collapse
Affiliation(s)
- Shaoyang Wang
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Heather E Smyth
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Sandra M Olarte Mantilla
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Indooroopilly, QLD 4068, Australia
| | - Jason R Stokes
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Paul A Smith
- Wine Australia, P.O. Box 2733, Kent Town, SA 5071, Australia
| |
Collapse
|
20
|
Dartora B, Hickert LR, Fabricio MF, Ayub MAZ, Furlan JM, Wagner R, Perez KJ, Sant'Anna V. Understanding the effect of fermentation time on physicochemical characteristics, sensory attributes, and volatile compounds in green tea kombucha. Food Res Int 2023; 174:113569. [PMID: 37986521 DOI: 10.1016/j.foodres.2023.113569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Kombuchas are a trend in the fermented beverage field and the effect of fermentation time on their characteristics is necessary to better understand the process, mainly concerning volatile compounds, which are scarce information in the current literature. Thus, the present work aimed to evaluate the features of green tea kombucha during fermentation, monitoring the changes in pH, acidity, turbidity, polyphenols, ethanol, acetic acid, volatile compounds, and sensory profile and acceptance up to 14 days of fermentation. Kombuchas' pH and acidity decreased through time as expected, but after 4 days of fermentation, the beverage exceeded the Brazilian legal limits of acidity (130 mEq/L) and produced more than 0.5% AVB, which labels the beverage as alcoholic. Total polyphenols and condensed tannins content enhanced until the seventh day of fermentation and remained constant. Fermentation highly impacted the aroma of the infusion with a high formation of volatile acids, such as alcohols, esters, and ketones. Aldehydes were degraded during the bioprocess. Sensory characterization of kombucha showed that fermentation of 4 days increased perceived turbidity; vinegar, citric fruit, acid, and alcoholic aroma; and produced the beverage with sour, bitter, and vinegar flavor. Thus, the fermentation time of kombuchas must be controlled as they rapidly change and impact on the physicochemical parameters and sensory profile of the beverage can be negative.
Collapse
Affiliation(s)
- Bruna Dartora
- Life and Environmental Area, State University of Rio Grande do Sul, Encantado, Rio Grande do Sul, Brazil
| | - Lilian Raquel Hickert
- Life and Environmental Area, State University of Rio Grande do Sul, Encantado, Rio Grande do Sul, Brazil
| | | | - Marco Antônio Zachia Ayub
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Roger Wagner
- Department of Food Technology and Science, Federal University of Santa Maria, Camobi, Santa Maria, RS, Brazil
| | - Karla Joseane Perez
- Life and Environmental Area, State University of Rio Grande do Sul, Encantado, Rio Grande do Sul, Brazil
| | - Voltaire Sant'Anna
- Life and Environmental Area, State University of Rio Grande do Sul, Encantado, Rio Grande do Sul, Brazil.
| |
Collapse
|
21
|
Marques C, Dinis LT, Santos MJ, Mota J, Vilela A. Beyond the Bottle: Exploring Health-Promoting Compounds in Wine and Wine-Related Products-Extraction, Detection, Quantification, Aroma Properties, and Terroir Effects. Foods 2023; 12:4277. [PMID: 38231704 DOI: 10.3390/foods12234277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Health-promoting compounds in wine and wine-related products are important due to their potential benefits to human health. Through an extensive literature review, this study explores the presence of these compounds in wine and wine-related products, examining their relationship with terroir and their impact on the aromatic and flavor properties that are perceived orally: sunlight exposure, rainfall patterns, and soil composition impact grapevines' synthesis and accumulation of health-promoting compounds. Enzymes, pH, and the oral microbiome are crucial in sensory evaluation and perception of health promotion. Moreover, their analysis of health-promoting compounds in wine and wine-related products relies on considerations such as the specific target compound, selectivity, sensitivity, and the complexity of the matrix.
Collapse
Affiliation(s)
- Catarina Marques
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, P.O. Box 1013, 5001-801 Vila Real, Portugal
| | - Lia-Tânia Dinis
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, P.O. Box 1013, 5001-801 Vila Real, Portugal
| | - Maria João Santos
- University of Trás-os-Montes and Alto Douro, P.O. Box 1013, 5001-801 Vila Real, Portugal
| | - João Mota
- University of Trás-os-Montes and Alto Douro, P.O. Box 1013, 5001-801 Vila Real, Portugal
| | - Alice Vilela
- Chemistry Research Centre (CQ-VR), Department of Agronomy, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, P.O. Box 1013, 5001-801 Vila Real, Portugal
| |
Collapse
|
22
|
Galaz Torres C, Ricci A, Parpinello GP, Gambuti A, Rinaldi A, Moio L, Rolle L, Paissoni MA, Mattivi F, Perenzoni D, Arapitsas P, Marangon M, Mayr Marangon C, Slaghenaufi D, Ugliano M, Versari A. Multivariate prediction of Saliva Precipitation Index for relating selected chemical parameters of red wines to the sensory perception of astringency. Curr Res Food Sci 2023; 7:100626. [PMID: 38021261 PMCID: PMC10651451 DOI: 10.1016/j.crfs.2023.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Astringency is an essential sensory attribute of red wine closely related to the saliva precipitation upon contact with the wine. In this study a data matrix of 52 physico-chemical parameters was used to predict the Saliva Precipitation Index (SPI) in 110 Italian mono-varietal red wines using partial least squares regression (PLSr) with variable selection by Variable Importance for Projection (VIP) and the significance of regression coefficients. The final PLSr model, evaluated using a test data set, had 3 components and yielded an R2test of 0.630 and an RMSEtest of 0.994, with 19 independent variables whose regression coefficients were all significant at p < 0.05. Variables selected in the final model according to the decreasing magnitude of their absolute regression coefficient include the following: Procyanidin B1, Epicatechin terminal unit, Total aldehydes, Protein content, Vanillin assay, 520 nm, Polysaccharide content, Epigallocatechin PHL, Tartaric acid, Volatile acidity, Titratable acidity, Catechin terminal unit, Proanthocyanidin assay, pH, Tannin-Fe/Anthocyanin, Buffer capacity, Epigallocatechin PHL gallate, Catechin + epicatechin PHL, and Tannin-Fe. These results can be used to better understand the physico-chemical relationship underlying astringency in red wine.
Collapse
Affiliation(s)
| | - Arianna Ricci
- Department of Agricultural and Food Sciences, University of Bologna, Italy
| | | | - Angelita Gambuti
- Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, 83100, Avellino, Italy
| | - Alessandra Rinaldi
- Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, 83100, Avellino, Italy
| | - Luigi Moio
- Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, 83100, Avellino, Italy
| | - Luca Rolle
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095, Grugliasco, Italy
| | - Maria Alessandra Paissoni
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095, Grugliasco, Italy
| | - Fulvio Mattivi
- Metabolomic Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Italy
| | - Daniele Perenzoni
- Metabolomic Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Italy
| | - Panagiotis Arapitsas
- Metabolomic Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Italy
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Egaleo, 12243, Athens, Greece
| | - Matteo Marangon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy
| | - Christine Mayr Marangon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy
| | - Davide Slaghenaufi
- Department of Biotechnology, University of Verona, via della Pieve 70, San Pietro in Cariano, VR, Italy
| | - Maurizio Ugliano
- Department of Biotechnology, University of Verona, via della Pieve 70, San Pietro in Cariano, VR, Italy
| | - Andrea Versari
- Department of Agricultural and Food Sciences, University of Bologna, Italy
| |
Collapse
|
23
|
Obreque-Slier E, Medel-Marabolí M, Maldonado-Maldonado E, López-Solís RO. Paper chromatography approach for the assessment of interaction between red wine and whole saliva. J Chromatogr A 2023; 1707:464266. [PMID: 37572383 DOI: 10.1016/j.chroma.2023.464266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
In-mouth interaction of red wine compounds with salivary proteins is a primary event allegedly responsible for eliciting the mouth-feel sensation of astringency. Those interactions have been currently associated with precipitation of salivary protein/polyphenol complexes. However, such single physicochemical evidence for interaction does not account for the complexity of astringency. This study aimed to develop a paper chromatography method to assess interactions between red wine and the salivary protein fraction using stepwise series of red wine/saliva binary mixtures from 100% wine to 100% saliva ("Alpha and Omega series"). Aliquots of each one of the mixtures were spotted on a cellulose membrane to scrutinize independently the distribution areas of wine components (naturally pink-colored) and salivary protein (stained blue in Coomassie Brilliant R-250). This double target detection revealed interactions between saliva and red wine components along most of the quantitative Alpha and Omega series, a point of equivalence corresponding to maximum interactivity for both complex reactants and a non-diffusible sub-fraction of saliva displaying the highest interactivity. The results indicate a novel way to assess quantitatively physicochemical interactions between red wines and human saliva but also provide new lights to approach the identification of molecular salivary structures involved in triggering astringency.
Collapse
Affiliation(s)
- Elías Obreque-Slier
- Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, P.O. Box 1004, Santiago, Chile
| | - Marcela Medel-Marabolí
- Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, P.O. Box 1004, Santiago, Chile
| | - Edio Maldonado-Maldonado
- Program of Cellular and Molecular Biology, Faculty of Medicine-ICBM, University of Chile, Independencia 1027, Santiago, Chile
| | - Remigio O López-Solís
- Program of Cellular and Molecular Biology, Faculty of Medicine-ICBM, University of Chile, Independencia 1027, Santiago, Chile.
| |
Collapse
|
24
|
Zhang D, Wei Z, Han Y, Duan Y, Shi B, Ma W. A Review on Wine Flavour Profiles Altered by Bottle Aging. Molecules 2023; 28:6522. [PMID: 37764298 PMCID: PMC10534415 DOI: 10.3390/molecules28186522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The wine flavour profile directly determines the overall quality of wine and changes significantly during bottle aging. Understanding the mechanism of flavour evolution during wine bottle aging is important for controlling wine quality through cellar management. This literature review summarises the changes in volatile compounds and non-volatile compounds that occur during wine bottle aging, discusses chemical reaction mechanisms, and outlines the factors that may affect this evolution. This review aims to provide a deeper understanding of bottle aging management and to identify the current literature gaps for future research.
Collapse
Affiliation(s)
- Di Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| | - Ziyu Wei
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Yufeng Han
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Yaru Duan
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| | - Baohui Shi
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| | - Wen Ma
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
25
|
Dias L, Milheiro J, Ribeiro M, Fernandes C, Neves N, Filipe-Ribeiro L, Cosme F, Nunes FM. Fast and Simple UPLC-Q-TOF MS Method for Determination of Bitter Flavan-3-ols and Oligomeric Proanthocyanidins: Impact of Vegetable Protein Fining Agents on Red Wine Composition. Foods 2023; 12:3313. [PMID: 37685245 PMCID: PMC10486807 DOI: 10.3390/foods12173313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Wine phenolic compounds, particularly proanthocyanidins (PAs), play a significant role in wine sensory characteristics, specifically bitterness and astringency. Although not consensual, flavan-3-ols and oligomeric PAs are generally considered the primary contributors to wine bitterness. Patatin, a vegetable protein fining agent, has been explored as an alternative to animal and synthetic fining agents for reducing wine bitterness. However, contradictory results exist regarding its effectiveness in removing flavan-3-ols and oligomeric PAs in red wines. In this work, a UPLC-Q-TOF MS/MS method was optimized and validated for accurately measuring flavan-3-ols, as well as dimeric and trimeric PAs, in red wines. The MS/MS analysis of flavan-3-ols, in addition to the typical fragmentation described in the literature, revealed an intense mass fragment resulting from the loss of C3O2 and C3O2 + H2O from the parent ion. It was observed that flavan-3-ols and PAs undergo oxidation during sample preparation, which was reversed by the addition of 5 g/L of ascorbic acid. The method demonstrated good linearity range (2 mg/L to 20 mg/L), detection limit (0.3 mg/L to 0.7 mg/L), quantification limit (0.8 mg/L to 2.2 mg/L), precision (repeatability 2.2% to 7.3%), and accuracy (recovery 98.5% to 100.5%). The application of patatin at different doses (5 g/L to 30 g/L) in two different red wine matrices did not reduce the levels of monomeric, dimeric, and trimeric PAs in red wines. However, similar behaviors were observed for pea protein and gelatin. Therefore, wine fining trials and efficiency measurements of the treatments in each matrix are strongly advised.
Collapse
Affiliation(s)
- Lara Dias
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (L.D.); (J.M.); (M.R.); (L.F.-R.)
| | - Juliana Milheiro
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (L.D.); (J.M.); (M.R.); (L.F.-R.)
| | - Miguel Ribeiro
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (L.D.); (J.M.); (M.R.); (L.F.-R.)
- Genetics and Biotechnology Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | | | - Nuno Neves
- Sogrape Vinhos S.A., 4430-809 Avintes, Portugal; (C.F.); (N.N.)
| | - Luís Filipe-Ribeiro
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (L.D.); (J.M.); (M.R.); (L.F.-R.)
| | - Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (L.D.); (J.M.); (M.R.); (L.F.-R.)
- Biology and Environment Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (L.D.); (J.M.); (M.R.); (L.F.-R.)
- Chemistry Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
26
|
Velázquez-Martínez RI, Criado C, Muñoz-González C, Crespo J, Pozo-Bayón MÁ. Evaluation of the Long-Lasting Flavour Perception after the Consumption of Wines Treated with Different Types of Oenological Additives Considering Individual 6-n-Propylthiouracil Taster Status. Foods 2023; 12:2835. [PMID: 37569104 PMCID: PMC10416954 DOI: 10.3390/foods12152835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Due to the limited scientific knowledge on the impact of commercial oenological additives on flavour perception, the aim of this work was to evaluate the effect of different types of oenological additives on the long-lasting flavour perception (flavour persistence) during wine tasting, also considering the effect of the individual PROP (6-n-propylthiouracil) taster status (PTS). To do so, white and red wines with two oenotannins (ellagitannin and gallotannin) and a commercial yeast mannoprotein were prepared. A control wine of each type was also made without additives. All the wines were spiked with a mixture of aromatic compounds responsible for the "fruity" and "woody" notes. Retronasal aroma and astringency were evaluated at the same time using time-intensity (TI) methodology and a trained panel (n = 40), including PROP non-tasters (NTs) and tasters (Ts). The results showed a significant effect of PTS on the long-lasting perception of astringency, being Ts who showed higher values than NTs for most TI parameters. However, PTS did not affect aroma persistence. In addition, the three oenological additives had an effect on astringency and retronasal aroma perception. They significantly increased the long-lasting perception of astringency compared to the control, while gallotannin also increased the persistence of the woody aroma.
Collapse
Affiliation(s)
- Rafael I. Velázquez-Martínez
- Instituto de Investigacion en Ciencias de la Alimentacion, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain; (R.I.V.-M.); (C.C.); (C.M.-G.)
| | - Celia Criado
- Instituto de Investigacion en Ciencias de la Alimentacion, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain; (R.I.V.-M.); (C.C.); (C.M.-G.)
| | - Carolina Muñoz-González
- Instituto de Investigacion en Ciencias de la Alimentacion, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain; (R.I.V.-M.); (C.C.); (C.M.-G.)
| | - Julia Crespo
- Departamento de Investigación Agroambiental, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), El Encín, A-2 km 38.2, 28805 Alcalá de Henares, Spain;
| | - María Ángeles Pozo-Bayón
- Instituto de Investigacion en Ciencias de la Alimentacion, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain; (R.I.V.-M.); (C.C.); (C.M.-G.)
| |
Collapse
|
27
|
Paissoni MA, Motta G, Giacosa S, Rolle L, Gerbi V, Río Segade S. Mouthfeel subqualities in wines: A current insight on sensory descriptors and physical-chemical markers. Compr Rev Food Sci Food Saf 2023; 22:3328-3365. [PMID: 37282812 DOI: 10.1111/1541-4337.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
Astringency and more generally mouthfeel perception are relevant to the overall quality of the wine. However, their origin and description are still uncertain and are constantly updating. Additionally, the terminology related to mouthfeel properties is expansive and extremely diversified, characterized by common traditional terms as well as novel recently adopted descriptors. In this context, this review evaluated the mention frequency of astringent subqualities and other mouthfeel attributes in the scientific literature of the last decades (2000-August 17, 2022). One hundred and twenty-five scientific publications have been selected and classified based on wine typology, aim, and instrumental-sensorial methods adopted. Dry resulted as the most frequent astringent subquality (10% for red wines, 8.6% for white wines), while body-and related terms-is a common mouthfeel sensation for different wine types, although its concept is still vague. Alongside, promising analytical and instrumental techniques investigating and simulating the in-mouth properties are discussed in detail, such as rheology for the viscosity and tribology for the lubrication loss, as well as the different approaches for the quantitative and qualitative evaluation of the interaction between salivary proteins and astringency markers. A focus on the phenolic compounds involved in the tactile perception was conducted, with tannins being the compounds conventionally found responsible for astringency. Nevertheless, other non-tannic polyphenolic classes (i.e., flavonols, phenolic acids, anthocyanins, anthocyanin-derivative pigments) as well as chemical-physical factors and the wine matrix (i.e., polysaccharides, mannoproteins, ethanol, glycerol, and pH) can also contribute to the wine in-mouth sensory profile. An overview of mouthfeel perception, factors involved, and its vocabulary is useful for enologists and consumers.
Collapse
Affiliation(s)
- Maria Alessandra Paissoni
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Giulia Motta
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Simone Giacosa
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Luca Rolle
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Vincenzo Gerbi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Susana Río Segade
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| |
Collapse
|
28
|
Garrido A, Conde A, Serôdio J, De Vos RCH, Cunha A. Fruit Photosynthesis: More to Know about Where, How and Why. PLANTS (BASEL, SWITZERLAND) 2023; 12:2393. [PMID: 37446953 DOI: 10.3390/plants12132393] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Not only leaves but also other plant organs and structures typically considered as carbon sinks, including stems, roots, flowers, fruits and seeds, may exhibit photosynthetic activity. There is still a lack of a coherent and systematized body of knowledge and consensus on the role(s) of photosynthesis in these "sink" organs. With regard to fruits, their actual photosynthetic activity is influenced by a range of properties, including fruit anatomy, histology, physiology, development and the surrounding microclimate. At early stages of development fruits generally contain high levels of chlorophylls, a high density of functional stomata and thin cuticles. While some plant species retain functional chloroplasts in their fruits upon subsequent development or ripening, most species undergo a disintegration of the fruit chloroplast grana and reduction in stomata functionality, thus limiting gas exchange. In addition, the increase in fruit volume hinders light penetration and access to CO2, also reducing photosynthetic activity. This review aimed to compile information on aspects related to fruit photosynthesis, from fruit characteristics to ecological drivers, and to address the following challenging biological questions: why does a fruit show photosynthetic activity and what could be its functions? Overall, there is a body of evidence to support the hypothesis that photosynthesis in fruits is key to locally providing: ATP and NADPH, which are both fundamental for several demanding biosynthetic pathways (e.g., synthesis of fatty acids); O2, to prevent hypoxia in its inner tissues including seeds; and carbon skeletons, which can fuel the biosynthesis of primary and secondary metabolites important for the growth of fruits and for spreading, survival and germination of their seed (e.g., sugars, flavonoids, tannins, lipids). At the same time, both primary and secondary metabolites present in fruits and seeds are key to human life, for instance as sources for nutrition, bioactives, oils and other economically important compounds or components. Understanding the functions of photosynthesis in fruits is pivotal to crop management, providing a rationale for manipulating microenvironmental conditions and the expression of key photosynthetic genes, which may help growers or breeders to optimize development, composition, yield or other economically important fruit quality aspects.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - João Serôdio
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ric C H De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research Centre (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Ana Cunha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
29
|
Silva A, Silva V, Pereira JE, Maltez L, Igrejas G, Valentão P, Falco V, Poeta P. Antimicrobial Resistance and Clonal Lineages of Escherichia coli from Food-Producing Animals. Antibiotics (Basel) 2023; 12:1061. [PMID: 37370379 DOI: 10.3390/antibiotics12061061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Escherichia coli are one of the most important pathogenic bacteria readily found in the livestock and widely studied as an indicator that carries drug-resistant genes between humans, animals, and the environment. The use of antimicrobials in the food chain, particularly in food-producing animals, is recognized as a significant contributor to the development and spread of antimicrobial resistance (AMR) and resistance genes can be transferred from the farm through the food-chain. The objective of this review is to highlight the background of the antimicrobials use in food-producing animals, more specifically, to study clonal lineages and the resistance profiles observed in E. coli, as well as in extended spectrum beta-lactamases (ESBL) producing E. coli, in a set of food-production animals with greater relevance in food consumption, such as pigs, poultry, cattle, fish farming and rabbits. Regarding the prevalence of ESBL-producing E. coli among farm animals, high-to-moderate prevalence was observed, and the highest resistance rates to tetracycline and ampicillin was detected in different farms in all geographic regions. Worldwide pandemic clones and high-risk zoonotic E. coli clones have been identified in most food-producing animals, and some of these clones are already disseminated in different niches, such as the environment and humans. A better understanding of the epidemiology of E. coli and ESBL-producing E. coli in livestock is urgently needed. Animal production is one of the major causes of the antibiotic resistance problem worldwide and a One Health approach is needed.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - José Eduardo Pereira
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Luís Maltez
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Virgílio Falco
- Chemistry Research Centre (CQ-VR), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
30
|
Gao J, Tang ZS, He S, Powell W, Brennan CS. The foaming properties of sweet potato protein hydrolysates produced by Alcalase and Ficin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4157-4163. [PMID: 36594434 DOI: 10.1002/jsfa.12420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/25/2022] [Accepted: 01/03/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The processing of sweet potatoes generates a waste by-product rich in sweet potato protein (SPP). OBJECTIVE In this study, the effects of the concentrations of Alcalase and Ficin, hydrolysis time and pH value on the foaming properties of SPP hydrolysates (SPPHs) determined via gas sparging method were investigated. RESULTS The results showed that SPPH prepared by Alcalase exhibited a significantly higher foaming expansion (the highest of 576%) than that of the SPP (462%) but displayed a weaker liquid volume stability compared with SPPH hydrolyzed by Ficin. The molecular weight of SPPH prepared by Alcalase was distributed in 10-30 kDa. A good microbiological quality of the SPPH prepared by Alcalase in pH 13 has been confirmed, and it is suitable for food application with respect to its microbiological safety profile. CONCLUSIONS SPPH (pH 13) could be further safely applied in food, especially as a food additive at low concentrations to create a better organic plant-based foaming agent for the food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingrong Gao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhejiang, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | | | - Shan He
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Warwick Powell
- School of Design Office, Creative Industries Faculty, Queensland University of Technology, Brisbane City, Queensland, Australia
| | | |
Collapse
|
31
|
Martin LE, Gutierrez VA, Torregrossa AM. The role of saliva in taste and food intake. Physiol Behav 2023; 262:114109. [PMID: 36740133 PMCID: PMC10246345 DOI: 10.1016/j.physbeh.2023.114109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Saliva is well-described in oral food processing, but its role in taste responsiveness remains understudied. Taste stimuli must dissolve in saliva to reach their receptor targets. This allows the constituents of saliva the opportunity to interact with taste stimuli and their receptors at the most fundamental level. Yet, despite years of correlational data suggesting a role for salivary proteins in food preference, there were few experimental models to test the role of salivary proteins in taste-driven behaviors. Here we review our experimental contributions to the hypothesis that salivary proteins can alter taste function. We have developed a rodent model to test how diet alters salivary protein expression, and how salivary proteins alter diet acceptance and taste. We have found that salivary protein expression is modified by diet, and these diet-induced proteins can, in turn, increase the acceptance of a bitter diet. The change in acceptance is in part mediated by a change in taste signaling. Critically, we have documented increased detection threshold, decreased taste nerve signaling, and decreased oromotor responding to quinine when animals have increases in a subset of salivary proteins compared to control conditions.
Collapse
Affiliation(s)
- Laura E Martin
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, 97331, USA
| | | | - Ann-Marie Torregrossa
- Department of Psychology, State University of New York at Buffalo, Buffalo, New York, 14216, USA; University at Buffalo Center for Ingestive Behavior Research, Buffalo, New York, 14216, USA.
| |
Collapse
|
32
|
Yu K, Song Y, Lin J, Dixon RA. The complexities of proanthocyanidin biosynthesis and its regulation in plants. PLANT COMMUNICATIONS 2023; 4:100498. [PMID: 36435967 PMCID: PMC10030370 DOI: 10.1016/j.xplc.2022.100498] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 05/04/2023]
Abstract
Proanthocyanidins (PAs) are natural flavan-3-ol polymers that contribute protection to plants under biotic and abiotic stress, benefits to human health, and bitterness and astringency to food products. They are also potential targets for carbon sequestration for climate mitigation. In recent years, from model species to commercial crops, research has moved closer to elucidating the flux control and channeling, subunit biosynthesis and polymerization, transport mechanisms, and regulatory networks involved in plant PA metabolism. This review extends the conventional understanding with recent findings that provide new insights to address lingering questions and focus strategies for manipulating PA traits in plants.
Collapse
Affiliation(s)
- Keji Yu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Yushuang Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
33
|
Chen G, Netzel ME, Mantilla SMO, Phan ADT, Netzel G, Sivakumar D, Sultanbawa Y. Quality Assessment of Burdekin Plum ( Pleiogynium timoriense) during Ambient Storage. Molecules 2023; 28:1608. [PMID: 36838596 PMCID: PMC9958931 DOI: 10.3390/molecules28041608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Pleiogynium timoriense, commonly known as Burdekin plum (BP), is among many Australian native plants traditionally used by Indigenous people. However, only limited information is available on the nutritional and sensory quality of BP grown in Australia as well as its changes during storage. Therefore, this study evaluated the quality of BP during one week of ambient storage (temperature 21 °C, humidity 69%). Proximate analysis revealed a relatively high dietary fiber content in BP (7-10 g/100 g FW). A significant reduction in fruit weight and firmness (15-30% and 60-90%, respectively) with distinguishable changes in flesh color (ΔE > 3) and an increase in total soluble solids (from 11 to 21 °Brix) could be observed during storage. The vitamin C and folate contents in BP ranged from 29 to 59 mg/100g FW and 0.3 to 5.9 μg/100g FW, respectively, after harvesting. A total phenolic content of up to 20 mg GAE/g FW and ferric reducing antioxidant power of up to 400 μmol Fe2+/g FW in BP indicate a strong antioxidant capacity. In total, 34 individual phenolic compounds were tentatively identified in BP including cyanidin 3-galactoside, ellagic acid and gallotannins as the main phenolics. Principle component analysis (PCA) of the quantified phenolics indicated that tree to tree variation had a bigger impact on the phenolic composition of BP than ambient storage. Sensory evaluation also revealed the diversity in aroma, appearance, texture, flavor and aftertaste of BP. The results of this study provide crucial information for consumers, growers and food processors.
Collapse
Affiliation(s)
- Gengning Chen
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| | - Michael E. Netzel
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| | - Sandra Milena Olarte Mantilla
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| | - Anh Dao Thi Phan
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| | - Gabriele Netzel
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| | - Dharini Sivakumar
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
- Department of Horticulture, Tshwane University of Technology, 0001 Pretoria West, South Africa
| | - Yasmina Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| |
Collapse
|
34
|
Wang S, Olarte Mantilla SM, Smith PA, Stokes JR, Smyth HE. Relationship between salivary lubrication and temporal sensory profiles of wine mouthfeel and astringency sub-qualities. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Wang LT, Zhang S, Fu LN, Chang YH, Nie SM, Fu YJ. Simultaneous quantification and quality control of flavor and functional phytochemicals in Rosa roxburghii fruit through multiple reaction monitoring mass spectrometry. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
36
|
Cheng C, Liu P, Zhao P, Du G, Wang S, Liu H, Cao X, Zhao Q, Wang X. Developing novel oenological tannins from 44 plants sources by assessing astringency and color in model wine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1499-1513. [PMID: 36189836 DOI: 10.1002/jsfa.12247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Oenological tannins are commercial natural products extracted from different botanical sources, which were widely reported as prominent contributors to wine quality. Research on wine quality affected by tannins extracts promoted the development of new oenological products with low cost and high accessibility. In the present study, the structure and concentration of tannin in polyphenol extracts, as well as their correlation with astringency and the color of model wine, was investigated by UV spectrophotometer, HPLC, fluorescence quenching, sodium dodecylsulfate-polyacrylamide gel electrophoresis, colorimeter and sensory evaluation. RESULTS Resource extracts from 16 of 44 plants were screened as wine oenological tannins, according to the total polyphenol and total flavanol, as well as the intensity of astringency and bitterness. Polyphenols extracted from grape seeds and green tea were more effective in increasing the wine astringency compared to other plant tannins. CONCLUSION Total flavanol content and tannin activity showed a strong correlation with wine astringency. Condensed tannins with mean degree of polymerization also exhibited strong color stability, and the concentrations of (-)-epigallocatechin were associated with the a* value, a negative qualitative factor for wine color. The present study provides new clues regarding the development of low-cost and highly accessible sources of polyphenol extracts and lays a theoretical foundation for the development of the oenological product. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenyaqiong Cheng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Pei Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Pengtao Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, Xi'an, China
| | - Guorong Du
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, China
| | - Shengnan Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Hui Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xiaomeng Cao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Qinghao Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xiaoyu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
37
|
Emilio C, Tomas R, Adelaide G, Andrea N. High power ultrasound treatment of crushed grapes: Beyond the extraction phenomena. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235602011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The treatment of white and red crushed grapes by high power ultrasounds (US) represents an emerging technology in winemaking. In 2019, it was officially recognized by OIV through the resolution n°616-2019, and it was also approved by European Union in January 2022. The US effect on extraction mechanisms was widely studied, but more researches are needed to better understand the ultrasound effect on some specific classes of grape compounds. This research aimed to highlight at laboratory scale some specific effects of ultrasounds on some key compounds of white and red grapes. The samples were sonicated at different frequency (20-30 kHz), time (1-10 min), and power (30-90%) technological conditions used in maceration, to obtain valuable information on potential technological transferability. Valuable results were obtained regarding the release of thiols from their precursors, and the reactivity changes of unstable proteins of white wines. The experimental trails on red grape varieties allowed a maintenance of free anthocyanins and no degradative effects were highlighted. Significant and valuable effects were determined also on the tannin polymerization, with an astringency decrease.
The sonication treatment of crushed grapes showed several chemical effects that contribute to decreasing the winemaking inputs and preserving the wine quality. The process conditions must be managed related to grape variety and ripeness for a precision winemaking.
Collapse
|
38
|
Li J, Quan Y, Wang L, Wang S. Brassinosteroid Promotes Grape Berry Quality-Focus on Physicochemical Qualities and Their Coordination with Enzymatic and Molecular Processes: A Review. Int J Mol Sci 2022; 24:ijms24010445. [PMID: 36613887 PMCID: PMC9820165 DOI: 10.3390/ijms24010445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Brassinosteroid (BR) is an important endogenous phytohormone that plays a significant role in fruit quality regulation. The regulation of BR biosynthesis and its physiological effects have been well-studied in various fruits. External quality (fruit longitudinal and transverse diameters, firmness, single berry weight, color) and internal quality (sugars, aroma, anthocyanin, stress-related metabolites) are important parameters that are modified during grape berry development and ripening. Grapevines are grown all over the world as a cash crop and utilized for fresh consumption, wine manufacture, and raisin production. In this paper, the biosynthesis and signaling transduction of BR in grapevine were summarized, as well as the recent developments in understanding the role of BR in regulating the external quality (fruit longitudinal and transverse diameters, firmness, single berry weight, and color) and internal quality (sugars, organic acids, aroma substances, anthocyanins, antioxidants) of grapes. Additionally, current advancements in exogenous BR strategies for improving grape berries quality were examined from the perspectives of enzymatic activity and transcriptional regulation. Furthermore, the interaction between BR and other phytohormones regulating the grape berry quality was also discussed, aiming to provide a reliable reference for better understanding the potential value of BR in the grape/wine industry.
Collapse
|
39
|
Souza JNS, Tolosa T, Teixeira B, Moura F, Silva E, Rogez H. Optimization of the Acid Cleavage of Proanthocyanidins and Other Polyphenols Extracted from Plant Matrices. Molecules 2022; 28:molecules28010066. [PMID: 36615261 PMCID: PMC9821962 DOI: 10.3390/molecules28010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The chemical mechanism of the acid cleavage of proanthocyanidins (PAs) has been known for decades but has yet to be optimized. Therefore, we optimized this process in Byrsonima crassifolia, Euterpe oleracea and Inga edulis extracts using the response surface methodology and assessed the effect of hydrochloric acid concentration (0.3−3.7 N), time (39−291 min), and temperature (56−98 °C) on the following response variables: PAs reduction, astringency reduction, antioxidant capacity/total polyphenols (TEAC/TP) ratio, and cyanidin content. The response variables were maximized when cleavage was performed with 3 N HCl at 88 °C for 165 min. Under these conditions, the mean PAs value and astringency in the three extracts decreased by 91% and 75%, respectively, the TEAC/TP ratio remained unchanged after treatment (p > 0.05), and the increase in cyanidin confirmed the occurrence of cleavage. Thus, the results suggest that acid cleavage efficiently minimizes undesirable technological PAs characteristics, expanding the industrial applications.
Collapse
Affiliation(s)
- Jesus N. S. Souza
- Center for the Valorization of Amazonian Bioactive Compounds (CVACBA), Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
- Correspondence: ; Tel.: +55-91-3201-7456
| | - Tatiana Tolosa
- Center for the Valorization of Amazonian Bioactive Compounds (CVACBA), Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
| | - Bruno Teixeira
- Center for the Valorization of Amazonian Bioactive Compounds (CVACBA), Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
| | - Fábio Moura
- Center for the Valorization of Amazonian Bioactive Compounds (CVACBA), Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
| | - Evaldo Silva
- Institute of Coastal Studies, Federal University of Pará (UFPA), Bragança 68600-000, PA, Brazil
| | - Hervé Rogez
- Center for the Valorization of Amazonian Bioactive Compounds (CVACBA), Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
| |
Collapse
|
40
|
Yang Q, Zhao J, Muhammad A, Tian L, Liu Y, Chen L, Yang P. Biopolymer coating for particle surface engineering and their biomedical applications. Mater Today Bio 2022; 16:100407. [PMID: 36090610 PMCID: PMC9450159 DOI: 10.1016/j.mtbio.2022.100407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
Surface engineering of particles based on a polymeric coating is of great interest in materials design and applications. Due to the disadvantages of non-biodegradability and undesirable biocompatibility, the application of petroleum-based synthetic polymers coating in the biomedical field has been greatly limited. In addition, there is lack of a universal surface modification method to functionalize particles of different compositions, sizes, shapes, and structures. Thus, it is imperative to develop a versatile biopolymeric coating with good biocompatibility and tunable biodegradability for the preparation of functional particle materials regardless of their surface chemical and physical structures. Recently, the natural polysaccharide polymers (e.g. chitosan and cellulose), polyphenol-based biopolymers (e.g. polydopamine and tannic acid), and proteins (e.g. amyloid-like aggregates) have been utilized in surface modification of particles, and applications of these modified particles in the field of biomedicine have been also intensively exploited. In this review, the preparation of the above three coatings on particles surface are summarized, and the applications of these materials in drug loading/release, biomineralization, cell immobilization/protection, enzyme immobilization/protection, and antibacterial/antiviral are exemplified. Finally, the challenges and the future research directions on biopolymer coating for particles surface engineering are prospected.
Collapse
Affiliation(s)
- Qingmin Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jian Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Arif Muhammad
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lihua Tian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lixin Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
41
|
Serni E, Tomada S, Haas F, Robatscher P. Characterization of phenolic profile in dried grape skin of Vitis vinifera L. cv. Pinot Blanc with UHPLC-MS/MS and its development during ripening. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
42
|
Effect of Inter-Row Peanut Growing in the Vineyard on the Quality of 'Cabernet Sauvignon' Grape Fruits and Wines in Northwest China. Foods 2022; 11:foods11223730. [PMID: 36429322 PMCID: PMC9689945 DOI: 10.3390/foods11223730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
In order to solve the problem of premature grape ripening due to global warming, inter-row peanut growing in viticulture was applied. In this two-year (2018-2019) study, the peanut (Arachis hypogaea L.) was used to cover the ground between rows in the vineyards located in the semi-arid Northwest China, Xinjiang. The results showed that reflected solar radiation and temperature around the fruit zone with the peanuts growing were decreased. Compared with clean tillage, the grapes with covering peanuts had lower total soluble solids (TSS) and higher titratable acidity (TA) in the berries. Lower alcohol content and higher total acid (TA) was also found in their corresponding wines. Inter-row peanut growing treatment significantly decreased the contents of flavonols in the grapes and their wines in the two consecutive years, but no significant effect on flavanols was observed in the resulting wines. Norisoprenoids and esters in the grapes and the wines were increased with the peanut growing treatment, respectively. Additionally, compared to clean tillage, the peanut covering significantly improved the sensory value of the wines, especially the aroma complexity of the wines. This study helps us to better understand the feasibility of applying inter-row peanut growing in the viticulture of ground management in the semi-arid climate of Northwest China.
Collapse
|
43
|
Costa JJ, Moreira FT, Soares S, Brandão E, Mateus N, De Freitas V, Sales MGF. Wine astringent compounds monitored by an electrochemical biosensor. Food Chem 2022; 395:133587. [DOI: 10.1016/j.foodchem.2022.133587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/30/2022] [Accepted: 06/25/2022] [Indexed: 11/30/2022]
|
44
|
Majeed U, Shafi A, Majeed H, Akram K, Liu X, Ye J, Luo Y. Grape (Vitis vinifera L.) phytochemicals and their biochemical protective mechanisms against leading pathologies. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Tu Q, Liu S, Li Y, Zhang L, Wang Z, Yuan C. The effects of regions and the wine aging periods on the condensed tannin profiles and the astringency perceptions of Cabernet Sauvignon wines. Food Chem X 2022; 15:100409. [PMID: 36211762 PMCID: PMC9532778 DOI: 10.1016/j.fochx.2022.100409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 11/07/2022] Open
Abstract
Thirty-two commercial red wines of Cabernet Sauvignon produced in five continuous vintages (2015–2019) and collected from four production regions were statistically different for the analyzed condensed tannin profiles. Cabernet Sauvignon wines from four regions were rich in the (–)-epicatechin as the extension subunit. Condensed tannin profiles could be used to distinguish some of the production region, but the different vintage samples were not well differentiated. A negative correlation of ageing periods and condensed tannin concentration of Cabernet Sauvignon wines was observed.
This study sought to determine the effects of wine-producing regions and aging periods on the astringency and chemistry of condensed tannins of Cabernet Sauvignon dry red wines. A wine quality study was performed with 5 vintages of 32 Cabernet Sauvignon wines produced in four Chinese wine-producing regions, Hebei (H), Xinjiang (X), Inner Mongolia (NM), and Ningxia (NX). Condensed tannin profiles were assessed by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). The (–)-epicatechin as the terminal subunit (tEC) is the major differential component between regions. Correlation analysis revealed that condensed tannin concentration and composition significantly affected the sensory evaluation of astringency. Condensed tannin concentrations were significantly and negatively correlated with wine aging periods. However, no significant correlation was found between aging periods and condensed tannin subunits (as mole%) composition. The current findings enhance the understanding of condensed tannins' chemical and astringency characteristics in Cabernet Sauvignon wines.
Collapse
|
46
|
Cheng J, Shi Y, Wang J, Duan C, Yu K. Transcription factor VvibHLH93 negatively regulates proanthocyanidin biosynthesis in grapevine. FRONTIERS IN PLANT SCIENCE 2022; 13:1007895. [PMID: 36092430 PMCID: PMC9449495 DOI: 10.3389/fpls.2022.1007895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Proanthocyanidins (PAs) derived from grape berries determine the astringency and bitterness of red wines. The two leucoanthocyanidin reductases (VviLAR1 and VviLAR2) are crucial for PA accumulation in grapevine. Our previous studies show that the promoter of VviLAR1 contains multiple proposed bHLH transcription factor binding sites, but the corresponding bHLH family regulators remain unknown. Here we identified and functionally characterized VvibHLH93 as a new bHLH transcription factor in PA pathway. Yeast one-hybrid and electrophoretic mobility shift assays showed that VvibHLH93 bound the E/G-box in VviLAR1 promoter. And VvibHLH93 gene was mainly expressed in grape flowers, tendrils, stems and berries at PA active stages. Overexpression of VvibHLH93 suppressed PA accumulation in grape callus, which was linked to the repression of the transcript levels of two VviLARs. The gene expression analysis in transgenic grape callus and the dual-luciferase assay in tobacco leaves together revealed that VvibHLH93 targeted a broad set of structural genes and transcription factors in flavonoid pathway. This research enriches the regulatory mechanism of the two VviLAR genes, and provides new insights into regulating PA content in grape berries.
Collapse
Affiliation(s)
- Jing Cheng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
47
|
Paissoni MA, Bitelli G, Vilanova M, Montanini C, Río Segade S, Rolle L, Giacosa S. Relative impact of oenological tannins in model solutions and red wine according to phenolic, antioxidant, and sensory traits. Food Res Int 2022; 157:111203. [DOI: 10.1016/j.foodres.2022.111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 11/04/2022]
|
48
|
Yu K, Dixon RA, Duan C. A role for ascorbate conjugates of (+)-catechin in proanthocyanidin polymerization. Nat Commun 2022; 13:3425. [PMID: 35701431 PMCID: PMC9197940 DOI: 10.1038/s41467-022-31153-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
Proanthocyanidins (PAs) are natural polymers of flavan-3-ols, commonly (+)-catechin and (-)-epicatechin. However, exactly how PA oligomerization proceeds is poorly understood. Here we show, both biochemically and genetically, that ascorbate (AsA) is an alternative "starter unit" to flavan-3-ol monomers for leucocyanidin-derived (+)-catechin subunit extension in the Arabidopsis thaliana anthocyanidin synthase (ans) mutant. These (catechin)n:ascorbate conjugates (AsA-[C]n) also accumulate throughout the phase of active PA biosynthesis in wild-type grape flowers, berry skins and seeds. In the presence of (-)-epicatechin, AsA-[C]n can further provide monomeric or oligomeric PA extension units for non-enzymatic polymerization in vitro, and their role in vivo is inferred from analysis of relative metabolite levels in both Arabidopsis and grape. Our findings advance the knowledge of (+)-catechin-type PA extension and indicate that PA oligomerization does not necessarily proceed by sequential addition of a single extension unit. AsA-[C]n defines a new type of PA intermediate which we term "sub-PAs".
Collapse
Affiliation(s)
- Keji Yu
- grid.22935.3f0000 0004 0530 8290Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083 China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083 China
| | - Richard A. Dixon
- grid.266869.50000 0001 1008 957XBioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203 USA
| | - Changqing Duan
- grid.22935.3f0000 0004 0530 8290Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083 China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083 China
| |
Collapse
|
49
|
Mora J, Pott DM, Osorio S, Vallarino JG. Regulation of Plant Tannin Synthesis in Crop Species. Front Genet 2022; 13:870976. [PMID: 35586570 PMCID: PMC9108539 DOI: 10.3389/fgene.2022.870976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Plant tannins belong to the antioxidant compound family, which includes chemicals responsible for protecting biological structures from the harmful effects of oxidative stress. A wide range of plants and crops are rich in antioxidant compounds, offering resistance to biotic, mainly against pathogens and herbivores, and abiotic stresses, such as light and wound stresses. These compounds are also related to human health benefits, offering protective effects against cardiovascular and neurodegenerative diseases in addition to providing anti-tumor, anti-inflammatory, and anti-bacterial characteristics. Most of these compounds are structurally and biosynthetically related, being synthesized through the shikimate-phenylpropanoid pathways, offering several classes of plant antioxidants: flavonoids, anthocyanins, and tannins. Tannins are divided into two major classes: condensed tannins or proanthocyanidins and hydrolysable tannins. Hydrolysable tannin synthesis branches directly from the shikimate pathway, while condensed tannins are derived from the flavonoid pathway, one of the branches of the phenylpropanoid pathway. Both types of tannins have been proposed as important molecules for taste perception of many fruits and beverages, especially wine, besides their well-known roles in plant defense and human health. Regulation at the gene level, biosynthesis and degradation have been extensively studied in condensed tannins in crops like grapevine (Vitis vinifera), persimmon (Diospyros kaki) and several berry species due to their high tannin content and their importance in the food and beverage industry. On the other hand, much less information is available regarding hydrolysable tannins, although some key aspects of their biosynthesis and regulation have been recently discovered. Here, we review recent findings about tannin metabolism, information that could be of high importance for crop breeding programs to obtain varieties with enhanced nutritional characteristics.
Collapse
Affiliation(s)
| | | | | | - José G. Vallarino
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”—Consejo Superior de Investigaciones Científicas-Universidad de Málaga- (IHSM-CSIC-UMA), Málaga, Spain
| |
Collapse
|
50
|
Wang Z, Yang J, Ren Y, Yuan C, Wang Z. The effects of the grape varieties and the wine aging periods on the tannin profiles and the astringency perceptions of wines. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01355-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|