1
|
Briffa A, Menon G, Movilla Miangolarra A, Howard M. Dissecting Mechanisms of Epigenetic Memory Through Computational Modeling. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:265-290. [PMID: 38424070 DOI: 10.1146/annurev-arplant-070523-041445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Understanding the mechanistic basis of epigenetic memory has proven to be a difficult task due to the underlying complexity of the systems involved in its establishment and maintenance. Here, we review the role of computational modeling in helping to unlock this complexity, allowing the dissection of intricate feedback dynamics. We focus on three forms of epigenetic memory encoded in gene regulatory networks, DNA methylation, and histone modifications and discuss the important advantages offered by plant systems in their dissection. We summarize the main modeling approaches involved and highlight the principal conceptual advances that the modeling has enabled through iterative cycles of predictive modeling and experiments. Lastly, we discuss remaining gaps in our understanding and how intertwined theory and experimental approaches might help in their resolution.
Collapse
Affiliation(s)
- Amy Briffa
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom;
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Govind Menon
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom;
| | - Ander Movilla Miangolarra
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom;
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom;
| |
Collapse
|
2
|
Duan N, Hua Y, Yan X, He Y, Zeng T, Gong J, Fu Z, Li W, Yin Y. Unveiling Alterations of Epigenetic Modifications and Chromatin Architecture Leading to Lipid Metabolic Reprogramming during the Evolutionary Trastuzumab Adaptation of HER2-Positive Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309424. [PMID: 38460162 PMCID: PMC11095153 DOI: 10.1002/advs.202309424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Indexed: 03/11/2024]
Abstract
Secondary trastuzumab resistance represents an evolutionary adaptation of HER2-positive breast cancer during anti-HER2 treatment. Most current studies have tended to prioritize HER2 and its associated signaling pathways, often overlooking broader but seemingly less relevant cellular processes, along with their associated genetic and epigenetic mechanisms. Here, transcriptome data is not only characterized but also examined epigenomic and 3D genome architecture information in both trastuzumab-sensitive and secondary-resistant breast cancer cells. The findings reveal that the global metabolic reprogramming associated with trastuzumab resistance may stem from genome-wide alterations in both histone modifications and chromatin structure. Specifically, the transcriptional activities of key genes involved in lipid metabolism appear to be regulated by variant promoter H3K27me3 and H3K4me3 modifications, as well as promoter-enhancer interactions. These discoveries offer valuable insights into how cancer cells adapt to anti-tumor drugs and have the potential to impact future diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Ningjun Duan
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Yijia Hua
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Xueqi Yan
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Yaozhou He
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Tianyu Zeng
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Jue Gong
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Ziyi Fu
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Wei Li
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| | - Yongmei Yin
- Department of oncologyFirst affiliation hospital of Nanjing medical universityNanjing210029China
| |
Collapse
|
3
|
Uyehara CM, Apostolou E. 3D enhancer-promoter interactions and multi-connected hubs: Organizational principles and functional roles. Cell Rep 2023; 42:112068. [PMID: 37059094 PMCID: PMC10556201 DOI: 10.1016/j.celrep.2023.112068] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/25/2022] [Accepted: 01/20/2023] [Indexed: 04/16/2023] Open
Abstract
The spatiotemporal control of gene expression is dependent on the activity of cis-acting regulatory sequences, called enhancers, which regulate target genes over variable genomic distances and, often, by skipping intermediate promoters, suggesting mechanisms that control enhancer-promoter communication. Recent genomics and imaging technologies have revealed highly complex enhancer-promoter interaction networks, whereas advanced functional studies have started interrogating the forces behind the physical and functional communication among multiple enhancers and promoters. In this review, we first summarize our current understanding of the factors involved in enhancer-promoter communication, with a particular focus on recent papers that have revealed new layers of complexities to old questions. In the second part of the review, we focus on a subset of highly connected enhancer-promoter "hubs" and discuss their potential functions in signal integration and gene regulation, as well as the putative factors that might determine their dynamics and assembly.
Collapse
Affiliation(s)
- Christopher M Uyehara
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
4
|
Kanezaki R, Toki T, Terui K, Sato T, Kobayashi A, Kudo K, Kamio T, Sasaki S, Kawaguchi K, Watanabe K, Ito E. Mechanism of KIT gene regulation by GATA1 lacking the N-terminal domain in Down syndrome-related myeloid disorders. Sci Rep 2022; 12:20587. [PMID: 36447001 PMCID: PMC9708825 DOI: 10.1038/s41598-022-25046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Children with Down syndrome (DS) are at high risk of transient abnormal myelopoiesis (TAM) and myeloid leukemia of DS (ML-DS). GATA1 mutations are detected in almost all TAM and ML-DS samples, with exclusive expression of short GATA1 protein (GATA1s) lacking the N-terminal domain (NTD). However, it remains to be clarified how GATA1s is involved with both disorders. Here, we established the K562 GATA1s (K562-G1s) clones expressing only GATA1s by CRISPR/Cas9 genome editing. The K562-G1s clones expressed KIT at significantly higher levels compared to the wild type of K562 (K562-WT). Chromatin immunoprecipitation studies identified the GATA1-bound regulatory sites upstream of KIT in K562-WT, K562-G1s clones and two ML-DS cell lines; KPAM1 and CMK11-5. Sonication-based chromosome conformation capture (3C) assay demonstrated that in K562-WT, the - 87 kb enhancer region of KIT was proximal to the - 115 kb, - 109 kb and + 1 kb region, while in a K562-G1s clone, CMK11-5 and primary TAM cells, the - 87 kb region was more proximal to the KIT transcriptional start site. These results suggest that the NTD of GATA1 is essential for proper genomic conformation and regulation of KIT gene expression, and that perturbation of this function might be involved in the pathogenesis of TAM and ML-DS.
Collapse
Affiliation(s)
- Rika Kanezaki
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Tsutomu Toki
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Kiminori Terui
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Tomohiko Sato
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Akie Kobayashi
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Ko Kudo
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Takuya Kamio
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Shinya Sasaki
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Koji Kawaguchi
- grid.415798.60000 0004 0378 1551Department of Hematology and Oncology, Shizuoka Children’s Hospital, Shizuoka, Japan
| | - Kenichiro Watanabe
- grid.415798.60000 0004 0378 1551Department of Hematology and Oncology, Shizuoka Children’s Hospital, Shizuoka, Japan
| | - Etsuro Ito
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan ,grid.257016.70000 0001 0673 6172Department of Community Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
5
|
Gamliel A, Meluzzi D, Oh S, Jiang N, Destici E, Rosenfeld MG, Nair SJ. Long-distance association of topological boundaries through nuclear condensates. Proc Natl Acad Sci U S A 2022; 119:e2206216119. [PMID: 35914133 PMCID: PMC9371644 DOI: 10.1073/pnas.2206216119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/24/2022] [Indexed: 01/09/2023] Open
Abstract
The eukaryotic genome is partitioned into distinct topological domains separated by boundary elements. Emerging data support the concept that several well-established nuclear compartments are ribonucleoprotein condensates assembled through the physical process of phase separation. Here, based on our demonstration that chemical disruption of nuclear condensate assembly weakens the insulation properties of a specific subset (∼20%) of topologically associated domain (TAD) boundaries, we report that the disrupted boundaries are characterized by a high level of transcription and striking spatial clustering. These topological boundary regions tend to be spatially associated, even interchromosomally, segregate with nuclear speckles, and harbor a specific subset of "housekeeping" genes widely expressed in diverse cell types. These observations reveal a previously unappreciated mode of genome organization mediated by conserved boundary elements harboring highly and widely expressed transcription units and associated transcriptional condensates.
Collapse
Affiliation(s)
- Amir Gamliel
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
- HHMI, University of California San Diego, La Jolla, CA 92093
| | - Dario Meluzzi
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
- HHMI, University of California San Diego, La Jolla, CA 92093
| | - Soohwan Oh
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
- HHMI, University of California San Diego, La Jolla, CA 92093
| | - Nan Jiang
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093
| | - Eugin Destici
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093
| | - Michael G Rosenfeld
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
- HHMI, University of California San Diego, La Jolla, CA 92093
| | - Sreejith J Nair
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
- HHMI, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
6
|
Galouzis CC, Prud’homme B. Relevance and mechanisms of transvection. C R Biol 2021; 344:373-387. [DOI: 10.5802/crbiol.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022]
|
7
|
Keenan CR, Mlodzianoski MJ, Coughlan HD, Bediaga NG, Naselli G, Lucas EC, Wang Q, de Graaf CA, Hilton DJ, Harrison LC, Smyth GK, Rogers KL, Boudier T, Allan RS, Johanson TM. Chromosomes distribute randomly to, but not within, human neutrophil nuclear lobes. iScience 2021; 24:102161. [PMID: 33665577 PMCID: PMC7905186 DOI: 10.1016/j.isci.2021.102161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/24/2020] [Accepted: 02/03/2021] [Indexed: 11/19/2022] Open
Abstract
The proximity pattern and radial distribution of chromosome territories within spherical nuclei are random and non-random, respectively. Whether this distribution pattern is conserved in the partitioned or lobed nuclei of polymorphonuclear cells is unclear. Here we use chromosome paint technology to examine the chromosome territories of all 46 chromosomes in hundreds of single human neutrophils - an abundant and famously polymorphonuclear immune cell. By comparing the distribution of chromosomes to randomly shuffled controls and validating with orthogonal chromosome conformation capture technology, we show for the first time that human chromosomes randomly distribute to neutrophil nuclear lobes, while maintaining a non-random radial distribution within these lobes. Furthermore, we demonstrate that chromosome length correlates with three-dimensional volume not only in neutrophils but other human immune cells. This work demonstrates that chromosomes are largely passive passengers during the neutrophil lobing process but are able to subsequently maintain their macro-level organization within lobes.
Collapse
Affiliation(s)
- Christine R. Keenan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael J. Mlodzianoski
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hannah D. Coughlan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Naiara G. Bediaga
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Gaetano Naselli
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Erin C. Lucas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Qike Wang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Carolyn A. de Graaf
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Douglas J. Hilton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Leonard C. Harrison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kelly L. Rogers
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Thomas Boudier
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Institute of Biology Paris-Seine, Sorbonne Université, Paris, France
| | - Rhys S. Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Timothy M. Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
8
|
Farber JE, Lane RP. Bioinformatics Discovery of Putative Enhancers within Mouse Odorant Receptor Gene Clusters. Chem Senses 2019; 44:705-720. [PMID: 31529021 DOI: 10.1093/chemse/bjz043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Olfactory neuronal function depends on the expression and proper regulation of odorant receptor (OR) genes. Previous studies have identified 54 putative intergenic enhancers within or flanking 40 mouse OR clusters. At least 2 of these putative enhancers have been shown to regulate the expression of a small subset of proximal OR genes. In recognition of the large size of the mouse OR gene family (~1400 OR genes distributed across multiple chromosomal loci), it is likely that there remain many additional not-as-yet discovered OR enhancers. We utilized 23 of the previously identified enhancers as a training set (TS) and designed an algorithm that combines a broad range of epigenetic criteria (histone-3-lysine-4 monomethylation, histone-3-lysine-79 trimethylation, histone-3-lysine-27 acetylation, and DNase hypersensitivity) and genetic criteria (cross-species sequence conservation and transcription-factor binding site enrichment) to more broadly search OR gene clusters for additional candidates. We identified 181 new candidate enhancers located at 58 (of 68) mouse OR loci, including 25 new candidates identified by stringent search criteria whose signal strengths are not significantly different from the 23 previously characterized OR enhancers used as the TS. Additionally, we compared OR enhancer versus generic enhancer features in order to evaluate likelihoods that new enhancer candidates specifically function in OR regulation. We found that features distinguishing OR-specific function are significantly more evident for enhancer candidates located within OR clusters as compared with those in flanking regions.
Collapse
Affiliation(s)
- James E Farber
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Robert P Lane
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| |
Collapse
|
9
|
Potapova TA, Unruh JR, Yu Z, Rancati G, Li H, Stampfer MR, Gerton JL. Superresolution microscopy reveals linkages between ribosomal DNA on heterologous chromosomes. J Cell Biol 2019; 218:2492-2513. [PMID: 31270138 PMCID: PMC6683752 DOI: 10.1083/jcb.201810166] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/14/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
Potapova et al. use superresolution microscopy to describe linkages between ribosomal DNA on heterologous human chromosomes whose formation depends on the transcription factor UBF and topoisomerase II. Linkages persist in the absence of cohesion but require topoisomerase II for resolution. The spatial organization of the genome is enigmatic. Direct evidence of physical contacts between chromosomes and their visualization at nanoscale resolution has been limited. We used superresolution microscopy to demonstrate that ribosomal DNA (rDNA) can form linkages between chromosomes. We observed rDNA linkages in many different human cell types and demonstrated their resolution in anaphase. rDNA linkages are coated by the transcription factor UBF and their formation depends on UBF, indicating that they regularly occur between transcriptionally active loci. Overexpression of c-Myc increases rDNA transcription and the frequency of rDNA linkages, further suggesting that their formation depends on active transcription. Linkages persist in the absence of cohesion, but inhibition of topoisomerase II prevents their resolution in anaphase. We propose that linkages are topological intertwines occurring between transcriptionally active rDNA loci spatially colocated in the same nucleolar compartment. Our findings suggest that active DNA loci engage in physical interchromosomal connections that are an integral and pervasive feature of genome organization.
Collapse
Affiliation(s)
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO
| | - Giulia Rancati
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, MO
| | - Martha R Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO .,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
10
|
Ho EYK, Cao Q, Gu M, Chan RWL, Wu Q, Gerstein M, Yip KY. Shaping the nebulous enhancer in the era of high-throughput assays and genome editing. Brief Bioinform 2019; 21:836-850. [PMID: 30895290 DOI: 10.1093/bib/bbz030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 01/22/2023] Open
Abstract
Since the 1st discovery of transcriptional enhancers in 1981, their textbook definition has remained largely unchanged in the past 37 years. With the emergence of high-throughput assays and genome editing, which are switching the paradigm from bottom-up discovery and testing of individual enhancers to top-down profiling of enhancer activities genome-wide, it has become increasingly evidenced that this classical definition has left substantial gray areas in different aspects. Here we survey a representative set of recent research articles and report the definitions of enhancers they have adopted. The results reveal that a wide spectrum of definitions is used usually without the definition stated explicitly, which could lead to difficulties in data interpretation and downstream analyses. Based on these findings, we discuss the practical implications and suggestions for future studies.
Collapse
Affiliation(s)
| | - Qin Cao
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Mengting Gu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Ricky Wai-Lun Chan
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Qiong Wu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.,Program in Computational Biology and Bioinformatics.,Department of Computer Science, Yale University, New Haven, Connecticut, USA
| | - Kevin Y Yip
- Department of Biomedical Engineering.,Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre.,CUHK-BGI Innovation Institute of Trans-omics.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
11
|
Vermunt MW, Zhang D, Blobel GA. The interdependence of gene-regulatory elements and the 3D genome. J Cell Biol 2019; 218:12-26. [PMID: 30442643 PMCID: PMC6314554 DOI: 10.1083/jcb.201809040] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 01/12/2023] Open
Abstract
Imaging studies, high-resolution chromatin conformation maps, and genome-wide occupancy data of architectural proteins have revealed that genome topology is tightly intertwined with gene expression. Cross-talk between gene-regulatory elements is often organized within insulated neighborhoods, and regulatory cues that induce transcriptional changes can reshape chromatin folding patterns and gene positioning within the nucleus. The cause-consequence relationship of genome architecture and gene expression is intricate, and its molecular mechanisms are under intense investigation. Here, we review the interdependency of transcription and genome organization with emphasis on enhancer-promoter contacts in gene regulation.
Collapse
Affiliation(s)
- Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Di Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
12
|
Partition of Repeat-Induced Point Mutations Reveals Structural Aspects of Homologous DNA-DNA Pairing. Biophys J 2018; 115:605-615. [PMID: 30086830 DOI: 10.1016/j.bpj.2018.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/28/2018] [Indexed: 11/21/2022] Open
Abstract
In some fungi, a premeiotic process known as repeat-induced point mutation (RIP) can accurately identify and mutate nearly all gene-sized DNA repeats present in the haploid germline nuclei. Studies in Neurospora crassa have suggested that RIP detects sequence homology directly between intact DNA double helices, without strand separation and without the participation of RecA-like proteins. Those studies used the aggregated number of RIP mutations as a simple quantitative measure of RIP activity. Additional structural information about homologous DNA-DNA pairing during RIP can be extracted by analyzing spatial distributions of RIP mutations converted into profiles of partitioned RIP propensity (PRP). Further analysis shows that PRP is strongly affected by the topological configuration and the relative positioning of the participating DNA segments. Most notably, pairs of closely positioned repeats produce very distinct PRP profiles depending on whether these repeats are present in the direct or the inverted orientation. Such an effect can be attributed to a topology-dependent redistribution of the supercoiling stress created by the predicted limited untwisting of the DNA segments during pairing. This and other results raise a possibility that such pairing-induced fluctuations in DNA supercoiling can modulate the overall structure and properties of repetitive DNA. Such effects can be particularly strong in the context of long tandem-repeat arrays that are typically present in the pericentromeric and centromeric regions of chromosomes in many species of plants, fungi, and animals, including humans.
Collapse
|
13
|
A new approach of gene co-expression network inference reveals significant biological processes involved in porcine muscle development in late gestation. Sci Rep 2018; 8:10150. [PMID: 29977047 PMCID: PMC6033925 DOI: 10.1038/s41598-018-28173-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/14/2018] [Indexed: 12/28/2022] Open
Abstract
The integration of genetic information in the cellular and nuclear environments is crucial for deciphering the way in which the genome functions under different physiological conditions. Experimental techniques of 3D nuclear mapping, a high-flow approach such as transcriptomic data analyses, and statistical methods for the development of co-expressed gene networks, can be combined to develop an integrated approach for depicting the regulation of gene expression. Our work focused more specifically on the mechanisms involved in the transcriptional regulation of genes expressed in muscle during late foetal development in pig. The data generated by a transcriptomic analysis carried out on muscle of foetuses from two extreme genetic lines for birth mortality are used to construct networks of differentially expressed and co-regulated genes. We developed an innovative co-expression networking approach coupling, by means of an iterative process, a new statistical method for graph inference with data of gene spatial co-localization (3D DNA FISH) to construct a robust network grouping co-expressed genes. This enabled us to highlight relevant biological processes related to foetal muscle maturity and to discover unexpected gene associations between IGF2, MYH3 and DLK1/MEG3 in the nuclear space, genes that are up-regulated at this stage of muscle development.
Collapse
|
14
|
Johanson TM, Coughlan HD, Lun ATL, Bediaga NG, Naselli G, Garnham AL, Harrison LC, Smyth GK, Allan RS. Genome-wide analysis reveals no evidence of trans chromosomal regulation of mammalian immune development. PLoS Genet 2018; 14:e1007431. [PMID: 29883495 PMCID: PMC6010296 DOI: 10.1371/journal.pgen.1007431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/20/2018] [Accepted: 05/18/2018] [Indexed: 12/31/2022] Open
Abstract
It has been proposed that interactions between mammalian chromosomes, or transchromosomal interactions (also known as kissing chromosomes), regulate gene expression and cell fate determination. Here we aimed to identify novel transchromosomal interactions in immune cells by high-resolution genome-wide chromosome conformation capture. Although we readily identified stable interactions in cis, and also between centromeres and telomeres on different chromosomes, surprisingly we identified no gene regulatory transchromosomal interactions in either mouse or human cells, including previously described interactions. We suggest that advances in the chromosome conformation capture technique and the unbiased nature of this approach allow more reliable capture of interactions between chromosomes than previous methods. Overall our findings suggest that stable transchromosomal interactions that regulate gene expression are not present in mammalian immune cells and that lineage identity is governed by cis, not trans chromosomal interactions. It is a widely held belief that, in the darkness of the nucleus, strands of DNA that make up different chromosomes frequently meet to ‘kiss’. These kisses, or transchromosomal interactions, are thought to be important for the expression of genes and thus cell development. Here, we aimed to identify novel transchromosomal interactions in mouse and human immune cells by high-resolution genome-wide chromosome conformation capture methods. Although we readily identified stable interactions within chromosomes and also between centromeres and telomeres on different chromosomes, surprisingly we identified no gene regulatory transchromosomal interactions in either mouse or human cells, including those previously described. Overall our findings suggest that stable transchromosomal interactions that regulate gene expression are not present in mammalian immune cells and that chromosomes are doing far less kissing than was previously believed.
Collapse
Affiliation(s)
- Timothy M. Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Hannah D. Coughlan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Aaron T. L. Lun
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Naiara G. Bediaga
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Gaetano Naselli
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Alexandra L. Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Leonard C. Harrison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Rhys S. Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- * E-mail:
| |
Collapse
|
15
|
Asaka MN, Uranishi K, Suzuki A, Hirasaki M, Nishimoto M, Okuda A. Link between embryonic stem cell pluripotency and homologous allelic pairing of Oct4 loci. Dev Growth Differ 2017; 59:639-647. [PMID: 28967672 DOI: 10.1111/dgd.12403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 01/11/2023]
Abstract
The Oct4 gene is a master regulator of the pluripotent properties of embryonic stem cells (ESCs). Recently, Oct4 loci were shown to frequently localize in close proximity to one another during the early stage of cellular differentiation, implicating this event as an important prerequisite step for ESCs to exert their full differentiation potential. Although the differentiation capacity of embryonal carcinoma cells (ECCs), such as F9 and P19 ECC lines, is severely restricted compared with ESCs, ECCs bear a highly similar expression profile to that of ESCs including expression of Oct4 and other pluripotency marker genes. Therefore, we examined whether allelic pairing of Oct4 loci also occurs during differentiation of F9 and P19 ECCs. Our data clearly demonstrate that this event is only observed within ESCs, but not ECCs, subjected to induction of differentiation, indicating transient allelic pairing of Oct4 loci as a specific feature of pluripotent ESCs. Moreover, our data revealed that this pairing did not occur broadly across chromosome 17, which carries the Oct4 gene, but occurred locally between Oct4 loci, suggesting that Oct4 loci somehow exert a driving force for their allelic pairing.
Collapse
Affiliation(s)
- Masamitsu N Asaka
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Kousuke Uranishi
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Ayumu Suzuki
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Masataka Hirasaki
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Masazumi Nishimoto
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Akihiko Okuda
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| |
Collapse
|
16
|
Genome organization: connecting the developmental origins of disease and genetic variation. J Dev Orig Health Dis 2017; 9:260-265. [PMID: 28847340 DOI: 10.1017/s2040174417000678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An adverse early life environment can increase the risk of metabolic and other disorders later in life. Genetic variation can modify an individual's susceptibility to these environmental challenges. These gene by environment interactions are important, but difficult, to dissect. The nucleus is the primary organelle where environmental responses impact directly on the genetic variants within the genome, resulting in changes to the biology of the genome and ultimately the phenotype. Understanding genome biology requires the integration of the linear DNA sequence, epigenetic modifications and nuclear proteins that are present within the nucleus. The interactions between these layers of information may be captured in the emergent spatial genome organization. As such genome organization represents a key research area for decoding the role of genetic variation in the Developmental Origins of Health and Disease.
Collapse
|
17
|
Fujita T, Yuno M, Suzuki Y, Sugano S, Fujii H. Identification of physical interactions between genomic regions by enChIP-Seq. Genes Cells 2017; 22:506-520. [PMID: 28474362 DOI: 10.1111/gtc.12492] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/22/2017] [Indexed: 01/23/2023]
Abstract
Physical interactions between genomic regions play critical roles in the regulation of genome functions, including gene expression. Here, we show the feasibility of using engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) in combination with next-generation sequencing (NGS) (enChIP-Seq) to detect such interactions. In enChIP-Seq, the target genomic region is captured by an engineered DNA-binding complex, such as a clustered regularly interspaced short palindromic repeats (CRISPR) system consisting of a catalytically inactive form of Cas9 and a single guide RNA. Subsequently, the genomic regions that physically interact with the target genomic region in the captured complex are sequenced by NGS. Using enChIP-Seq, we found that the 5'HS5 locus, which is involved in the regulation of globin genes expression at the β-globin locus, interacts with multiple genomic regions upon erythroid differentiation in the human erythroleukemia cell line K562. Genes near the genomic regions inducibly associated with the 5'HS5 locus were transcriptionally up-regulated in the differentiated state, suggesting the existence of a coordinated transcription mechanism mediated by physical interactions between these loci. Thus, enChIP-Seq might be a potentially useful tool for detecting physical interactions between genomic regions in a nonbiased manner, which would facilitate elucidation of the molecular mechanisms underlying regulation of genome functions.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Miyuki Yuno
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hodaka Fujii
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
18
|
Long Noncoding RNA: Genome Organization and Mechanism of Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1008:47-74. [PMID: 28815536 DOI: 10.1007/978-981-10-5203-3_2] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For the last four decades, we have known that noncoding RNAs maintain critical housekeeping functions such as transcription, RNA processing, and translation. However, in the late 1990s and early 2000s, the advent of high-throughput sequencing technologies and computational tools to analyze these large sequencing datasets facilitated the discovery of thousands of small and long noncoding RNAs (lncRNAs) and their functional role in diverse biological functions. For example, lncRNAs have been shown to regulate dosage compensation, genomic imprinting, pluripotency, cell differentiation and development, immune response, etc. Here we review how lncRNAs bring about such copious functions by employing diverse mechanisms such as translational inhibition, mRNA degradation, RNA decoys, facilitating recruitment of chromatin modifiers, regulation of protein activity, regulating the availability of miRNAs by sponging mechanism, etc. In addition, we provide a detailed account of different mechanisms as well as general principles by which lncRNAs organize functionally different nuclear sub-compartments and their impact on nuclear architecture.
Collapse
|
19
|
Sawyer IA, Sturgill D, Sung MH, Hager GL, Dundr M. Cajal body function in genome organization and transcriptome diversity. Bioessays 2016; 38:1197-1208. [PMID: 27767214 DOI: 10.1002/bies.201600144] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nuclear bodies contribute to non-random organization of the human genome and nuclear function. Using a major prototypical nuclear body, the Cajal body, as an example, we suggest that these structures assemble at specific gene loci located across the genome as a result of high transcriptional activity. Subsequently, target genes are physically clustered in close proximity in Cajal body-containing cells. However, Cajal bodies are observed in only a limited number of human cell types, including neuronal and cancer cells. Ultimately, Cajal body depletion perturbs splicing kinetics by reducing target small nuclear RNA (snRNA) transcription and limiting the levels of spliceosomal snRNPs, including their modification and turnover following each round of RNA splicing. As such, Cajal bodies are capable of shaping the chromatin interaction landscape and the transcriptome by influencing spliceosome kinetics. Future studies should concentrate on characterizing the direct influence of Cajal bodies upon snRNA gene transcriptional dynamics. Also see the video abstract here.
Collapse
Affiliation(s)
- Iain A Sawyer
- Department of Cell Biology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David Sturgill
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miroslav Dundr
- Department of Cell Biology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
20
|
Buffry AD, Mendes CC, McGregor AP. The Functionality and Evolution of Eukaryotic Transcriptional Enhancers. ADVANCES IN GENETICS 2016; 96:143-206. [PMID: 27968730 DOI: 10.1016/bs.adgen.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enhancers regulate precise spatial and temporal patterns of gene expression in eukaryotes and, moreover, evolutionary changes in these modular cis-regulatory elements may represent the predominant genetic basis for phenotypic evolution. Here, we review approaches to identify and functionally analyze enhancers and their transcription factor binding sites, including assay for transposable-accessible chromatin-sequencing (ATAC-Seq) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, respectively. We also explore enhancer functionality, including how transcription factor binding sites combine to regulate transcription, as well as research on shadow and super enhancers, and how enhancers can act over great distances and even in trans. Finally, we discuss recent theoretical and empirical data on how transcription factor binding sites and enhancers evolve. This includes how the function of enhancers is maintained despite the turnover of transcription factor binding sites as well as reviewing studies where mutations in enhancers have been shown to underlie morphological change.
Collapse
Affiliation(s)
- A D Buffry
- Oxford Brookes University, Oxford, United Kingdom
| | - C C Mendes
- Oxford Brookes University, Oxford, United Kingdom
| | - A P McGregor
- Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
21
|
Jacobson E, Perry JK, Long DS, Vickers MH, O'Sullivan JM. A potential role for genome structure in the translation of mechanical force during immune cell development. Nucleus 2016; 7:462-475. [PMID: 27673560 PMCID: PMC5120600 DOI: 10.1080/19491034.2016.1238998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 12/29/2022] Open
Abstract
Immune cells react to a wide range of environments, both chemical and physical. While the former has been extensively studied, there is growing evidence that physical and in particular mechanical forces also affect immune cell behavior and development. In order to elicit a response that affects immune cell behavior or development, environmental signals must often reach the nucleus. Chemical and mechanical signals can initiate signal transduction pathways, but mechanical forces may also have a more direct route to the nucleus, altering nuclear shape via mechanotransduction. The three-dimensional organization of DNA allows for the possibility that altering nuclear shape directly remodels chromatin, redistributing critical regulatory elements and proteins, and resulting in wide-scale gene expression changes. As such, integrating mechanotransduction and genome architecture into the immunology toolkit will improve our understanding of immune development and disease.
Collapse
Affiliation(s)
- Elsie Jacobson
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jo K. Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - David S. Long
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
22
|
Epigenetic modulations rendering cell-to-cell variability and phenotypic metastability. J Genet Genomics 2016; 43:503-11. [DOI: 10.1016/j.jgg.2016.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/12/2016] [Accepted: 05/25/2016] [Indexed: 02/01/2023]
|
23
|
Brodie A, Azaria JR, Ofran Y. How far from the SNP may the causative genes be? Nucleic Acids Res 2016; 44:6046-54. [PMID: 27269582 PMCID: PMC5291268 DOI: 10.1093/nar/gkw500] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 02/03/2023] Open
Abstract
While GWAS identify many disease-associated SNPs, using them to decipher disease mechanisms is hindered by the difficulty in mapping SNPs to genes. Most SNPs are in non-coding regions and it is often hard to identify the genes they implicate. To explore how far the SNP may be from the affected genes we used a pathway-based approach. We found that affected genes are often up to 2 Mbps away from the associated SNP, and are not necessarily the closest genes to the SNP. Existing approaches for mapping SNPs to genes leave many SNPs unmapped to genes and reveal only 86 significant phenotype-pathway associations for all known GWAS hits combined. Using the pathway-based approach we propose here allows mapping of virtually all SNPs to genes and reveals 435 statistically significant phenotype-pathway associations. In search for mechanisms that may explain the relationships between SNPs and distant genes, we found that SNPs that are mapped to distant genes have significantly more large insertions/deletions around them than other SNPs, suggesting that these SNPs may sometimes be markers for large insertions/deletions that may affect large genomic regions.
Collapse
Affiliation(s)
- Aharon Brodie
- The Goodman faculty of life sciences, Nanotechnology building, Bar Ilan University, Ramat Gan 52900, Israel
| | - Johnathan Roy Azaria
- The Goodman faculty of life sciences, Nanotechnology building, Bar Ilan University, Ramat Gan 52900, Israel
| | - Yanay Ofran
- The Goodman faculty of life sciences, Nanotechnology building, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
24
|
Marand AP, Zhang T, Zhu B, Jiang J. Towards genome-wide prediction and characterization of enhancers in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:131-139. [PMID: 27321818 DOI: 10.1016/j.bbagrm.2016.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022]
Abstract
Enhancers are important cis-regulatory DNA elements that regulate transcription programs by recruiting transcription factors and directing them to the promoters of target genes in a cell-type/tissue-specific manner. The expression of a gene can be regulated by one or multiple enhancers at different developmental stages and/or in different tissues. Enhancers are difficult to identify because of their unpredictable positions relative to their cognate promoters. Remarkably, only a handful of enhancers have been identified in plant species largely due to the lack of general approaches for enhancer identification. Extensive genomic and epigenomic research in mammalian species has revealed that the genomic locations of enhancers can be predicted based on the binding sites of transcriptional co-factors and several distinct features associated with open chromatin. Here we review the methodologies used in enhancer prediction in mammalian species. We also review the recent applications of these methodologies in Arabidopsis thaliana and discuss the future directions of enhancer identification in plants. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Alexandre P Marand
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tao Zhang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bo Zhu
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
25
|
Gladyshev E, Kleckner N. Recombination-Independent Recognition of DNA Homology for Repeat-Induced Point Mutation (RIP) Is Modulated by the Underlying Nucleotide Sequence. PLoS Genet 2016; 12:e1006015. [PMID: 27148882 PMCID: PMC4858203 DOI: 10.1371/journal.pgen.1006015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/06/2016] [Indexed: 11/18/2022] Open
Abstract
Haploid germline nuclei of many filamentous fungi have the capacity to detect homologous nucleotide sequences present on the same or different chromosomes. Once recognized, such sequences can undergo cytosine methylation or cytosine-to-thymine mutation specifically over the extent of shared homology. In Neurospora crassa this process is known as Repeat-Induced Point mutation (RIP). Previously, we showed that RIP did not require MEI-3, the only RecA homolog in Neurospora, and that it could detect homologous trinucleotides interspersed with a matching periodicity of 11 or 12 base-pairs along participating chromosomal segments. This pattern was consistent with a mechanism of homology recognition that involved direct interactions between co-aligned double-stranded (ds) DNA molecules, where sequence-specific dsDNA/dsDNA contacts could be established using no more than one triplet per turn. In the present study we have further explored the DNA sequence requirements for RIP. In our previous work, interspersed homologies were always examined in the context of a relatively long adjoining region of perfect homology. Using a new repeat system lacking this strong interaction, we now show that interspersed homologies with overall sequence identity of only 36% can be efficiently detected by RIP in the absence of any perfect homology. Furthermore, in this new system, where the total amount of homology is near the critical threshold required for RIP, the nucleotide composition of participating DNA molecules is identified as an important factor. Our results specifically pinpoint the triplet 5'-GAC-3' as a particularly efficient unit of homology recognition. Finally, we present experimental evidence that the process of homology sensing can be uncoupled from the downstream mutation. Taken together, our results advance the notion that sequence information can be compared directly between double-stranded DNA molecules during RIP and, potentially, in other processes where homologous pairing of intact DNA molecules is observed.
Collapse
Affiliation(s)
- Eugene Gladyshev
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (EG); (NK)
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (EG); (NK)
| |
Collapse
|
26
|
Culminskaya I, Kulminski AM, Yashin AI. Coordinated Action of Biological Processes during Embryogenesis Can Cause Genome-Wide Linkage Disequilibrium in the Human Genome and Influence Age-Related Phenotypes. ANNALS OF GERONTOLOGY AND GERIATRIC RESEARCH 2016; 3:1035. [PMID: 28357417 PMCID: PMC5367637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A role of non-Mendelian inheritance in genetics of complex, age-related traits is becoming increasingly recognized. Recently, we reported on two inheritable clusters of SNPs in extensive genome-wide linkage disequilibrium (LD) in the Framingham Heart Study (FHS), which were associated with the phenotype of premature death. Here we address biologically-related properties of these two clusters. These clusters have been unlikely selected randomly because they are functionally and structurally different from matched sets of randomly selected SNPs. For example, SNPs in LD from each cluster are highly significantly enriched in genes (p=7.1×10-22 and p=5.8×10-18), in general, and in short genes (p=1.4×10-47 and p=4.6×10-7), in particular. Mapping of SNPs in LD to genes resulted in two, partly overlapping, networks of 1764 and 4806 genes. Both these networks were gene enriched in developmental processes and in biological processes tightly linked with development including biological adhesion, cellular component organization, locomotion, localization, signaling, (p<10-4, q<10-4 for each category). Thorough analysis suggests connections of these genetic networks with different stages of embryogenesis and highlights biological interlink of specific processes enriched for genes from these networks. The results suggest that coordinated action of biological processes during embryogenesis may generate genome-wide networks of genetic variants, which may influence complex age-related phenotypes characterizing health span and lifespan.
Collapse
Affiliation(s)
- Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, USA
| | - Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, USA
| | - Anatoli I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, USA
| |
Collapse
|
27
|
Fujioka M, Mistry H, Schedl P, Jaynes JB. Determinants of Chromosome Architecture: Insulator Pairing in cis and in trans. PLoS Genet 2016; 12:e1005889. [PMID: 26910731 PMCID: PMC4765946 DOI: 10.1371/journal.pgen.1005889] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/30/2016] [Indexed: 12/11/2022] Open
Abstract
The chromosomes of multicellular animals are organized into a series of topologically independent looped domains. This domain organization is critical for the proper utilization and propagation of the genetic information encoded by the chromosome. A special set of architectural elements, called boundaries or insulators, are responsible both for subdividing the chromatin into discrete domains and for determining the topological organization of these domains. Central to the architectural functions of insulators are homologous and heterologous insulator:insulator pairing interactions. The former (pairing between copies of the same insulator) dictates the process of homolog alignment and pairing in trans, while the latter (pairing between different insulators) defines the topology of looped domains in cis. To elucidate the principles governing these architectural functions, we use two insulators, Homie and Nhomie, that flank the Drosophila even skipped locus. We show that homologous insulator interactions in trans, between Homie on one homolog and Homie on the other, or between Nhomie on one homolog and Nhomie on the other, mediate transvection. Critically, these homologous insulator:insulator interactions are orientation-dependent. Consistent with a role in the alignment and pairing of homologs, self-pairing in trans is head-to-head. Head-to-head self-interactions in cis have been reported for other fly insulators, suggesting that this is a general principle of self-pairing. Homie and Nhomie not only pair with themselves, but with each other. Heterologous Homie-Nhomie interactions occur in cis, and we show that they serve to delimit a looped chromosomal domain that contains the even skipped transcription unit and its associated enhancers. The topology of this loop is defined by the heterologous pairing properties of Homie and Nhomie. Instead of being head-to-head, which would generate a circular loop, Homie-Nhomie pairing is head-to-tail. Head-to-tail pairing in cis generates a stem-loop, a configuration much like that observed in classical lampbrush chromosomes. These pairing principles provide a mechanistic underpinning for the observed topologies within and between chromosomes. The chromosomes of multicellular animals are organized into a series of topologically independent looped domains. This domain organization is critical for the proper utilization and propagation of the genetic information encoded by the chromosome. A special set of architectural elements, called boundaries or insulators, are responsible for both subdividing the chromatin fiber into discrete domains, and determining the topological organization of these domains. Central to the architectural functions of insulators are heterologous and homologous insulator:insulator pairing interactions. In Drosophila, the former defines the topology of individual looped domains in cis, while the latter dictates the process of homolog alignment and pairing in trans. Here we use two insulators from the even skipped locus to elucidate the principles governing these two architectural functions. These principles align with several longstanding observations, and resolve a number of conundrums regarding chromosome topology and function.
Collapse
Affiliation(s)
- Miki Fujioka
- Deptartment of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Hemlata Mistry
- Departments of Biology and Biochemistry, Widener University, Chester, Pennsylvania, United States of America
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (PS); (JBJ)
| | - James B. Jaynes
- Deptartment of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (PS); (JBJ)
| |
Collapse
|
28
|
Doxaki C, Kampranis SC, Eliopoulos AG, Spilianakis C, Tsatsanis C. Coordinated Regulation of miR-155 and miR-146a Genes during Induction of Endotoxin Tolerance in Macrophages. THE JOURNAL OF IMMUNOLOGY 2015; 195:5750-61. [DOI: 10.4049/jimmunol.1500615] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 10/07/2015] [Indexed: 12/12/2022]
|
29
|
Developmental Switch in the Transcriptional Activity of a Long-Range Regulatory Element. Mol Cell Biol 2015. [PMID: 26195822 DOI: 10.1128/mcb.00509-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Eukaryotic gene expression is often controlled by distant regulatory elements. In developing B lymphocytes, transcription is associated with V(D)J recombination at immunoglobulin loci. This process is regulated by remote cis-acting elements. At the immunoglobulin heavy chain (IgH) locus, the 3' regulatory region (3'RR) promotes transcription in mature B cells. This led to the notion that the 3'RR orchestrates the IgH locus activity at late stages of B cell maturation only. However, long-range interactions involving the 3'RR were detected in early B cells, but the functional consequences of these interactions were unknown. Here we show that not only does the 3'RR affect transcription at distant sites within the IgH variable region but also it conveys a transcriptional silencing activity on both sense and antisense transcription. The 3'RR-mediated silencing activity is switched off upon completion of VH-DJH recombination. Our findings reveal a developmentally controlled, stage-dependent shift in the transcriptional activity of a master regulatory element.
Collapse
|
30
|
Harada A, Mallappa C, Okada S, Butler JT, Baker SP, Lawrence JB, Ohkawa Y, Imbalzano AN. Spatial re-organization of myogenic regulatory sequences temporally controls gene expression. Nucleic Acids Res 2015; 43:2008-21. [PMID: 25653159 PMCID: PMC4344497 DOI: 10.1093/nar/gkv046] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/05/2014] [Accepted: 01/13/2015] [Indexed: 12/14/2022] Open
Abstract
During skeletal muscle differentiation, the activation of some tissue-specific genes occurs immediately while others are delayed. The molecular basis controlling temporal gene regulation is poorly understood. We show that the regulatory sequences, but not other regions of genes expressed at late times of myogenesis, are in close physical proximity in differentiating embryonic tissue and in differentiating culture cells, despite these genes being located on different chromosomes. Formation of these inter-chromosomal interactions requires the lineage-determinant MyoD and functional Brg1, the ATPase subunit of SWI/SNF chromatin remodeling enzymes. Ectopic expression of myogenin and a specific Mef2 isoform induced myogenic differentiation without activating endogenous MyoD expression. Under these conditions, the regulatory sequences of late gene loci were not in close proximity, and these genes were prematurely activated. The data indicate that the spatial organization of late genes contributes to temporal regulation of myogenic transcription by restricting late gene expression during the early stages of myogenesis.
Collapse
Affiliation(s)
- Akihito Harada
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Chandrashekara Mallappa
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Seiji Okada
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - John T Butler
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Stephen P Baker
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jeanne B Lawrence
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
31
|
Jäger R, Migliorini G, Henrion M, Kandaswamy R, Speedy HE, Heindl A, Whiffin N, Carnicer MJ, Broome L, Dryden N, Nagano T, Schoenfelder S, Enge M, Yuan Y, Taipale J, Fraser P, Fletcher O, Houlston RS. Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. Nat Commun 2015; 6:6178. [PMID: 25695508 PMCID: PMC4346635 DOI: 10.1038/ncomms7178] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/30/2014] [Indexed: 12/25/2022] Open
Abstract
Multiple regulatory elements distant from their targets on the linear genome can influence the expression of a single gene through chromatin looping. Chromosome conformation capture implemented in Hi-C allows for genome-wide agnostic characterization of chromatin contacts. However, detection of functional enhancer-promoter interactions is precluded by its effective resolution that is determined by both restriction fragmentation and sensitivity of the experiment. Here we develop a capture Hi-C (cHi-C) approach to allow an agnostic characterization of these physical interactions on a genome-wide scale. Single-nucleotide polymorphisms associated with complex diseases often reside within regulatory elements and exert effects through long-range regulation of gene expression. Applying this cHi-C approach to 14 colorectal cancer risk loci allows us to identify key long-range chromatin interactions in cis and trans involving these loci.
Collapse
Affiliation(s)
- Roland Jäger
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Gabriele Migliorini
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Marc Henrion
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Radhika Kandaswamy
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Helen E. Speedy
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Andreas Heindl
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Nicola Whiffin
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Maria J. Carnicer
- Division of Molecular Pathology, Haemato-Oncology Research Unit, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Laura Broome
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Nicola Dryden
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Takashi Nagano
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Martin Enge
- Department of Biosciences and Nutrition, Science for Life Laboratory, Karolinska Institutet, 14 183, Huddinge, Sweden
| | - Yinyin Yuan
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Jussi Taipale
- Department of Biosciences and Nutrition, Science for Life Laboratory, Karolinska Institutet, 14 183, Huddinge, Sweden
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Olivia Fletcher
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| |
Collapse
|
32
|
Schönheit J, Leutz A, Rosenbauer F. Chromatin Dynamics during Differentiation of Myeloid Cells. J Mol Biol 2015; 427:670-87. [DOI: 10.1016/j.jmb.2014.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/05/2014] [Accepted: 08/20/2014] [Indexed: 12/23/2022]
|
33
|
Spencer S, Gugliotta A, Koenitzer J, Hauser H, Wirth D. Stability of single copy transgene expression in CHOK1 cells is affected by histone modifications but not by DNA methylation. J Biotechnol 2015; 195:15-29. [DOI: 10.1016/j.jbiotec.2014.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 12/22/2022]
|
34
|
Taher L, Narlikar L, Ovcharenko I. Identification and computational analysis of gene regulatory elements. Cold Spring Harb Protoc 2015; 2015:pdb.top083642. [PMID: 25561628 PMCID: PMC5885252 DOI: 10.1101/pdb.top083642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Over the last two decades, advances in experimental and computational technologies have greatly facilitated genomic research. Next-generation sequencing technologies have made de novo sequencing of large genomes affordable, and powerful computational approaches have enabled accurate annotations of genomic DNA sequences. Charting functional regions in genomes must account for not only the coding sequences, but also noncoding RNAs, repetitive elements, chromatin states, epigenetic modifications, and gene regulatory elements. A mix of comparative genomics, high-throughput biological experiments, and machine learning approaches has played a major role in this truly global effort. Here we describe some of these approaches and provide an account of our current understanding of the complex landscape of the human genome. We also present overviews of different publicly available, large-scale experimental data sets and computational tools, which we hope will prove beneficial for researchers working with large and complex genomes.
Collapse
Affiliation(s)
- Leila Taher
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, 18051 Rostock, Germany
| | - Leelavati Narlikar
- Chemical Engineering and Process Development Division, National Chemical Laboratory, CSIR, Pune 411008, India
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| |
Collapse
|
35
|
Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol 2014; 24:651-63. [PMID: 25441720 DOI: 10.1016/j.tcb.2014.08.009] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 02/07/2023]
Abstract
Mammalian genomes encode thousands of long noncoding RNAs (lncRNAs) that play important roles in diverse biological processes. As a class, lncRNAs are generally enriched in the nucleus and, specifically, within the chromatin-associated fraction. Consistent with their localization, many lncRNAs have been implicated in the regulation of gene expression and in shaping 3D nuclear organization. In this review, we discuss the evidence that many nuclear-retained lncRNAs can interact with various chromatin regulatory proteins and recruit them to specific sites on DNA to regulate gene expression. Furthermore, we discuss the role of specific lncRNAs in shaping nuclear organization and their emerging mechanisms. Based on these examples, we propose a model that explains how lncRNAs may shape aspects of nuclear organization to regulate gene expression.
Collapse
|
36
|
Markenscoff-Papadimitriou E, Allen WE, Colquitt BM, Goh T, Murphy KK, Monahan K, Mosley CP, Ahituv N, Lomvardas S. Enhancer interaction networks as a means for singular olfactory receptor expression. Cell 2014; 159:543-57. [PMID: 25417106 PMCID: PMC4243057 DOI: 10.1016/j.cell.2014.09.033] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/07/2014] [Accepted: 09/10/2014] [Indexed: 12/20/2022]
Abstract
The transcriptional activation of one out of ?2800 olfactory receptor (OR) alleles is a poorly understood process. Here, we identify a plethora of putative OR enhancers and study their in vivo activity in olfactory neurons. Distinguished by an unusual epigenetic signature, candidate OR enhancers are characterized by extensive interchromosomal interactions associated with OR transcription and share a similar pattern of transcription factor footprints. In particular, we establish the role of the transcription factor Bptf as a facilitator of both enhancer interactions and OR transcription. Our observations agree with the model whereby OR transcription occurs in the context of multiple interacting enhancers. Disruption of these interchromosomal interactions results in weak and multigenic OR expression, suggesting that the rare coincidence of numerous enhancers over a stochastically chosen OR may account for the singularity and robustness in OR transcription.
Collapse
Affiliation(s)
| | - William E Allen
- Neuroscience Graduate Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bradley M Colquitt
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tracie Goh
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Karl K Murphy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevin Monahan
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Colleen P Mosley
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stavros Lomvardas
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
37
|
Transvection-based gene regulation in Drosophila is a complex and plastic trait. G3-GENES GENOMES GENETICS 2014; 4:2175-87. [PMID: 25213691 PMCID: PMC4232543 DOI: 10.1534/g3.114.012484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transvection, a chromosome pairing-dependent form of trans-based gene regulation, is potentially widespread in the Drosophila melanogaster genome and varies across cell types and within tissues in D. melanogaster, characteristics of a complex trait. Here, we demonstrate that the trans-interactions at the Malic enzyme (Men) locus are, in fact, transvection as classically defined and are plastic with respect to both genetic background and environment. Using chromosomal inversions, we show that trans-interactions at the Men locus are eliminated by changes in chromosomal architecture that presumably disrupt somatic pairing. We further show that the magnitude of transvection at the Men locus is modified by both genetic background and environment (temperature), demonstrating that transvection is a plastic phenotype. Our results suggest that transvection effects in D. melanogaster are shaped by a dynamic interplay between environment and genetic background. Interestingly, we find that cis-based regulation of the Men gene is more robust to genetic background and environment than trans-based. Finally, we begin to uncover the nonlocal factors that may contribute to variation in transvection overall, implicating Abd-B in the regulation of Men in cis and in trans in an allele-specific and tissue-specific manner, driven by differences in expression of the two genes across genetic backgrounds and environmental conditions.
Collapse
|
38
|
Sehgal N, Fritz AJ, Morris K, Torres I, Chen Z, Xu J, Berezney R. Gene density and chromosome territory shape. Chromosoma 2014; 123:499-513. [PMID: 25106753 DOI: 10.1007/s00412-014-0480-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 12/16/2022]
Abstract
Despite decades of study of chromosome territories (CT) in the interphase nucleus of mammalian cells, our understanding of the global shape and 3-D organization of the individual CT remains very limited. Past microscopic analysis of CT suggested that while many of the CT appear to be very regular ellipsoid-like shapes, there were also those with more irregular shapes. We have undertaken a comprehensive analysis to determine the degree of shape regularity of different CT. To be representative of the whole human genome, 12 different CT (~41 % of the genome) were selected that ranged from the largest (CT 1) to the smallest (CT 21) in size and from the highest (CT 19) to lowest (CT Y) in gene density. Using both visual inspection and algorithms that measure the degree of shape ellipticity and regularity, we demonstrate a strong inverse correlation between the degree of regular CT shape and gene density for those CT that are most gene-rich (19, 17, 11) and gene-poor (18, 13, Y). CT more intermediate in gene density showed a strong negative correlation with shape regularity, but not with ellipticity. An even more striking correlation between gene density and CT shape was determined for the nucleolar-associated NOR-CT. Correspondingly, striking differences in shape between the X active and inactive CT implied that aside from gene density, the overall global level of gene transcription on individual CT is also an important determinant of chromosome territory shape.
Collapse
Affiliation(s)
- Nitasha Sehgal
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Long noncoding RNAs (lncRNAs) have divergent roles in the nuclei of higher eukaryotes, including chromatin modification and regulation of nuclear bodies. A new study adds a new lncRNA function to the current list: serving as a platform for trans-chromosomal associations. At least three gene loci located on different chromosomes are brought together around the transcription site of a lncRNA termed functional intergenic repeating RNA element (Firre).
Collapse
|
40
|
Kim LK, Esplugues E, Zorca CE, Parisi F, Kluger Y, Kim TH, Galjart NJ, Flavell RA. Oct-1 regulates IL-17 expression by directing interchromosomal associations in conjunction with CTCF in T cells. Mol Cell 2014; 54:56-66. [PMID: 24613343 PMCID: PMC4058095 DOI: 10.1016/j.molcel.2014.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/18/2013] [Accepted: 01/30/2014] [Indexed: 12/24/2022]
Abstract
Interchromosomal associations can regulate gene expression, but little is known about the molecular basis of such associations. In response to antigen stimulation, naive T cells can differentiate into Th1, Th2, and Th17 cells expressing IFN-γ, IL-4, and IL-17, respectively. We previously reported that in naive T cells, the IFN-γ locus is associated with the Th2 cytokine locus. Here we show that the Th2 locus additionally associates with the IL-17 locus. This association requires a DNase I hypersensitive region (RHS6) at the Th2 locus. RHS6 and the IL-17 promoter both bear Oct-1 binding sites. Deletion of either of these sites or Oct-1 gene impairs the association. Oct-1 and CTCF bind their cognate sites cooperatively, and CTCF deficiency similarly impairs the association. Finally, defects in the association lead to enhanced IL-17 induction. Collectively, our data indicate Th17 lineage differentiation is restrained by the Th2 locus via interchromosomal associations organized by Oct-1 and CTCF.
Collapse
Affiliation(s)
- Lark Kyun Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Enric Esplugues
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cornelia E Zorca
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fabio Parisi
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tae Hoon Kim
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Niels J Galjart
- Department of Cell Biology and Genetics, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
41
|
Link N, Kurtz P, O'Neal M, Garcia-Hughes G, Abrams JM. A p53 enhancer region regulates target genes through chromatin conformations in cis and in trans. Genes Dev 2014; 27:2433-8. [PMID: 24240233 PMCID: PMC3841732 DOI: 10.1101/gad.225565.113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We examined how a p53 enhancer transmits regulatory information in vivo. Using genetic ablation together with digital chromosome conformation capture and fluorescent in situ hybridization, we found that a Drosophila p53 enhancer region (referred to as the p53 response element [p53RE]) physically contacts targets in cis and across the centromere to control stress-responsive transcription at these sites. Furthermore, when placed at ectopic genomic positions, fragments spanning this element re-established chromatin contacts and partially restored target gene regulation to mutants lacking the native p53RE. Therefore, a defined p53 enhancer region is sufficient for long-range chromatin interactions that enable multigenic regulation.
Collapse
Affiliation(s)
- Nichole Link
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
42
|
Mukhopadhyay S, Ramadass AS, Akoulitchev A, Gordon S. Formation of distinct chromatin conformation signatures epigenetically regulate macrophage activation. Int Immunopharmacol 2014; 18:7-11. [PMID: 24211766 DOI: 10.1016/j.intimp.2013.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 11/21/2022]
Abstract
Microbial-lipopolysacharide (LPS), interleukin 4 (IL-4) and interferon gamma (IFN-γ) polarise macrophages into "innate", "alternative" and "classical", activation states by selective gene regulation. Expression of MARCO, CD200, CD200R1 (innate), MRC1 (alternative) and H2-Eb1 (classical) selectively marks these distinct activation states. Epigenetic events drive such activation upon stimuli and here we study one such mechanism, chromatin conformation signatures implicated in long-range chromatin interactions that regulate transcriptional switch and gene expression. The EpiSwitch™ technology was used to identify and analyse potential markers bordering such conformational signatures for these genes and juxtaposition of markers was compared between resting and activated macrophages. LPS, IL-4 and IFN-γ selectively altered chromatin conformations of their responsive genes in wild type, but not in MyD88(-/-), IL-4R(-/-) and IFN-γR(-/-) macrophages. In addition, two distinct conformations were observed in CD200R1 after LPS and IFN-γ stimulation. In summary, signal-specific alterations in chromatin conformation provide biomarkers that identify and determine distinct gene expression programmes during macrophage activation.
Collapse
Affiliation(s)
- Subhankar Mukhopadhyay
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | | | - Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
43
|
de Laat W, Duboule D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 2013; 502:499-506. [PMID: 24153303 DOI: 10.1038/nature12753] [Citation(s) in RCA: 368] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 09/02/2013] [Indexed: 12/26/2022]
Abstract
How a complex animal can arise from a fertilized egg is one of the oldest and most fascinating questions of biology, the answer to which is encoded in the genome. Body shape and organ development, and their integration into a functional organism all depend on the precise expression of genes in space and time. The orchestration of transcription relies mostly on surrounding control sequences such as enhancers, millions of which form complex regulatory landscapes in the non-coding genome. Recent research shows that high-order chromosome structures make an important contribution to enhancer functionality by triggering their physical interactions with target genes.
Collapse
Affiliation(s)
- Wouter de Laat
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | | |
Collapse
|
44
|
Mirkin EV, Chang FS, Kleckner N. Protein-mediated chromosome pairing of repetitive arrays. J Mol Biol 2013; 426:550-7. [PMID: 24211468 DOI: 10.1016/j.jmb.2013.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/28/2013] [Accepted: 11/02/2013] [Indexed: 10/26/2022]
Abstract
Chromosomally integrated arrays of lacO and tetO operator sites visualized by LacI and TetR repressor proteins fused with GFP (green fluorescent protein) (or other fluorescent proteins) are widely used to monitor the behavior of chromosomal loci in various systems. However, insertion of such arrays and expression of the corresponding proteins is known to perturb genomic architecture. In several cases, juxtaposition of such arrays located on different chromosomes has been inferred to reflect pairing of the corresponding loci. Here, we report that a version of TetR-GFP mutated to disrupt GFP dimerization (TetR-A206KGFP or "TetR-kGFP") abolishes pairing of tetO arrays in vivo and brings spatial proximity of chromosomal loci marked with those arrays back to the wild-type level. These data argue that pairing of arrays is caused by GFP dimerization and thus presents an example of protein-assisted interaction in chromosomes. Arrays marked with another protein, TetR-tdTomato, which has a propensity to form intramolecular dimers instead of intermolecular dimers, also display reduced level of pairing, supporting this idea. TetR-kGFP provides an improved system for studying chromosomal loci with a low pairing background.
Collapse
Affiliation(s)
- Ekaterina V Mirkin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Frederick S Chang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
45
|
Fujioka M, Sun G, Jaynes JB. The Drosophila eve insulator Homie promotes eve expression and protects the adjacent gene from repression by polycomb spreading. PLoS Genet 2013; 9:e1003883. [PMID: 24204298 PMCID: PMC3814318 DOI: 10.1371/journal.pgen.1003883] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/29/2013] [Indexed: 12/18/2022] Open
Abstract
Insulators can block the action of enhancers on promoters and the spreading of repressive chromatin, as well as facilitating specific enhancer-promoter interactions. However, recent studies have called into question whether the activities ascribed to insulators in model transgene assays actually reflect their functions in the genome. The Drosophila even skipped (eve) gene is a Polycomb (Pc) domain with a Pc-group response element (PRE) at one end, flanked by an insulator, an arrangement also seen in other genes. Here, we show that this insulator has three major functions. It blocks the spreading of the eve Pc domain, preventing repression of the adjacent gene, TER94. It prevents activation of TER94 by eve regulatory DNA. It also facilitates normal eve expression. When Homie is deleted in the context of a large transgene that mimics both eve and TER94 regulation, TER94 is repressed. This repression depends on the eve PRE. Ubiquitous TER94 expression is “replaced” by expression in an eve pattern when Homie is deleted, and this effect is reversed when the PRE is also removed. Repression of TER94 is attributable to spreading of the eve Pc domain into the TER94 locus, accompanied by an increase in histone H3 trimethylation at lysine 27. Other PREs can functionally replace the eve PRE, and other insulators can block PRE-dependent repression in this context. The full activity of the eve promoter is also dependent on Homie, and other insulators can promote normal eve enhancer-promoter communication. Our data suggest that this is not due to preventing promoter competition, but is likely the result of the insulator organizing a chromosomal conformation favorable to normal enhancer-promoter interactions. Thus, insulator activities in a native context include enhancer blocking and enhancer-promoter facilitation, as well as preventing the spread of repressive chromatin. Insulators are specialized DNA elements that can separate the genome into functional units. Most of the current thinking about these elements comes from studies done with model transgenes. Studies of insulators within the specialized Hox gene complexes have suggested that model transgenes can reflect the normal functions of these elements in their native context. However, recent genome-wide studies have called this into question. This work analyzes the native function of an insulator that resides between the Drosophila genes eve and TER94, which are expressed in very different patterns. Also, the eve gene is a Polycomb (Pc) domain, a specialized type of chromatin that is found in many places throughout the genome. We show that this insulator has three major functions. It blocks the spreading of the eve Pc domain, preventing repression of TER94. It prevents activation of TER94 by eve regulatory DNA. It also facilitates normal eve expression. Each of these activities are consistent with those seen with model transgenes, and other known insulators can provide these functions in this context. This work provides a novel and convincing example of the normal role of insulators in regulating the eukaryotic genome, as well as providing insights into their mechanisms of action.
Collapse
Affiliation(s)
- Miki Fujioka
- Department of Biochemistry and Molecular Biology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Guizhi Sun
- Department of Biochemistry and Molecular Biology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - James B. Jaynes
- Department of Biochemistry and Molecular Biology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
46
|
Mirkin EV, Chang FS, Kleckner N. Dynamic trans interactions in yeast chromosomes. PLoS One 2013; 8:e75895. [PMID: 24098740 PMCID: PMC3786970 DOI: 10.1371/journal.pone.0075895] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/21/2013] [Indexed: 11/18/2022] Open
Abstract
Three-dimensional organization of the genome is important for regulation of gene expression and maintenance of genomic stability. It also defines, and is defined by, contacts between different chromosomal loci. Interactions between loci positioned on different chromosomes, i.e. "trans" interactions are one type of such contacts. Here, we describe a case of inducible trans interaction in chromosomes of the budding yeast S. cerevisiae. Special DNA sequences, inserted in two ectopic chromosomal loci positioned in trans, pair with one another in an inducible manner. The spatial proximity diagnostic of pairing is observable by both chromosome capture analysis (3C) and epifluorescence microscopy in whole cells. Protein synthesis de novo appears to be required for this process. The three-dimensional organization of the yeast nucleus imposes a constraint on such pairing, presumably by dictating the probability with which the two sequences collide with one another.
Collapse
Affiliation(s)
- Ekaterina V. Mirkin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Frederick S. Chang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
47
|
Kim KD, Tanizawa H, Iwasaki O, Corcoran CJ, Capizzi JR, Hayden JE, Noma KI. Centromeric motion facilitates the mobility of interphase genomic regions in fission yeast. J Cell Sci 2013; 126:5271-83. [PMID: 23986481 DOI: 10.1242/jcs.133678] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dispersed genetic elements, such as retrotransposons and Pol-III-transcribed genes, including tRNA and 5S rRNA, cluster and associate with centromeres in fission yeast through the function of condensin. However, the dynamics of these condensin-mediated genomic associations remains unknown. We have examined the 3D motions of genomic loci including the centromere, telomere, rDNA repeat locus, and the loci carrying Pol-III-transcribed genes or long-terminal repeat (LTR) retrotransposons in live cells at as short as 1.5-second intervals. Treatment with carbendazim (CBZ), a microtubule-destabilizing agent, not only prevents centromeric motion, but also reduces the mobility of the other genomic loci during interphase. Further analyses demonstrate that condensin-mediated associations between centromeres and the genomic loci are clonal, infrequent and transient. However, when associated, centromeres and the genomic loci migrate together in a coordinated fashion. In addition, a condensin mutation that disrupts associations between centromeres and the genomic loci results in a concomitant decrease in the mobility of the loci. Our study suggests that highly mobile centromeres pulled by microtubules in cytoplasm serve as 'genome mobility elements' by facilitating physical relocations of associating genomic regions.
Collapse
Affiliation(s)
- Kyoung-Dong Kim
- The Wistar Institute, Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Epigenetic control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell differentiation. Adv Immunol 2013; 118:37-128. [PMID: 23683942 DOI: 10.1016/b978-0-12-407708-9.00002-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal "tails" of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The "histone code" defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages.
Collapse
|
49
|
Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K, Surka C, Kadri S, Xing J, Goren A, Lander ES, Plath K, Guttman M. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 2013; 341:1237973. [PMID: 23828888 DOI: 10.1126/science.1237973] [Citation(s) in RCA: 734] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many large noncoding RNAs (lncRNAs) regulate chromatin, but the mechanisms by which they localize to genomic targets remain unexplored. We investigated the localization mechanisms of the Xist lncRNA during X-chromosome inactivation (XCI), a paradigm of lncRNA-mediated chromatin regulation. During the maintenance of XCI, Xist binds broadly across the X chromosome. During initiation of XCI, Xist initially transfers to distal regions across the X chromosome that are not defined by specific sequences. Instead, Xist identifies these regions by exploiting the three-dimensional conformation of the X chromosome. Xist requires its silencing domain to spread across actively transcribed regions and thereby access the entire chromosome. These findings suggest a model in which Xist coats the X chromosome by searching in three dimensions, modifying chromosome structure, and spreading to newly accessible locations.
Collapse
|
50
|
Wei Z, Huang D, Gao F, Chang WH, An W, Coetzee GA, Wang K, Lu W. Biological implications and regulatory mechanisms of long-range chromosomal interactions. J Biol Chem 2013; 288:22369-77. [PMID: 23779110 DOI: 10.1074/jbc.r113.485292] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Development of high-throughput sequencing-based methods has enabled us to examine nuclear architecture at unprecedented resolution, allowing further examination of the function of long-range chromosomal interactions. Here, we review methods used to investigate novel long-range chromosomal interactions and genome-wide organization of chromatin. We further discuss transcriptional activation and silencing in relation to organization and positioning of gene loci and regulation of chromatin organization through protein complexes and noncoding RNAs.
Collapse
Affiliation(s)
- Zong Wei
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|