1
|
Zhen T, Sun T, Xiong B, Liu H, Wang L, Chen Y, Sun H. New insight into targeting the DNA damage response in the treatment of glioblastoma. Chin J Nat Med 2024; 22:869-886. [PMID: 39428180 DOI: 10.1016/s1875-5364(24)60694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 10/22/2024]
Abstract
Glioblastoma (GBM) is the most common invasive malignant tumor in human brain tumors, representing the most severe grade of gliomas. Despite existing therapeutic approaches, patient prognosis remains dismal, necessitating the exploration of novel strategies to enhance treatment efficacy and extend survival. Due to the restrictive nature of the blood-brain barrier (BBB), small-molecule inhibitors are prioritized in the treatment of central nervous system tumors. Among these, DNA damage response (DDR) inhibitors have garnered significant attention due to their potent therapeutic potential across various malignancies. This review provides a detailed analysis of DDR pathways as therapeutic targets in GBM, summarizes recent advancements, therapeutic strategies, and ongoing clinical trials, and offers perspectives on future directions in this rapidly evolving field. The goal is to present a comprehensive outlook on the potential of DDR inhibitors in improving GBM management and outcomes.
Collapse
Affiliation(s)
- Tengfei Zhen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Simhal AK, Firestone R, Oh JH, Avutu V, Norton L, Hultcrantz M, Usmani SZ, Maclachlan KH, Deasy JO. High WEE1 expression is independently linked to poor survival in multiple myeloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.613788. [PMID: 39386721 PMCID: PMC11463642 DOI: 10.1101/2024.09.20.613788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Current prognostic scores in multiple myeloma (MM) currently rely on disease burden and a limited set of genomic alterations. Some studies have suggested gene expression panels may predict clinical outcomes, but none are presently utilized in clinical practice. We therefore analyzed the MMRF CoMMpass dataset (N=659) and identified a high-risk group (top tertile) and a low-risk group ( bottom tertile) based on WEE1 expression sorted in descending order. The tyrosine kinase WEE1 is a critical cell cycle regulator during the S-phase and G2M-checkpoint. Abnormal WEE1 expression has been implicated in multiple cancers including breast, ovarian, and gastric cancers, but has not until this time been implicated in MM. PFS was significantly different (p <1e-9) between the groups, which was validated in two independent microarray gene expression profiling (GEP) datasets from the Total Therapy 2 (N=341) and 3 (N=214) trials. Our results show WEE1 expression is prognostic independent of known biomarkers, differentiates outcomes associated with known markers, is upregulated independently of its interacting neighbors, and is associated with dysregulated P53 pathways. This suggests that WEE1 expression levels may have clinical utility in prognosticating outcomes in newly diagnosed MM and may support the application of WEE1 inhibitors to MM preclinical models. Determining the causes of abnormal WEE1 expression may uncover novel therapeutic pathways.
Collapse
Affiliation(s)
- Anish K Simhal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Ross Firestone
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Viswatej Avutu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Malin Hultcrantz
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Saad Z Usmani
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Kylee H Maclachlan
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States of America
| |
Collapse
|
3
|
Hieber C, Mustafa AHM, Neuroth S, Henninger S, Wollscheid HP, Zabkiewicz J, Lazenby M, Alvares C, Mahboobi S, Butter F, Brenner W, Bros M, Krämer OH. Inhibitors of the tyrosine kinases FMS-like tyrosine kinase-3 and WEE1 induce apoptosis and DNA damage synergistically in acute myeloid leukemia cells. Biomed Pharmacother 2024; 177:117076. [PMID: 38971011 DOI: 10.1016/j.biopha.2024.117076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/16/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024] Open
Abstract
Hyperactive FMS-like receptor tyrosine kinase-3 mutants with internal tandem duplications (FLT3-ITD) are frequent driver mutations of aggressive acute myeloid leukemia (AML). Inhibitors of FLT3 produce promising results in rationally designed cotreatment schemes. Since FLT3-ITD modulates DNA replication and DNA repair, valid anti-leukemia strategies could rely on a combined inhibition of FLT3-ITD and regulators of cell cycle progression and DNA integrity. These include the WEE1 kinase which controls cell cycle progression, nucleotide synthesis, and DNA replication origin firing. We investigated how pharmacological inhibition of FLT3 and WEE1 affected the survival and genomic integrity of AML cell lines and primary AML cells. We reveal that promising clinical grade and preclinical inhibitors of FLT3 and WEE1 synergistically trigger apoptosis in leukemic cells that express FLT3-ITD. An accumulation of single and double strand DNA damage precedes this process. Mass spectrometry-based proteomic analyses show that FLT3-ITD and WEE1 sustain the expression of the ribonucleotide reductase subunit RRM2, which provides dNTPs for DNA replication. Unlike their strong pro-apoptotic effects on leukemia cells with FLT3-ITD, inhibitors of FLT3 and WEE1 do not damage healthy human blood cells and murine hematopoietic stem cells. Thus, pharmacological inhibition of FLT3-ITD and WEE1 might become an improved, rationally designed therapeutic option.
Collapse
Affiliation(s)
- Christoph Hieber
- Institute of Toxicology, University Medical Center of Johannes Gutenberg University Mainz, Mainz 55131, Germany; Department of Dermatology, University Medical Center of Johannes Gutenberg University Mainz, Mainz 55131, Germany.
| | - Al-Hassan M Mustafa
- Institute of Toxicology, University Medical Center of Johannes Gutenberg University Mainz, Mainz 55131, Germany; Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt.
| | - Sarah Neuroth
- Institute of Toxicology, University Medical Center of Johannes Gutenberg University Mainz, Mainz 55131, Germany.
| | - Sven Henninger
- Institute of Toxicology, University Medical Center of Johannes Gutenberg University Mainz, Mainz 55131, Germany.
| | | | - Joanna Zabkiewicz
- Department of Haematology, Cardiff Experimental Cancer Medicine Centre, Cardiff University, Wales, UK.
| | - Michelle Lazenby
- Department of Haematology, Cardiff Experimental Cancer Medicine Centre, Cardiff University, Wales, UK.
| | - Caroline Alvares
- Department of Haematology, Cardiff Experimental Cancer Medicine Centre, Cardiff University, Wales, UK.
| | - Siavosh Mahboobi
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93040, Germany.
| | - Falk Butter
- Institute of Molecular Biology, Ackermannweg 4, Mainz 55128, Germany; Institute of Molecular Virology and Cell Biology (IMVZ), Friedrich Loeffler Institute, Greifswald 17493, Germany.
| | - Walburgis Brenner
- Department of Obstetrics and Gynecology, University Medical Center, Mainz 55131, Germany.
| | - Matthias Bros
- Department of Dermatology, University Medical Center of Johannes Gutenberg University Mainz, Mainz 55131, Germany.
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center of Johannes Gutenberg University Mainz, Mainz 55131, Germany.
| |
Collapse
|
4
|
Singh AK, Singh J, Goode NA, Laezza F. Crosstalk among WEE1 Kinase, AKT, and GSK3 in Nav1.2 Channelosome Regulation. Int J Mol Sci 2024; 25:8069. [PMID: 39125637 PMCID: PMC11311446 DOI: 10.3390/ijms25158069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The signaling complex around voltage-gated sodium (Nav) channels includes accessory proteins and kinases crucial for regulating neuronal firing. Previous studies showed that one such kinase, WEE1-critical to the cell cycle-selectively modulates Nav1.2 channel activity through the accessory protein fibroblast growth factor 14 (FGF14). Here, we tested whether WEE1 exhibits crosstalk with the AKT/GSK3 kinase pathway for coordinated regulation of FGF14/Nav1.2 channel complex assembly and function. Using the in-cell split luciferase complementation assay (LCA), we found that the WEE1 inhibitor II and GSK3 inhibitor XIII reduce the FGF14/Nav1.2 complex formation, while the AKT inhibitor triciribine increases it. However, combining WEE1 inhibitor II with either one of the other two inhibitors abolished its effect on the FGF14/Nav1.2 complex formation. Whole-cell voltage-clamp recordings of sodium currents (INa) in HEK293 cells co-expressing Nav1.2 channels and FGF14-GFP showed that WEE1 inhibitor II significantly suppresses peak INa density, both alone and in the presence of triciribine or GSK3 inhibitor XIII, despite the latter inhibitor's opposite effects on INa. Additionally, WEE1 inhibitor II slowed the tau of fast inactivation and caused depolarizing shifts in the voltage dependence of activation and inactivation. These phenotypes either prevailed or were additive when combined with triciribine but were outcompeted when both WEE1 inhibitor II and GSK3 inhibitor XIII were present. Concerted regulation by WEE1 inhibitor II, triciribine, and GSK3 inhibitor XIII was also observed in long-term inactivation and use dependency of Nav1.2 currents. Overall, these findings suggest a complex role for WEE1 kinase-in concert with the AKT/GSK3 pathway-in regulating the Nav1.2 channelosome.
Collapse
Affiliation(s)
- Aditya K. Singh
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (J.S.); (N.A.G.); (F.L.)
| | | | | | | |
Collapse
|
5
|
Chouhan S, Sridaran D, Weimholt C, Luo J, Li T, Hodgson MC, Santos LN, Le Sommer S, Fang B, Koomen JM, Seeliger M, Qu CK, Yart A, Kontaridis MI, Mahajan K, Mahajan NP. SHP2 as a primordial epigenetic enzyme expunges histone H3 pTyr-54 to amend androgen receptor homeostasis. Nat Commun 2024; 15:5629. [PMID: 38965223 PMCID: PMC11224269 DOI: 10.1038/s41467-024-49978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Mutations that decrease or increase the activity of the tyrosine phosphatase, SHP2 (encoded by PTPN11), promotes developmental disorders and several malignancies by varying phosphatase activity. We uncovered that SHP2 is a distinct class of an epigenetic enzyme; upon phosphorylation by the kinase ACK1/TNK2, pSHP2 was escorted by androgen receptor (AR) to chromatin, erasing hitherto unidentified pY54-H3 (phosphorylation of histones H3 at Tyr54) epigenetic marks to trigger a transcriptional program of AR. Noonan Syndrome with Multiple Lentigines (NSML) patients, SHP2 knock-in mice, and ACK1 knockout mice presented dramatic increase in pY54-H3, leading to loss of AR transcriptome. In contrast, prostate tumors with high pSHP2 and pACK1 activity exhibited progressive downregulation of pY54-H3 levels and higher AR expression that correlated with disease severity. Overall, pSHP2/pY54-H3 signaling acts as a sentinel of AR homeostasis, explaining not only growth retardation, genital abnormalities and infertility among NSML patients, but also significant AR upregulation in prostate cancer patients.
Collapse
Affiliation(s)
- Surbhi Chouhan
- Department of Surgery, Washington University in St Louis, St Louis, MO, 63110, USA
- 6601, Cancer Research Building, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Dhivya Sridaran
- Department of Surgery, Washington University in St Louis, St Louis, MO, 63110, USA
- 6601, Cancer Research Building, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Washington University in St Louis, St Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Tiandao Li
- Bioinformatics Research Core, Center of Regenerative Medicine, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Myles C Hodgson
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
| | - Luana N Santos
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
| | - Samantha Le Sommer
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
| | - Bin Fang
- Moffitt Cancer Center, SRB3, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - John M Koomen
- Moffitt Cancer Center, SRB3, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Markus Seeliger
- Department of Pharmacological Sciences, Stony Brook University Medical School, BST 7-120, Stony Brook, NY, 11794-8651, USA
| | - Cheng-Kui Qu
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Armelle Yart
- UMR 1301-Inserm 5070-CNRS EFS Univ. P. Sabatier, 4bis Ave Hubert Curien, 31100, Toulouse, France
| | - Maria I Kontaridis
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kiran Mahajan
- Department of Surgery, Washington University in St Louis, St Louis, MO, 63110, USA
- 6601, Cancer Research Building, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Nupam P Mahajan
- Department of Surgery, Washington University in St Louis, St Louis, MO, 63110, USA.
- 6601, Cancer Research Building, Washington University in St Louis, St Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Zeng Z, Chen L, Luo H, Xiao H, Gao S, Zeng Y. Progress on H2B as a multifunctional protein related to pathogens. Life Sci 2024; 347:122654. [PMID: 38657835 DOI: 10.1016/j.lfs.2024.122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/06/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Histone H2B is a member of the core histones, which together with other histones form the nucleosome, the basic structural unit of chromosomes. As scientists delve deeper into histones, researchers gradually realize that histone H2B is not only an important part of nucleosomes, but also plays a momentous role in regulating gene transcription, acting as a receptor and antimicrobial action outside the nucleus. There are a variety of epigenetically modified sites in the H2B tail rich in arginine and lysine, which can occur in ubiquitination, phosphorylation, methylation, acetylation, etc. When stimulated by foreign factors such as bacteria, viruses or parasites, histone H2B can act as a receptor for the recognition of these pathogens, and induce an intrinsic immune response to enhance host defense. In addition, the extrachromosomal histone H2B is also an important anti-microorganism agent, which may be the key to the development of antibiotics in the future. This review aims to summarize the interaction between histone H2B and etiological agents and explore the role of H2B in epigenetic modifications, receptors and antimicrobial activity.
Collapse
Affiliation(s)
- Zhuo Zeng
- Institute of Pathogenic Biology, Basic Medicine School, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province 421001, PR China
| | - Li Chen
- Institute of Pathogenic Biology, Basic Medicine School, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province 421001, PR China
| | - Haodang Luo
- Institute of Pathogenic Biology, Basic Medicine School, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province 421001, PR China; The Laboratory Department, The affiliated Nanhua Hospital, University of South China, Hengyang City, Hunan Province 421001, PR China.
| | - Hua Xiao
- Institute of Pathogenic Biology, Basic Medicine School, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province 421001, PR China
| | - Siqi Gao
- Institute of Pathogenic Biology, Basic Medicine School, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province 421001, PR China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Basic Medicine School, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
7
|
Malyukova A, Lahnalampi M, Falqués-Costa T, Pölönen P, Sipola M, Mehtonen J, Teppo S, Akopyan K, Viiliainen J, Lohi O, Hagström-Andersson AK, Heinäniemi M, Sangfelt O. Sequential drug treatment targeting cell cycle and cell fate regulatory programs blocks non-genetic cancer evolution in acute lymphoblastic leukemia. Genome Biol 2024; 25:143. [PMID: 38822412 PMCID: PMC11143599 DOI: 10.1186/s13059-024-03260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 04/26/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Targeted therapies exploiting vulnerabilities of cancer cells hold promise for improving patient outcome and reducing side-effects of chemotherapy. However, efficacy of precision therapies is limited in part because of tumor cell heterogeneity. A better mechanistic understanding of how drug effect is linked to cancer cell state diversity is crucial for identifying effective combination therapies that can prevent disease recurrence. RESULTS Here, we characterize the effect of G2/M checkpoint inhibition in acute lymphoblastic leukemia (ALL) and demonstrate that WEE1 targeted therapy impinges on cell fate decision regulatory circuits. We find the highest inhibition of recovery of proliferation in ALL cells with KMT2A-rearrangements. Single-cell RNA-seq and ATAC-seq of RS4;11 cells harboring KMT2A::AFF1, treated with the WEE1 inhibitor AZD1775, reveal diversification of cell states, with a fraction of cells exhibiting strong activation of p53-driven processes linked to apoptosis and senescence, and disruption of a core KMT2A-RUNX1-MYC regulatory network. In this cell state diversification induced by WEE1 inhibition, a subpopulation transitions to a drug tolerant cell state characterized by activation of transcription factors regulating pre-B cell fate, lipid metabolism, and pre-BCR signaling in a reversible manner. Sequential treatment with BCR-signaling inhibitors dasatinib, ibrutinib, or perturbing metabolism by fatostatin or AZD2014 effectively counteracts drug tolerance by inducing cell death and repressing stemness markers. CONCLUSIONS Collectively, our findings provide new insights into the tight connectivity of gene regulatory programs associated with cell cycle and cell fate regulation, and a rationale for sequential administration of WEE1 inhibitors with low toxicity inhibitors of pre-BCR signaling or metabolism.
Collapse
Affiliation(s)
- Alena Malyukova
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden.
| | - Mari Lahnalampi
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ton Falqués-Costa
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Petri Pölönen
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Sipola
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Juha Mehtonen
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Susanna Teppo
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Karen Akopyan
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Johanna Viiliainen
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Olli Lohi
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | | | - Merja Heinäniemi
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland.
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden.
| |
Collapse
|
8
|
Jiang H, Li X, Li Y, Liu X, Zhang S, Li H, Zhang M, Wang L, Yu M, Qiao Z. Molecular and functional characterization of ribosome protein S24 in ovarian development of Macrobrachium nipponense. Int J Biol Macromol 2024; 254:127934. [PMID: 37939777 DOI: 10.1016/j.ijbiomac.2023.127934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Ribosomal proteins (RPs) have mang extraribosomal functions including regulation of ovarian development in some organisms. In order to solve the problem of rapid ovarian maturation in Macrobrachium nipponense aquaculture, this study identified a RPS24 (MnRPS24) gene from M. nipponense, which encodes a protein of ββαβαααα folding structure type. MnRPS24 exhibited the greatest expressions in the female adult stage among the six growth stages, in the ovary among the nine tissues, and in the stage I ovary among the six ovarian development stages. The MnRPS24 protein located in the cytoplasm of oogonia, previtellogenic and early-vitellogenic oocytes, and the follicular cells surrounding the oocytes. The expression of the vitellogenin (MnVg), vitellogenin receptor (MnVgr), cell cycle protein B (MnCyclin B) and cell division cyclin 2 (MnCdc2) genes were increased by recombinant MnRPS24 protein incubation. Conversely, the expression of the Wee1 kinase (MnWee1) gene was decreased. MnRPS24 gene silencing downregulated the expression for MnVg, MnVgr, MnCyclin B and MnCdc2 and upregulated the expression for MnWee1. Furthermore, MnRPS24 gene silencing delayed the vitellogenesis of oocytes, halting the progression of ovarian development. The findings of this research demonstrate that MnRPS24 could potentially function as a stimulator in promoting the development of ovaries in M. nipponense.
Collapse
Affiliation(s)
- Hongxia Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xiao Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yizheng Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuewei Liu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shuaishuai Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huanxin Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Meng Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lei Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Miao Yu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhigang Qiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
9
|
Alli VJ, Yadav P, Suresh V, Jadav SS. Synthetic and Medicinal Chemistry Approaches Toward WEE1 Kinase Inhibitors and Its Degraders. ACS OMEGA 2023; 8:20196-20233. [PMID: 37323408 PMCID: PMC10268025 DOI: 10.1021/acsomega.3c01558] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
WEE1 is a checkpoint kinase critical for mitotic events, especially in cell maturation and DNA repair. Most cancer cells' progression and survival are linked with elevated levels of WEE1 kinase. Thus, WEE1 kinase has become a new promising druggable target. A few classes of WEE1 inhibitors are designed by rationale or structure-based techniques and optimization approaches to identify selective acting anticancer agents. The discovery of the WEE1 inhibitor AZD1775 further emphasized WEE1 as a promising anticancer target. Therefore, the current review provides a comprehensive data on medicinal chemistry, synthetic approaches, optimization methods, and the interaction profile of WEE1 kinase inhibitors. In addition, WEE1 PROTAC degraders and their synthetic procedures, including a list of noncoding RNAs necessary for regulation of WEE1, are also highlighted. From the standpoint of medicinal chemistry, the contents of this compilation serve as an exemplar for the further design, synthesis, and optimization of promising WEE1-targeted anticancer agents.
Collapse
Affiliation(s)
- Vidya Jyothi Alli
- Department
of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
| | - Pawan Yadav
- Department
of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
| | - Vavilapalli Suresh
- Department
of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surender Singh Jadav
- Department
of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Fu S, Yao S, Yuan Y, Previs RA, Elias AD, Carvajal RD, George TJ, Yuan Y, Yu L, Westin SN, Xing Y, Dumbrava EE, Karp DD, Piha-Paul SA, Tsimberidou AM, Ahnert JR, Takebe N, Lu K, Keyomarsi K, Meric-Bernstam F. Multicenter Phase II Trial of the WEE1 Inhibitor Adavosertib in Refractory Solid Tumors Harboring CCNE1 Amplification. J Clin Oncol 2023; 41:1725-1734. [PMID: 36469840 PMCID: PMC10489509 DOI: 10.1200/jco.22.00830] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/02/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Preclinical cancer models harboring CCNE1 amplification were more sensitive to adavosertib treatment, a WEE1 kinase inhibitor, than models without amplification. Thus, we conducted this phase II study to assess the antitumor activity of adavosertib in patients with CCNE1-amplified, advanced refractory solid tumors. PATIENTS AND METHODS Patients aged ≥ 18 years with measurable disease and refractory solid tumors harboring CCNE1 amplification, an Eastern Cooperative Oncology Group performance status of 0-1, and adequate organ function were studied. Patients received 300 mg of adavosertib once daily on days 1 through 5 and 8 through 12 of a 21-day cycle. The trial followed Bayesian optimal phase II design. The primary end point was objective response rate (ORR). RESULTS Thirty patients were enrolled. The median follow-up duration was 9.9 months. Eight patients had partial responses (PRs), and three had stable disease (SD) ≥ 6 months, with an ORR of 27% (95% CI, 12 to 46), a SD ≥ 6 months/PR rate of 37% (95% CI, 20 to 56), a median progression-free survival duration of 4.1 months (95% CI, 1.8 to 6.4), and a median overall survival duration of 9.9 months (95% CI, 4.8 to 15). Fourteen patients with epithelial ovarian cancer showed an ORR of 36% (95% CI, 13 to 65) and SD ≥ 6 months/PR of 57% (95% CI, 29 to 82), a median progression-free survival duration of 6.3 months (95% CI, 2.4 to 10.2), and a median overall survival duration of 14.9 months (95% CI, 8.9 to 20.9). Common treatment-related toxicities were GI, hematologic toxicities, and fatigue. CONCLUSION Adavosertib monotherapy demonstrates a manageable toxicity profile and promising clinical activity in refractory solid tumors harboring CCNE1 amplification, especially in epithelial ovarian cancer. Further study of adavosertib, alone or in combination with other therapeutic agents, in CCNE1-amplified epithelial ovarian cancer is warranted.
Collapse
Affiliation(s)
- Siqing Fu
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shuyang Yao
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yuan Yuan
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | | | | | | | | | - Ying Yuan
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lihou Yu
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Yan Xing
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | | | - Daniel D. Karp
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | - Naoko Takebe
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Karen Lu
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | |
Collapse
|
11
|
Vlatkovic T, Veldwijk MR, Giordano FA, Herskind C. Targeting Cell Cycle Checkpoint Kinases to Overcome Intrinsic Radioresistance in Brain Tumor Cells. Cancers (Basel) 2022; 14:cancers14030701. [PMID: 35158967 PMCID: PMC8833533 DOI: 10.3390/cancers14030701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary As cell cycle checkpoint mechanisms maintain genomic integrity, the inhibition of enzymes involved in these control mechanisms may increase the sensitivity of the cells to DNA damaging treatments. In this review, we summarize the knowledge in the field of brain tumor treatment with radiation therapy and cell cycle checkpoint inhibition via targeting ATM, ATR, CHK1, CHK2, and WEE1 kinases. Abstract Radiation therapy is an important part of the standard of care treatment of brain tumors. However, the efficacy of radiation therapy is limited by the radioresistance of tumor cells, a phenomenon held responsible for the dismal prognosis of the most aggressive brain tumor types. A promising approach to radiosensitization of tumors is the inhibition of cell cycle checkpoint control responsible for cell cycle progression and the maintenance of genomic integrity. Inhibition of the kinases involved in these control mechanisms can abolish cell cycle checkpoints and DNA damage repair and thus increase the sensitivity of tumor cells to radiation and chemotherapy. Here, we discuss preclinical progress in molecular targeting of ATM, ATR, CHK1, CHK2, and WEE1, checkpoint kinases in the treatment of brain tumors, and review current clinical phase I-II trials.
Collapse
Affiliation(s)
- Tijana Vlatkovic
- Cellular and Molecular Radiation Oncology Lab, Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (T.V.); (M.R.V.)
| | - Marlon R. Veldwijk
- Cellular and Molecular Radiation Oncology Lab, Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (T.V.); (M.R.V.)
| | - Frank A. Giordano
- Department of Radiation Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
| | - Carsten Herskind
- Cellular and Molecular Radiation Oncology Lab, Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (T.V.); (M.R.V.)
- Correspondence: ; Tel.: +49-621-383-3773
| |
Collapse
|
12
|
Wang M, Chen S, Ao D. Targeting DNA repair pathway in cancer: Mechanisms and clinical application. MedComm (Beijing) 2021; 2:654-691. [PMID: 34977872 PMCID: PMC8706759 DOI: 10.1002/mco2.103] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Over the last decades, the growing understanding on DNA damage response (DDR) pathways has broadened the therapeutic landscape in oncology. It is becoming increasingly clear that the genomic instability of cells resulted from deficient DNA damage response contributes to the occurrence of cancer. One the other hand, these defects could also be exploited as a therapeutic opportunity, which is preferentially more deleterious in tumor cells than in normal cells. An expanding repertoire of DDR-targeting agents has rapidly expanded to inhibitors of multiple members involved in DDR pathways, including PARP, ATM, ATR, CHK1, WEE1, and DNA-PK. In this review, we sought to summarize the complex network of DNA repair machinery in cancer cells and discuss the underlying mechanism for the application of DDR inhibitors in cancer. With the past preclinical evidence and ongoing clinical trials, we also provide an overview of the history and current landscape of DDR inhibitors in cancer treatment, with special focus on the combination of DDR-targeted therapies with other cancer treatment strategies.
Collapse
Affiliation(s)
- Manni Wang
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Siyuan Chen
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Danyi Ao
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
13
|
Li Y, Du X, Liu Z, Zhang M, Huang Y, Tian J, Jiang Q, Zhao Y. Two genes related to reproductive development in the juvenile prawn, Macrobrachium nipponense: Molecular characterization and transcriptional response to nanoplastic exposure. CHEMOSPHERE 2021; 281:130827. [PMID: 34015647 DOI: 10.1016/j.chemosphere.2021.130827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/11/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Plastic pollution in the form of nanoplastics poses a global threat to aquatic ecosystems and the organisms inhabiting them. However, few studies have been conducted on the effects of nanoplastic exposure on reproductive development in crustaceans. In order to address this issue, juvenile oriental river prawns (Macrobrachium nipponense) were exposed to different concentrations of 75-nm polystyrene nanoplastics (0, 5, 10, 20, 40 mg/L) for 28 days. In order to study the regulation of reproduction-related genes in the presence of nanoplastics, the Wee1 protein kinase gene (Wee1) and OTU domain ubiquitin aldehyde binding protein gene (OTUB) were selected. In this study, for the first time, the full-length cDNA of Mn-Wee1 and Mn-OTUB were cloned from M. nipponense. Homologous alignments revealed that Mn-Wee1 had a highly conserved function-critical sequence, and that Mn-OTUB was more closely related to OTUB1 than OTUB2. With increasing concentration of nanoplastics, the expression of both genes increased initially, then decreased. The inhibition of expression of Wee1 and OTUB occurred in 40 mg/L group, respectively. Analysis of the data also indicated that nanoplastic exposure might have differing effects on gene expression in M. nipponense male and female reproductive organs.
Collapse
Affiliation(s)
- Yiming Li
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Zhiquan Liu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Meng Zhang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Youhui Huang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Jiangtao Tian
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
14
|
Gorecki L, Andrs M, Korabecny J. Clinical Candidates Targeting the ATR-CHK1-WEE1 Axis in Cancer. Cancers (Basel) 2021; 13:795. [PMID: 33672884 PMCID: PMC7918546 DOI: 10.3390/cancers13040795] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Selective killing of cancer cells while sparing healthy ones is the principle of the perfect cancer treatment and the primary aim of many oncologists, molecular biologists, and medicinal chemists. To achieve this goal, it is crucial to understand the molecular mechanisms that distinguish cancer cells from healthy ones. Accordingly, several clinical candidates that use particular mutations in cell-cycle progressions have been developed to kill cancer cells. As the majority of cancer cells have defects in G1 control, targeting the subsequent intra‑S or G2/M checkpoints has also been extensively pursued. This review focuses on clinical candidates that target the kinases involved in intra‑S and G2/M checkpoints, namely, ATR, CHK1, and WEE1 inhibitors. It provides insight into their current status and future perspectives for anticancer treatment. Overall, even though CHK1 inhibitors are still far from clinical establishment, promising accomplishments with ATR and WEE1 inhibitors in phase II trials present a positive outlook for patient survival.
Collapse
Affiliation(s)
- Lukas Gorecki
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
| | - Martin Andrs
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
| |
Collapse
|
15
|
Du X, Li J, Luo X, Li R, Li F, Zhang Y, Shi J, He J. Structure-activity relationships of Wee1 inhibitors: A review. Eur J Med Chem 2020; 203:112524. [PMID: 32688199 DOI: 10.1016/j.ejmech.2020.112524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/05/2023]
Abstract
Wee1 kinase plays an important role in regulating G2/M checkpoint and S phase, and the inhibition of it will lead to mitotic catastrophe in cancer cells with p53 mutation or deletion. Therefore, the mechanism of Wee1 kinase in cancer treatment and the development of its inhibitors have become a research hotspot. However, although a variety of Wee1 inhibitors with different scaffolds and considerable activity have been successfully identified, so far no one has systematically summarized the structure-activity relationships (SARs) of Wee1 inhibitors. Previous reviews mainly focused on its mechanism and clinical application. To facilitate the rational design and development of Wee1 inhibitors in the future, this paper systematically summarizes its structural types, SARs and binding modes according to the Wee1 inhibitors reported in scientific journals, and also summarizes the regulatory effect of Wee1 kinase on cell cycle and the progress of its inhibitors in clinical application.
Collapse
Affiliation(s)
- Xingkai Du
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Jian Li
- Department of Pharmacy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Xiaojiao Luo
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Rong Li
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Feng Li
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| | - Jun He
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
16
|
Haltom AR, Toll SA, Cheng D, Maegawa S, Gopalakrishnan V, Khatua S. Medulloblastoma epigenetics and the path to clinical innovation. J Neurooncol 2020; 150:35-46. [PMID: 32816225 DOI: 10.1007/s11060-020-03591-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/06/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION In the last decade, a number of genomic and pharmacological studies have demonstrated the importance of epigenetic dysregulation in medulloblastoma initiation and progression. High throughput approaches including gene expression array, next-generation sequencing (NGS), and methylation profiling have now clearly identified at least four molecular subgroups within medulloblastoma, each with distinct clinical and prognostic characteristics. These studies have clearly shown that despite the overall paucity of mutations, clinically relevant events do occur within the cellular epigenetic machinery. Thus, this review aims to provide an overview of our current understanding of the spectrum of epi-oncogenetic perturbations in medulloblastoma. METHODS Comprehensive review of epigenetic profiles of different subgroups of medulloblastoma in the context of molecular features. Epigenetic regulation is mediated mainly by DNA methylation, histone modifications and microRNAs (miRNA). Importantly, epigenetic mis-events are reversible and have immense therapeutic potential. CONCLUSION The widespread epigenetic alterations present in these tumors has generated intense interest in their use as therapeutic targets. We provide an assessment of the progress that has been made towards the development of molecular subtypes-targeted therapies and the current status of clinical trials that have leveraged these recent advances.
Collapse
Affiliation(s)
- Amanda R Haltom
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie A Toll
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, USA
| | - Donghang Cheng
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Shinji Maegawa
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Vidya Gopalakrishnan
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Center for Cancer Epigenetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Brain Tumor Center, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Soumen Khatua
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA. .,Brain Tumor Center, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
17
|
Petty EL, Pillus L. Cell cycle roles for GCN5 revealed through genetic suppression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194625. [PMID: 32798737 DOI: 10.1016/j.bbagrm.2020.194625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 11/17/2022]
Abstract
The conserved acetyltransferase Gcn5 is a member of several complexes in eukaryotic cells, playing roles in regulating chromatin organization, gene expression, metabolism, and cell growth and differentiation via acetylation of both nuclear and cytoplasmic proteins. Distinct functions of Gcn5 have been revealed through a combination of biochemical and genetic approaches in many in vitro studies and model organisms. In this review, we focus on the unique insights that have been gleaned from suppressor studies of gcn5 phenotypes in the budding yeast Saccharomyces cerevisiae. Such studies were fundamental in the early understanding of the balance of counteracting chromatin activities in regulating transcription. Most recently, suppressor screens have revealed roles for Gcn5 in early cell cycle (G1 to S) gene expression and regulation of chromosome segregation during mitosis. Much has been learned, but many questions remain which will be informed by focused analysis of additional genetic and physical interactions.
Collapse
Affiliation(s)
- Emily L Petty
- University of California, San Diego, Division of Biological Sciences, Section of Molecular Biology, UCSD Moores Cancer Center, United States of America.
| | - Lorraine Pillus
- University of California, San Diego, Division of Biological Sciences, Section of Molecular Biology, UCSD Moores Cancer Center, United States of America.
| |
Collapse
|
18
|
Mancari R, Cutillo G, Bruno V, Vincenzoni C, Mancini E, Baiocco E, Bruni S, Vocaturo G, Chiofalo B, Vizza E. Development of new medical treatment for epithelial ovarian cancer recurrence. Gland Surg 2020; 9:1149-1163. [PMID: 32953630 PMCID: PMC7475356 DOI: 10.21037/gs-20-413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/01/2020] [Indexed: 02/05/2023]
Abstract
Epithelial ovarian cancer (EOC) is the scariest gynaecological cancer. Many advances have been done with evolving knowledge, leading to the introduction of new drugs, most in maintenance setting. The antiangiogenic Bevacizumab and the three approved PARP-inhibitors-olaparib, niraparib and rucaparib-are gradually improving PFS of patients with EOC, with initial effects on OS too. But recurrence is still a heavy sentence and lethality continues to be high. Ovarian cancer is a complex disease, with different clinical presentation, histological aspect, and molecular expression, leading to disappointing results, when using a single drug. Implementation of biobanking and analysis of patients' tumour samples, before starting a treatment, could be a promising way to better understand molecular aspects of this disease, to identify markers predictive of response and to allow a better use of experimental drugs, as immunomodulators, targeted therapies, and combinations of these, to fight tumour growth and clinical progression. We reviewed the literature on the updated treatments for recurrent ovarian cancer, summarizing all the available drugs and combinations to treat patients with this diagnosis, and focusing the attention on the new approved molecules and the contemporary Clinical Trials, investigating new target therapies and new associations.
Collapse
Affiliation(s)
- Rosanna Mancari
- Department of Experimental Clinical Oncology, Gynecologic Oncology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giuseppe Cutillo
- Department of Experimental Clinical Oncology, Gynecologic Oncology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Bruno
- Department of Experimental Clinical Oncology, Gynecologic Oncology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cristina Vincenzoni
- Department of Experimental Clinical Oncology, Gynecologic Oncology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Emanuela Mancini
- Department of Experimental Clinical Oncology, Gynecologic Oncology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ermelinda Baiocco
- Department of Experimental Clinical Oncology, Gynecologic Oncology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simone Bruni
- Division of Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Vocaturo
- Department of Experimental Clinical Oncology, Gynecologic Oncology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Benito Chiofalo
- Department of Experimental Clinical Oncology, Gynecologic Oncology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Enrico Vizza
- Department of Experimental Clinical Oncology, Gynecologic Oncology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
19
|
Moreira DC, Venkataraman S, Subramanian A, Desisto J, Balakrishnan I, Prince E, Pierce A, Griesinger A, Green A, Eberhardt CG, Foreman NK, Vibhakar R. Targeting MYC-driven replication stress in medulloblastoma with AZD1775 and gemcitabine. J Neurooncol 2020; 147:531-545. [PMID: 32180106 DOI: 10.1007/s11060-020-03457-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE MYC-driven medulloblastomas are highly aggressive childhood tumors with dismal outcomes and a lack of new treatment paradigms. We identified that targeting replication stress through WEE1 inhibition to suppress the S-phase replication checkpoint, combined with the attenuation of nucleotide synthesis with gemcitabine, is an effective strategy to induce apoptosis in MYC-driven medulloblastoma that could be rapidly translated into early phase clinical trials in children. Attenuation of replication stress is a key component of MYC-driven oncogenesis. Previous studies revealed a vulnerability in MYC medulloblastoma through WEE1 inhibition. Here, we focused on elucidating combinations of agents to synergize with WEE1 inhibition and drive replication stress toward cell death. METHODS We first analyzed WEE1 expression in patient tissues by immunohistochemistry. Next, we used high-throughput drug screens to identify agents that would synergize with WEE1 inhibition. Synergy was confirmed by in vitro live cell imaging, ex vivo slice culture models, and in vivo studies using orthotopic and flank xenograft models. RESULTS WEE1 expression was significantly higher in Group 3 and 4 medulloblastoma patients. The WEE1 inhibitor AZD1775 synergized with inhibitors of nucleotide synthesis, including gemcitabine. AZD1775 with gemcitabine suppressed proliferation and induced apoptosis. Ex vivo modeling demonstrated efficacy in Group 3 medulloblastoma patients, and in vivo modeling confirmed that combining AZD1775 and gemcitabine effectively suppressed tumor growth. CONCLUSION Our results identified a potent new synergistic treatment combination for MYC-driven medulloblastoma that warrants exploration in early phase clinical trials.
Collapse
Affiliation(s)
- Daniel C Moreira
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Apurva Subramanian
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John Desisto
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ilango Balakrishnan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric Prince
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angela Pierce
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrea Griesinger
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adam Green
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Charles G Eberhardt
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
- Department of Neurosurgery, University of Colorado Denver, Aurora, CO, USA
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
20
|
Deneka AY, Einarson MB, Bennett J, Nikonova AS, Elmekawy M, Zhou Y, Lee JW, Burtness BA, Golemis EA. Synthetic Lethal Targeting of Mitotic Checkpoints in HPV-Negative Head and Neck Cancer. Cancers (Basel) 2020; 12:cancers12020306. [PMID: 32012873 PMCID: PMC7072436 DOI: 10.3390/cancers12020306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/17/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) affect more than 800,000 people annually worldwide, causing over 15,000 deaths in the US. Among HNSCC cancers, human papillomavirus (HPV)-negative HNSCC has the worst outcome, motivating efforts to improve therapy for this disease. The most common mutational events in HPV-negative HNSCC are inactivation of the tumor suppressors TP53 (>85%) and CDKN2A (>57%), which significantly impairs G1/S checkpoints, causing reliance on other cell cycle checkpoints to repair ongoing replication damage. We evaluated a panel of cell cycle-targeting clinical agents in a group of HNSCC cell lines to identify a subset of drugs with single-agent activity in reducing cell viability. Subsequent analyses demonstrated potent combination activity between the CHK1/2 inhibitor LY2606268 (prexasertib), which eliminates a G2 checkpoint, and the WEE1 inhibitor AZD1775 (adavosertib), which promotes M-phase entry, in induction of DNA damage, mitotic catastrophe, and apoptosis, and reduction of anchorage independent growth and clonogenic capacity. These phenotypes were accompanied by more significantly reduced activation of CHK1 and its paralog CHK2, and enhanced CDK1 activation, eliminating breaks on the mitotic entry of cells with DNA damage. These data suggest the potential value of dual inhibition of CHK1 and WEE1 in tumors with compromised G1/S checkpoints.
Collapse
Affiliation(s)
- Alexander Y. Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (A.Y.D.); (M.B.E.); (J.B.); (A.S.N.); (M.E.)
- Department of Biochemistry and Biotechnology, Kazan Federal University, 420000 Kazan, Russia
| | - Margret B. Einarson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (A.Y.D.); (M.B.E.); (J.B.); (A.S.N.); (M.E.)
| | - John Bennett
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (A.Y.D.); (M.B.E.); (J.B.); (A.S.N.); (M.E.)
- Department of Biology, Chestnut Hill College, Philadelphia, PA 19118, USA
| | - Anna S. Nikonova
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (A.Y.D.); (M.B.E.); (J.B.); (A.S.N.); (M.E.)
| | - Mohamed Elmekawy
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (A.Y.D.); (M.B.E.); (J.B.); (A.S.N.); (M.E.)
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Yan Zhou
- Bioinformatics and Biostatistics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Jong Woo Lee
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA; (J.W.L.); (B.A.B.)
| | - Barbara A. Burtness
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA; (J.W.L.); (B.A.B.)
| | - Erica A. Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (A.Y.D.); (M.B.E.); (J.B.); (A.S.N.); (M.E.)
- Correspondence: ; Tel.: +1-215-728-2860
| |
Collapse
|
21
|
Yang H, Cui W, Wang L. Epigenetic synthetic lethality approaches in cancer therapy. Clin Epigenetics 2019; 11:136. [PMID: 31590683 PMCID: PMC6781350 DOI: 10.1186/s13148-019-0734-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
The onset and development of malignant tumors are closely related to epigenetic modifications, and this has become a research hotspot. In recent years, a variety of epigenetic regulators have been discovered, and corresponding small molecule inhibitors have been developed, but their efficacy in solid tumors is generally poor. With the introduction of the first synthetic lethal drug (the PARP inhibitor olaparib in ovarian cancer with BRCA1 mutation), research into synthetic lethality has also become a hotspot. High-throughput screening with CRISPR-Cas9 and shRNA technology has revealed a large number of synthetic lethal pairs involving epigenetic-related synthetic lethal genes, such as those encoding SWI/SNF complex subunits, PRC2 complex subunits, SETD2, KMT2C, and MLL fusion proteins. In this review, we focus on epigenetic-related synthetic lethal mechanisms, including synthetic lethality between epigenetic mutations and epigenetic inhibitors, epigenetic mutations and non-epigenetic inhibitors, and oncogene mutations and epigenetic inhibitors.
Collapse
Affiliation(s)
- Haoshen Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
22
|
Lee JW, Parameswaran J, Sandoval-Schaefer T, Eoh KJ, Yang DH, Zhu F, Mehra R, Sharma R, Gaffney SG, Perry EB, Townsend JP, Serebriiskii IG, Golemis EA, Issaeva N, Yarbrough WG, Koo JS, Burtness B. Combined Aurora Kinase A (AURKA) and WEE1 Inhibition Demonstrates Synergistic Antitumor Effect in Squamous Cell Carcinoma of the Head and Neck. Clin Cancer Res 2019; 25:3430-3442. [PMID: 30755439 DOI: 10.1158/1078-0432.ccr-18-0440] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 01/17/2019] [Accepted: 02/07/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Human papillomavirus (HPV)-negative head and neck squamous cell carcinomas (HNSCC) commonly bear disruptive mutations in TP53, resulting in treatment resistance. In these patients, direct targeting of p53 has not been successful, but synthetic lethal approaches have promise. Although Aurora A kinase (AURKA) is overexpressed and an oncogenic driver, its inhibition has only modest clinical effects in HPV-negative HNSCC. We explored a novel combination of AURKA and WEE1 inhibition to overcome intrinsic resistance to AURKA inhibition.Experimental Design: AURKA protein expression was determined by fluorescence-based automated quantitative analysis of patient specimens and correlated with survival. We evaluated treatment with the AURKA inhibitor alisertib (MLN8237) and the WEE1 inhibitor adavosertib (AZD1775), alone or in combination, using in vitro and in vivo HNSCC models. RESULTS Elevated nuclear AURKA correlated with worse survival among patients with p16(-) HNSCC. Alisertib caused spindle defects, G2-M arrest and inhibitory CDK1 phosphorylation, and cytostasis in TP53 mutant HNSCC FaDu and UNC7 cells. Addition of adavosertib to alisertib instead triggered mitotic entry and mitotic catastrophe. Moreover, in FaDu and Detroit 562 xenografts, this combination demonstrated synergistic effects on tumor growth and extended overall survival compared with either vehicle or single-agent treatment. CONCLUSIONS Combinatorial treatment with adavosertib and alisertib leads to synergistic antitumor effects in in vitro and in vivo HNSCC models. These findings suggest a novel rational combination, providing a promising therapeutic avenue for TP53-mutated cancers.
Collapse
Affiliation(s)
- Jong Woo Lee
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Janaki Parameswaran
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Teresa Sandoval-Schaefer
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Kyung Jin Eoh
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Dong-Hua Yang
- Biosample Repository, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Fang Zhu
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ranee Mehra
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Roshan Sharma
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Stephen G Gaffney
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Elizabeth B Perry
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Ilya G Serebriiskii
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Natalia Issaeva
- Section of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Wendell G Yarbrough
- Section of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Ja Seok Koo
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Barbara Burtness
- Section of Medical Oncology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
23
|
Fu S, Wang Y, Keyomarsi K, Meric-Bernstein F. Strategic development of AZD1775, a Wee1 kinase inhibitor, for cancer therapy. Expert Opin Investig Drugs 2018; 27:741-751. [DOI: 10.1080/13543784.2018.1511700] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yudong Wang
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Khandan Keyomarsi
- Department of Experimental Radiation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstein
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Fang B, Kannan A, Guo T, Gao L. Simultaneously targeting DNA damage repair pathway and mTORC1/2 results in small cell lung cancer growth arrest via ER stress-induced apoptosis. Int J Biol Sci 2018; 14:1221-1231. [PMID: 30123071 PMCID: PMC6097473 DOI: 10.7150/ijbs.25488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/09/2018] [Indexed: 01/08/2023] Open
Abstract
Purpose: Small cell lung cancer (SCLC) is highly lethal with no effective therapy. Wee1 kinase inhibitor AZD1775 (MK-1775) and mTOR kinase inhibitor MLN0128 (TAK228) are in clinical trials for relapsed SCLC and recurrent lung cancer, respectively. However, there is no preclinical data combining these two drugs in human cancers. Methods: In this study, we set to investigate the combinatorial anti-tumor effects of AZD1775 and MLN0128 on two human SCLC cell lines H69 and H82 in vitro and in vivo. Results: We have found that AZD1775 or MLN0128 treatment results in remarkably suppressed cell proliferation and increased cell death in vitro, what's more, the salient finding here is the potent anti-tumor effect observed in combinatorial treatment in H82 xenograft tumor. Importantly, we have first observed marked induction of ER stress and CHOP-dependent SCLC cell apoptosis in MLN0128 and AZD1775-primed cells. Conclusion: Our study has first provided preclinical evidence that combination of AZD1775 and MLN0128 could be a novel effective therapy for advanced SCLC patients.
Collapse
Affiliation(s)
- Bin Fang
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205.,Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aarthi Kannan
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205
| | - Tao Guo
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Gao
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205
| |
Collapse
|
25
|
Lengefeld J, Barral Y. Asymmetric Segregation of Aged Spindle Pole Bodies During Cell Division: Mechanisms and Relevance Beyond Budding Yeast? Bioessays 2018; 40:e1800038. [DOI: 10.1002/bies.201800038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/21/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Jette Lengefeld
- Institute of Biochemistry; ETH Zurich; Otto-Stern-Weg 3 8093 Zurich Switzerland
- David H. Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge, Massachusetts 02139 USA
| | - Yves Barral
- Institute of Biochemistry; ETH Zurich; Otto-Stern-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
26
|
Göder A, Emmerich C, Nikolova T, Kiweler N, Schreiber M, Kühl T, Imhof D, Christmann M, Heinzel T, Schneider G, Krämer OH. HDAC1 and HDAC2 integrate checkpoint kinase phosphorylation and cell fate through the phosphatase-2A subunit PR130. Nat Commun 2018; 9:764. [PMID: 29472538 PMCID: PMC5823910 DOI: 10.1038/s41467-018-03096-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/19/2018] [Indexed: 12/18/2022] Open
Abstract
Checkpoint kinases sense replicative stress to prevent DNA damage. Here we show that the histone deacetylases HDAC1/HDAC2 sustain the phosphorylation of the checkpoint kinases ATM, CHK1 and CHK2, activity of the cell cycle gatekeeper kinases WEE1 and CDK1, and induction of the tumour suppressor p53 in response to stalled DNA replication. Consequently, HDAC inhibition upon replicative stress promotes mitotic catastrophe. Mechanistically, HDAC1 and HDAC2 suppress the expression of PPP2R3A/PR130, a regulatory subunit of the trimeric serine/threonine phosphatase 2 (PP2A). Genetic elimination of PR130 reveals that PR130 promotes dephosphorylation of ATM by PP2A. Moreover, the ablation of PR130 slows G1/S phase transition and increases the levels of phosphorylated CHK1, replication protein A foci and DNA damage upon replicative stress. Accordingly, stressed PR130 null cells are very susceptible to HDAC inhibition, which abrogates the S phase checkpoint, induces apoptosis and reduces the homologous recombination protein RAD51. Thus, PR130 controls cell fate decisions upon replicative stress. Checkpoint kinases control cell cycle progression via the regulation of many key regulators. Here the authors demonstrate how HDAC1 and HDAC2 modulate checkpoint kinase signalling via the suppression of PR130, a regulatory subunit of the trimeric serine/threonine phosphatase 2.
Collapse
Affiliation(s)
- Anja Göder
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Claudia Emmerich
- University of Jena, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Hans-Knöll-Strasse 2, 07745, Jena, Germany
| | - Teodora Nikolova
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Nicole Kiweler
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Maria Schreiber
- University of Jena, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Hans-Knöll-Strasse 2, 07745, Jena, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Markus Christmann
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Thorsten Heinzel
- University of Jena, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Hans-Knöll-Strasse 2, 07745, Jena, Germany
| | - Günter Schneider
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Ismaningerstrasse 22, 81675, Munich, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany.
| |
Collapse
|
27
|
WEE1 epigenetically modulates 5-hmC levels by pY37-H2B dependent regulation of IDH2 gene expression. Oncotarget 2017; 8:106352-106368. [PMID: 29290954 PMCID: PMC5739739 DOI: 10.18632/oncotarget.22374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022] Open
Abstract
Epigenetic signaling networks dynamically regulate gene expression to maintain cellular homeostasis. Previously, we uncovered that WEE1 phosphorylates histone H2B at tyrosine 37 (pY37-H2B) to negatively regulate global histone transcriptional output. Although pY37-H2B is readily detected in cancer cells, its functional role in pathogenesis is not known. Herein, we show that WEE1 deposits the pY37-H2B marks within the tumor suppressor gene, isocitrate dehydrogenase 2 (IDH2), to repress transcription in multiple cancer cells, including glioblastoma multiforme (GBMs), melanoma and prostate cancer. Consistently, GBMs and primary melanoma tumors that display elevated WEE1 mRNA expression exhibit significant down regulation of the IDH2 gene transcription. IDH2 catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG), an essential cofactor for the TET family of 5-methylcytosine (5mC) hydroxylases that convert 5-mC to 5-hydroxymethylcytosine (5-hmC). Significantly, the WEE1 inhibitor AZD1775 not only abrogated the suppressive H2B Y37-phosphorylation and upregulated IDH2 mRNA levels but also effectively reversed the ‘loss of 5-hmC’ phenotype in melanomas, GBMs and prostate cancer cells, as well as melanoma xenograft tumors. These data indicate that the epigenetic repression of IDH2 by WEE1/pY37-H2B circuit may be a hitherto unknown mechanism of global 5-hmC loss observed in human malignancies.
Collapse
|
28
|
Corrado G, Salutari V, Palluzzi E, Distefano MG, Scambia G, Ferrandina G. Optimizing treatment in recurrent epithelial ovarian cancer. Expert Rev Anticancer Ther 2017; 17:1147-1158. [DOI: 10.1080/14737140.2017.1398088] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Giacomo Corrado
- Department of Health of Woman and Child, Gynecologic Oncology Unit, Catholic University of Sacred Heart, Rome, Italy
| | - Vanda Salutari
- Department of Health of Woman and Child, Gynecologic Oncology Unit, Catholic University of Sacred Heart, Rome, Italy
| | - Eleonora Palluzzi
- Department of Health of Woman and Child, Gynecologic Oncology Unit, Catholic University of Sacred Heart, Rome, Italy
| | - Maria Grazia Distefano
- Department of Health of Woman and Child, Gynecologic Oncology Unit, Catholic University of Sacred Heart, Rome, Italy
| | - Giovanni Scambia
- Department of Health of Woman and Child, Gynecologic Oncology Unit, Catholic University of Sacred Heart, Rome, Italy
| | - Gabriella Ferrandina
- Department of Health of Woman and Child, Gynecologic Oncology Unit, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
29
|
Zhu JY, Cuellar RA, Berndt N, Lee HE, Olesen SH, Martin MP, Jensen JT, Georg GI, Schönbrunn E. Structural Basis of Wee Kinases Functionality and Inactivation by Diverse Small Molecule Inhibitors. J Med Chem 2017; 60:7863-7875. [PMID: 28792760 PMCID: PMC6200136 DOI: 10.1021/acs.jmedchem.7b00996] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Members of the Wee family of kinases negatively regulate the cell cycle via phosphorylation of CDK1 and are considered potential drug targets. Herein, we investigated the structure-function relationship of human Wee1, Wee2, and Myt1 (PKMYT1). Purified recombinant full-length proteins and kinase domain constructs differed substantially in phosphorylation states and catalytic competency, suggesting complex mechanisms of activation. A series of crystal structures reveal unique features that distinguish Wee1 and Wee2 from Myt1 and establish the structural basis of differential inhibition by the widely used Wee1 inhibitor MK-1775. Kinome profiling and cellular studies demonstrate that, in addition to Wee1 and Wee2, MK-1775 is an equally potent inhibitor of the polo-like kinase PLK1. Several previously unrecognized inhibitors of Wee kinases were discovered and characterized. Combined, the data provide a comprehensive view on the catalytic and structural properties of Wee kinases and a framework for the rational design of novel inhibitors thereof.
Collapse
Affiliation(s)
- Jin-Yi Zhu
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Rebecca A. Cuellar
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Norbert Berndt
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Hee Eun Lee
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Sanne H. Olesen
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Mathew P. Martin
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Jeffrey T. Jensen
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, Oregon 97006, United States
| | - Gunda I. Georg
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Ernst Schönbrunn
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida 33612, United States
| |
Collapse
|
30
|
Kumar R, Deivendran S, Santhoshkumar TR, Pillai MR. Signaling coupled epigenomic regulation of gene expression. Oncogene 2017. [DOI: 10.1038/onc.2017.201] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Wang J, Mauvoisin D, Martin E, Atger F, Galindo AN, Dayon L, Sizzano F, Palini A, Kussmann M, Waridel P, Quadroni M, Dulić V, Naef F, Gachon F. Nuclear Proteomics Uncovers Diurnal Regulatory Landscapes in Mouse Liver. Cell Metab 2017; 25:102-117. [PMID: 27818260 PMCID: PMC5241201 DOI: 10.1016/j.cmet.2016.10.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/25/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022]
Abstract
Diurnal oscillations of gene expression controlled by the circadian clock and its connected feeding rhythm enable organisms to coordinate their physiologies with daily environmental cycles. While available techniques yielded crucial insights into regulation at the transcriptional level, much less is known about temporally controlled functions within the nucleus and their regulation at the protein level. Here, we quantified the temporal nuclear accumulation of proteins and phosphoproteins from mouse liver by SILAC proteomics. We identified around 5,000 nuclear proteins, over 500 of which showed a diurnal accumulation. Parallel analysis of the nuclear phosphoproteome enabled the inference of the temporal activity of kinases accounting for rhythmic phosphorylation. Many identified rhythmic proteins were parts of nuclear complexes involved in transcriptional regulation, ribosome biogenesis, DNA repair, and the cell cycle and its potentially associated diurnal rhythm of hepatocyte polyploidy. Taken together, these findings provide unprecedented insights into the diurnal regulatory landscape of the mouse liver nucleus.
Collapse
Affiliation(s)
- Jingkui Wang
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Daniel Mauvoisin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Eva Martin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Florian Atger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; Department of Pharmacology and Toxicology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Antonio Núñez Galindo
- Systems Nutrition, Metabonomics, and Proteomics, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Loïc Dayon
- Systems Nutrition, Metabonomics, and Proteomics, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Federico Sizzano
- Department of Cell Biology, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Alessio Palini
- Department of Cell Biology, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Martin Kussmann
- Systems Nutrition, Metabonomics, and Proteomics, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Patrice Waridel
- Protein Analysis Facility, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Manfredo Quadroni
- Protein Analysis Facility, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Vjekoslav Dulić
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, 34090 Montpellier, France
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
32
|
Promotion of Cell Viability and Histone Gene Expression by the Acetyltransferase Gcn5 and the Protein Phosphatase PP2A in Saccharomyces cerevisiae. Genetics 2016; 203:1693-707. [PMID: 27317677 DOI: 10.1534/genetics.116.189506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023] Open
Abstract
Histone modifications direct chromatin-templated events in the genome and regulate access to DNA sequence information. There are multiple types of modifications, and a common feature is their dynamic nature. An essential step for understanding their regulation, therefore, lies in characterizing the enzymes responsible for adding and removing histone modifications. Starting with a dosage-suppressor screen in Saccharomyces cerevisiae, we have discovered a functional interaction between the acetyltransferase Gcn5 and the protein phosphatase 2A (PP2A) complex, two factors that regulate post-translational modifications. We find that RTS1, one of two genes encoding PP2A regulatory subunits, is a robust and specific high-copy suppressor of temperature sensitivity of gcn5∆ and a subset of other gcn5∆ phenotypes. Conversely, loss of both PP2A(Rts1) and Gcn5 function in the SAGA and SLIK/SALSA complexes is lethal. RTS1 does not restore global transcriptional defects in gcn5∆; however, histone gene expression is restored, suggesting that the mechanism of RTS1 rescue includes restoration of specific cell cycle transcripts. Pointing to new mechanisms of acetylation-phosphorylation cross-talk, RTS1 high-copy rescue of gcn5∆ growth requires two residues of H2B that are phosphorylated in human cells. These data highlight the potential significance of dynamic phosphorylation and dephosphorylation of these deeply conserved histone residues for cell viability.
Collapse
|
33
|
Simitsidellis I, Gibson DA, Cousins FL, Esnal-Zufiaurre A, Saunders PTK. A Role for Androgens in Epithelial Proliferation and Formation of Glands in the Mouse Uterus. Endocrinology 2016; 157:2116-28. [PMID: 26963473 PMCID: PMC4870887 DOI: 10.1210/en.2015-2032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endometrium consists of stromal and epithelial compartments (luminal and glandular) with distinct functions in the regulation of uterine homeostasis. Ovarian sex steroids, namely 17β-estradiol and progesterone, play essential roles in modulating uterine cell proliferation, stromal-epithelial cross-talk and differentiation in preparation for pregnancy. The effect of androgens on uterine function remains poorly understood. The current study investigated the effect of the non-aromatizable androgen dihydrotestosterone (DHT) on mouse endometrial function. Ovx female mice were given a single sc injection (short treatment) or 7 daily injections (long treatment) of vehicle alone (5% ethanol, 0.4% methylcellulose) or vehicle with the addition of 0.2 mg DHT (n=8/group) and a single injection of bromodeoxyuridine 2 hours prior to tissue recovery. Treatment with DHT increased uterine weight, the area of the endometrial compartment and immunoexpression of the androgen receptor in the luminal and glandular epithelium. Treatment-dependent proliferation of epithelial cells was identified by immunostaining for MKi67 and bromodeoxyuridine. Real-time PCR identified significant DHT-dependent changes in the concentrations of mRNAs encoded by genes implicated in the regulation of the cell cycle (Wee1, Ccnd1, Rb1) and stromal-epithelial interactions (Wnt4, Wnt5a, Wnt7a, Cdh1, Vcl, Igf1, Prl8, Prlr) as well as a striking effect on the number of endometrial glands. This study has revealed a novel role for androgens in regulating uterine function with an effect on the glandular compartment of the endometrium. This previously unrecognized role for androgens has implications for our understanding of the role of androgens in regulation of endometrial function and fertility in women.
Collapse
Affiliation(s)
- Ioannis Simitsidellis
- Medical Research Council Centre for Inflammation Research, The Queen's Medical Research Institute, EH16 4TJ, Edinburgh, United Kingdom
| | - Douglas A Gibson
- Medical Research Council Centre for Inflammation Research, The Queen's Medical Research Institute, EH16 4TJ, Edinburgh, United Kingdom
| | - Fiona L Cousins
- Medical Research Council Centre for Inflammation Research, The Queen's Medical Research Institute, EH16 4TJ, Edinburgh, United Kingdom
| | - Arantza Esnal-Zufiaurre
- Medical Research Council Centre for Inflammation Research, The Queen's Medical Research Institute, EH16 4TJ, Edinburgh, United Kingdom
| | - Philippa T K Saunders
- Medical Research Council Centre for Inflammation Research, The Queen's Medical Research Institute, EH16 4TJ, Edinburgh, United Kingdom
| |
Collapse
|
34
|
Lokadasan R, James FV, Narayanan G, Prabhakaran PK. Targeted agents in epithelial ovarian cancer: review on emerging therapies and future developments. Ecancermedicalscience 2016; 10:626. [PMID: 27110282 PMCID: PMC4817523 DOI: 10.3332/ecancer.2016.626] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 11/09/2022] Open
Abstract
Epithelial ovarian cancer (EOC) remains a clinical challenge and there is a need to optimise the currently available treatment and to urgently develop new therapeutic strategies. Recently, there has been improved understanding of the molecular characteristics and tumour microenvironment of ovarian cancers. This has facilitated the development of various targeted agents used concurrently with chemotherapy or as maintenance. Most of the studies have explored the tumour angiogenesis pathways. In phase-III trials, bevacizumab showed a statistically significant improvement in progression-free survival, although there was no improvement in overall survival in selected high-risk cases. Although several multi-targeted tyrosine kinase inhibitors were found to be useful, the toxicity and survival benefit has to be weighed. Poly ADP ribose polymerase (PARP) inhibitors have been another marvellous molecule found to be effective in breast cancer 1, early onset (BRCA)-positive ovarian cancers. Several newer molecules targeting Her 2, Wee tyrsine kinases, PIP3/AKT/mTR-signalling pathways, folate receptors are under development and may provide additional opportunities in the future. This article focuses on the targeted agents that have successfully paved the way in the management of epithelial ovarian cancer and the newer molecules that may offer therapeutic opportunities in the future.
Collapse
Affiliation(s)
- Rajitha Lokadasan
- Department of Medical Oncology, Regional Cancer Centre, Thiruvananthapuram 695011, India
| | - Francis V James
- Department of Radiotherapy, Regional Cancer Centre, Thiruvananthapuram 695011, India
| | - Geetha Narayanan
- Department of Medical Oncology, Regional Cancer Centre, Thiruvananthapuram 695011, India
| | - Pranab K Prabhakaran
- Department of Medical Oncology, Regional Cancer Centre, Thiruvananthapuram 695011, India
| |
Collapse
|
35
|
Penas C, Mishra JK, Wood SD, Schürer SC, Roush WR, Ayad NG. GSK3 inhibitors stabilize Wee1 and reduce cerebellar granule cell progenitor proliferation. Cell Cycle 2015; 14:417-24. [PMID: 25616418 DOI: 10.4161/15384101.2014.974439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ubiquitin mediated proteolysis is required for transition from one cell cycle phase to another. For instance, the mitosis inhibitor Wee1 is targeted for degradation during S phase and G2 to allow mitotic entry. Wee1 is an essential tyrosine kinase required for the G2/M transition and S-phase progression. Although several studies have concentrated on Wee1 regulation during mitosis, few have elucidated its degradation during interphase. Our prior studies have demonstrated that Wee1 is degraded via CK1δ dependent phosphorylation during the S and G2/M phases of the cell cycle. Here we demonstrate that GSK3β may work in concert with CK1δ to induce Wee1 destruction during interphase. We generated small molecules that specifically stabilized Wee1. We profiled these compounds against 296 kinases and found that they inhibit GSK3α and GSK3β, suggesting that Wee1 may be targeted for proteolysis by GSK3. Consistent with this notion, known GSK3 inhibitors stabilized Wee1 and GSK3β depletion reduced Wee1 turnover. Given Wee1's central role in cell cycle progression, we predicted that GSK3 inhibitors should limit cell proliferation. Indeed, we demonstrate that GSK3 inhibitors potently inhibited proliferation of the most abundant cell in the mammalian brain, the cerebellar granule cell progenitor (GCP). These studies identify a previously unappreciated role for GSK3β mediated regulation of Wee1 during the cell cycle and in neurogenesis. Furthermore, they suggest that pharmacological inhibition of Wee1 may be therapeutically attractive in some cancers where GSK-3β or Wee1 are dysregulated.
Collapse
Affiliation(s)
- Clara Penas
- a Center for Therapeutic Innovation; Department of Psychiatry and Behavioral Sciences ; University of Miami ; LPLC ; Miami , FL USA
| | | | | | | | | | | |
Collapse
|
36
|
Mahajan K, Mahajan NP. Cross talk of tyrosine kinases with the DNA damage signaling pathways. Nucleic Acids Res 2015; 43:10588-601. [PMID: 26546517 PMCID: PMC4678820 DOI: 10.1093/nar/gkv1166] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/21/2015] [Indexed: 01/19/2023] Open
Abstract
Tyrosine kinases respond to extracellular and intracellular cues by activating specific cellular signaling cascades to regulate cell cycle, growth, proliferation, differentiation and survival. Likewise, DNA damage response proteins (DDR) activated by DNA lesions or chromatin alterations recruit the DNA repair and cell cycle checkpoint machinery to restore genome integrity and cellular homeostasis. Several new examples have been uncovered in recent studies which reveal novel epigenetic and non-epigenetic mechanisms by which tyrosine kinases interact with DDR proteins to dictate cell fate, i.e. survival or apoptosis, following DNA damage. These studies reveal the ability of tyrosine kinases to directly regulate the activity of DNA repair and cell cycle check point proteins by tyrosine phosphorylation. In addition, tyrosine kinases epigenetically regulate DNA damage signaling pathways by modifying the core histones as well as chromatin modifiers at critical tyrosine residues. Thus, deregulated tyrosine kinase driven epigenomic alterations have profound implications in cancer, aging and genetic disorders. Consequently, targeting oncogenic tyrosine kinase induced epigenetic alterations has gained significant traction in overcoming cancer cell resistance to various therapies. This review discusses mechanisms by which tyrosine kinases interact with DDR pathways to regulate processes critical for maintaining genome integrity as well as clinical strategies for targeted cancer therapies.
Collapse
Affiliation(s)
- Kiran Mahajan
- Tumor Biology Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA Department of Oncological Sciences, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Nupam P Mahajan
- Drug Discovery Department, Moffitt Cancer Center, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA Department of Oncological Sciences, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW This review highlights recent clinical developments in the therapeutic targeting of cell cycle control in melanoma with cyclin-dependent kinase inhibitors, checkpoint kinases, MDM2, MDM4 and p53 inhibitors. RECENT FINDINGS The high prevalence of activating genetic aberrations along the p16 INK4A:cyclinD-CDK4/6:RB pathway in melanoma and increasing evidence that alterations in this pathway are linked to melanomagenesis, make targeting the p16 INK4A:cyclinD-CDK4/6:RB pathway in melanoma logical and highly attractive. The presence of elevated CDK4 activity appears to correlate with greater CDK4/6 inhibitor therapeutic activity, whereas the loss of RB1 has been linked to CDK inhibitor resistance. Other novel compounds targeting cell cycle control via reactivating wild-type p53 and checkpoint kinases are also currently under investigation in melanoma. SUMMARY Cell cycle control is a promising target in the management of melanoma with early data reporting therapeutic benefit with cyclin-dependent kinase inhibitors, MDM2, and p53 reactivation compounds. Many of these drugs have entered phase I and II clinical trial development. Preliminary data from these studies are discussed in this review along with future treatment strategies for maximizing treatment outcomes in advanced melanoma. VIDEO ABSTRACT http://links.lww.com/COON/A12.
Collapse
Affiliation(s)
- Belinda Lee
- aDepartment of Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne bDepartment of Pathology, University of Melbourne, Parkville cDepartment of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy dMolecular Oncology Laboratory, Oncogenic Signalling and Growth Control Program eTranslational Research Laboratory, Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | | |
Collapse
|
38
|
Bergamini A, Leone Roberti Maggiore U, Ferrero S, Rabaiotti E, Viganò R, Petrone M, De Marzi P, Salvatore S, Candiani M, Mangili G. Investigational therapies currently in Phase II clinical trials for the treatment of pelvic serous carcinomas. Expert Opin Investig Drugs 2015; 24:345-62. [PMID: 25640877 DOI: 10.1517/13543784.2015.999154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Kalatova B, Jesenska R, Hlinka D, Dudas M. Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications. Acta Histochem 2015; 117:111-25. [PMID: 25554607 DOI: 10.1016/j.acthis.2014.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/08/2023]
Abstract
Tripolar mitosis is a specific case of cell division driven by typical molecular mechanisms of mitosis, but resulting in three daughter cells instead of the usual count of two. Other variants of multipolar mitosis show even more mitotic poles and are relatively rare. In nature, this phenomenon was frequently observed or suspected in multiple common cancers, infected cells, the placenta, and in early human embryos with impaired pregnancy-yielding potential. Artificial causes include radiation and various toxins. Here we combine several pieces of the most recent evidence for the existence of different types of multipolar mitosis in preimplantation embryos together with a detailed review of the literature. The related molecular and cellular mechanisms are discussed, including the regulation of centriole duplication, mitotic spindle biology, centromere functions, cell cycle checkpoints, mitotic autocorrection mechanisms, and the related complicating factors in healthy and affected cells, including post-mitotic cell-cell fusion often associated with multipolar cell division. Clinical relevance for oncology and embryo selection in assisted reproduction is also briefly discussed in this context.
Collapse
|
40
|
Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood 2014; 125:1061-72. [PMID: 25488972 DOI: 10.1182/blood-2014-11-610436] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Classical Hodgkin lymphoma (cHL) is characterized by sparsely distributed Hodgkin and Reed-Sternberg (HRS) cells amid reactive host background, complicating the acquisition of neoplastic DNA without extensive background contamination. We overcame this limitation by using flow-sorted HRS and intratumor T cells and optimized low-input exome sequencing of 10 patient samples to reveal alterations in genes involved in antigen presentation, chromosome integrity, transcriptional regulation, and ubiquitination. β-2-microglobulin (B2M) is the most commonly altered gene in HRS cells, with 7 of 10 cases having inactivating mutations that lead to loss of major histocompatibility complex class I (MHC-I) expression. Enforced wild-type B2M expression in a cHL cell line restored MHC-I expression. In an extended cohort of 145 patients, the absence of B2M protein in the HRS cells was associated with lower stage of disease, younger age at diagnosis, and better overall and progression-free survival. B2M-deficient cases encompassed most of the nodular sclerosis subtype cases and only a minority of mixed cellularity cases, suggesting that B2M deficiency determines the tumor microenvironment and may define a major subset of cHL that has more uniform clinical and morphologic features. In addition, we report previously unknown genetic alterations that may render selected patients sensitive to specific targeted therapies.
Collapse
|
41
|
Schmid BC, Oehler MK. New perspectives in ovarian cancer treatment. Maturitas 2013; 77:128-36. [PMID: 24380827 DOI: 10.1016/j.maturitas.2013.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
Ovarian cancer (OC) is increasingly understood as a heterogeneous disease comprising distinct subtypes of different origin that vary significantly with regard to molecular biology and clinical behaviour. Despite some limited progress in its treatment over the last decade, currently there are few therapeutic options and overall survival remains poor. Increasing knowledge about the molecular biology of ovarian cancer has led to the development of targeted therapies which promise to be more effective and to provide the basis for personalized treatment. The most successful strategies so far are employing anti-angiogenics (VEGF antibodies, tyrosine kinase inhibitors and angiopoietin antagonists) and polyadenosine diphosphate-ribose polymerase (PARP) inhibitors. Other approaches target aberrant OC signalling such as the PI3K/Akt/mTOR network, the epidermal growth factor receptor, the WEE1 tyrosine kinase and the folate receptor alpha. Immunotherapy is another promising new approach against ovarian cancer. In this area, immunotherapeutic modulation by administering autologous immune cells, such as dendritic cells (DCs), to stimulate antitumour host responses is of special interest. Finally, there is now growing evidence from clinical studies showing a survival advantage for intraperitoneal (IP) chemotherapy when compared to conventional intravenous treatment in the adjuvant setting. New strategies such as pressurized IP aerosol chemotherapy might further improve the efficacy of this approach.
Collapse
Affiliation(s)
- Bernd C Schmid
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, South Australia, Australia
| | - Martin K Oehler
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, South Australia, Australia; Discipline of Obstetrics and Gynaecology, Research Centre for Reproductive Health, Robinson Institute, University of Adelaide, Adelaide 5005, South Australia, Australia.
| |
Collapse
|