1
|
Elsaid R, Mikdache A, Diabangouaya P, Gros G, Hernández PP. A noninvasive photoactivatable split-Cre recombinase system for genome engineering in zebrafish. iScience 2024; 27:110476. [PMID: 39129833 PMCID: PMC11315165 DOI: 10.1016/j.isci.2024.110476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
The cyclic recombinase (Cre)/loxP recombination system is a powerful technique for in vivo cell labeling and tracking. However, achieving high spatiotemporal precision in cell tracking using this system is challenging due to the requirement for reliable tissue-specific promoters. In contrast, light-inducible systems offer superior regional confinement, tunability, and non-invasiveness compared to conventional lineage-tracing methods. Here, we took advantage of the unique strengths of the zebrafish to develop an easy-to-use highly efficient, genetically encoded, magnets-based, light-inducible transgenic Cre/loxP system. We demonstrate that our system does not exhibit phototoxicity or leakiness in the dark, and it enables efficient and robust Cre/loxP recombination in various tissues and cell types at different developmental stages through noninvasive illumination with blue light. Our newly developed tool is expected to open novel opportunities for light-controlled tracking of cell fate and migration in vivo.
Collapse
Affiliation(s)
- Ramy Elsaid
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Aya Mikdache
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Patricia Diabangouaya
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Gwendoline Gros
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Pedro P. Hernández
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
2
|
Lalonde RL, Wells HH, Kemmler CL, Nieuwenhuize S, Lerma R, Burger A, Mosimann C. pIGLET: Safe harbor landing sites for reproducible and efficient transgenesis in zebrafish. SCIENCE ADVANCES 2024; 10:eadn6603. [PMID: 38838146 PMCID: PMC11152119 DOI: 10.1126/sciadv.adn6603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Standard zebrafish transgenesis involves random transgene integration with resource-intensive screening. While phiC31 integrase-based attP/attB recombination has streamlined transgenesis in mice and Drosophila, validated attP-based landing sites for universal applications are lacking in zebrafish. Here, we developed phiC31 Integrase Genomic Loci Engineered for Transgenesis (pIGLET) as transgenesis approach, with two attP landing sites pIGLET14a and pIGLET24b from well-validated Tol2 transgenes. Both sites facilitate diverse transgenesis applications including reporters and Cre/loxP transgenes. The pIGLET14a and pIGLET24b landing sites consistently yield 25 to 50% germline transmission, substantially reducing the resources needed for transgenic line generation. Transgenesis into these sites enables reproducible expression patterns in F0 zebrafish embryos for enhancer discovery and testing of gene regulatory variants. Together, our new landing sites streamline targeted, reproducible zebrafish transgenesis as a robust platform for various applications while minimizing the workload for generating transgenic lines.
Collapse
Affiliation(s)
| | | | - Cassie L. Kemmler
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Susan Nieuwenhuize
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Raymundo Lerma
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | | | | |
Collapse
|
3
|
Elsaid R, Mikdache A, Castillo KQ, Salloum Y, Diabangouaya P, Gros G, Feijoo CG, Hernández PP. Definitive hematopoiesis is dispensable to sustain erythrocytes and macrophages during zebrafish ontogeny. iScience 2024; 27:108922. [PMID: 38327794 PMCID: PMC10847700 DOI: 10.1016/j.isci.2024.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/23/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
In all organisms studied, from flies to humans, blood cells emerge in several sequential waves and from distinct hematopoietic origins. However, the relative contribution of these ontogenetically distinct hematopoietic waves to embryonic blood lineages and to tissue regeneration during development is yet elusive. Here, using a lineage-specific "switch and trace" strategy in the zebrafish embryo, we report that the definitive hematopoietic progeny barely contributes to erythrocytes and macrophages during early development. Lineage tracing further shows that ontogenetically distinct macrophages exhibit differential recruitment to the site of injury based on the developmental stage of the organism. We further demonstrate that primitive macrophages can solely maintain tissue regeneration during early larval developmental stages after selective ablation of definitive macrophages. Our findings highlight that the sequential emergence of hematopoietic waves in embryos ensures the abundance of blood cells required for tissue homeostasis and integrity during development.
Collapse
Affiliation(s)
- Ramy Elsaid
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Aya Mikdache
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Keinis Quintero Castillo
- Fish Immunology Laboratory, Faculty of Life Science, Andres Bello University, Santiago 8370146, Chile
| | - Yazan Salloum
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Patricia Diabangouaya
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Gwendoline Gros
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Carmen G. Feijoo
- Fish Immunology Laboratory, Faculty of Life Science, Andres Bello University, Santiago 8370146, Chile
| | - Pedro P. Hernández
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
4
|
Meijer WJJ, Miguel-Arribas A. Genetic Engineering of Bacillus subtilis Using Competence-Induced Homologous Recombination Techniques. Methods Mol Biol 2024; 2819:241-260. [PMID: 39028510 DOI: 10.1007/978-1-0716-3930-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Bacillus subtilis is one of the best-studied bacteria and serves as a Gram-positive model system to address fundamental biological processes. Depending on conditions, a B. subtilis cell can initiate one out of various distinct differentiation processes to cope with changing environmental conditions. One of these differentiation processes is natural competence that allows cells to adsorb exogenous DNA and subsequently incorporate it into its chromosome by homologous recombination. Due to competence development, the genome of B. subtilis can be easily manipulated, and this has contributed to B. subtilis being a model system. In this chapter, we describe some of the most common genetic tools that can be used in combination with natural competence to tailor the genome of B. subtilis.
Collapse
Affiliation(s)
- Wilfried J J Meijer
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Andrés Miguel-Arribas
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| |
Collapse
|
5
|
Sur A, Wang Y, Capar P, Margolin G, Prochaska MK, Farrell JA. Single-cell analysis of shared signatures and transcriptional diversity during zebrafish development. Dev Cell 2023; 58:3028-3047.e12. [PMID: 37995681 PMCID: PMC11181902 DOI: 10.1016/j.devcel.2023.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/24/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
During development, animals generate distinct cell populations with specific identities, functions, and morphologies. We mapped transcriptionally distinct populations across 489,686 cells from 62 stages during wild-type zebrafish embryogenesis and early larval development (3-120 h post-fertilization). Using these data, we identified the limited catalog of gene expression programs reused across multiple tissues and their cell-type-specific adaptations. We also determined the duration each transcriptional state is present during development and identify unexpected long-term cycling populations. Focused clustering and transcriptional trajectory analyses of non-skeletal muscle and endoderm identified transcriptional profiles and candidate transcriptional regulators of understudied cell types and subpopulations, including the pneumatic duct, individual intestinal smooth muscle layers, spatially distinct pericyte subpopulations, and recently discovered best4+ cells. To enable additional discoveries, we make this comprehensive transcriptional atlas of early zebrafish development available through our website, Daniocell.
Collapse
Affiliation(s)
- Abhinav Sur
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Yiqun Wang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paulina Capar
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Gennady Margolin
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Morgan Kathleen Prochaska
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Jeffrey A Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA.
| |
Collapse
|
6
|
Lalonde RL, Wells HH, Kemmler CL, Nieuwenhuize S, Lerma R, Burger A, Mosimann C. pIGLET: Safe harbor landing sites for reproducible and efficient transgenesis in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570868. [PMID: 38106217 PMCID: PMC10723424 DOI: 10.1101/2023.12.08.570868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Standard methods for transgenesis in zebrafish depend on random transgene integration into the genome followed by resource-intensive screening and validation. Targeted vector integration into validated genomic loci using phiC31 integrase-based attP/attB recombination has transformed mouse and Drosophila transgenesis. However, while the phiC31 system functions in zebrafish, validated loci carrying attP-based landing or safe harbor sites suitable for universal transgenesis applications in zebrafish have not been established. Here, using CRISPR-Cas9, we converted two well-validated single insertion Tol2-based zebrafish transgenes with long-standing genetic stability into two attP landing sites, called phiC31 Integrase Genomic Loci Engineered for Transgenesis (pIGLET). Generating fluorescent reporters, loxP-based Switch lines, CreERT2 drivers, and gene-regulatory variant reporters in the pIGLET14a and pIGLET24b landing site alleles, we document their suitability for transgenesis applications across cell types and developmental stages. For both landing sites, we routinely achieve 25-50% germline transmission of targeted transgene integrations, drastically reducing the number of required animals and necessary resources to generate individual transgenic lines. We document that phiC31 integrase-based transgenesis into pIGLET14a and pIGLET24b reproducibly results in representative reporter expression patterns in injected F0 zebrafish embryos suitable for enhancer discovery and qualitative and quantitative comparison of gene-regulatory element variants. Taken together, our new phiC31 integrase-based transgene landing sites establish reproducible, targeted zebrafish transgenesis for numerous applications while greatly reducing the workload of generating new transgenic zebrafish lines.
Collapse
Affiliation(s)
- Robert L. Lalonde
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Harrison H. Wells
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Cassie L. Kemmler
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Susan Nieuwenhuize
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Raymundo Lerma
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Shin M, Yin HM, Shih YH, Nozaki T, Portman D, Toles B, Kolb A, Luk K, Isogai S, Ishida K, Hanasaka T, Parsons MJ, Wolfe SA, Burns CE, Burns CG, Lawson ND. Generation and application of endogenously floxed alleles for cell-specific knockout in zebrafish. Dev Cell 2023; 58:2614-2626.e7. [PMID: 37633272 PMCID: PMC10840978 DOI: 10.1016/j.devcel.2023.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/30/2023] [Accepted: 07/28/2023] [Indexed: 08/28/2023]
Abstract
The zebrafish is amenable to a variety of genetic approaches. However, lack of conditional deletion alleles limits stage- or cell-specific gene knockout. Here, we applied an existing protocol to establish a floxed allele for gata2a but failed to do so due to off-target integration and incomplete knockin. To address these problems, we applied simultaneous co-targeting with Cas12a to insert loxP sites in cis, together with transgenic counterscreening and comprehensive molecular analysis, to identify off-target insertions and confirm targeted knockins. We subsequently used our approach to establish endogenously floxed alleles of foxc1a, rasa1a, and ruvbl1, each in a single generation. We demonstrate the utility of these alleles by verifying Cre-dependent deletion, which yielded expected phenotypes in each case. Finally, we used the floxed gata2a allele to demonstrate an endothelial autonomous requirement in lymphatic valve development. Together, our results provide a framework for routine generation and application of endogenously floxed alleles in zebrafish.
Collapse
Affiliation(s)
- Masahiro Shin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hui-Min Yin
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Huan Shih
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Takayuki Nozaki
- Technical Support Center for Life Science Research, Iwate Medical University, Shiwa, Iwate 028-3694, Japan
| | - Daneal Portman
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Benjamin Toles
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Amy Kolb
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kevin Luk
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sumio Isogai
- Department of Medical Education, Iwate Medical University, Shiwa, Iwate 028-3694, Japan
| | - Kinji Ishida
- Technical Support Center for Life Science Research, Iwate Medical University, Shiwa, Iwate 028-3694, Japan
| | - Tomohito Hanasaka
- Technical Support Center for Life Science Research, Iwate Medical University, Shiwa, Iwate 028-3694, Japan
| | - Michael J Parsons
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Scot A Wolfe
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Caroline E Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - C Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Nathan D Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
8
|
Tromp A, Wang H, Hall TE, Mowry B, Giacomotto J. Optimising the zebrafish Cre/Lox toolbox. Codon improved iCre, new gateway tools, Cre protein and guidelines. Front Physiol 2023; 14:1221310. [PMID: 37601640 PMCID: PMC10433388 DOI: 10.3389/fphys.2023.1221310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
We recently introduced the Cre/Lox technology in our laboratory for both transient (mRNA injections) and stable/transgenic experiments. We experienced significant issues such as silencing, mosaicism, and partial recombination using both approaches. Reviewing the literature gave us the impression that these issues are common among the zebrafish community using the Cre/Lox system. While some researchers took advantage of these problems for specific applications, such as cell and lineage tracing using the Zebrabow construct, we tried here to improve the efficiency and reliability of this system by constituting and testing a new set of tools for zebrafish genetics. First, we implemented a codon-improved Cre version (iCre) designed for rodent studies to counteract some of the aforementioned problems. This eukaryotic-like iCre version was engineered to i) reduce silencing, ii) increase mRNA stability, iii) enhance translational efficiency, and iv) improve nuclear translocation. Second, we established a new set of tol2-kit compatible vectors to facilitate the generation of either iCre-mRNA or iCre-transgenes for transient and transgenic experiments, respectively. We then validated the use of this material and are providing tips for users. Interestingly, during the validation steps, we found that maternal iCRE-mRNA and/or protein deposition from female transgenics systematically led to complete/homogeneous conversion of all tested Lox-responder-transgenes, as opposed to some residual imperfect conversion when using males-drivers or mRNA injections. Considering that we did not find any evidence of Cre-protein soaking and injections in the literature as it is usually conducted with cells, we tested these approaches. While soaking of cell-permeant CRE-protein did not lead to any detectable Lox-conversion, 1ng-10 ng protein injections led to robust and homogeneous Lox-recombination, suggesting that the use of protein could be a robust option for exogenous delivery. This approach may be particularly useful to manipulate housekeeping genes involved in development, sex determination and reproduction which are difficult to investigate with traditional knockout approaches. All in all, we are providing here a new set of tools that should be useful in the field.
Collapse
Affiliation(s)
- Alisha Tromp
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Haitao Wang
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Thomas E. Hall
- Institute for Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Bryan Mowry
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| | - Jean Giacomotto
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
- Centre for Cellular Phenomics, School of Environment and Science, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Sur A, Wang Y, Capar P, Margolin G, Farrell JA. Single-cell analysis of shared signatures and transcriptional diversity during zebrafish development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533545. [PMID: 36993555 PMCID: PMC10055256 DOI: 10.1101/2023.03.20.533545] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
During development, animals generate distinct cell populations with specific identities, functions, and morphologies. We mapped transcriptionally distinct populations across 489,686 cells from 62 stages during wild-type zebrafish embryogenesis and early larval development (3-120 hours post-fertilization). Using these data, we identified the limited catalog of gene expression programs reused across multiple tissues and their cell-type-specific adaptations. We also determined the duration each transcriptional state is present during development and suggest new long-term cycling populations. Focused analyses of non-skeletal muscle and the endoderm identified transcriptional profiles of understudied cell types and subpopulations, including the pneumatic duct, individual intestinal smooth muscle layers, spatially distinct pericyte subpopulations, and homologs of recently discovered human best4+ enterocytes. The transcriptional regulators of these populations remain unknown, so we reconstructed gene expression trajectories to suggest candidates. To enable additional discoveries, we make this comprehensive transcriptional atlas of early zebrafish development available through our website, Daniocell.
Collapse
Affiliation(s)
- Abhinav Sur
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814
| | - Yiqun Wang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Paulina Capar
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814
| | - Gennady Margolin
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20814
| | - Jeffrey A. Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814
| |
Collapse
|
10
|
Kemmler CL, Moran HR, Murray BF, Scoresby A, Klem JR, Eckert RL, Lepovsky E, Bertho S, Nieuwenhuize S, Burger S, D'Agati G, Betz C, Puller AC, Felker A, Ditrychova K, Bötschi S, Affolter M, Rohner N, Lovely CB, Kwan KM, Burger A, Mosimann C. Next-generation plasmids for transgenesis in zebrafish and beyond. Development 2023; 150:dev201531. [PMID: 36975217 PMCID: PMC10263156 DOI: 10.1242/dev.201531] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible modular system. Here, we establish several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse beta-globin minimal promoter coupled to several fluorophores, CreERT2 and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein mCerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3' vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Finally, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker that is active before hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish and other models.
Collapse
Affiliation(s)
- Cassie L. Kemmler
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Hannah R. Moran
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Brooke F. Murray
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Aaron Scoresby
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - John R. Klem
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rachel L. Eckert
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Elizabeth Lepovsky
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sylvain Bertho
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Susan Nieuwenhuize
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Sibylle Burger
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Gianluca D'Agati
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Charles Betz
- Growth & Development, Biozentrum, Spitalstrasse 41, University of Basel, 4056 Basel, Switzerland
| | - Ann-Christin Puller
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Anastasia Felker
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Karolina Ditrychova
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Seraina Bötschi
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Markus Affolter
- Growth & Development, Biozentrum, Spitalstrasse 41, University of Basel, 4056 Basel, Switzerland
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - C. Ben Lovely
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kristen M. Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexa Burger
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Brown W, Wesalo J, Tsang M, Deiters A. Engineering Small Molecule Switches of Protein Function in Zebrafish Embryos. J Am Chem Soc 2023; 145:2395-2403. [PMID: 36662675 DOI: 10.1021/jacs.2c11366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Precise temporally regulated protein function directs the highly complex processes that make up embryo development. The zebrafish embryo is an excellent model organism to study development, and conditional control over enzymatic activity is desirable to target chemical intervention to specific developmental events and to investigate biological mechanisms. Surprisingly few, generally applicable small molecule switches of protein function exist in zebrafish. Genetic code expansion allows for site-specific incorporation of unnatural amino acids into proteins that contain caging groups that are removed through addition of small molecule triggers such as phosphines or tetrazines. This broadly applicable control of protein function was applied to activate several enzymes, including a GTPase and a protease, with temporal precision in zebrafish embryos. Simple addition of the small molecule to the media produces robust and tunable protein activation, which was used to gain insight into the development of a congenital heart defect from a RASopathy mutant of NRAS and to control DNA and protein cleavage events catalyzed by a viral recombinase and a viral protease, respectively.
Collapse
Affiliation(s)
- Wes Brown
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Joshua Wesalo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
12
|
Burgess HA, Burton EA. A Critical Review of Zebrafish Neurological Disease Models-1. The Premise: Neuroanatomical, Cellular and Genetic Homology and Experimental Tractability. OXFORD OPEN NEUROSCIENCE 2023; 2:kvac018. [PMID: 37649777 PMCID: PMC10464506 DOI: 10.1093/oons/kvac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/13/2022] [Indexed: 09/01/2023]
Abstract
The last decade has seen a dramatic rise in the number of genes linked to neurological disorders, necessitating new models to explore underlying mechanisms and to test potential therapies. Over a similar period, many laboratories adopted zebrafish as a tractable model for studying brain development, defining neural circuits and performing chemical screens. Here we discuss strengths and limitations of using the zebrafish system to model neurological disorders. The underlying premise for many disease models is the high degree of homology between human and zebrafish genes, coupled with the conserved vertebrate Bauplan and repertoire of neurochemical signaling molecules. Yet, we caution that important evolutionary divergences often limit the extent to which human symptoms can be modeled meaningfully in zebrafish. We outline advances in genetic technologies that allow human mutations to be reproduced faithfully in zebrafish. Together with methods that visualize the development and function of neuronal pathways at the single cell level, there is now an unprecedented opportunity to understand how disease-associated genetic changes disrupt neural circuits, a level of analysis that is ideally suited to uncovering pathogenic changes in human brain disorders.
Collapse
Affiliation(s)
- Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA,15260, USA
- Geriatric Research, Education, and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, 15240, USA
| |
Collapse
|
13
|
Lalonde RL, Kemmler CL, Riemslagh FW, Aman AJ, Kresoja-Rakic J, Moran HR, Nieuwenhuize S, Parichy DM, Burger A, Mosimann C. Heterogeneity and genomic loci of ubiquitous transgenic Cre reporter lines in zebrafish. Dev Dyn 2022; 251:1754-1773. [PMID: 35582941 PMCID: PMC10069295 DOI: 10.1002/dvdy.499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The most-common strategy for zebrafish Cre/lox-mediated lineage labeling experiments combines ubiquitously expressed, lox-based Switch reporter transgenes with tissue-specific Cre or 4-OH-Tamoxifen-inducible CreERT2 driver lines. Although numerous Cre driver lines have been produced, only a few broadly expressed Switch reporters exist in zebrafish and their generation by random transgene integration has been challenging due to position-effect sensitivity of the lox-flanked recombination cassettes. Here, we compare commonly used Switch reporter lines for their recombination efficiency and reporter expression pattern during zebrafish development. RESULTS Using different experimental setups, we show that ubi:Switch and hsp70l:Switch outperform current generations of the two additional Switch reporters actb2:BFP-DsRed and actb2:Stop-DsRed. Our comparisons also document preferential Cre-dependent recombination of ubi:Switch and hsp70l:Switch in distinct zebrafish tissues at early developmental stages. To investigate what genomic features may influence Cre accessibility and lox recombination efficiency in highly functional Switch lines, we mapped these transgenes and charted chromatin dynamics at their integration sites. CONCLUSIONS Our data documents the heterogeneity among lox-based Switch transgenes toward informing suitable transgene selection for lineage labeling experiments. Our work further proposes that ubi:Switch and hsp70l:Switch define genomic integration sites suitable for universal transgene or switch reporter knock-in in zebrafish.
Collapse
Affiliation(s)
- Robert L Lalonde
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cassie L Kemmler
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Fréderike W Riemslagh
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew J Aman
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jelena Kresoja-Rakic
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hannah R Moran
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan Nieuwenhuize
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Alexa Burger
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
14
|
Mattonet K, Riemslagh FW, Guenther S, Prummel KD, Kesavan G, Hans S, Ebersberger I, Brand M, Burger A, Reischauer S, Mosimann C, Stainier DYR. Endothelial versus pronephron fate decision is modulated by the transcription factors Cloche/Npas4l, Tal1, and Lmo2. SCIENCE ADVANCES 2022; 8:eabn2082. [PMID: 36044573 PMCID: PMC9432843 DOI: 10.1126/sciadv.abn2082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/11/2022] [Indexed: 05/17/2023]
Abstract
Endothelial specification is a key event during embryogenesis; however, when, and how, endothelial cells separate from other lineages is poorly understood. In zebrafish, Npas4l is indispensable for endothelial specification by inducing the expression of the transcription factor genes etsrp, tal1, and lmo2. We generated a knock-in reporter in zebrafish npas4l to visualize endothelial progenitors and their derivatives in wild-type and mutant embryos. Unexpectedly, we find that in npas4l mutants, npas4l reporter-expressing cells contribute to the pronephron tubules. Single-cell transcriptomics and live imaging of the early lateral plate mesoderm in wild-type embryos indeed reveals coexpression of endothelial and pronephron markers, a finding confirmed by creERT2-based lineage tracing. Increased contribution of npas4l reporter-expressing cells to pronephron tubules is also observed in tal1 and lmo2 mutants and is reversed in npas4l mutants injected with tal1 mRNA. Together, these data reveal that Npas4l/Tal1/Lmo2 regulate the fate decision between the endothelial and pronephron lineages.
Collapse
Affiliation(s)
- Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- DZHK (German Center for Cardiovascular Research), partner site, 43, D-61231 Bad Nauheim
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
- DZL (German Center for Lung Research), partner site, 43, D-61231 Bad Nauheim
| | - Fréderike W. Riemslagh
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Stefan Guenther
- DZHK (German Center for Cardiovascular Research), partner site, 43, D-61231 Bad Nauheim
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Karin D. Prummel
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Gokul Kesavan
- Center for Regenerative Therapies at TU Dresden (CRTD); Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies at TU Dresden (CRTD); Dresden, Germany
| | - Ingo Ebersberger
- Goethe University Frankfurt am Main, Institute of Cell Biology and Neuroscience, Frankfurt 60438, Germany
- Senckenberg Biodiversity and Climate Research Center (S-BIKF), Frankfurt 60325, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt 60325, Germany
| | - Michael Brand
- Center for Regenerative Therapies at TU Dresden (CRTD); Dresden, Germany
| | - Alexa Burger
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
| | - Christian Mosimann
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- DZHK (German Center for Cardiovascular Research), partner site, 43, D-61231 Bad Nauheim
- CPI (Cardio Pulmonary Institute), partner site, 43, D-61231 Bad Nauheim
- DZL (German Center for Lung Research), partner site, 43, D-61231 Bad Nauheim
| |
Collapse
|
15
|
Caviglia S, Unterweger IA, Gasiūnaitė A, Vanoosthuyse AE, Cutrale F, Trinh LA, Fraser SE, Neuhauss SCF, Ober EA. FRaeppli: a multispectral imaging toolbox for cell tracing and dense tissue analysis in zebrafish. Development 2022; 149:276363. [DOI: 10.1242/dev.199615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022]
Abstract
ABSTRACT
Visualizing cell shapes and interactions of differentiating cells is instrumental for understanding organ development and repair. Across species, strategies for stochastic multicolour labelling have greatly facilitated in vivo cell tracking and mapping neuronal connectivity. Yet integrating multi-fluorophore information into the context of developing zebrafish tissues is challenging given their cytoplasmic localization and spectral incompatibility with common fluorescent markers. Inspired by Drosophila Raeppli, we developed FRaeppli (Fish-Raeppli) by expressing bright membrane- or nuclear-targeted fluorescent proteins for efficient cell shape analysis and tracking. High spatiotemporal activation flexibility is provided by the Gal4/UAS system together with Cre/lox and/or PhiC31 integrase. The distinct spectra of the FRaeppli fluorescent proteins allow simultaneous imaging with GFP and infrared subcellular reporters or tissue landmarks. We demonstrate the suitability of FRaeppli for live imaging of complex internal organs, such as the liver, and have tailored hyperspectral protocols for time-efficient acquisition. Combining FRaeppli with polarity markers revealed previously unknown canalicular topologies between differentiating hepatocytes, reminiscent of the mammalian liver, suggesting common developmental mechanisms. The multispectral FRaeppli toolbox thus enables the comprehensive analysis of intricate cellular morphologies, topologies and lineages at single-cell resolution in zebrafish.
Collapse
Affiliation(s)
- Sara Caviglia
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
- University of Zurich 2 , Department of Molecular and Life Sciences, Winterthurerstrasse 190, 8057 Zürich , Switzerland
| | - Iris A. Unterweger
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| | - Akvilė Gasiūnaitė
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| | - Alexandre E. Vanoosthuyse
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| | - Francesco Cutrale
- Translational Imaging Center, University of Southern California 3 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- Biomedical Engineering, University of Southern California 4 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
| | - Le A. Trinh
- Translational Imaging Center, University of Southern California 3 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- University of Southern California 5 Molecular and Computational Biology , , 1002 West Childs Way, Los Angeles, CA 90089 , USA
| | - Scott E. Fraser
- Translational Imaging Center, University of Southern California 3 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- Biomedical Engineering, University of Southern California 4 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- University of Southern California 5 Molecular and Computational Biology , , 1002 West Childs Way, Los Angeles, CA 90089 , USA
| | - Stephan C. F. Neuhauss
- University of Zurich 2 , Department of Molecular and Life Sciences, Winterthurerstrasse 190, 8057 Zürich , Switzerland
| | - Elke A. Ober
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| |
Collapse
|
16
|
Travnickova J, Muise S, Wojciechowska S, Brombin A, Zeng Z, Young AIJ, Wyatt C, Patton EE. Fate mapping melanoma persister cells through regression and into recurrent disease in adult zebrafish. Dis Model Mech 2022; 15:276219. [PMID: 35929478 PMCID: PMC9509888 DOI: 10.1242/dmm.049566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Melanoma heterogeneity and plasticity underlie therapy resistance. Some tumour cells possess innate resistance, while others reprogramme during drug exposure and survive to form persister cells, a source of potential cancer cells for recurrent disease. Tracing individual melanoma cell populations through tumour regression and into recurrent disease remains largely unexplored, in part, because complex animal models are required for live imaging of cell populations over time. Here, we applied tamoxifen-inducible creERt2/loxP lineage tracing to a zebrafish model of MITF-dependent melanoma regression and recurrence to image and trace cell populations in vivo through disease stages. Using this strategy, we show that melanoma persister cells at the minimal residual disease site originate from the primary tumour. Next, we fate mapped rare MITF-independent persister cells and demonstrate that these cells directly contribute to progressive disease. Multiplex immunohistochemistry confirmed that MITF-independent persister cells give rise to Mitfa+ cells in recurrent disease. Taken together, our work reveals a direct contribution of persister cell populations to recurrent disease, and provides a resource for lineage-tracing methodology in adult zebrafish cancer models. Summary: We fate map melanoma cells from the primary tumour into a persister cell state and show that persister cells directly contribute to recurrent disease.
Collapse
Affiliation(s)
- Jana Travnickova
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Sarah Muise
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Sonia Wojciechowska
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Alessandro Brombin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Zhiqiang Zeng
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Adelaide I J Young
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Cameron Wyatt
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| |
Collapse
|
17
|
Faisal M, Hassan M, Kumar A, Zubair M, Jamal M, Menghwar H, Saad M, Kloczkowski A. Hematopoietic Stem and Progenitor Cells (HSPCs) and Hematopoietic Microenvironment: Molecular and Bioinformatic Studies of the Zebrafish Models. Int J Mol Sci 2022; 23:7285. [PMID: 35806290 PMCID: PMC9266955 DOI: 10.3390/ijms23137285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a specialized microenvironment in a peculiar anatomic location which regulates the maintenance of stem cells and controls its functions. Recent scientific progress in experimental technologies have enabled the specific detection of epigenetic factors responsible for the maintenance and quiescence of the hematopoietic niche, which has improved our knowledge of regulatory mechanisms. The aberrant role of RNA-binding proteins and their impact on the disruption of stem cell biology have been reported by a number of recent studies. Despite recent modernization in hematopoietic microenvironment research avenues, our comprehension of the signaling mechanisms and interactive pathways responsible for integration of the hematopoietic niche is still limited. In the past few decades, zebrafish usage with regards to exploratory studies of the hematopoietic niche has expanded our knowledge for deeper understanding of novel cellular interactions. This review provides an update on the functional roles of different genetic and epigenetic factors and molecular signaling events at different sections of the hematopoietic microenvironment. The explorations of different molecular approaches and interventions of latest web-based tools being used are also outlined. This will help us to get more mechanistic insights and develop therapeutic options for the malignancies.
Collapse
Affiliation(s)
- Muhammad Faisal
- Division of Hematology, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Aman Kumar
- Department of Ophthalmology and Vision Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Muhammad Zubair
- Department of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan 430072, China;
| | - Harish Menghwar
- Axe Molecular Endocrinology and Nephrology, CHU de Quebec-Research Center (CHUL), Laval University, Quebec City, QC G1V 4G2, Canada;
| | - Muhammad Saad
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43205, USA;
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
18
|
Liu F, Kambakam S, Almeida MP, Ming Z, Welker JM, Wierson WA, Schultz-Rogers LE, Ekker SC, Clark KJ, Essner JJ, McGrail M. Cre/ lox regulated conditional rescue and inactivation with zebrafish UFlip alleles generated by CRISPR-Cas9 targeted integration. eLife 2022; 11:71478. [PMID: 35713402 PMCID: PMC9270027 DOI: 10.7554/elife.71478] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The ability to regulate gene activity spatially and temporally is essential to investigate cell type-specific gene function during development and in postembryonic processes and disease models. The Cre/lox system has been widely used for performing cell and tissue-specific conditional analysis of gene function in zebrafish. However, simple and efficient methods for isolation of stable, Cre/lox regulated zebrafish alleles are lacking. Here we applied our GeneWeld CRISPR-Cas9 targeted integration strategy to generate floxed alleles that provide robust conditional inactivation and rescue. A universal targeting vector, UFlip, with sites for cloning short homology arms flanking a floxed 2A-mRFP gene trap, was integrated into an intron in rbbp4 and rb1. rbbp4off and rb1off integration alleles resulted in strong mRFP expression, >99% reduction of endogenous gene expression, and recapitulated known indel loss of function phenotypes. Introduction of Cre led to stable inversion of the floxed cassette, loss of mRFP expression, and phenotypic rescue. rbbp4on and rb1on integration alleles did not cause phenotypes in combination with a loss of function mutation. Addition of Cre led to conditional inactivation by stable inversion of the cassette, gene trapping and mRFP expression, and the expected mutant phenotype. Neural progenitor Cre drivers were used for conditional inactivation and phenotypic rescue to showcase how this approach can be used in specific cell populations. Together these results validate a simplified approach for efficient isolation of Cre/lox responsive conditional alleles in zebrafish. Our strategy provides a new toolkit for generating genetic mosaics and represents a significant advance in zebrafish genetics.
Collapse
Affiliation(s)
- Fang Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Sekhar Kambakam
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Maira P Almeida
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Zhitao Ming
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Jordan M Welker
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Wesley A Wierson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Laura E Schultz-Rogers
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| |
Collapse
|
19
|
Tan WH, Winkler C. A non-disruptive and efficient knock-in approach allows fate tracing of resident osteoblast progenitors during repair of vertebral lesions in medaka. Development 2022; 149:275483. [DOI: 10.1242/dev.200238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/11/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
During bone development and repair, osteoblasts are recruited to bone deposition sites. To identify the origin of recruited osteoblasts, cell lineage tracing using Cre/loxP recombination is commonly used. However, a confounding factor is the use of transgenic Cre drivers that do not accurately recapitulate endogenous gene expression or the use of knock-in Cre drivers that alter endogenous protein activity or levels. Here, we describe a CRISPR/Cas9 homology-directed repair knock-in approach that allows efficient generation of Cre drivers controlled by the endogenous gene promoter. In addition, a self-cleaving peptide preserves the reading frame of the endogenous protein. Using this approach, we generated col10a1p2a-CreERT2 knock-in medaka and show that tamoxifen-inducible CreERT2 efficiently recombined loxP sites in col10a1 cells. Similar knock-in efficiencies were obtained when two unrelated loci (osr1 and col2a1a) were targeted. Using live imaging, we traced the fate of col10a1 osteoblast progenitors during bone lesion repair in the medaka vertebral column. We show that col10a1 cells at neural arches represent a mobilizable cellular source for bone repair. Together, our study describes a previously unreported strategy for precise cell lineage tracing via efficient and non-disruptive knock-in of Cre.
Collapse
Affiliation(s)
- Wen Hui Tan
- National University of Singapore Department of Biological Sciences and Centre for Bioimaging Sciences , , Singapore 117543 , Singapore
| | - Christoph Winkler
- National University of Singapore Department of Biological Sciences and Centre for Bioimaging Sciences , , Singapore 117543 , Singapore
| |
Collapse
|
20
|
Kalvaitytė M, Balciunas D. Conditional mutagenesis strategies in zebrafish. Trends Genet 2022; 38:856-868. [PMID: 35662532 DOI: 10.1016/j.tig.2022.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
Gene disruption or knockout is an essential tool for elucidating gene function. Conditional knockout methodology was developed to further advance these studies by enabling gene disruption at a predefined time and/or in discrete cells. While the conditional knockout method is widely used in the mouse, technical limitations have stifled direct adoption of this methodology in other animal models including the zebrafish. Recent advances in genome editing have enabled engineering of distinct classes of conditional mutants in zebrafish. To further accelerate the development and application of conditional mutants, we will review diverse methods of conditional knockout engineering and discuss the advantages of different conditional alleles.
Collapse
Affiliation(s)
| | - Darius Balciunas
- Life Sciences Center, Vilnius University, Vilnius, Lithuania; Department of Biology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Disease Modeling of Rare Neurological Disorders in Zebrafish. Int J Mol Sci 2022; 23:ijms23073946. [PMID: 35409306 PMCID: PMC9000079 DOI: 10.3390/ijms23073946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Rare diseases are those which affect a small number of people compared to the general population. However, many patients with a rare disease remain undiagnosed, and a large majority of rare diseases still have no form of viable treatment. Approximately 40% of rare diseases include neurologic and neurodevelopmental disorders. In order to understand the characteristics of rare neurological disorders and identify causative genes, various model organisms have been utilized extensively. In this review, the characteristics of model organisms, such as roundworms, fruit flies, and zebrafish, are examined, with an emphasis on zebrafish disease modeling in rare neurological disorders.
Collapse
|
22
|
Prummel KD, Crowell HL, Nieuwenhuize S, Brombacher EC, Daetwyler S, Soneson C, Kresoja-Rakic J, Kocere A, Ronner M, Ernst A, Labbaf Z, Clouthier DE, Firulli AB, Sánchez-Iranzo H, Naganathan SR, O'Rourke R, Raz E, Mercader N, Burger A, Felley-Bosco E, Huisken J, Robinson MD, Mosimann C. Hand2 delineates mesothelium progenitors and is reactivated in mesothelioma. Nat Commun 2022; 13:1677. [PMID: 35354817 PMCID: PMC8967825 DOI: 10.1038/s41467-022-29311-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
The mesothelium lines body cavities and surrounds internal organs, widely contributing to homeostasis and regeneration. Mesothelium disruptions cause visceral anomalies and mesothelioma tumors. Nonetheless, the embryonic emergence of mesothelia remains incompletely understood. Here, we track mesothelial origins in the lateral plate mesoderm (LPM) using zebrafish. Single-cell transcriptomics uncovers a post-gastrulation gene expression signature centered on hand2 in distinct LPM progenitor cells. We map mesothelial progenitors to lateral-most, hand2-expressing LPM and confirm conservation in mouse. Time-lapse imaging of zebrafish hand2 reporter embryos captures mesothelium formation including pericardium, visceral, and parietal peritoneum. We find primordial germ cells migrate with the forming mesothelium as ventral migration boundary. Functionally, hand2 loss disrupts mesothelium formation with reduced progenitor cells and perturbed migration. In mouse and human mesothelioma, we document expression of LPM-associated transcription factors including Hand2, suggesting re-initiation of a developmental program. Our data connects mesothelium development to Hand2, expanding our understanding of mesothelial pathologies.
Collapse
Affiliation(s)
- Karin D Prummel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Helena L Crowell
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Susan Nieuwenhuize
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Eline C Brombacher
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan Daetwyler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Charlotte Soneson
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Jelena Kresoja-Rakic
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zürich, Switzerland
| | - Agnese Kocere
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Manuel Ronner
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zürich, Switzerland
| | | | - Zahra Labbaf
- Institute for Cell Biology, ZMBE, Muenster, Germany
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Héctor Sánchez-Iranzo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
- Institute of Biological and Chemical System - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sundar R Naganathan
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Rebecca O'Rourke
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Erez Raz
- Institute for Cell Biology, ZMBE, Muenster, Germany
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | - Alexa Burger
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zürich, Switzerland
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Morgridge Institute for Research, Madison, WI, USA
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
23
|
Zebrafish foxc1a controls ventricular chamber maturation by directly regulating wwtr1 and nkx2.5 expression. J Genet Genomics 2021; 49:559-568. [PMID: 34923164 DOI: 10.1016/j.jgg.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Chamber maturation is a significant process in cardiac development. Disorders of this crucial process lead to a range of congenital heart defects. Foxc1a is a critical transcription factor reported to regulate the specification of cardiac progenitor cells. However, little is known about the role of Foxc1a in modulating chamber maturation. Previously, we reported that foxc1a-null zebrafish embryos exhibit disrupted heart structures and functions. In this study, we observed that ventricle structure and cardiomyocyte proliferation were abolished during chamber maturation in foxc1a-null zebrafish embryos. To observe the endogenous localization of Foxc1a in the hearts of living embryos, we inserted eyfp at the foxc1a genomic locus using TALEN. Analysis of the knockin zebrafish showed that foxc1a was widely expressed in ventricular cardiomyocytes during chamber development. Cardiac RNA sequencing analysis revealed downregulated expression of the Hippo signaling effector wwtr1. Dual-luciferase and chromatin immunoprecipitation assays revealed that Foxc1a could bind directly to three sites in the wwtr1 promoter region. Furthermore, wwtr1 mRNA overexpression was sufficient to reverse the ventricle defects during chamber maturation. Conditional overexpression of nkx2.5 also partially rescued the ventricular defects during chamber development. These findings demonstrate that wwtr1 and nkx2.5 are direct targets of Foxc1a during ventricular chamber maturation.
Collapse
|
24
|
Kaliya-Perumal AK, Ingham PW. Musculoskeletal regeneration: A zebrafish perspective. Biochimie 2021; 196:171-181. [PMID: 34715269 DOI: 10.1016/j.biochi.2021.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Musculoskeletal injuries are common in humans. The cascade of cellular and molecular events following such injuries results either in healing with functional recovery or scar formation. While fibrotic scar tissue serves to bridge between injured planes, it undermines functional integrity. Hence, faithful regeneration is the most desired outcome; however, the potential to regenerate is limited in humans. In contrast, various non-mammalian vertebrates have fascinating capabilities of regenerating even an entire appendage following amputation. Among them, zebrafish is an important and accessible laboratory model organism, sharing striking similarities with mammalian embryonic musculoskeletal development. Moreover, clinically relevant muscle and skeletal injury zebrafish models recapitulate mammalian regeneration. Upon muscle injury, quiescent stem cells - known as satellite cells - become activated, proliferate, differentiate and fuse to form new myofibres, while bone fracture results in a phased response involving hematoma formation, inflammation, fibrocartilaginous callus formation, bony callus formation and remodelling. These models are well suited to testing gene- or pharmaco-therapy for the benefit of conditions like muscle tears and fractures. Insights from further studies on whole body part regeneration, a hallmark of the zebrafish model, have the potential to complement regenerative strategies to achieve faster and desired healing following injuries without any scar formation and, in the longer run, drive progress towards the realisation of large-scale regeneration in mammals. Here, we provide an overview of the basic mechanisms of musculoskeletal regeneration, highlight the key features of zebrafish as a regenerative model and outline the relevant studies that have contributed to the advancement of this field.
Collapse
Affiliation(s)
- Arun-Kumar Kaliya-Perumal
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
25
|
Baldridge D, Wangler MF, Bowman AN, Yamamoto S, Schedl T, Pak SC, Postlethwait JH, Shin J, Solnica-Krezel L, Bellen HJ, Westerfield M. Model organisms contribute to diagnosis and discovery in the undiagnosed diseases network: current state and a future vision. Orphanet J Rare Dis 2021; 16:206. [PMID: 33962631 PMCID: PMC8103593 DOI: 10.1186/s13023-021-01839-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Decreased sequencing costs have led to an explosion of genetic and genomic data. These data have revealed thousands of candidate human disease variants. Establishing which variants cause phenotypes and diseases, however, has remained challenging. Significant progress has been made, including advances by the National Institutes of Health (NIH)-funded Undiagnosed Diseases Network (UDN). However, 6000-13,000 additional disease genes remain to be identified. The continued discovery of rare diseases and their genetic underpinnings provides benefits to affected patients, of whom there are more than 400 million worldwide, and also advances understanding the mechanisms of more common diseases. Platforms employing model organisms enable discovery of novel gene-disease relationships, help establish variant pathogenicity, and often lead to the exploration of underlying mechanisms of pathophysiology that suggest new therapies. The Model Organism Screening Center (MOSC) of the UDN is a unique resource dedicated to utilizing informatics and functional studies in model organisms, including worm (Caenorhabditis elegans), fly (Drosophila melanogaster), and zebrafish (Danio rerio), to aid in diagnosis. The MOSC has directly contributed to the diagnosis of challenging cases, including multiple patients with complex, multi-organ phenotypes. In addition, the MOSC provides a framework for how basic scientists and clinicians can collaborate to drive diagnoses. Customized experimental plans take into account patient presentations, specific genes and variant(s), and appropriateness of each model organism for analysis. The MOSC also generates bioinformatic and experimental tools and reagents for the wider scientific community. Two elements of the MOSC that have been instrumental in its success are (1) multidisciplinary teams with expertise in variant bioinformatics and in human and model organism genetics, and (2) mechanisms for ongoing communication with clinical teams. Here we provide a position statement regarding the central role of model organisms for continued discovery of disease genes, and we advocate for the continuation and expansion of MOSC-type research entities as a Model Organisms Network (MON) to be funded through grant applications submitted to the NIH, family groups focused on specific rare diseases, other philanthropic organizations, industry partnerships, and other sources of support.
Collapse
Affiliation(s)
- Dustin Baldridge
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, 77030, USA.
- Department of Pediatrics, BCM, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX, 77030, USA.
| | - Angela N Bowman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX, 77030, USA
- Department of Neuroscience, BCM, Houston, TX, 77030, USA
| | - Tim Schedl
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stephen C Pak
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Jimann Shin
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX, 77030, USA
- Department of Neuroscience, BCM, Houston, TX, 77030, USA
- Howard Hughes Medical Institute, Houston, TX, 77030, USA
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
26
|
Persistent Ventricle Partitioning in the Adult Zebrafish Heart. J Cardiovasc Dev Dis 2021; 8:jcdd8040041. [PMID: 33918756 PMCID: PMC8070482 DOI: 10.3390/jcdd8040041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The vertebrate heart integrates cells from the early-differentiating first heart field (FHF) and the later-differentiating second heart field (SHF), both emerging from the lateral plate mesoderm. In mammals, this process forms the basis for the development of the left and right ventricle chambers and subsequent chamber septation. The single ventricle-forming zebrafish heart also integrates FHF and SHF lineages during embryogenesis, yet the contributions of these two myocardial lineages to the adult zebrafish heart remain incompletely understood. Here, we characterize the myocardial labeling of FHF descendants in both the developing and adult zebrafish ventricle. Expanding previous findings, late gastrulation-stage labeling using drl-driven CreERT2 recombinase with a myocardium-specific, myl7-controlled, loxP reporter results in the predominant labeling of FHF-derived outer curvature and the right side of the embryonic ventricle. Raised to adulthood, such lineage-labeled hearts retain broad areas of FHF cardiomyocytes in a region of the ventricle that is positioned at the opposite side to the atrium and encompasses the apex. Our data add to the increasing evidence for a persisting cell-based compartmentalization of the adult zebrafish ventricle even in the absence of any physical boundary.
Collapse
|
27
|
Li S, Yeo KS, Levee TM, Howe CJ, Her ZP, Zhu S. Zebrafish as a Neuroblastoma Model: Progress Made, Promise for the Future. Cells 2021; 10:cells10030580. [PMID: 33800887 PMCID: PMC8001113 DOI: 10.3390/cells10030580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/24/2022] Open
Abstract
For nearly a decade, researchers in the field of pediatric oncology have been using zebrafish as a model for understanding the contributions of genetic alternations to the pathogenesis of neuroblastoma (NB), and exploring the molecular and cellular mechanisms that underlie neuroblastoma initiation and metastasis. In this review, we will enumerate and illustrate the key advantages of using the zebrafish model in NB research, which allows researchers to: monitor tumor development in real-time; robustly manipulate gene expression (either transiently or stably); rapidly evaluate the cooperative interactions of multiple genetic alterations to disease pathogenesis; and provide a highly efficient and low-cost methodology to screen for effective pharmaceutical interventions (both alone and in combination with one another). This review will then list some of the common challenges of using the zebrafish model and provide strategies for overcoming these difficulties. We have also included visual diagram and figures to illustrate the workflow of cancer model development in zebrafish and provide a summary comparison of commonly used animal models in cancer research, as well as key findings of cooperative contributions between MYCN and diverse singling pathways in NB pathogenesis.
Collapse
Affiliation(s)
- Shuai Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Kok Siong Yeo
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Taylor M. Levee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Cassie J. Howe
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Zuag Paj Her
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
- Correspondence:
| |
Collapse
|
28
|
Lee JG, Cho HJ, Jeong YM, Lee JS. Genetic Approaches Using Zebrafish to Study the Microbiota-Gut-Brain Axis in Neurological Disorders. Cells 2021; 10:cells10030566. [PMID: 33807650 PMCID: PMC8002147 DOI: 10.3390/cells10030566] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiota-gut-brain axis (MGBA) is a bidirectional signaling pathway mediating the interaction of the microbiota, the intestine, and the central nervous system. While the MGBA plays a pivotal role in normal development and physiology of the nervous and gastrointestinal system of the host, its dysfunction has been strongly implicated in neurological disorders, where intestinal dysbiosis and derived metabolites cause barrier permeability defects and elicit local inflammation of the gastrointestinal tract, concomitant with increased pro-inflammatory cytokines, mobilization and infiltration of immune cells into the brain, and the dysregulated activation of the vagus nerve, culminating in neuroinflammation and neuronal dysfunction of the brain and behavioral abnormalities. In this topical review, we summarize recent findings in human and animal models regarding the roles of the MGBA in physiological and neuropathological conditions, and discuss the molecular, genetic, and neurobehavioral characteristics of zebrafish as an animal model to study the MGBA. The exploitation of zebrafish as an amenable genetic model combined with in vivo imaging capabilities and gnotobiotic approaches at the whole organism level may reveal novel mechanistic insights into microbiota-gut-brain interactions, especially in the context of neurological disorders such as autism spectrum disorder and Alzheimer's disease.
Collapse
Affiliation(s)
- Jae-Geun Lee
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Hyun-Ju Cho
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
| | - Yun-Mi Jeong
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Jeong-Soo Lee
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
- Correspondence: ; Tel.: +82-42-860-4643
| |
Collapse
|
29
|
Almeida MP, Welker JM, Siddiqui S, Luiken J, Ekker SC, Clark KJ, Essner JJ, McGrail M. Endogenous zebrafish proneural Cre drivers generated by CRISPR/Cas9 short homology directed targeted integration. Sci Rep 2021; 11:1732. [PMID: 33462297 PMCID: PMC7813866 DOI: 10.1038/s41598-021-81239-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/04/2021] [Indexed: 01/04/2023] Open
Abstract
We previously reported efficient precision targeted integration of reporter DNA in zebrafish and human cells using CRISPR/Cas9 and short regions of homology. Here, we apply this strategy to isolate zebrafish Cre recombinase drivers whose spatial and temporal restricted expression mimics endogenous genes. A 2A-Cre recombinase transgene with 48 bp homology arms was targeted into proneural genes ascl1b, olig2 and neurod1. We observed high rates of germline transmission ranging from 10 to 100% (2/20 olig2; 1/5 neurod1; 3/3 ascl1b). The transgenic lines Tg(ascl1b-2A-Cre)is75, Tg(olig2-2A-Cre)is76, and Tg(neurod1-2A-Cre)is77 expressed functional Cre recombinase in the expected proneural cell populations. Somatic targeting of 2A-CreERT2 into neurod1 resulted in tamoxifen responsive recombination in the nervous system. The results demonstrate Cre recombinase expression is driven by the native promoter and regulatory elements of the targeted genes. This approach provides a straightforward, efficient, and cost-effective method to generate cell type specific zebrafish Cre and CreERT2 drivers, overcoming challenges associated with promoter-BAC and transposon mediated transgenics.
Collapse
Affiliation(s)
- Maira P Almeida
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Jordan M Welker
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA.,Department III - Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sahiba Siddiqui
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Jon Luiken
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA. .,Genetics and Genomics Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA.
| |
Collapse
|
30
|
Han B, Zhang Y, Bi X, Zhou Y, Krueger CJ, Hu X, Zhu Z, Tong X, Zhang B. Bi-FoRe: an efficient bidirectional knockin strategy to generate pairwise conditional alleles with fluorescent indicators. Protein Cell 2021; 12:39-56. [PMID: 32681448 PMCID: PMC7815861 DOI: 10.1007/s13238-020-00747-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Gene expression labeling and conditional manipulation of gene function are important for elaborate dissection of gene function. However, contemporary generation of pairwise dual-function knockin alleles to achieve both conditional and geno-tagging effects with a single donor has not been reported. Here we first developed a strategy based on a flipping donor named FoRe to generate conditional knockout alleles coupled with fluorescent allele-labeling through NHEJ-mediated unidirectional targeted insertion in zebrafish facilitated by the CRISPR/Cas system. We demonstrated the feasibility of this strategy at sox10 and isl1 loci, and successfully achieved Cre-induced conditional knockout of target gene function and simultaneous switch of the fluorescent reporter, allowing generation of genetic mosaics for lineage tracing. We then improved the donor design enabling efficient one-step bidirectional knockin to generate paired positive and negative conditional alleles, both tagged with two different fluorescent reporters. By introducing Cre recombinase, these alleles could be used to achieve both conditional knockout and conditional gene restoration in parallel; furthermore, differential fluorescent labeling of the positive and negative alleles enables simple, early and efficient real-time discrimination of individual live embryos bearing different genotypes prior to the emergence of morphologically visible phenotypes. We named our improved donor as Bi-FoRe and demonstrated its feasibility at the sox10 locus. Furthermore, we eliminated the undesirable bacterial backbone in the donor using minicircle DNA technology. Our system could easily be expanded for other applications or to other organisms, and coupling fluorescent labeling of gene expression and conditional manipulation of gene function will provide unique opportunities to fully reveal the power of emerging single-cell sequencing technologies.
Collapse
Affiliation(s)
- Bingzhou Han
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yage Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xuetong Bi
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yang Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory, Atlanta, GA, 33032, USA
| | - Xinli Hu
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Zuoyan Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
31
|
The art of lineage tracing: From worm to human. Prog Neurobiol 2020; 199:101966. [PMID: 33249090 DOI: 10.1016/j.pneurobio.2020.101966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/03/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022]
Abstract
Reconstructing the genealogy of every cell that makes up an organism remains a long-standing challenge in developmental biology. Besides its relevance for understanding the mechanisms underlying normal and pathological development, resolving the lineage origin of cell types will be crucial to create these types on-demand. Multiple strategies have been deployed towards the problem of lineage tracing, ranging from direct observation to sophisticated genetic approaches. Here we discuss the achievements and limitations of past and current technology. Finally, we speculate about the future of lineage tracing and how to reach the next milestones in the field.
Collapse
|
32
|
Freudenblum J, Meyer D, Kimmel RA. Inducible Mosaic Cell Labeling Provides Insights Into Pancreatic Islet Morphogenesis. Front Cell Dev Biol 2020; 8:586651. [PMID: 33102488 PMCID: PMC7546031 DOI: 10.3389/fcell.2020.586651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 11/13/2022] Open
Abstract
Pancreatic islets, discrete microorgans embedded within the exocrine pancreas, contain beta cells which are critical for glucose homeostasis. Loss or dysfunction of beta cells leads to diabetes, a disease with expanding global prevalence, and for which regenerative therapies are actively being pursued. Recent efforts have focused on producing mature beta cells in vitro, but it is increasingly recognized that achieving a faithful three-dimensional islet structure is crucial for generating fully functional beta cells. Our current understanding of islet morphogenesis is far from complete, due to the deep internal location of the pancreas in mammalian models, which hampers direct visualization. Zebrafish is a model system well suited for studies of pancreas morphogenesis due to its transparency and the accessible location of the larval pancreas. In order to further clarify the cellular mechanisms of islet formation, we have developed new tools for in vivo visualization of single-cell dynamics. Our results show that clustering islet cells make contact and interconnect through dynamic actin-rich processes, move together while remaining in close proximity to the duct, and maintain high protrusive motility after forming clusters. Quantitative analyses of cell morphology and motility in 3-dimensions lays the groundwork to define therapeutically applicable factors responsible for orchestrating the morphogenic behaviors of coalescing endocrine cells.
Collapse
Affiliation(s)
- Julia Freudenblum
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Robin A Kimmel
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
33
|
Mary B, Ghoroghi S, Hyenne V, Goetz JG. Live tracking of extracellular vesicles in larval zebrafish. Methods Enzymol 2020; 645:243-275. [PMID: 33565975 DOI: 10.1016/bs.mie.2020.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Formerly considered as insignificant cell debris, extracellular vesicles (EVs) have emerged as potent mediators of cell-cell communication, both in proximity and at distance from the producing cell. EVs are transported in body fluids and can be internalized by specific distant cells to ultimately deliver a functional message. Despite their striking importance in many physiological and pathological contexts, the exact mechanisms by which EVs impose local and distant modifications of the microenvironment in vivo remain to be fully understood. We realized that some conceptual gaps are direct consequences of the difficulty to visualize the shuttling and targeting of EVs in real time in vivo. The zebrafish larvae offered attractive features for live tracking of EVs, within circulating fluids. Here, we describe the experimental procedures that we have built for dissecting the dissemination of EVs at high spatio-temporal resolution in vivo.
Collapse
Affiliation(s)
- Benjamin Mary
- INSERM UMR_S1109, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Shima Ghoroghi
- INSERM UMR_S1109, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Vincent Hyenne
- INSERM UMR_S1109, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; CNRS, SNC 5055, Strasbourg, France.
| | - Jacky G Goetz
- INSERM UMR_S1109, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
34
|
Cavanah P, Itou J, Rusman Y, Tahara N, Williams JM, Salomon CE, Kawakami Y. A nontoxic fungal natural product modulates fin regeneration in zebrafish larvae upstream of FGF-WNT developmental signaling. Dev Dyn 2020; 250:160-174. [PMID: 32857425 DOI: 10.1002/dvdy.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The regeneration of larvae zebrafish fin emerged as a new model of regeneration in the last decade. In contrast to genetic tools to study fin regeneration, chemical probes to modulate and interrogate regeneration processes are not well developed. RESULTS We set up a zebrafish larvae fin regeneration assay system and tested activities of natural product compounds and extracts, prepared from various microbes. Colomitide C, a recently isolated product from a fungus obtained from Antarctica, inhibited larvae fin regeneration. Using fluorescent reporter transgenic lines, we show that colomitide C inhibited fibroblast growth factor (FGF) signaling and WNT/β-catenin signaling, which were activated after larvae fin amputation. By using the endothelial cell reporter line and immunofluorescence, we showed that colomitide C did not affect migration of the blood vessel and nerve into the injured larvae fin. Colomitide C did not show any cytotoxic activities when tested against FGF receptor-amplified human cancer cell lines. CONCLUSION Colomitide C, a natural product, modulated larvae fin regeneration likely acting upstream of FGF and WNT signaling. Colomitide C may serve as a template for developing new chemical probes to study regeneration and other biological processes.
Collapse
Affiliation(s)
- Paul Cavanah
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Junji Itou
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yudi Rusman
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, USA
| | - Naoyuki Tahara
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jessica M Williams
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christine E Salomon
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
35
|
Potassium Channel-Associated Bioelectricity of the Dermomyotome Determines Fin Patterning in Zebrafish. Genetics 2020; 215:1067-1084. [PMID: 32546498 PMCID: PMC7404225 DOI: 10.1534/genetics.120.303390] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
The roles of bioelectric signaling in developmental patterning remain largely unknown, although recent work has implicated bioelectric signals in cellular processes such as proliferation and migration. Here, we report a mutation in the inwardly rectifying potassium channel (kir) gene, kcnj13/kir7.1, that causes elongation of the fins in the zebrafish insertional mutant Dhi2059. A viral DNA insertion into the noncoding region of kcnj13 results in transient activation and ectopic expression of kcnj13 in the somite and dermomyotome, from which the fin ray progenitors originate. We made an allele-specific loss-of-function kcnj13 mutant by CRISPR (clustered regularly interspaced short palindromic repeats) and showed that it could reverse the long-finned phenotype, but only when located on the same chromosome as the Dhi2059 viral insertion. Also, we showed that ectopic expression of kcnj13 in the dermomyotome of transgenic zebrafish produces phenocopies of the Dhi2059 mutant in a gene dosage-sensitive manner. Finally, to determine whether this developmental function is specific to kcnj13, we ectopically expressed three additional potassium channel genes: kcnj1b, kcnj10a, and kcnk9 We found that all induce the long-finned phenotype, indicating that this function is conserved among potassium channel genes. Taken together, our results suggest that dermomyotome bioelectricity is a new fin-patterning mechanism, and we propose a two-stage bioelectricity model for zebrafish fin patterning. This ion channel-regulated bioelectric developmental patterning mechanism may provide with us new insight into vertebrate morphological evolution and human congenital malformations.
Collapse
|
36
|
Gou Y, Sun W, Liu L, Zhang M, Du J, Wang R, Xu X. Construction of irf4a Transgenic Zebrafish Using Tol2 System and Its Potential Application. Dose Response 2020; 18:1559325820926733. [PMID: 32489338 PMCID: PMC7241208 DOI: 10.1177/1559325820926733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose: Interferon regulatory factor 4 (IRF4) is identified as a transcriptional factor and plays an important role in the immune response in mammals; however, there are few reports about the function of zebrafish IRF4. Methods: We first amplified the coding sequence of irf4a from the testis of zebrafish. Besides, the fragments of irf4a, P2A, EGFP, and Tol2 vector were added for homologous recombination. By sequencing, we can get the Tol2-ef1α-irf4a-EGFP recombinant plasmid and it was microinjected into zebrafish embryos. Fluorescence observation was proceeded at days 3 post fertilization; F0 generations expressing green fluorescence in multiple tissues throughout the body were screened as the founder and raised them to sexual maturity. After mating with WT zebrafish to generate F1 offspring, polymerase chain reaction was used to identify whether irf4a was integrated into the zebrafish genome. Conclusion: We obtained the systematic overexpressed irf4a transgenic zebrafish with green fluorescence labeled in spine, eyes, heart, brain, and other tissues. The transgenic zebrafish will be used as a tool for the role of IRF4a in the immune response to the inflammation preconditioning in the future study.
Collapse
Affiliation(s)
- Yawei Gou
- China-Japan Union Hospital, Jilin University, Changchun, Jilin, China.,Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Sun
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Lingling Liu
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Mingming Zhang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianan Du
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ruonan Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuesong Xu
- China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
37
|
Li W, Zhang Y, Han B, Li L, Li M, Lu X, Chen C, Lu M, Zhang Y, Jia X, Zhu Z, Tong X, Zhang B. One-step efficient generation of dual-function conditional knockout and geno-tagging alleles in zebrafish. eLife 2019; 8:48081. [PMID: 31663848 PMCID: PMC6845224 DOI: 10.7554/elife.48081] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
CRISPR/Cas systems are widely used to knock out genes by inducing indel mutations, which are prone to genetic compensation. Complex genome modifications such as knockin (KI) might bypass compensation, though difficult to practice due to low efficiency. Moreover, no ‘two-in-one’ KI strategy combining conditional knockout (CKO) with fluorescent gene-labeling or further allele-labeling has been reported. Here, we developed a dual-cassette-donor strategy and achieved one-step and efficient generation of dual-function KI alleles at tbx5a and kctd10 loci in zebrafish via targeted insertion. These alleles display fluorescent gene-tagging and CKO effects before and after Cre induction, respectively. By introducing a second fluorescent reporter, geno-tagging effects were achieved at tbx5a and sox10 loci, exhibiting CKO coupled with fluorescent reporter switch upon Cre induction, enabling tracing of three distinct genotypes. We found that LiCl purification of gRNA is critical for highly efficient KI, and preselection of founders allows the efficient germline recovery of KI events.
Collapse
Affiliation(s)
- Wenyuan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Yage Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Bingzhou Han
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Lianyan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Muhang Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Xiaochan Lu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Cheng Chen
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Mengjia Lu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yujie Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Xuefeng Jia
- Gcrispr (Tianjin) Genetic Technology, Tianjin, China
| | - Zuoyan Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
38
|
Marques IJ, Lupi E, Mercader N. Model systems for regeneration: zebrafish. Development 2019; 146:146/18/dev167692. [DOI: 10.1242/dev.167692] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Tissue damage can resolve completely through healing and regeneration, or can produce permanent scarring and loss of function. The response to tissue damage varies across tissues and between species. Determining the natural mechanisms behind regeneration in model organisms that regenerate well can help us develop strategies for tissue recovery in species with poor regenerative capacity (such as humans). The zebrafish (Danio rerio) is one of the most accessible vertebrate models to study regeneration. In this Primer, we highlight the tools available to study regeneration in the zebrafish, provide an overview of the mechanisms underlying regeneration in this system and discuss future perspectives for the field.
Collapse
Affiliation(s)
- Ines J. Marques
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Eleonora Lupi
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Acquifer, Ditabis, Digital Biomedical Imaging Systems, Pforzheim, Germany
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 2029, Spain
| |
Collapse
|
39
|
Lineage tracing analysis of cone photoreceptor associated cis-regulatory elements in the developing chicken retina. Sci Rep 2019; 9:9358. [PMID: 31249345 PMCID: PMC6597718 DOI: 10.1038/s41598-019-45750-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/14/2019] [Indexed: 02/02/2023] Open
Abstract
During vertebrate retinal development, transient populations of retinal progenitor cells with restricted cell fate choices are formed. One of these progenitor populations expresses the Thrb gene and can be identified by activity of the ThrbCRM1 cis-regulatory element. Short-term assays have concluded that these cells preferentially generate cone photoreceptors and horizontal cells, however developmental timing has precluded an extensive cell type characterization of their progeny. Here we describe the development and validation of a recombinase-based lineage tracing system for the chicken embryo to further characterize the lineage of these cells. The ThrbCRM1 element was found to preferentially form photoreceptors and horizontal cells, as well as a small number of retinal ganglion cells. The photoreceptor cell progeny are exclusively cone photoreceptors and not rod photoreceptors, confirming that ThrbCRM1 progenitor cells are restricted from the rod fate. In addition, specific subtypes of horizontal cells and retinal ganglion cells were overrepresented, suggesting that ThrbCRM1 progenitor cells are not only restricted for cell type, but for cell subtype as well.
Collapse
|
40
|
Santoro MM, Beltrame M, Panáková D, Siekmann AF, Tiso N, Venero Galanternik M, Jung HM, Weinstein BM. Advantages and Challenges of Cardiovascular and Lymphatic Studies in Zebrafish Research. Front Cell Dev Biol 2019; 7:89. [PMID: 31192207 PMCID: PMC6546721 DOI: 10.3389/fcell.2019.00089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Since its introduction, the zebrafish has provided an important reference system to model and study cardiovascular development as well as lymphangiogenesis in vertebrates. A scientific workshop, held at the 2018 European Zebrafish Principal Investigators Meeting in Trento (Italy) and chaired by Massimo Santoro, focused on the most recent methods and studies on cardiac, vascular and lymphatic development. Daniela Panáková and Natascia Tiso described new molecular mechanisms and signaling pathways involved in cardiac differentiation and disease. Arndt Siekmann and Wiebke Herzog discussed novel roles for Wnt and VEGF signaling in brain angiogenesis. In addition, Brant Weinstein's lab presented data concerning the discovery of endothelium-derived macrophage-like perivascular cells in the zebrafish brain, while Monica Beltrame's studies refined the role of Sox transcription factors in vascular and lymphatic development. In this article, we will summarize the details of these recent discoveries in support of the overall value of the zebrafish model system not only to study normal development, but also associated disease states.
Collapse
Affiliation(s)
- Massimo M Santoro
- Laboratory of Angiogenesis and Redox Metabolism, Department of Biology, University of Padua, Padua, Italy
| | - Monica Beltrame
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Daniela Panáková
- Electrochemical Signaling in Development and Disease, Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany.,German Centre for Cardiovascular Research: DZHK, Berlin, Germany
| | - Arndt F Siekmann
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Cells in Motion Cluster of Excellence (CiM), University of Münster, Münster, Germany.,Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Natascia Tiso
- Laboratory of Developmental Genetics, Department of Biology, University of Padua, Padua, Italy
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Hyun Min Jung
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| |
Collapse
|
41
|
Rescan PY. Development of myofibres and associated connective tissues in fish axial muscle: Recent insights and future perspectives. Differentiation 2019; 106:35-41. [PMID: 30852471 DOI: 10.1016/j.diff.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/18/2023]
Abstract
Fish axial muscle consists of a series of W-shaped muscle blocks, called myomeres, that are composed primarily of multinucleated contractile muscle cells (myofibres) gathered together by an intricate network of connective tissue that transmits forces generated by myofibre contraction to the axial skeleton. This review summarises current knowledge on the successive and overlapping myogenic waves contributing to axial musculature formation and growth in fish. Additionally, this review presents recent insights into muscle connective tissue development in fish, focusing on the early formation of collagenous myosepta separating adjacent myomeres and the late formation of intramuscular connective sheaths (i.e. endomysium and perimysium) that is completed only at the fry stage when connective fibroblasts expressing collagens arise inside myomeres. Finally, this review considers the possibility that somites produce not only myogenic, chondrogenic and myoseptal progenitor cells as previously reported, but also mesenchymal cells giving rise to muscle resident fibroblasts.
Collapse
Affiliation(s)
- Pierre-Yves Rescan
- Inra, UR1037 - Laboratoire de Physiologie et Génomique des Poissons, Campus de Beaulieu - Bât 16A, 35042 Rennes Cedex, France.
| |
Collapse
|
42
|
Kirchgeorg L, Felker A, van Oostrom M, Chiavacci E, Mosimann C. Cre/lox-controlled spatiotemporal perturbation of FGF signaling in zebrafish. Dev Dyn 2018; 247:1146-1159. [PMID: 30194800 DOI: 10.1002/dvdy.24668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Spatiotemporal perturbation of signaling pathways in vivo remains challenging and requires precise transgenic control of signaling effectors. Fibroblast growth factor (FGF) signaling guides multiple developmental processes, including body axis formation and cell fate patterning. In zebrafish, mutants and chemical perturbations affecting FGF signaling have uncovered key developmental processes; however, these approaches cause embryo-wide perturbations, rendering assessment of cell-autonomous vs. non-autonomous requirements for FGF signaling in individual processes difficult. RESULTS Here, we created the novel transgenic line fgfr1-dn-cargo, encoding dominant-negative Fgfr1a with fluorescent tag under combined Cre/lox and heatshock control to perturb FGF signaling spatiotemporally. Validating efficient perturbation of FGF signaling by fgfr1-dn-cargo primed with ubiquitous CreERT2, we established that primed, heatshock-induced fgfr1-dn-cargo behaves similarly to pulsed treatment with the FGFR inhibitor SU5402. Priming fgfr1-dn-cargo with CreERT2 in the lateral plate mesoderm triggered selective cardiac and pectoral fin phenotypes without drastic impact on overall embryo patterning. Harnessing lateral plate mesoderm-specific FGF inhibition, we recapitulated the cell-autonomous and temporal requirement for FGF signaling in pectoral fin outgrowth, as previously inferred from pan-embryonic FGF inhibition. CONCLUSIONS As a paradigm for rapid Cre/lox-mediated signaling perturbations, our results establish fgfr1-dn-cargo as a genetic tool to define the spatiotemporal requirements for FGF signaling in zebrafish. Developmental Dynamics 247:1146-1159, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lucia Kirchgeorg
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Anastasia Felker
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Marek van Oostrom
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Elena Chiavacci
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
43
|
Chai A, Mateus AM, Oozeer F, Sousa-Nunes R. Spatiotemporally controlled genetic perturbation for efficient large-scale studies of cell non-autonomous effects. eLife 2018; 7:e38393. [PMID: 30479273 PMCID: PMC6320068 DOI: 10.7554/elife.38393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/26/2018] [Indexed: 11/13/2022] Open
Abstract
Studies in genetic model organisms have revealed much about the development and pathology of complex tissues. Most have focused on cell-intrinsic gene functions and mechanisms. Much less is known about how transformed, or otherwise functionally disrupted, cells interact with healthy ones toward a favorable or pathological outcome. This is largely due to technical limitations. We developed new genetic tools in Drosophila melanogaster that permit efficient multiplexed gain- and loss-of-function genetic perturbations with separable spatial and temporal control. Importantly, our novel tool-set is independent of the commonly used GAL4/UAS system, freeing the latter for additional, non-autonomous, genetic manipulations; and is built into a single strain, allowing one-generation interrogation of non-autonomous effects. Altogether, our design opens up efficient genome-wide screens on any deleterious phenotype, once plasmid or genome engineering is used to place the desired miRNA(s) or ORF(s) into our genotype. Specifically, we developed tools to study extrinsic effects on neural tumor growth but the strategy presented has endless applications within and beyond neurobiology, and in other model organisms.
Collapse
Affiliation(s)
- Andrea Chai
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUnited Kingdom
| | - Ana M Mateus
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUnited Kingdom
| | - Fazal Oozeer
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUnited Kingdom
| | - Rita Sousa-Nunes
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUnited Kingdom
| |
Collapse
|
44
|
de Pater E, Trompouki E. Bloody Zebrafish: Novel Methods in Normal and Malignant Hematopoiesis. Front Cell Dev Biol 2018; 6:124. [PMID: 30374440 PMCID: PMC6196227 DOI: 10.3389/fcell.2018.00124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Hematopoiesis is an optimal system for studying stem cell maintenance and lineage differentiation under physiological and pathological conditions. In vertebrate organisms, billions of differentiated hematopoietic cells need to be continuously produced to replenish the blood cell pool. Disruptions in this process have immediate consequences for oxygen transport, responses against pathogens, maintenance of hemostasis and vascular integrity. Zebrafish is a widely used and well-established model for studying the hematopoietic system. Several new hematopoietic regulators were identified in genetic and chemical screens using the zebrafish model. Moreover, zebrafish enables in vivo imaging of hematopoietic stem cell generation and differentiation during embryogenesis, and adulthood. Finally, zebrafish has been used to model hematopoietic diseases. Recent technological advances in single-cell transcriptome analysis, epigenetic regulation, proteomics, metabolomics, and processing of large data sets promise to transform the current understanding of normal, abnormal, and malignant hematopoiesis. In this perspective, we discuss how the zebrafish model has proven beneficial for studying physiological and pathological hematopoiesis and how these novel technologies are transforming the field.
Collapse
Affiliation(s)
- Emma de Pater
- Department of Hematology, Erasmus MC, Rotterdam, Netherlands
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|