1
|
Liu K, Tao Y, Huang W, Wang B, Liu S, Cong B, Zhou M, Zhao L. Assessment of future habitat suitability and ecological vulnerability of Collichthys at population and species level. BMC Ecol Evol 2025; 25:1. [PMID: 39743516 DOI: 10.1186/s12862-024-02339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Global warming and extreme weather events driven by greenhouse gas emissions are significantly impacting fish survival and reproduction, leading to dramatic consequences for marine biodiversity and ecosystem stability. Comparative analysis of closely related species from a phylogenetic perspective provides valuable insights for biodiversity conservation efforts. The study investigates the effects of climate change on the suitability of habitat and ecological vulnerability of two important sibling fishes, Collichthys lucidus and Collichthys niveatus, in the western Pacific. RESULTS This study found that the main driver of ecological niche differences between the two species is the niche contraction of C. niveatus. Predictions from species distribution models indicate that C. lucidus has a wider distribution and greater adaptability under future climate scenarios. Both species will experience significant habitat loss and heightened ecological vulnerability in the southern Yellow Sea. Additionally, the two populations of C. lucidus in the Yangtze River estuary display different levels of ecological vulnerability. These two species also exhibit distinct responses to environmental factors such as temperature and chlorophyll concentration. CONCLUSION The study's findings indicate that climate change will accelerate the population differentiation of C. lucidus and the habitat loss of C. niveatus. These results underscore the importance of prioritizing the southern Yellow Sea in future research and emphasize the necessity of developing adaptive conservation strategies for both species.
Collapse
Affiliation(s)
- Kaiyu Liu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
- Marine Ecoloy Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yijun Tao
- National Marine Data and Information Service, Ministry of Natural Resources, Tianjin, China
| | - Wenhao Huang
- Marine Ecoloy Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Bei Wang
- Marine Ecoloy Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Shenghao Liu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Bailin Cong
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Min Zhou
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
- Marine Ecoloy Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Linlin Zhao
- Marine Ecoloy Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.
| |
Collapse
|
2
|
Kidd A, Casteriano A, Krockenberger MB, Higgins DP, Wright BR. Koala MHCII association with chlamydia infertility remains equivocal: a need for new research approaches. Sci Rep 2024; 14:31074. [PMID: 39730801 DOI: 10.1038/s41598-024-82217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Chlamydiosis is a common infectious disease impacting koalas and is a major cause of population decline due to resulting mortality and infertility. Polymorphisms of major histocompatibility complex (MHC) genes influence chlamydial disease outcomes in several species but koala studies have produced variable results. We aimed to identify the MHC II DAB and DBB repertoire of koalas from Liverpool Plains, NSW, a population heavily impacted by chlamydiosis. We compared variants between two studies, age cohorts and chlamydial infertility groups. Four DBB and eight DAB alleles were identified. The mean number of DAB alleles per individual increased and allele frequencies differed relative to a previous study, however the mean number of DBB alleles per individual decreased generationally, between age cohorts. DAB allele frequencies differed among fertility groups but contributing alleles could not be identified. While there is a likely role of MHCII in the complex pathogenesis of chlamydiosis, this study suggests that single gene association studies are not appropriate for understanding the impact of host genetics on koala chlamydiosis. A shift to larger multivariate studies is required to yield functional information on complex immunological interactions, and to inform targeted koala conservation across its diverse range and host-pathogen-environment contexts.
Collapse
Affiliation(s)
- Alana Kidd
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Andrea Casteriano
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Mark B Krockenberger
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Damien P Higgins
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Belinda R Wright
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
3
|
Lu S, Liu L, Lei W, Wang D, Zhu H, Lai Q, Ma L, Ru D. Cryptic divergence in and evolutionary dynamics of endangered hybrid Picea brachytyla sensu stricto in the Qinghai-Tibet Plateau. BMC PLANT BIOLOGY 2024; 24:1202. [PMID: 39701948 DOI: 10.1186/s12870-024-05851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The visual similarities observed across various plant groups often conceal underlying genetic distinctions. This occurrence, known as cryptic diversity, underscores the key importance of identifying and understanding cryptic intraspecific evolutionary lineages in evolutionary ecology and conservation biology. RESULTS In this study, we conducted transcriptome analysis of 81 individuals from 18 natural populations of a northern lineage of Picea brachytyla sensu stricto that is endemic to the Qinghai-Tibet Plateau. Our analysis revealed the presence of two distinct local lineages, emerging approximately 444.8 thousand years ago (kya), within this endangered species. The divergence event aligns well with the geographic and climatic oscillations that occurred across the distributional range during the Mid-Pleistocene epoch. Additionally, we identified numerous environmentally correlated gene variants, as well as many other genes showing signals of positive selection across the genome. These factors likely contributed to the persistence and adaptation of the two distinct local lineages. CONCLUSIONS Our findings shed light on the highly dynamic evolutionary processes underlying the remarkably similar phenotypes of the two lineages of this endangered species. Importantly, these results enhance our understanding of the evolutionary past for this and for other endangered species with similar histories, and also provide guidance for the development of conservation plans.
Collapse
Affiliation(s)
- Shengming Lu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Lian Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Weixiao Lei
- Xi'an Center for Disease Control and Prevention, Xi'an, China
| | - Donglei Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hui Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Qing Lai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Liru Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Dafu Ru
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Cabrera-Sosa L, Safarpour M, Kattenberg JH, Ramirez R, Vinetz JM, Rosanas-Urgell A, Gamboa D, Delgado-Ratto C. Comparing newly developed SNP barcode panels with microsatellites to explore population genetics of malaria parasites in the Peruvian Amazon. Front Genet 2024; 15:1488109. [PMID: 39748949 PMCID: PMC11693692 DOI: 10.3389/fgene.2024.1488109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Malaria molecular surveillance (MMS) can provide insights into transmission dynamics, guiding national control programs. We previously designed AmpliSeq assays for MMS, which include different traits of interest (resistance markers and pfhrp2/3 deletions), and SNP barcodes to provide population genetics estimates of Plasmodium vivax and Plasmodium falciparum parasites in the Peruvian Amazon. The present study compares the genetic resolution of the barcodes in the AmpliSeq assays with widely used microsatellite (MS) panels to investigate population genetics of Amazonian malaria parasites. Methods We analyzed 51 P. vivax and 80 P. falciparum samples from three distinct areas in the Loreto region of the Peruvian Amazon: Nueva Jerusalén (NJ), Mazan (MZ), and Santa Emilia (SE). Population genetics estimates and costs were compared using the SNP barcodes (P. vivax: 40 SNPs and P. falciparum: 28 SNPs) and MS panels (P. vivax: 16 MS and P. falciparum: 7 MS). Results The P. vivax genetic diversity (expected heterozygosity, He) trends were similar for both markers: He MS = 0.68-0.78 (p > 0.05) and He SNP = 0.36-0.38 (p > 0.05). P. vivax pairwise genetic differentiation (fixation index, FST) was also comparable: FST-MS = 0.04-0.14 and FST-SNP = 0.03-0.12 (pairwise p > 0.05). In addition, P. falciparum genetic diversity trends (He MS = 0-0.48, p < 0.05; He SNP = 0-0.09, p < 0.05) and pairwise FST comparisons (FST-MS = 0.14-0.65, FST-SNP = 0.19-0.61, pairwise p > 0.05) were concordant between both panels. For P. vivax, no geographic clustering was observed with any panel, whereas for P. falciparum, similar population structure clustering was observed with both markers, assigning most parasites from NJ to a distinct subpopulation from MZ and SE. We found significant differences in detecting polyclonal infections: for P. vivax, MS identified a higher proportion of polyclonal infections than SNP (69% vs. 33%, p = 3.3 × 10-5), while for P. falciparum, SNP and MS detected similar rates (46% vs. 31%, p = 0.21). The AmpliSeq assay had a higher estimated per-sample cost compared to MS ($183 vs. $27-49). Discussion The SNP barcodes in the AmpliSeq assays offered comparable results to MS for investigating population genetics in P. vivax and P. falciparum populations, despite some discrepancies in determining polyclonality. Given both panels have their respective advantages and limitations, the choice between both should be guided by research objectives, costs, and resource availability.
Collapse
Affiliation(s)
- Luis Cabrera-Sosa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Mahdi Safarpour
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | | | - Roberson Ramirez
- Laboratorio ICEMR-Amazonia y Enfermedades Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia y Enfermedades Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dionicia Gamboa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia y Enfermedades Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Christopher Delgado-Ratto
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Stuart KC, Tan HZ, Whibley A, Bailey S, Brekke P, Ewen JG, Patel S, Santure AW. Both Structural Variant and Single Nucleotide Polymorphism Load Impact Lifetime Fitness in a Threatened Bird Species. Mol Ecol 2024:e17631. [PMID: 39690519 DOI: 10.1111/mec.17631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 12/19/2024]
Abstract
The field of conservation genomics is becoming increasingly interested in whether, and how, structural variant (SV) genotype information can be leveraged in the management of threatened species. The functional consequences of SVs are more complex than for single nucleotide polymorphisms (SNPs), as SVs typically impact a larger proportion of the genome due to their size and thus may be more likely to contribute to load. While the impacts of SV-specific genetic load may be less consequential for large populations, the interplay between weakened selection and stochastic processes means that smaller populations, such as those of the threatened Aotearoa hihi/New Zealand stitchbird (Notiomystis cincta), may harbour a high SV load. Hihi were once confined to a single remnant population, but have been reestablished into six sanctuaries and reserves, often via secondary bottlenecks, resulting in low genetic diversity, low adaptive potential, and inbreeding depression. In this study, we use whole genome resequencing of 30 individuals from the Tiritiri Matangi population to identify the nature and distribution of both SNPs and SVs within this small avian population. We find that SNP and SV individual mutation load is only moderately correlated, likely because SVs arise in regions of high recombination and that are less evolutionarily conserved. Finally, we leverage a long-term monitoring dataset of pedigree and fitness data to assess the impact of SNP and SV mutation loads on individual fitness, and find that SNP and SV realised load had similar negative correlations with lifetime fitness. However, of the masked load metrics, only SVs had a positive significant correlation with lifetime fitness, indicating that masking of deleterious alleles may be more important for SVs than for SNPs. The results of this study indicate that only examining SNPs neglects important aspects of intra-specific variation and that studying SVs has direct implications for linking genetic diversity and genomic health to inform management decisions.
Collapse
Affiliation(s)
- Katarina C Stuart
- Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
- University of new South Wales, Sydney, New South Wales, Australia
| | - Hui Zhen Tan
- Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Annabel Whibley
- Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
- Bragato Research Institute, Blenheim, Aotearoa, New Zealand
| | - Sarah Bailey
- Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, London, UK
| | - John G Ewen
- Institute of Zoology, Zoological Society of London, London, UK
| | - Selina Patel
- Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Anna W Santure
- Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Auckland, Auckland, Aotearoa, New Zealand
| |
Collapse
|
6
|
Vrdoljak J, Imanol Sánchez K, González-Marín A, Morando M, Javier Avila L. A straightforward workflow to explore species diversity using the Patagonian lizards of the Diplolaemus genus (Iguania: Leiosauridae) as a study case, with the description of a new species. Mol Phylogenet Evol 2024; 204:108274. [PMID: 39694347 DOI: 10.1016/j.ympev.2024.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Disputes over species descriptions, stemming from conceptual disparities and arbitrary species boundaries, are among the primary challenges of modern taxonomy. In this study, we introduce a straightforward workflow, grounded in evolutionary theory, designed to tackle these challenges. We exemplified this approach using Patagonian lizards from the Diplolaemus clade. This workflow involves assigning specimens to putative evolutionary lineages, conducting primary species delimitations, constructing a species tree, comparing lineages for evolutionary independence, and using post-hoc analyses to separate well-supported from ambiguous lineages. This approach aims to establish a reliable foundation for exploring the taxonomic and evolutionary diversity of challenging groups. Applying this workflow to the Diplolaemus clade, we used various analytical methods on genetic (mitochondrial and nuclear markers) and phenotypic data (meristic, linear, and geometric morphometrics). We identified ten lineages with varying degrees of evolutionary independence in a clade where only four species had been described. Among the newly identified lineages, two exhibited low support for evolutionary independence, three showed strong support but had non-conclusive information, and one was recognized and described as a new species. In summary, our hierarchical workflow not only facilitated comprehensive comparisons but also enabled us to draw robust conclusions.
Collapse
Affiliation(s)
- Juan Vrdoljak
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Boulevard Almirante Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Boulevard Almirante Brown 3051, U9120ACD Puerto Madryn, Chubut, Argentina.
| | - Kevin Imanol Sánchez
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Boulevard Almirante Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
| | - Andrea González-Marín
- Parque Nacional Lanín, Administración de Parques Nacionales, Perito Moreno 1006, 8371 San Martín de los Andes, Neuquén, Argentina
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Boulevard Almirante Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Boulevard Almirante Brown 3051, U9120ACD Puerto Madryn, Chubut, Argentina
| | - Luciano Javier Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Boulevard Almirante Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
7
|
Vojoudi H, Soroush M. Isolation of Biomolecules Using MXenes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2415160. [PMID: 39663732 DOI: 10.1002/adma.202415160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Biomolecule isolation is a crucial process in diverse biomedical and biochemical applications, including diagnostics, therapeutics, research, and manufacturing. Recently, MXenes, a novel class of two-dimensional nanomaterials, have emerged as promising adsorbents for this purpose due to their unique physicochemical properties. These biocompatible and antibacterial nanomaterials feature a high aspect ratio, excellent conductivity, and versatile surface chemistry. This timely review explores the potential of MXenes for isolating a wide range of biomolecules, such as proteins, nucleic acids, and small molecules, while highlighting key future research trends and innovative applications poised to transform the field. This review provides an in-depth discussion of various synthesis methods and functionalization techniques that enhance the specificity and efficiency of MXenes in biomolecule isolation. In addition, the mechanisms by which MXenes interact with biomolecules are elucidated, offering insights into their selective adsorption and customized separation capabilities. This review also addresses recent advancements, identifies existing challenges, and examines emerging trends that may drive the next wave of innovation in this rapidly evolving area.
Collapse
Affiliation(s)
- Hossein Vojoudi
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Masoud Soroush
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Mikalsen SO, Í Hjøllum J, Salter I, Djurhuus A, Í Kongsstovu S. A Faroese perspective on decoding life for sustainable use of nature and protection of biodiversity. NPJ BIODIVERSITY 2024; 3:37. [PMID: 39632982 PMCID: PMC11618374 DOI: 10.1038/s44185-024-00068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Biodiversity is under pressure, mainly due to human activities and climate change. At the international policy level, it is now recognised that genetic diversity is an important part of biodiversity. The availability of high-quality reference genomes gives the best basis for using genetics and genetic diversity towards the global aims of (1) the protection of species, biodiversity, and nature, and (2) the management of biodiversity for achieving sustainable harvesting of nature. Protecting biodiversity is a global responsibility, also resting on small nations, like the Faroe Islands. Being in the middle of the North Atlantic Ocean and having large fisheries activity, the nation has a particular responsibility towards maritime matters. We here provide the reasoning behind the Genome Atlas of Faroese Ecology (Gen@FarE), a project based on our participation in the European Reference Genome Atlas consortium (ERGA). Gen@FarE has three major aims: (1) To acquire high-quality genomes of all eukaryotic species in the Faroe Islands and Faroese waters. (2) To establish population genetics for species of commercial or ecological interest. (3) To establish an information databank for all Faroese species, combined with a citizen science registration database, making it possible for the public to participate in acquiring and maintaining the overview of Faroese species in both terrestrial and marine environments. Altogether, we believe that this will enhance the society's interest in and awareness of biodiversity, thereby protecting the foundations of our lives. Furthermore, the combination of a wide and highly competent ERGA umbrella and more targeted national projects will help fulfil the formal and moral responsibilities that all nations, also those with limited resources, have in protecting biodiversity and achieving sustainability in harvesting from nature.
Collapse
Affiliation(s)
- Svein-Ole Mikalsen
- Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands.
| | - Jari Í Hjøllum
- Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Ian Salter
- Faroe Marine Research Institute, Tórshavn, Faroe Islands
| | - Anni Djurhuus
- Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Sunnvør Í Kongsstovu
- Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands
| |
Collapse
|
9
|
Miner SA, Thurman TJ. Genomics and Biodiversity: Applications and Ethical Considerations for Climate-Just Conservation. Hastings Cent Rep 2024; 54 Suppl 2:S114-S119. [PMID: 39707948 DOI: 10.1002/hast.4936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Genomics holds significant potential for conservationists, offering tools to monitor species risks, enhance conservation strategies, envision biodiverse futures, and advance climate justice. However, integrating genomics into conservation requires careful consideration of its impacts on biodiversity, the diversity of scientific researchers, and governance strategies for data usage. These factors must be balanced with the varied interests of affected communities and environmental concerns. We argue that conservationists should engage with diverse communities, particularly those historically marginalized and most vulnerable to climate change. This inclusive approach can ensure that genomic technologies are applied ethically and effectively, aligning conservation efforts with broader social and environmental justice goals. Engaging diverse stakeholders will help guide responsible genomic integration, fostering equitable and sustainable conservation outcomes.
Collapse
|
10
|
Fedorca A, Mergeay J, Akinyele AO, Albayrak T, Biebach I, Brambilla A, Burger PA, Buzan E, Curik I, Gargiulo R, Godoy JA, González‐Martínez SC, Grossen C, Heuertz M, Hoban S, Howard‐McCombe J, Kachamakova M, Klinga P, Köppä V, Neugebauer E, Paz‐Vinas I, Pearman PB, Pérez‐Sorribes L, Rinkevich B, Russo IM, Theraroz A, Thomas NE, Westergren M, Winter S, Laikre L, Kopatz A. Dealing With the Complexity of Effective Population Size in Conservation Practice. Evol Appl 2024; 17:e70031. [PMID: 39679127 PMCID: PMC11645448 DOI: 10.1111/eva.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 12/17/2024] Open
Abstract
Effective population size (Ne) is one of the most important parameters in evolutionary biology, as it is linked to the long-term survival capability of species. Therefore, Ne greatly interests conservation geneticists, but it is also very relevant to policymakers, managers, and conservation practitioners. Molecular methods to estimate Ne rely on various assumptions, including no immigration, panmixia, random sampling, absence of spatial genetic structure, and/or mutation-drift equilibrium. Species are, however, often characterized by fragmented populations under changing environmental conditions and anthropogenic pressure. Therefore, the estimation methods' assumptions are seldom addressed and rarely met, possibly leading to biased and inaccurate Ne estimates. To address the challenges associated with estimating Ne for conservation purposes, the COST Action 18134, Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE), organized an international workshop that met in August 2022 in Brașov, Romania. The overarching goal was to operationalize the current knowledge of Ne estimation methods for conservation practitioners and decision-makers. We set out to identify datasets to evaluate the sensitivity of Ne estimation methods to violations of underlying assumptions and to develop data analysis strategies that addressed pressing issues in biodiversity monitoring and conservation. Referring to a comprehensive body of scientific work on Ne, this meeting report is not intended to be exhaustive but rather to present approaches, workshop findings, and a collection of papers that serve as fruits of those efforts. We aimed to provide insights and opportunities to help bridge the gap between scientific research and conservation practice.
Collapse
Affiliation(s)
- Ancuta Fedorca
- Department of WildlifeNational Institute for Research and Development in Forestry ‘Marin Dracea’BrașovRomania
- Department of Silviculture, Faculty of Silviculture and Forest EngineeringTransilvania University of BrașovBrașovRomania
| | - Joachim Mergeay
- Research Institute for Nature and ForestGeraardsbergenBelgium
- Applied Population Genetics and Conservation Genomics, Department of BiologyKU LeuvenLeuvenBelgium
| | - Adejoke O. Akinyele
- Department of Forest Production and ProductsUniversity of IbadanIbadanNigeria
| | - Tamer Albayrak
- Department of Biology, Istiklal YerleskesiBudur Mehmet Akif Ersoy University, Science and Art FacultyBurdurTürkiye
- Dokuz Eylül UniversityBuca Education Faculty, Mathematics and Science Education, Biology EducationIzmirTürkiye
| | - Iris Biebach
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Alice Brambilla
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Gran Paradiso National ParkAlpine Wildlife Research CenterNoascaItaly
| | - Pamela A. Burger
- Research Institute of Wildlife EcologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Elena Buzan
- University of PrimorskaFaculty of Mathematics, Natural Sciences and Information TechnologiesKoperSlovenia
- Faculty of Environmental ProtectionVelenjeSlovenia
| | - Ino Curik
- Department of Animal ScienceUniversity of Zagreb, Faculty of AgricultureZagrebCroatia
- Institute of Animal SciencesHungarian University of Agriculture and Life Sciences (MATE)KaposvárHungary
| | | | - José A. Godoy
- Department of Ecology and EvolutionEstación Biológica de DoñanaSevilleSpain
| | | | | | | | - Sean Hoban
- The Center for Tree ScienceThe Morton ArboretumLisleIllinoisUSA
- The Committee on Evolutionary BiologyThe University of ChicagoChicagoIllinoisUSA
| | | | - Maria Kachamakova
- Institute of Biodiversity and Ecosystem Research at Bulgarian Academy of SciencesSofiaBulgaria
| | - Peter Klinga
- Technical University in ZvolenZvolenSlovakia
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood SciencesDepartment of Forest EcologySuchdolPrahaCzech Republic
| | - Viktoria Köppä
- Department of ZoologyStockholm UniversityStockholmSweden
| | - Elenora Neugebauer
- Behavioral Ecology Research GroupLeipzig UniversityLeipzigGermany
- Max‐Planck Institute for Evolutionary AnthropologyDepartment of Human Behaviour, Ecology and Culture Deutscher Platz 6LeipzigGermany
| | | | - Peter B. Pearman
- Department of Plant Biology and Ecology, Faculty of Sciences and TechnologyUniversity of the Basque Country UPV/EHULeioaSpain
- IKERBASQUE Basque Foundation for ScienceBilbaoSpain
- BC3 Basque Center for Climate ChangeLeioaSpain
| | | | - Baruch Rinkevich
- Israel Oceanographic and Limnological ResearchNational Institute of OceanographyHaifaIsrael
| | | | | | | | | | - Sven Winter
- Research Institute of Wildlife EcologyUniversity of Veterinary Medicine ViennaViennaAustria
- Senckenberg Biodiversity and Climate Research CentreFrankfurt Am MainFrankfurtGermany
| | - Linda Laikre
- Department of ZoologyStockholm UniversityStockholmSweden
| | | |
Collapse
|
11
|
Ejaz MR, Badr K, Hassan ZU, Al-Thani R, Jaoua S. Metagenomic approaches and opportunities in arid soil research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176173. [PMID: 39260494 DOI: 10.1016/j.scitotenv.2024.176173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Arid soils present unique challenges and opportunities for studying microbial diversity and bioactive potential due to the extreme environmental conditions they bear. This review article investigates soil metagenomics as an emerging tool to explore complex microbial dynamics and unexplored bioactive potential in harsh environments. Utilizing advanced metagenomic techniques, diverse microbial populations that grow under extreme conditions such as high temperatures, salinity, high pH levels, and exposure to metals and radiation can be studied. The use of extremophiles to discover novel natural products and biocatalysts emphasizes the role of functional metagenomics in identifying enzymes and secondary metabolites for industrial and pharmaceutical purposes. Metagenomic sequencing uncovers a complex network of microbial diversity, offering significant potential for discovering new bioactive compounds. Functional metagenomics, connecting taxonomic diversity to genetic capabilities, provides a pathway to identify microbes' mechanisms to synthesize valuable secondary metabolites and other bioactive substances. Contrary to the common perception of desert soil as barren land, the metagenomic analysis reveals a rich diversity of life forms adept at extreme survival. It provides valuable findings into their resilience and potential applications in biotechnology. Moreover, the challenges associated with metagenomics in arid soils, such as low microbial biomass, high DNA degradation rates, and DNA extraction inhibitors and strategies to overcome these issues, outline the latest advancements in extraction methods, high-throughput sequencing, and bioinformatics. The importance of metagenomics for investigating diverse environments opens the way for future research to develop sustainable solutions in agriculture, industry, and medicine. Extensive studies are necessary to utilize the full potential of these powerful microbial communities. This research will significantly improve our understanding of microbial ecology and biotechnology in arid environments.
Collapse
Affiliation(s)
- Muhammad Riaz Ejaz
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Kareem Badr
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zahoor Ul Hassan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roda Al-Thani
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Samir Jaoua
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
12
|
Hu W, Wang Y, Chen X, Huang J, Kuang J, Wang L, Mao K, Dou L. Genome assembly of an endemic butterfly (Minois Aurata) shed light on the genetic mechanisms underlying ecological adaptation to arid valley habitat. BMC Genomics 2024; 25:1134. [PMID: 39580397 PMCID: PMC11585952 DOI: 10.1186/s12864-024-11058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Hengduan Mountains, one of the global biodiversity hotspots with exceptional species richness and high endemism, contains numerous arid valleys that create a distinctive geographical and ecological landscape. However, the adaptive evolutionary mechanisms of organism in the arid valley remain poorly understood. Minois aurata, an endemic butterfly species found exclusively in the arid valley of the upper Minjiang River, represents an attractive model system for studying adaptive evolutionary mechanisms to arid valley environments. RESULTS Here, we present the first chromosome-level genome assembly for Minois aurata, with a total size of approximately 609.17 Mb, and a scaffold N50 size of 23.88 Mb. These scaffolds were further clustered and anchored onto 29 chromosomes based on Hi-C data. A total of 16,163 protein-coding genes were predicted, of which 91.83% were functionally annotated. The expansion of transposable elements (TEs) accounts for the relatively large genome size of M. aurata, potentially aiding its adaptation to environmental conditions. Phylogenomic analyses based on 3,785 single-copy genes revealed that M. aurata is most closely related to Hipparchia semele. Further mitochondrial genome analysis of four Minois species placed M. aurata in a basal position within the genus, supporting it as an independent species. A total of 185 rapidly evolving and 232 specific gene families were identified in M. aurata. Functional enrichment analysis indicated that these gene families were mainly associated with ultraviolet radiation, heat and hypoxia responses. We also identified 234 positive selected genes in M. aurata, some of which are related to compound eye photoreceptor development, osmotic stress, and light stimulus response. Demographic analysis indicated that the effective population size of M. aurata decreased around 0.4 and 0.04 million years ago, respectively, coinciding with the localized sub-glaciation. CONCLUSION The chromosome-level genome offers a comprehensive genomic basis for understanding the evolutionary and adaptive strategies of Minois aurata in the unique arid valley environment of the Hengduan Mountains, while also providing valuable insights into the broader mechanisms of organism adaptation to such habitats.
Collapse
Affiliation(s)
- Wenqian Hu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yi Wang
- Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Sichuan Academy of Forestry, Chengdu, 610081, China
| | - Xiaoxiao Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jialong Huang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jingge Kuang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Lei Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Liang Dou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| |
Collapse
|
13
|
Byerly PA, von Thaden A, Leushkin E, Hilgers L, Liu S, Winter S, Schell T, Gerheim C, Ben Hamadou A, Greve C, Betz C, Bolz HJ, Büchner S, Lang J, Meinig H, Famira-Parcsetich EM, Stubbe SP, Mouton A, Bertolino S, Verbeylen G, Briner T, Freixas L, Vinciguerra L, Mueller SA, Nowak C, Hiller M. Haplotype-resolved genome and population genomics of the threatened garden dormouse in Europe. Genome Res 2024; 34:2094-2107. [PMID: 39542649 DOI: 10.1101/gr.279066.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
Genomic resources are important for evaluating genetic diversity and supporting conservation efforts. The garden dormouse (Eliomys quercinus) is a small rodent that has experienced one of the most severe modern population declines in Europe. We present a high-quality haplotype-resolved reference genome for the garden dormouse, and combine comprehensive short and long-read transcriptomics data sets with homology-based methods to generate a highly complete gene annotation. Demographic history analysis of the genome reveal a sharp population decline since the last interglacial, indicating an association between colder climates and population declines before anthropogenic influence. Using our genome and genetic data from 100 individuals, largely sampled in a citizen-science project across the contemporary range, we conduct the first population genomic analysis for this species. We find clear evidence for population structure across the species' core Central European range. Notably, our data show that the Alpine population, characterized by strong differentiation and reduced genetic diversity, is reproductively isolated from other regions and likely represents a differentiated evolutionary significant unit (ESU). The predominantly declining Eastern European populations also show signs of recent isolation, a pattern consistent with a range expansion from Western to Eastern Europe during the Holocene, leaving relict populations now facing local extinction. Overall, our findings suggest that garden dormouse conservation may be enhanced in Europe through the designation of ESUs.
Collapse
Affiliation(s)
- Paige A Byerly
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany;
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571 Gelnhausen, Germany
| | - Alina von Thaden
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571 Gelnhausen, Germany
| | - Evgeny Leushkin
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Leon Hilgers
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Shenglin Liu
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Sven Winter
- Senckenberg Biodiversity and Climate Research Centre, 60325 Frankfurt am Main, Germany
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Charlotte Gerheim
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Alexander Ben Hamadou
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Christian Betz
- Bioscientia Human Genetics, Institute for Medical Diagnostics GmbH, 55218 Ingelheim, Germany
| | - Hanno J Bolz
- Bioscientia Human Genetics, Institute for Medical Diagnostics GmbH, 55218 Ingelheim, Germany
| | - Sven Büchner
- Justus-Liebig-University Giessen, Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, 35392 Giessen, Germany
| | - Johannes Lang
- Justus-Liebig-University Giessen, Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, 35392 Giessen, Germany
| | - Holger Meinig
- Justus-Liebig-University Giessen, Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, 35392 Giessen, Germany
| | - Evax Marie Famira-Parcsetich
- Justus-Liebig-University Giessen, Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, 35392 Giessen, Germany
| | - Sarah P Stubbe
- Justus-Liebig-University Giessen, Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Research, 35392 Giessen, Germany
| | - Alice Mouton
- Socio-économie, Environnement et Développement (SEED), University of Liege (Arlon Campus Environment), 81001 Arlon, Belgium
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Torino, Italy
| | | | | | - Lídia Freixas
- BiBio Research Group, Natural Sciences Museum of Granollers, 08402 Granollers, Catalonia, Spain
| | | | - Sarah A Mueller
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 80539 Munich, Germany
| | - Carsten Nowak
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571 Gelnhausen, Germany
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany;
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
14
|
Sibomana O. Genetic Diversity Landscape in African Population: A Review of Implications for Personalized and Precision Medicine. Pharmgenomics Pers Med 2024; 17:487-496. [PMID: 39555236 PMCID: PMC11566596 DOI: 10.2147/pgpm.s485452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction Africa, a continent considered to be the cradle of human beings has the largest genetic diversity among its population than other continents. This review discusses the implications of this high African genetic diversity to the development of personalized and precision medicine. Methodology A comprehensive search across PubMed, Google Scholar, Science Direct, DOAJ, AJOL, and the Cochrane Library electronic databases and manual Google searches was conducted using key terms "genetics", "genetic diversity", "Africa", "precision medicine", and "personalized medicine". Updated original and review studies focusing on the implications of African high genetic diversity on personalized and precision medicine were included. Included studies were thematically synthesized to elucidate their positive or negative implications for personalized healthcare, aiming to foster informed clinical practice and scientific inquiry. Results African populations' high genetic diversity presents opportunities for personalized and precision medicine including improving pharmacogenomics, understanding gene interactions, discovering new variants, mapping disease genes, creating updated genomic reference panels, and validating biomarkers. However, challenges include underrepresentation in studies, scarcity of reference genomes, inaccuracy of genetic testing and interpretation, and ancestry misclassification. Addressing these requires the establishment of genomic research centers, increasing funding, creating biobanks and repositories, education, infrastructure, and international cooperation to enhance healthcare equity and outcomes through personalized and precision medicine. Conclusion High African genetic diversity presents both positive and negative implications for personalized and precision medicine. Deep further research is recommended to harness the challenges and use the opportunities to develop customized treatments.
Collapse
Affiliation(s)
- Olivier Sibomana
- Department of General Medicine and Surgery, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
15
|
Mussmann SM. Assembly and annotation of a chromosome-level reference genome for the endangered Colorado pikeminnow (Ptychocheilus lucius). G3 (BETHESDA, MD.) 2024; 14:jkae217. [PMID: 39268723 PMCID: PMC11540322 DOI: 10.1093/g3journal/jkae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Advancements in genome sequencing technology have brought unprecedented accessibility of high-throughput sequencing to species of conservation interest. The potential knowledge gained from application of these techniques is maximized by availability of high-quality, annotated reference genomes for endangered species. However, these vital resources are often lacking for endangered minnows of North America (Cypriniformes: Leuciscidae). One such endangered species, Colorado pikeminnow (Ptychocheilus lucius), is the largest North American minnow and the top-level native aquatic predator in the Colorado River Basin of the southwestern United States and northwestern Mexico. Over the past century, Colorado pikeminnow has suffered habitat loss and population declines due to anthropogenic habitat modifications and invasive species introductions. The lack of genetic resources for Colorado pikeminnow has hindered conservation genomic study of this unique organism. This study seeks to remedy this issue by presenting a high-quality reference genome for Colorado pikeminnow developed from Pacific Biosciences HiFi sequencing and Hi-C scaffolding. The final assembly was a 1.1 Gb genome comprised of 305 contigs including 25 chromosome-sized scaffolds. Measures of quality, contiguity, and completeness met or exceeded those observed for Danio rerio (Danionidae) and 2 other Colorado River Basin leuciscids (Meda fulgida and Tiaroga cobitis). Comparative genomic analyses identified enrichment of gene families for growth, development, immune activity, and gene transcription; all of which are important for a large-bodied piscivorous fish living in a dynamic environment. This reference genome will provide a basis for important conservation genomic study of Colorado pikeminnow and help efforts to better understand the evolution of desert fishes.
Collapse
Affiliation(s)
- Steven M Mussmann
- Southwestern Native Aquatic Resources and Recovery Center, U.S. Fish and Wildlife Service, 7116 Hatchery Road, Dexter, NM 88230, USA
| |
Collapse
|
16
|
Mogano RR, Mpofu TJ, Mtileni B, Hadebe K. South African indigenous chickens' genetic diversity, and the adoption of ecological niche modelling and landscape genomics as strategic conservation techniques. Poult Sci 2024; 104:104508. [PMID: 39657468 DOI: 10.1016/j.psj.2024.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Selection pressures found in the prevailing production environments have shaped the genetic structure of indigenous chickens we see today. Indigenous chickens, raised in villages, provide essential genetic resources and income for poverty alleviation by providing affordable protein. However, they are threatened by predators, emerging diseases, and market demand for ideal breeds and fast production which causes loss of their valuable traits. The lack of knowledge about genetic diversity and genetic mechanisms underlying adaptive variants may compromise the goal of conserving indigenous chicken breeds. The main insights of the study are that indigenous chickens are highly diversified, and environmental factors play a key role in enabling chicken adaptation and distribution. Genomic and spatial technologies have made it possible to explore the genetic structure and fully comprehend the mechanism underlying the local adaptation of indigenous chickens. These technologies can aid in creating programs that enhance productivity and promote climate-resilient breeds. This review explores the impact of natural selection on indigenous chicken, genetic diversity, population size, and the advancement of technologies in understanding local adaptation drivers. In conclusion, this review highlights the importance of studying the habitats and how this will guide in conserving local breeds in their intended production environment.
Collapse
Affiliation(s)
- Reneilwe Rose Mogano
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; Agricultural Research Council, Biotechnology Platform, Ondersterpoort 0110, South Africa
| | - Takalani Judas Mpofu
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Bohani Mtileni
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Khanyisile Hadebe
- Agricultural Research Council, Biotechnology Platform, Ondersterpoort 0110, South Africa.
| |
Collapse
|
17
|
Ferrari C, Marelli SP, Bagnato A, Cerolini S, Strillacci MG. Sequencing and characterization of complete mitogenome DNA of worldwide turkey ( Meleagris gallopavo) populations. Anim Biotechnol 2024; 35:2397682. [PMID: 39262293 DOI: 10.1080/10495398.2024.2397682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
The history of turkey (Meleagris gallopavo) domestication can be traced back to the period between 700 and 200 BC in Mexico. This process involved multiple contributors and resulted in the development of modern local turkey breeds. This research investigates the complete mitochondrial diversity across a diverse range of local turkeys. Seventy-three turkeys were sampled from various populations, including autochthonous Italian breeds, an American breed (Narragansett), as well as wild turkeys from the USA and Mexico. The mitochondrial DNA (mtDNA) was employed as a powerful tool for biodiversity and breed phylogeny investigation. An analysis of the entire mtDNA was conducted to identify breed-specific unique traits, mitochondrial-specific characteristics, and the phylogenetic relationship among turkey populations. A total of 44 polymorphic sites were identified. Brianzolo and Narragansett birds were characterized as genetically homogeneous populations. Thirty-two different haplotypes were identified when our samples were compared with mtDNA D-loop of 96 online available turkeys from various geographical countries. H1 and H2, differing for one mutation, were the most abundant, comprising 132 of the 185 sequences. H1 included samples coming from every region, while H2 was predominantly characterized by Italian samples. USA and Mexican samples appear to be more variable in their mtDNA than the other populations.
Collapse
Affiliation(s)
- Carlotta Ferrari
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Stefano P Marelli
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Alessandro Bagnato
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Silvia Cerolini
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Maria G Strillacci
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| |
Collapse
|
18
|
Kosch TA, Torres-Sánchez M, Liedtke HC, Summers K, Yun MH, Crawford AJ, Maddock ST, Ahammed MS, Araújo VLN, Bertola LV, Bucciarelli GM, Carné A, Carneiro CM, Chan KO, Chen Y, Crottini A, da Silva JM, Denton RD, Dittrich C, Espregueira Themudo G, Farquharson KA, Forsdick NJ, Gilbert E, Che J, Katzenback BA, Kotharambath R, Levis NA, Márquez R, Mazepa G, Mulder KP, Müller H, O'Connell MJ, Orozco-terWengel P, Palomar G, Petzold A, Pfennig DW, Pfennig KS, Reichert MS, Robert J, Scherz MD, Siu-Ting K, Snead AA, Stöck M, Stuckert AMM, Stynoski JL, Tarvin RD, Wollenberg Valero KC. The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation. BMC Genomics 2024; 25:1025. [PMID: 39487448 PMCID: PMC11529218 DOI: 10.1186/s12864-024-10899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, anti-predator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium ) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.
Collapse
Affiliation(s)
- Tiffany A Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, VIC, Australia.
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040, Madrid, Spain.
| | | | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC, 27858, USA
| | - Maximina H Yun
- CRTD/Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de los Andes, 111711, Bogotá, Colombia
- Historia Natural C.J. Marinkelle, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Simon T Maddock
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Anse Royale, Seychelles
| | | | - Victor L N Araújo
- Department of Biological Sciences, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Lorenzo V Bertola
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4810, Australia
| | - Gary M Bucciarelli
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, USA
| | - Albert Carné
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Céline M Carneiro
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kin O Chan
- University of Kansas Biodiversity Institute and Natural History Museum, Lawrence, KS, 66045, USA
| | - Ying Chen
- Biology Department, Queen's University, Kingston, ON, Canada
| | - Angelica Crottini
- Centro de Investigação Em Biodiversidade E Recursos Genéticos, CIBIOInBIO Laboratório AssociadoUniversidade Do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, I-50019, Italy
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Jessica M da Silva
- Evolutionary Genomics and Wildlife Management, Foundational Biodiversity Science, Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands, Cape Town, 7735, South Africa
- Centre for Evolutionary Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Robert D Denton
- Department of Biology, Marian University, Indianapolis, IN, 46222, USA
| | - Carolin Dittrich
- Rojas Lab, Department of Life Science, Konrad-Lorenz-Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Gonçalo Espregueira Themudo
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões Matosinhos, Avenida General Norton de Matos, Matosinhos, S/N, Portugal
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| | | | - Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, HU6 7RX, UK
- Energy and Environment Institute, The University of Hull, Hull, HU6 7RX, UK
| | - Jing Che
- Key Laboratory of Genetic Evolution and Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | | | - Ramachandran Kotharambath
- Herpetology Lab, Dept. of Zoology, Central University of Kerala, Tejaswini Hills, Kasaragod, Kerala, 671320, India
| | - Nicholas A Levis
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Roberto Márquez
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Glib Mazepa
- Department of Ecology and Evolution, University of Lausanne, 1015, Biophore, Switzerland
- Department of Ecology and Genetics, Evolutionary Biology, , Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Kevin P Mulder
- Faculty of Veterinary Medicine, Wildlife Health Ghent, Ghent University, Merelbeke, Belgium
| | - Hendrik Müller
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Mary J O'Connell
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | | | - Gemma Palomar
- Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Alice Petzold
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str.24-25, 14476, Potsdam, Germany
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Michael S Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mark D Scherz
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Karen Siu-Ting
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, Belfast, BT7 1NN, UK
- Instituto Peruano de Herpetología, Ca. Augusto Salazar Bondy 136, Surco, Lima, Peru
- Herpetology Lab, The Natural History Museum, London, UK
| | - Anthony A Snead
- Department of Biology, New York University, New York, NY, USA
| | - Matthias Stöck
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Adam M M Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | | | - Rebecca D Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | | |
Collapse
|
19
|
Budd AM, Yong SY, Heydenrych MJ, Mayne B, Berry O, Jarman S. Universal prediction of vertebrate species age at maturity. Commun Biol 2024; 7:1414. [PMID: 39478142 PMCID: PMC11526025 DOI: 10.1038/s42003-024-07046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Animal age at maturity can be used as a universal and simple predictor of species extinction risk. At present, methods to estimate age at maturity are typically species-specific, limiting comparisons among species, or are infeasible due to practical constraints. To overcome this, here we develop a universal predictor of species-level age at maturity for vertebrates. We show that modelling the frequency of 'CG' sequences (CpG sites) in gene promoter regions yields rapid predictions of vertebrate age at maturity. Our models predict age at maturity with remarkable accuracy and generalisability, with median error rates of 30% (less than 1 year) and are robust to genome assemblies of varying quality. We generate predictions for 1912 vertebrate species for which age at maturity estimates were previously absent from public databases. The predictions can be used to help to inform management decisions for the many species for which more detailed population information is currently unavailable.
Collapse
Affiliation(s)
- Alyssa M Budd
- Environomics Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia.
| | - Suk Yee Yong
- CSIRO Information Management & Technology (IM&T) Scientific Computing, Eveleigh, NSW, Australia
| | - Matthew J Heydenrych
- Environomics Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Benjamin Mayne
- Environomics Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Oliver Berry
- Environomics Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Simon Jarman
- Environomics Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
20
|
Ilan Y. Using the Constrained Disorder Principle to Navigate Uncertainties in Biology and Medicine: Refining Fuzzy Algorithms. BIOLOGY 2024; 13:830. [PMID: 39452139 PMCID: PMC11505099 DOI: 10.3390/biology13100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/17/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Uncertainty in biology refers to situations in which information is imperfect or unknown. Variability, on the other hand, is measured by the frequency distribution of observed data. Biological variability adds to the uncertainty. The Constrained Disorder Principle (CDP) defines all systems in the universe by their inherent variability. According to the CDP, systems exhibit a degree of variability necessary for their proper function, allowing them to adapt to changes in their environments. Per the CDP, while variability differs from uncertainty, it can be viewed as a regulated mechanism for efficient functionality rather than uncertainty. This paper explores the various aspects of un-certainties in biology. It focuses on using CDP-based platforms for refining fuzzy algorithms to address some of the challenges associated with biological and medical uncertainties. Developing a fuzzy decision tree that considers the natural variability of systems can help minimize uncertainty. This method can reveal previously unidentified classes, reduce the number of unknowns, improve the accuracy of modeling results, and generate algorithm outputs that are more biologically and clinically relevant.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel
| |
Collapse
|
21
|
Feng J, Dan X, Cui Y, Gong Y, Peng M, Sang Y, Ingvarsson PK, Wang J. Integrating evolutionary genomics of forest trees to inform future tree breeding amid rapid climate change. PLANT COMMUNICATIONS 2024; 5:101044. [PMID: 39095989 PMCID: PMC11573912 DOI: 10.1016/j.xplc.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Global climate change is leading to rapid and drastic shifts in environmental conditions, posing threats to biodiversity and nearly all life forms worldwide. Forest trees serve as foundational components of terrestrial ecosystems and play a crucial and leading role in combating and mitigating the adverse effects of extreme climate events, despite their own vulnerability to these threats. Therefore, understanding and monitoring how natural forests respond to rapid climate change is a key priority for biodiversity conservation. Recent progress in evolutionary genomics, driven primarily by cutting-edge multi-omics technologies, offers powerful new tools to address several key issues. These include precise delineation of species and evolutionary units, inference of past evolutionary histories and demographic fluctuations, identification of environmentally adaptive variants, and measurement of genetic load levels. As the urgency to deal with more extreme environmental stresses grows, understanding the genomics of evolutionary history, local adaptation, future responses to climate change, and conservation and restoration of natural forest trees will be critical for research at the nexus of global change, population genomics, and conservation biology. In this review, we explore the application of evolutionary genomics to assess the effects of global climate change using multi-omics approaches and discuss the outlook for breeding of climate-adapted trees.
Collapse
Affiliation(s)
- Jiajun Feng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuming Dan
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yangkai Cui
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Gong
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Minyue Peng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yupeng Sang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Scarpa F, Casu M. Genomics and Bioinformatics in One Health: Transdisciplinary Approaches for Health Promotion and Disease Prevention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1337. [PMID: 39457310 PMCID: PMC11507412 DOI: 10.3390/ijerph21101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
The One Health concept underscores the interconnectedness of human, animal, and environmental health, necessitating an integrated, transdisciplinary approach to tackle contemporary health challenges. This perspective paper explores the pivotal role of genomics and bioinformatics in advancing One Health initiatives. By leveraging genomic technologies and bioinformatics tools, researchers can decode complex biological data, enabling comprehensive insights into pathogen evolution, transmission dynamics, and host-pathogen interactions across species and environments (or ecosystems). These insights are crucial for predicting and mitigating zoonotic disease outbreaks, understanding antimicrobial resistance patterns, and developing targeted interventions for health promotion and disease prevention. Furthermore, integrating genomic data with environmental and epidemiological information enhances the precision of public health responses. Here we discuss case studies demonstrating successful applications of genomics and bioinformatics in One Health contexts, such as including data integration, standardization, and ethical considerations in genomic research. By fostering collaboration among geneticists, bioinformaticians, epidemiologists, zoologists, and data scientists, the One Health approach can harness the full potential of genomics and bioinformatics to safeguard global health. This perspective underscores the necessity of continued investment in interdisciplinary education, research infrastructure, and policy frameworks to effectively employ these technologies in the service of a healthier planet.
Collapse
Affiliation(s)
- Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
23
|
Kayal E, Arick MA, Hsu CY, Thrash A, Yorkston M, Morden CW, Wendel JF, Peterson DG, Grover CE. Genomic diversity and evolution of the Hawaiian Islands endemic Kokia (Malvaceae). G3 (BETHESDA, MD.) 2024; 14:jkae180. [PMID: 39103179 PMCID: PMC11457090 DOI: 10.1093/g3journal/jkae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Island species are highly vulnerable due to habitat destruction and their often small population sizes with reduced genetic diversity. The Hawaiian Islands constitute the most isolated archipelago on the planet, harboring many endemic species. Kokia is an endangered flowering plant genus endemic to these islands, encompassing 3 extant and 1 extinct species. Recent studies provided evidence of unexpected genetic diversity within Kokia. Here, we provide high-quality genome assemblies for all 3 extant Kokia species, including an improved genome for Kokia drynarioides. All 3 Kokia genomes contain 12 chromosomes exhibiting high synteny within and between Kokia and the sister taxon Gossypioides kirkii. Gene content analysis revealed a net loss of genes in K. cookei compared to other species, whereas the gene complement in K. drynarioides remains stable and that of Kokia kauaiensis displays a net gain. A dated phylogeny estimates the divergence time from the last common ancestor for the 3 Kokia species at ∼1.2 million years ago (mya), with the sister taxa (K. cookei + K. drynarioides) diverging ∼0.8 mya. Kokia appears to have followed a stepping-stone pattern of colonization and diversification of the Hawaiian archipelago, likely starting on low or now submerged older islands. The genetic resources provided may benefit conservation efforts of this endangered endemic genus.
Collapse
Affiliation(s)
- Ehsan Kayal
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50011, USA
| | - Mark A Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39759, USA
| | - Chuan-yu Hsu
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39759, USA
| | - Adam Thrash
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39759, USA
| | - Mitsuko Yorkston
- School of Life Sciences, University of Hawai‘i, Honolulu, HI 96822, USA
| | - Clifford W Morden
- School of Life Sciences, University of Hawai‘i, Honolulu, HI 96822, USA
| | - Jonathan F Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50011, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39759, USA
| | - Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
24
|
Kosch TA, Torres-Sánchez M, Liedtke HC, Summers K, Yun MH, Crawford AJ, Maddock ST, Ahammed MS, Araújo VLN, Bertola LV, Bucciarelli GM, Carné A, Carneiro CM, Chan KO, Chen Y, Crottini A, da Silva JM, Denton RD, Dittrich C, Themudo GE, Farquharson KA, Forsdick NJ, Gilbert E, Che J, Katzenback BA, Kotharambath R, Levis NA, Márquez R, Mazepa G, Mulder KP, Müller H, O’Connell MJ, Orozco-terWengel P, Palomar G, Petzold A, Pfennig DW, Pfennig KS, Reichert MS, Robert J, Scherz MD, Siu-Ting K, Snead AA, Stöck M, Stuckert AMM, Stynoski JL, Tarvin RD, Wollenberg Valero KC. The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601086. [PMID: 39005434 PMCID: PMC11244923 DOI: 10.1101/2024.06.27.601086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, antipredator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.
Collapse
Affiliation(s)
- Tiffany A. Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC, USA 27858
| | - Maximina H. Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew J. Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
- Museo de Historia Natural C.J. Marinkelle, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Simon T. Maddock
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Anse Royale Seychelles
| | | | - Victor L. N. Araújo
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Lorenzo V. Bertola
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4810, Australia
| | - Gary M. Bucciarelli
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, USA
| | - Albert Carné
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Céline M. Carneiro
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kin O. Chan
- University of Kansas Biodiversity Institute and Natural History Museum, Lawrence, Kansas 66045, USA
| | - Ying Chen
- Biology Department, Queen’s University, Kingston, Ontario, Canada
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, rua do Campo Alegre s/n, 4169– 007 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Jessica M. da Silva
- Evolutionary Genomics and Wildlife Management, Foundatonal Biodiversity Science, Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands 7735, Cape Town, South Africa
- Centre for Evolutionary Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa
| | - Robert D. Denton
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Carolin Dittrich
- Rojas Lab, Konrad-Lorenz-Institute of Ethology, Department of Life Science, University of Veterinary Medicine, Vienna, Austria
| | - Gonçalo Espregueira Themudo
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, Matosinhos, Portugal
| | - Katherine A. Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, HU6 7RX, United Kingdom
- Energy and Environment Institute, The University of Hull, Hull, HU6 7RX, United Kingdom
| | - Jing Che
- Key Laboratory of Genetic Evolution and Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | | | - Ramachandran Kotharambath
- Herpetology Lab, Dept. of Zoology, Central University of Kerala, Tejaswini Hills, Kasaragod, Kerala, 671320, India
| | - Nicholas A. Levis
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Roberto Márquez
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Glib Mazepa
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015, Switzerland
- Department of Ecology and Genetics, Evolutionary Biology, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Kevin P. Mulder
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hendrik Müller
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, D-06108 Halle (Saale), Germany
| | - Mary J. O’Connell
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Pablo Orozco-terWengel
- School of Biosciences, Cardiff University, Museum Avenue, CF10 3AX Cardiff, United Kingdom
| | - Gemma Palomar
- Department of Genetics, Physiology, and Microbiology; Faculty of Biological Sciences; Complutense University of Madrid, Madrid, Spain
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Alice Petzold
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str.24-25, 14476 Potsdam, Germany
| | - David W. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karin S. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael S. Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater OK, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mark D. Scherz
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Karen Siu-Ting
- School of Biological Sciences, Queen’s University Belfast, Belfast, BT7 1NN, Northern Ireland, United Kingdom
- Instituto Peruano de Herpetología, Ca. Augusto Salazar Bondy 136, Surco, Lima, Peru
- Herpetology Lab, The Natural History Museum, London, United Kingdom
| | | | - Matthias Stöck
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, D-12587 Berlin, Germany
| | - Adam M. M. Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | | | - Rebecca D. Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
25
|
Baltazar‐Soares M, Balard A, Heckwolf M. Epigenetic Diversity and the Evolutionary Potential of Wild Populations. Evol Appl 2024; 17:e70011. [PMID: 39439434 PMCID: PMC11494020 DOI: 10.1111/eva.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024] Open
Abstract
Fast-paced selective pressures imposed by climate change and anthropogenic activities call for adaptive evolutionary responses to emerge at ecological timescales. However, the evolution and heritability of genomic variation underlie mechanistic constraints, which dictate a slower pace of adaptation exclusively relying on standing genetic variation and novel mutations. Environmentally responsive epigenetic mechanisms can allow acclimatisation and adaptive phenotypes to arise faster than DNA sequence-based mechanisms alone. Nevertheless, the knowledge gap between identifying epigenetic marks and effectively deeming them functional is still wide in a natural context and often outside the scope of model organisms. With this Special Issue, we aimed to narrow this gap by presenting a compilation of original research articles, reviews and opinions on the topic of epigenetics in wild populations. We contextualised this collection within the overarching topic of conservation biology, as we firmly propose that epigenetic research can significantly enhance the effectiveness of conservation measures. Contributions highlighted the putative role of epigenetic variation in the acclimatisation and adaptive potential of species and populations directly and indirectly affected by climatic shifts and anthropogenic actions. They further exemplified how epigenetic variation can be used as biomarkers for monitoring variations in physiology, phenology and behaviour. Lastly, reviews and perspective articles illustrated the past and present of epigenetic research in wild populations while suggesting future research avenues.
Collapse
Affiliation(s)
| | - Alice Balard
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Melanie J. Heckwolf
- Leibniz Centre for Tropical Marine ResearchBremenGermany
- Smithsonian Tropical Research InstituteGamboaPanama
| |
Collapse
|
26
|
Recknagel H, Močivnik L, Zakšek V, Luo Y, Kostanjšek R, Trontelj P. Generation of genome-wide SNP markers from minimally invasive sampling in endangered animals and applications in species ecology and conservation. Mol Ecol Resour 2024; 24:e13995. [PMID: 39056440 DOI: 10.1111/1755-0998.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
High-density genotyping methods have revolutionized the field of population and conservation genetics in the past decade. To exploit the technological and analytical advances in the field, access to high-quality genetic material is a key component. However, access to such samples in endangered and rare animals is often challenging or even impossible. Here, we used a minimally invasive sampling method (MIS) in the endangered cave salamander Proteus anguinus, the olm, to generate thousands of genetic markers using ddRADseq for population and conservation genomic analyses. Using tail clips and MIS skin swabs taken from the same individual, we investigated genotyping data properties of the two different sampling types. We found that sufficient DNA can be extracted from swab samples to generate up to 200,000 polymorphic SNPs in divergent Proteus lineages. Swab and tissue samples were highly reproducible exhibiting low SNP genotyping error rates. We found that SNPs were most frequently (~50%) located within genic regions, while the rest mapped to mostly flanking regions of repetitive DNA. The vast majority of DNA recovered from swabbing was host DNA. However, a fraction of DNA recovered from swabs contained additional ecological information on the species, including eDNA from the surrounding environment and bacterial skin fauna. Most exogenous DNA recovered from swabs were bacteria (~80%), followed by vertebrates (~20%). Our results demonstrate that MIS can be used to (i) generate tens of thousands of ddRADseq markers for conservation and population genomic analyses and (ii) inform on the species health status and ecology from exogenous DNA.
Collapse
Affiliation(s)
- Hans Recknagel
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Močivnik
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Valerija Zakšek
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
| | - Rok Kostanjšek
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Trontelj
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
27
|
Seljestad G, Quintela M, Bekkevold D, Pampoulie C, Farrell E, Kvamme C, Slotte A, Dahle G, Sørvik A, Pettersson M, Andersson L, Folkvord A, Glover K, Berg F. Genetic Stock Identification Reveals Mismatches Between Management Areas and Population Genetic Structure in a Migratory Pelagic Fish. Evol Appl 2024; 17:e70030. [PMID: 39464230 PMCID: PMC11502719 DOI: 10.1111/eva.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
Sustainable fisheries management is important for the continued harvest of the world's marine resources, especially as they are increasingly challenged by a range of climatic and anthropogenic factors. One of the pillars of sustainable fisheries management is the accurate identification of the biological units, i.e., populations. Here, we developed and implemented a genetic baseline for Atlantic herring harvested in the Norwegian offshore fisheries to investigate the validity of the current management boundaries. This was achieved by genotyping > 15,000 herring from the northern European seas, including samples of all the known populations in the region, with a panel of population-informative SNPs mined from existing genomic resources. The final genetic baseline consisted of ~1000 herring from 12 genetically distinct populations. We thereafter used the baseline to investigate mixed catches from the North and Norwegian Seas, revealing that each management area consisted of multiple populations, as previously suspected. However, substantial numbers (up to 50% or more within a sample) of herring were found outside of their expected management areas, e.g., North Sea autumn-spawning herring north of 62° N (average = 19.2%), Norwegian spring-spawning herring south of 62° N (average = 13.5%), and western Baltic spring-spawning herring outside their assumed distribution area in the North Sea (average = 20.0%). Based upon these extensive observations, we conclude that the assessment and management areas currently in place for herring in this region need adjustments to reflect the populations present. Furthermore, we suggest that for migratory species, such as herring, a paradigm shift from using static geographic stock boundaries towards spatial dynamic boundaries is needed to meet the requirements of future sustainable management regimes.
Collapse
Affiliation(s)
| | | | - Dorte Bekkevold
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | | | | | | - Aril Slotte
- Institute of Marine Research (IMR)BergenNorway
| | - Geir Dahle
- Institute of Marine Research (IMR)BergenNorway
| | | | - Mats E. Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Arild Folkvord
- Department of Biological SciencesUniversity of BergenBergenNorway
- Institute of Marine Research (IMR)BergenNorway
| | | | | |
Collapse
|
28
|
Crossman CA, Fontaine MC, Frasier TR. A comparison of genomic diversity and demographic history of the North Atlantic and Southwest Atlantic southern right whales. Mol Ecol 2024; 33:e17099. [PMID: 37577945 DOI: 10.1111/mec.17099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Right whales (genus Eubalaena) were among the first, and most extensively pursued, targets of commercial whaling. However, understanding the impacts of this persecution requires knowledge of the demographic histories of these species prior to exploitation. We used deep whole genome sequencing (~40×) of 12 North Atlantic (E. glacialis) and 10 Southwest Atlantic southern (E. australis) right whales to quantify contemporary levels of genetic diversity and infer their demographic histories over time. Using coalescent- and identity-by-descent-based modelling to estimate ancestral effective population sizes from genomic data, we demonstrate that North Atlantic right whales have lived with smaller effective population sizes (Ne) than southern right whales in the Southwest Atlantic since their divergence and describe the decline in both populations around the time of whaling. North Atlantic right whales exhibit reduced genetic diversity and longer runs of homozygosity leading to higher inbreeding coefficients compared to the sampled population of southern right whales. This study represents the first comprehensive assessment of genome-wide diversity of right whales in the western Atlantic and underscores the benefits of high coverage, genome-wide datasets to help resolve long-standing questions about how historical changes in effective population size over different time scales shape contemporary diversity estimates. This knowledge is crucial to improve our understanding of the right whales' history and inform our approaches to address contemporary conservation issues. Understanding and quantifying the cumulative impact of long-term small Ne, low levels of diversity and recent inbreeding on North Atlantic right whale recovery will be important next steps.
Collapse
Affiliation(s)
- Carla A Crossman
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Michael C Fontaine
- Laboratoire MIVEGEC (Université de Montpellier, CNRS 5290, IRD 224), Montpellier, France
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Timothy R Frasier
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada
| |
Collapse
|
29
|
Dupont L, Jacob S, Philippe H. Scientist engagement and the knowledge-action gap. Nat Ecol Evol 2024:10.1038/s41559-024-02535-0. [PMID: 39304789 DOI: 10.1038/s41559-024-02535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
The combined gravity of biodiversity loss and climate change keeps increasing. As the approaching catastrophe has never looked so alarming, the amount of scientific knowledge about the bioclimatic crisis is still rising exponentially. Here we reflect on how researchers in ecology or climate science behave amid this crisis. In face of the disproportionality between how much scientists know and how little they engage, we discuss four barriers that may underlie the decoupling of scientific awareness from concrete action. We then reflect on the potency of rational thinking to trigger engagement on its own, and question whether more scientific knowledge can be the tipping point towards radical changes within society. Our observations challenge the tenet that a better understanding of what surrounds us is necessary to protect it efficiently. With the environmental cost of scientific research itself as an additional factor that must be considered, we suggest there is an urgent need for researchers to collectively reflect on their situation and decide how to redirect their actions.
Collapse
Affiliation(s)
- Léonard Dupont
- Station d'Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France.
| | - Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
| | - Hervé Philippe
- Station d'Ecologie Théorique et Expérimentale, UAR2029, CNRS, Moulis, France
| |
Collapse
|
30
|
Bojarczuk A. Ethical Aspects of Human Genome Research in Sports-A Narrative Review. Genes (Basel) 2024; 15:1216. [PMID: 39336807 PMCID: PMC11430849 DOI: 10.3390/genes15091216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Human genome research in sports raises complex ethical considerations regarding the intersection of genetics and athletic performance. Pursuing genetic enhancements must uphold fairness, equality, and respect for human dignity. This narrative review explores the ethical dimensions of human genome research in sports, its potential implications on athletes, and the integrity of sports. As a narrative review, this study synthesizes the existing literature and expert insights to examine the ethical aspects of human genome research in sports. This study extensively examined the current literature on genetics, sports performance, ethical concerns, human rights, and legal regulations within the European context. The literature was searched using the SPORTDiscus, Scopus, Google Scholar, and PubMed databases. Exploring human genome research in sports reveals significant ethical implications, including potential genetic discrimination, impacts on human rights, and creating a genetic underclass of athletes. There are also definite benefits surrounding genetic testing. In conclusion, this review contends that integrating ethical considerations into developing and applying genetic technologies in sports is crucial to upholding fundamental principles of fairness, equality, and respect for human dignity. It stresses the importance of open and inclusive dialogue about the potential consequences of genetic advancements on athletic performance, future generations, and the integrity of sports.
Collapse
Affiliation(s)
- Aleksandra Bojarczuk
- Biochemistry Department, Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| |
Collapse
|
31
|
Marques JP, Alves PC, Amorim IR, Lopes RJ, Moura M, Myers E, Sim-Sim M, Sousa-Santos C, Alves MJ, Borges PAV, Brown T, Carneiro M, Carrapato C, Ceríaco LMP, Ciofi C, da Silva LP, Diedericks G, Diroma MA, Farelo L, Formenti G, Gil F, Grilo M, Iannucci A, Leitão HG, Máguas C, Mc Cartney AM, Mendes SL, Moreno JM, Morselli M, Mouton A, Natali C, Pereira F, Rego RMC, Resendes R, Roxo G, Svardal H, Trindade H, Vicente S, Winkler S, Alvarenga M, Amaral AJ, Antunes A, Campos PF, Canário AVM, Castilho R, Castro LFC, Crottini A, Cunha MV, Espregueira Themudo G, Esteves PJ, Faria R, Rodríguez Fernandes C, Ledoux JB, Louro B, Magalhaes S, Paulo OS, Pearson G, Pimenta J, Pina-Martins F, Santos TL, Serrão E, Melo-Ferreira J, Sousa VC. Building a Portuguese coalition for biodiversity genomics. NPJ BIODIVERSITY 2024; 3:27. [PMID: 39289491 PMCID: PMC11408531 DOI: 10.1038/s44185-024-00061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Affiliation(s)
- João P Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| | - Paulo C Alves
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | - Isabel R Amorim
- University of the Azores, CE3C- Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE, Rua Capitão João d´Ávila, Pico da Urze, 9700-042, Angra do Heroísmo, Portugal
| | - Ricardo J Lopes
- CE3C, Center for Ecology, Evolution and Environmental Change & CHANGE, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- MHNC-UP, Natural History and Science Museum of the University of Porto, 4099-002, Porto, Portugal
| | - Monica Moura
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO Associated Laboratory, Azores Unit, University of the Azores, Campus of Ponta Delgada, Rua da Mãe de Deus 13A, 9500-321, Ponta Delgada, Portugal
- UNESCO Chair-Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Ponta Delgada, Portugal
| | - Eugene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany
- Okinawa Institute of Science and Technology, Onna Son, Japan
| | - Manuela Sim-Sim
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- MUHNAC-Museu Nacional de História Natural e da Ciência, Universidade de Lisboa, Rua da Escola Politécnica, 58, 1250-102, Lisboa, Portugal
| | - Carla Sousa-Santos
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ISPA-Instituto Superior de Ciências Psicológicas, Sociais e da Vida, Rua Jardim do Tabaco, 34, 1149-041, Lisbon, Portugal
| | - M Judite Alves
- MUHNAC-Museu Nacional de História Natural e da Ciência, Universidade de Lisboa, Rua da Escola Politécnica, 58, 1250-102, Lisboa, Portugal
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Paulo A V Borges
- University of the Azores, CE3C- Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE, Rua Capitão João d´Ávila, Pico da Urze, 9700-042, Angra do Heroísmo, Portugal
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Carlos Carrapato
- Instituto da Conservação da Natureza e das Florestas, Lisbon, Portugal
- DCNF-Alentejo/DLAP/Parque Natural do Vale do Guadiana, Lisboa, Portugal
| | - Luís M P Ceríaco
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- MUHNAC-Museu Nacional de História Natural e da Ciência, Universidade de Lisboa, Rua da Escola Politécnica, 58, 1250-102, Lisboa, Portugal
- Universidade Federal do Rio de Janeiro, Museu Nacional, Departamento de Vertebrados, Quinta da Boa Vista, São Cristóvão, 20940-040, Rio de Janeiro, Brazil
| | - Claúdio Ciofi
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Luís P da Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | | | - Maria Angela Diroma
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Liliana Farelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Giulio Formenti
- The Vertebrate Genome Laboratory, The Rockefeller University, 1230 York Ave, 10021, New York City, USA
| | - Fátima Gil
- Aquário Vasco da Gama, R. Direita do Dafundo, 1495-718, Cruz Quebrada-Dafundo, Lisboa, Portugal
| | - Miguel Grilo
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ISPA-Instituto Superior de Ciências Psicológicas, Sociais e da Vida, Rua Jardim do Tabaco, 34, 1149-041, Lisbon, Portugal
- Egas Moniz School of Health and Science, Caparica, Portugal
| | - Alessio Iannucci
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Henrique G Leitão
- Department of Biology, University of Antwerp, 2610, Antwerp, Belgium
| | - Cristina Máguas
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ann M Mc Cartney
- Genomics Institute, University of California, CA, 95060, Santa Cruz, USA
| | - Sofia L Mendes
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - João M Moreno
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
- MARE-Centro de Ciências do Mar e do Ambiente (MARE), ARNET Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marco Morselli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Alice Mouton
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- InBios/Conservation Genetics Laboratory, University of Liege, Chemin de la Vallée 4, 4000, Liege, Belgium
| | - Chiara Natali
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Fernando Pereira
- University of the Azores, CE3C- Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE, Rua Capitão João d´Ávila, Pico da Urze, 9700-042, Angra do Heroísmo, Portugal
| | - Rúben M C Rego
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO Associated Laboratory, Azores Unit, University of the Azores, Campus of Ponta Delgada, Rua da Mãe de Deus 13A, 9500-321, Ponta Delgada, Portugal
| | - Roberto Resendes
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO Associated Laboratory, Azores Unit, University of the Azores, Campus of Ponta Delgada, Rua da Mãe de Deus 13A, 9500-321, Ponta Delgada, Portugal
| | - Guilherme Roxo
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO Associated Laboratory, Azores Unit, University of the Azores, Campus of Ponta Delgada, Rua da Mãe de Deus 13A, 9500-321, Ponta Delgada, Portugal
| | - Hannes Svardal
- Department of Biology, University of Antwerp, 2610, Antwerp, Belgium
- Naturalis Biodiversity Center, 2333 CR, Leiden, Netherlands
| | - Helena Trindade
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Vicente
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- ERISA-Escola Superior de Saúde Ribeiro Sanches, Instituto Politécnico da Lusofonia (IPLUSO), Rua do Telhal aos Olivais nº 8-8a, 1950-396, Lisboa, Portugal
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany
| | - Marcela Alvarenga
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | - Andreia J Amaral
- Departamento de Zootecnia, Escola Superior de Ciência e Tecnologia, Universidade de Évora, 7000-671, Évora, Portugal
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Alto da Ajuda, 1300-477, Lisboa, Portugal
| | - Agostinho Antunes
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Paula F Campos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Adelino V M Canário
- CCMAR/CIMAR LA Centre for Marine Sciences, Campus de Gambelas, University of Algarve, 8005-139, Faro, Portugal
| | - Rita Castilho
- CCMAR/CIMAR LA Centre for Marine Sciences, Campus de Gambelas, University of Algarve, 8005-139, Faro, Portugal
- Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - L Filipe C Castro
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Mónica V Cunha
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Gonçalo Espregueira Themudo
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Pedro J Esteves
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | - Carlos Rodríguez Fernandes
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
- Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, 1649-013, Lisboa, Portugal
| | - Jean-Baptiste Ledoux
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Bruno Louro
- CCMAR/CIMAR LA Centre for Marine Sciences, Campus de Gambelas, University of Algarve, 8005-139, Faro, Portugal
| | - Sara Magalhaes
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Octávio S Paulo
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Gareth Pearson
- CCMAR/CIMAR LA Centre for Marine Sciences, Campus de Gambelas, University of Algarve, 8005-139, Faro, Portugal
| | - João Pimenta
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Francisco Pina-Martins
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Teresa L Santos
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Ester Serrão
- CCMAR/CIMAR LA Centre for Marine Sciences, Campus de Gambelas, University of Algarve, 8005-139, Faro, Portugal
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
| | - Vítor C Sousa
- CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
32
|
Nebenführ M, Prochotta D, Ben Hamadou A, Janke A, Gerheim C, Betz C, Greve C, Bolz HJ. High-speed whole-genome sequencing of a Whippet: Rapid chromosome-level assembly and annotation of an extremely fast dog's genome. GIGABYTE 2024; 2024:gigabyte134. [PMID: 39314919 PMCID: PMC11418881 DOI: 10.46471/gigabyte.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
The time required for genome sequencing and de novo assembly depends on the interaction between laboratory work, sequencing capacity, and the bioinformatics workflow, often constrained by external sequencing services. Bringing together academic biodiversity institutes and a medical diagnostics company with extensive sequencing capabilities, we aimed at generating a high-quality mammalian de novo genome in minimal time. We present the first chromosome-level genome assembly of the Whippet, using PacBio long-read high-fidelity sequencing and reference-guided scaffolding. The final assembly has a contig N50 of 55 Mbp and a scaffold N50 of 65.7 Mbp. The total assembly length is 2.47 Gbp, of which 2.43 Gpb were scaffolded into 39 chromosome-length scaffolds. Annotation using mammalian genomes and transcriptome data yielded 28,383 transcripts, 90.9% complete BUSCO genes, and identified 36.5% repeat content. Sequencing, assembling, and scaffolding the chromosome-level genome of the Whippet took less than a week, adding another high-quality reference genome to the available sequences of domestic dog breeds.
Collapse
Affiliation(s)
- Marcel Nebenführ
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- Institute for Ecology, Evolution, and Diversity, Goethe University, Frankfurt am Main, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | - David Prochotta
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- Institute for Ecology, Evolution, and Diversity, Goethe University, Frankfurt am Main, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | - Alexander Ben Hamadou
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- Institute for Ecology, Evolution, and Diversity, Goethe University, Frankfurt am Main, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | - Charlotte Gerheim
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | - Christian Betz
- Bioscientia Human Genetics, Institute for Medical Diagnostics GmbH, Ingelheim, Germany
| | - Carola Greve
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | - Hanno Jörn Bolz
- Bioscientia Human Genetics, Institute for Medical Diagnostics GmbH, Ingelheim, Germany
| |
Collapse
|
33
|
Cabrera-Sosa L, Safarpour M, Kattenberg JH, Ramirez R, Vinetz J, Rosanas-Urgell A, Gamboa D, Delgado-Ratto C. Comparing newly developed SNP barcode panels with microsatellites to explore population genetics of malaria parasites in the Peruvian Amazon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611954. [PMID: 39314390 PMCID: PMC11418992 DOI: 10.1101/2024.09.09.611954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Malaria molecular surveillance (MMS) can provide insights into transmission dynamics, guiding national control/elimination programs. Considering the genetic differences among parasites from different areas in the Peruvian Amazon, we previously designed SNP barcode panels for Plasmodium vivax (Pv) and P. falciparum (Pf), integrated into AmpliSeq assays, to provide population genetics estimates of malaria parasites. These AmpliSeq assays are ideal for MMS: multiplexing different traits of interest, applicable to many use cases, and high throughput for large numbers of samples. The present study compares the genetic resolution of the SNP barcode panels in the AmpliSeq assays with widely used microsatellite (MS) panels to investigate Amazonian malaria parasites. Malaria samples collected in remote areas of the Peruvian Amazon (51 Pv & 80 Pf samples) were characterized using the Ampliseq assays and MS. Population genetics estimates (complexity of infection, genetic diversity and differentiation, and population structure) were compared using the SNP barcodes (Pv: 40 SNPs & Pf: 28 SNPs) and MS panels (Pv: 16 MS & Pf: 7 MS). The genetic diversity of Pv (expected heterozygosity, He ) was similar across the subpopulations for both makers: He MS = 0.68 - 0.78 (p = 0.23) and He SNP = 0.36 - 0.38 (p = 0.80). Pairwise genetic differentiation (fixation index, F ST ) was also comparable: F ST-MS = 0.04 - 0.14 and F ST-SNP = 0.03 - 0.12 (p = 0.34 - 0.85). No geographic clustering was observed with any panel. In addition, Pf genetic diversity trends ( He MS = 0 - 0.48 p = 0.03 - 1; He SNP = 0 - 0.09, p = 0.03 - 1) and pairwise F ST comparisons (F ST-MS = 0.14 - 0.65, F ST-SNP = 0.19 - 0.61, p = 0.24 - 0.83) were concordant between the panels. Similar population structure clustering was observed with both SNP and MS, highlighting one Pf subpopulation in an indigenous community. The SNP barcodes in the Pv AmpliSeq v2 Peru and Pf AmpliSeq v1 Peru assays offer comparable results to MS panels when investigating population genetics in Pv and Pv populations. Therefore, the AmpliSeq assays can efficiently characterize malaria transmission dynamics and population structure and support malaria elimination efforts in Peru.
Collapse
|
34
|
Gulhan AB, Burhans R, Harris R, Kandemir M, Haeussler M, Nekrutenko A. KegAlign: Optimizing pairwise alignments with diagonal partitioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610839. [PMID: 39282333 PMCID: PMC11398343 DOI: 10.1101/2024.09.02.610839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Our ability to generate sequencing data and assemble it into high quality complete genomes has rapidly advanced in recent years. These data promise to advance our understanding of organismal biology and answer longstanding evolutionary questions. Multiple genome alignment is a key tool in this quest. It is also the area which is lagging: today we can generate genomes faster than we can construct and update multiple alignments containing them. The bottleneck is in considerable computational time required to generate accurate pairwise alignments between divergent genomes, an unavoidable precursor to multiple alignments. This step is typically performed with lastZ, a very sensitive and yet equally slow tool. Here we describe an optimized GPU-enabled pairwise aligner KegAlign. It incorporates a new parallelization strategy, diagonal partitioning, with the latest features of modern GPUs. With KegAlign a typical human/mouse alignment can be computed in under 6 hours on a machine containing a single NVidia A100 GPU and 80 CPU cores without the need for any pre-partitioning of input sequences: a ~150× improvement over lastZ. While other pairwise aligners can complete this task in a fraction of that time, none achieves the sensitivity of KegAlign's main alignment engine, lastZ, and thus may not be suitable for comparing divergent genomes. In addition to providing the source code and a Conda package for KegAlign we also provide a Galaxy workflow that can be readily used by anyone.
Collapse
Affiliation(s)
- A Burak Gulhan
- Department of Computer Science and Engineering, Penn State University
| | - Richard Burhans
- Department of Biochemistry and Molecular Biology, Penn State University
- Center for Computational Biology and Bioinformatics, Penn State University
- The Galaxy Project, Error! Hyperlink reference not valid
| | - Robert Harris
- Center for Computational Biology and Bioinformatics, Penn State University
| | - Mahmut Kandemir
- Department of Computer Science and Engineering, Penn State University
| | | | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, Penn State University
- Center for Computational Biology and Bioinformatics, Penn State University
- The Galaxy Project, Error! Hyperlink reference not valid
| |
Collapse
|
35
|
Gasca-Pineda J, Monterrubio B, Sánchez-de la Vega G, Aguirre-Planter E, Lira-Saade R, Eguiarte LE. Conservation genomics of the wild pumpkin Cucurbita radicans in Central Mexico: The influence of a changing environment on the genetic diversity and differentiation of a rare species. JOURNAL OF PLANT RESEARCH 2024; 137:799-813. [PMID: 38977618 PMCID: PMC11393293 DOI: 10.1007/s10265-024-01552-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/02/2024] [Indexed: 07/10/2024]
Abstract
The genetic diversity found in natural populations is the result of the evolutionary forces in response to historical and contemporary factors. The environmental characteristics and geological history of Mexico promoted the evolution and diversification of plant species, including wild relatives of crops such as the wild pumpkins (Cucurbita). Wild pumpkin species are found in a variety of habitats, evidencing their capability to adapt to different environments. Despite the potential value of wild Cucurbita as a genetic reservoir for crops, there is a lack of studies on their genetic diversity. Cucurbita radicans is an endangered species threatened by habitat destruction leading to low densities in small and isolated populations. Here, we analyze Genotype by Sequencing genomic data of the wild pumpkin C. radicans to evaluate the influence of factors like isolation, demographic history, and the environment shaping the amount and distribution of its genetic variation. We analyzed 91 individuals from 14 localities along its reported distribution. We obtained 5,107 SNPs and found medium-high levels of genetic diversity and genetic structure distributed in four main geographic areas with different environmental conditions. Moreover, we found signals of demographic growth related to historical climatic shifts. Outlier loci analysis showed significant association with the environment, principally with precipitation variables. Also, the outlier loci displayed differential changes in their frequencies in response to future global climate change scenarios. Using the results of genetic structure, outlier loci and multivariate analyses of the environmental conditions, we propose priority localities for conservation that encompass most of the genetic diversity of C. radicans.
Collapse
Affiliation(s)
- Jaime Gasca-Pineda
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, Ciudad de México, 04510, México.
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México.
| | - Brenda Monterrubio
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México
| | - Guillermo Sánchez-de la Vega
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México
| | - Erika Aguirre-Planter
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, Ciudad de México, 04510, México
| | - Rafael Lira-Saade
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, Ciudad de México, 04510, México.
| |
Collapse
|
36
|
Puglisi D, Pasquariello M, Martinelli T, Paris R, De Vita P, Pecchioni N, Esposito S, Bassolino L. Genetic diversity of a Silybum marianum (L.) Gaertn. germplasm collection revealed by DNA Diversity Array Technology (DArTseq). PLoS One 2024; 19:e0308368. [PMID: 39110685 PMCID: PMC11305583 DOI: 10.1371/journal.pone.0308368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Silybum marianum (L.) Gaertn. is a multipurpose crop native to the Mediterranean and middle east regions and mainly known for the hepatoprotective properties of fruit-derived silymarin. Despite growing interest in milk thistle as a versatile crop with medicinal value, its potential in agroindustry is hindered by incomplete domestication and limited genomic knowledge, impeding the development of competitive breeding programs. The present study aimed to evaluate genetic diversity in a panel of S. marianum accessions (n = 31), previously characterized for morphological and phytochemical traits, using 5,178 polymorphic DArTseq SNP markers. The genetic structure investigated using both parametric and non-parametric approaches (e.g. PCA, AWclust, Admixture), revealed three distinctive groups reflecting geographical origins. Indeed, Pop1 grouped accessions from Central Europe and UK, Pop3 consisted mainly of accessions of Italian origin, and Pop2 included accessions from different geographical areas. Interestingly, Italian genotypes showed a divergent phenotypic distribution, particularly in fruit oleic and linoleic acid content, compared to the other two groups. Genetic differentiation among the three groups, investigated by computing pairwise fixation index (FST), confirmed a greater differentiation of Pop3 compared to other subpopulations, also based on other diversity indices (e.g. private alleles, heterozygosity). Finally, 22 markers were declared as putatively under natural selection, of which seven significantly affected some important phenotypic traits such as oleic, arachidonic, behenic and linoleic acid content. These findings suggest that these markers, and overall, the seven SNP markers identified within Pop3, could be exploited in specific breeding programs, potentially aimed at diversifying the use of milk thistle. Indeed, incorporating genetic material from Pop3 haplotypes carrying the selected loci into milk thistle breeding populations might be the basis for developing milk thistle lines with higher levels of oleic, arachidonic, and behenic acids, and lower levels of linoleic acid, paving new avenues for enhancing the nutritional and agronomic characteristics of milk thistle.
Collapse
Affiliation(s)
- Damiano Puglisi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, Palermo, Italy
| | - Marianna Pasquariello
- NBFC, National Biodiversity Future Center, Piazza Marina, Palermo, Italy
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), Bologna, Italy
| | - Tommaso Martinelli
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification (CREA-DC), Firenze, Italy
| | - Roberta Paris
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), Bologna, Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Nicola Pecchioni
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Salvatore Esposito
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Laura Bassolino
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), Bologna, Italy
| |
Collapse
|
37
|
McEvoy SL, Meyer RS, Hasenstab-Lehman KE, Guilliams CM. The reference genome of an endangered Asteraceae, Deinandra increscens subsp. villosa, endemic to the Central Coast of California. G3 (BETHESDA, MD.) 2024; 14:jkae117. [PMID: 38845594 PMCID: PMC11304951 DOI: 10.1093/g3journal/jkae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/26/2024] [Indexed: 08/09/2024]
Abstract
We present a reference genome for the federally endangered Gaviota tarplant, Deinandra increscens subsp. villosa (Madiinae, Asteraceae), an annual herb endemic to the Central California coast. Generating PacBio HiFi, Oxford Nanopore Technologies, and Dovetail Omni-C data, we assembled a haploid consensus genome of 1.67 Gb as 28.7 K scaffolds with a scaffold N50 of 74.9 Mb. We annotated repeat content in 74.8% of the genome. Long terminal repeats (LTRs) covered 44.0% of the genome with Copia families predominant at 22.9% followed by Gypsy at 14.2%. Both Gypsy and Copia elements were common in ancestral peaks of LTRs, and the most abundant element was a Gypsy element containing nested Copia/Angela sequence similarity, reflecting a complex evolutionary history of repeat activity. Gene annotation produced 33,257 genes and 68,942 transcripts, of which 99% were functionally annotated. BUSCO scores for the annotated proteins were 96.0% complete of which 77.6% was single copy and 18.4% duplicates. Whole genome duplication synonymous mutation rates of Gaviota tarplant and sunflower (Helianthus annuus) shared peaks that correspond to the last Asteraceae polyploidization event and subsequent divergence from a common ancestor at ∼27 MYA. Regions of high-density tandem genes were identified, pointing to potentially important loci of environmental adaptation in this species.
Collapse
Affiliation(s)
- Susan L McEvoy
- Department of Conservation and Research, Santa Barbara Botanic Garden, Santa Barbara, CA 93105, USA
| | - Rachel S Meyer
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - C Matt Guilliams
- Department of Conservation and Research, Santa Barbara Botanic Garden, Santa Barbara, CA 93105, USA
| |
Collapse
|
38
|
Wörheide G, Francis WR, Deister F, Krebs S, Erpenbeck D, Vargas S. The genomes of the aquarium sponges Tethya wilhelma and Tethya minuta (Porifera: Demospongiae). F1000Res 2024; 13:679. [PMID: 39193510 PMCID: PMC11347921 DOI: 10.12688/f1000research.150836.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Sponges (Phylum Porifera) are aquatic sessile metazoans found worldwide in marine and freshwater environments. They are significant in the animal tree of life as one of the earliest-branching metazoan lineages and as filter feeders play crucial ecological roles, particularly in coral reefs, but are susceptible to the effects of climate change. In the face of the current biodiversity crisis, genomic data is crucial for species conservation efforts and predicting their evolutionary potential in response to environmental changes. However, there is a limited availability of culturable sponge species with annotated high-quality genomes to further comprehensive insights into animal evolution, function, and their response to the ongoing global change. Despite the publication of a few high-quality annotated sponge genomes, there remains a gap in resources for culturable sponge species. To address this gap, we provide high quality draft genomes of the two congeneric aquarium species Tethya wilhelma and Tethya minuta, small ball-shaped demosponges that are easily maintained long-term in ex situ culture. As such, they offer promising opportunities as laboratory models to contribute to advancing our understanding of sponge biology and provide valuable resources for studying animal evolution, function, and responses to environmental challenges.
Collapse
Affiliation(s)
- Gert Wörheide
- Bayerische Staatssammlung für Paläontologie und Geologie, Staatliche Naturwissenschaftliche Sammlungen Bayerns, Munich, Bavaria, 80333, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Warren R. Francis
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Fabian Deister
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dirk Erpenbeck
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Sergio Vargas
- Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| |
Collapse
|
39
|
Kalbfleisch TS, McKay SD, Murdoch BM, Adelson DL, Almansa-Villa D, Becker G, Beckett LM, Benítez-Galeano MJ, Biase F, Casey T, Chuong E, Clark E, Clarke S, Cockett N, Couldrey C, Davis BW, Elsik CG, Faraut T, Gao Y, Genet C, Grady P, Green J, Green R, Guan D, Hagen D, Hartley GA, Heaton M, Hoyt SJ, Huang W, Jarvis E, Kalleberg J, Khatib H, Koepfi KP, Koltes J, Koren S, Kuehn C, Leeb T, Leonard A, Liu GE, Low WY, McConnell H, McRae K, Miga K, Mousel M, Neibergs H, Olagunju T, Pennell M, Petry B, Pewsner M, Phillippy AM, Pickett BD, Pineda P, Potapova T, Rachagani S, Rhie A, Rijnkels M, Robic A, Rodriguez Osorio N, Safonova Y, Schettini G, Schnabel RD, Sirpu Natesh N, Stegemiller M, Storer J, Stothard P, Stull C, Tosser-Klopp G, Traglia GM, Tuggle CK, Van Tassell CP, Watson C, Weikard R, Wimmers K, Xie S, Yang L, Smith TPL, O'Neill RJ, Rosen BD. The Ruminant Telomere-to-Telomere (RT2T) Consortium. Nat Genet 2024; 56:1566-1573. [PMID: 39103649 DOI: 10.1038/s41588-024-01835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/14/2024] [Indexed: 08/07/2024]
Abstract
Telomere-to-telomere (T2T) assemblies reveal new insights into the structure and function of the previously 'invisible' parts of the genome and allow comparative analyses of complete genomes across entire clades. We present here an open collaborative effort, termed the 'Ruminant T2T Consortium' (RT2T), that aims to generate complete diploid assemblies for numerous species of the Artiodactyla suborder Ruminantia to examine chromosomal evolution in the context of natural selection and domestication of species used as livestock.
Collapse
Affiliation(s)
| | - Stephanie D McKay
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA
| | - David L Adelson
- School of Biological Sciences, the University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - Diego Almansa-Villa
- Genomics and Bioinformatics Unit, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Gabrielle Becker
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA
| | - Linda M Beckett
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - María José Benítez-Galeano
- Genomics and Bioinformatics Unit, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Fernando Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Edward Chuong
- BioFrontiers Institute, Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Emily Clark
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Shannon Clarke
- Invermay Agricultural Centre, AgResearch Ltd, Mosgiel, New Zealand
| | - Noelle Cockett
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | | | - Brian W Davis
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Christine G Elsik
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Thomas Faraut
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, USDA ARS, Beltsville, MD, USA
| | - Carine Genet
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Patrick Grady
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Jonathan Green
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Richard Green
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Dailu Guan
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Darren Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA
| | | | - Mike Heaton
- U.S. Meat Animal Research Center, USDA ARS, Clay Center, NE, USA
| | - Savannah J Hoyt
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Erich Jarvis
- Vertebrate Genome Laboratory, the Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Jenna Kalleberg
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, the University of Wisconsin-Madison, Madison, WI, USA
| | - Klaus-Peter Koepfi
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, USA
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, USA
| | - James Koltes
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christa Kuehn
- Friedrich-Loeffler-Institute (German Federal Research Institute for Animal Health), Greifswald-Insel Riems, Germany
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - George E Liu
- Animal Genomics and Improvement Laboratory, USDA ARS, Beltsville, MD, USA
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - Hunter McConnell
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Kathryn McRae
- Invermay Agricultural Centre, AgResearch Ltd, Mosgiel, New Zealand
| | - Karen Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Biomolecular Engineering Department, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Michelle Mousel
- Animal Disease Research Unit, USDA ARS, Pullman, WA, USA
- School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Holly Neibergs
- Department of Animal Science, Washington State University, Pullman, WA, USA
| | - Temitayo Olagunju
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA
| | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Bruna Petry
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Mirjam Pewsner
- Institute of Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Adam M Phillippy
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon D Pickett
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paulene Pineda
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, Australia
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Satyanarayana Rachagani
- Veterinary Medicine and Surgery, NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Annie Robic
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Nelida Rodriguez Osorio
- Genomics and Bioinformatics Unit, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Yana Safonova
- Computer Science and Engineering Department, Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Gustavo Schettini
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | | | - Morgan Stegemiller
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA
| | - Jessica Storer
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Caleb Stull
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | | | - Germán M Traglia
- Genomics and Bioinformatics Unit, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay
| | | | | | - Corey Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Rosemarie Weikard
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Shangqian Xie
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA
| | - Liu Yang
- Animal Genomics and Improvement Laboratory, USDA ARS, Beltsville, MD, USA
| | | | - Rachel J O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, USDA ARS, Beltsville, MD, USA.
| |
Collapse
|
40
|
Schreiber M, Jayakodi M, Stein N, Mascher M. Plant pangenomes for crop improvement, biodiversity and evolution. Nat Rev Genet 2024; 25:563-577. [PMID: 38378816 PMCID: PMC7616794 DOI: 10.1038/s41576-024-00691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 02/22/2024]
Abstract
Plant genome sequences catalogue genes and the genetic elements that regulate their expression. Such inventories further research aims as diverse as mapping the molecular basis of trait diversity in domesticated plants or inquiries into the origin of evolutionary innovations in flowering plants millions of years ago. The transformative technological progress of DNA sequencing in the past two decades has enabled researchers to sequence ever more genomes with greater ease. Pangenomes - complete sequences of multiple individuals of a species or higher taxonomic unit - have now entered the geneticists' toolkit. The genomes of crop plants and their wild relatives are being studied with translational applications in breeding in mind. But pangenomes are applicable also in ecological and evolutionary studies, as they help classify and monitor biodiversity across the tree of life, deepen our understanding of how plant species diverged and show how plants adapt to changing environments or new selection pressures exerted by human beings.
Collapse
Affiliation(s)
- Mona Schreiber
- Department of Biology, University of Marburg, Marburg, Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
41
|
Sharaf A, Nesengani LT, Hayah I, Kuja JO, Mdyogolo S, Omotoriogun TC, Odogwu BA, Beedessee G, Smith RM, Barakat A, Moila AM, El Hamouchi A, Benkahla A, Boukteb A, Elmouhtadi A, Mafwila AL, Abushady AM, Elsherif AK, Ahmed B, Wairuri C, Ndiribe CC, Ebuzome C, Kinnear CJ, Ndlovu DF, Iraqi D, El Fahime E, Assefa E, Ouardi F, Belharfi FZ, Tmimi FZ, Markey FB, Radouani F, Zeukeng F, Mvumbi GL, Ganesan H, Hanachi M, Nigussie H, Charoute H, Benamri I, Mkedder I, Haddadi I, Meftah-Kadmiri I, Mubiru JF, Domelevo Entfellner JBK, Rokani JB, Ogwang J, Daiga JB, Omumbo J, Ideozu JE, Errafii K, Labuschagne K, Komi KK, Tonfack LB, Hadjeras L, Ramantswana M, Chaisi M, Botes MW, Kilian M, Kvas M, Melloul M, Chaouch M, Khyatti M, Abdo M, Phasha-Muchemenye M, Hijri M, Mediouni MR, Hassan MA, Piro M, Mwale M, Maaloum M, Mavhunga M, Olivier NA, Aminou O, Arbani O, Souiai O, Djocgoue PF, Mentag R, Zipfel RD, Tata RB, Megnekou R, Muzemil S, Paez S, Salifu SP, Kagame SP, Selka S, Edwards S, Gaouar SBS, Reda SRA, Fellahi S, Khayi S, Ayed S, Madisha T, Sahil T, Udensi OU, Ras V, Ezebuiro V, Duru VC, David X, Geberemichael Y, Tchiechoua YH, Mungloo-Dilmohamud Z, Chen Z, Happi C, Kariuki T, Ziyomo C, Djikeng A, Badaoui B, Mapholi N, Muigai A, Osuji JO, Ebenezer TE. Establishing African genomics and bioinformatics programs through annual regional workshops. Nat Genet 2024; 56:1556-1565. [PMID: 38977855 DOI: 10.1038/s41588-024-01807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/22/2024] [Indexed: 07/10/2024]
Abstract
The African BioGenome Project (AfricaBP) Open Institute for Genomics and Bioinformatics aims to overcome barriers to capacity building through its distributed African regional workshops and prioritizes the exchange of grassroots knowledge and innovation in biodiversity genomics and bioinformatics. In 2023, we implemented 28 workshops on biodiversity genomics and bioinformatics, covering 11 African countries across the 5 African geographical regions. These regional workshops trained 408 African scientists in hands-on molecular biology, genomics and bioinformatics techniques as well as the ethical, legal and social issues associated with acquiring genetic resources. Here, we discuss the implementation of transformative strategies, such as expanding the regional workshop model of AfricaBP to involve multiple countries, institutions and partners, including the proposed creation of an African digital database with sequence information relating to both biodiversity and agriculture. This will ultimately help create a critical mass of skilled genomics and bioinformatics scientists across Africa.
Collapse
Affiliation(s)
- Abdoallah Sharaf
- SequAna Core Facility, Department of Biology, University of Konstanz, Konstanz, Germany
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Lucky Tendani Nesengani
- College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Ichrak Hayah
- Laboratory of Biodiversity, Ecology, and Genome, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | | | - Sinebongo Mdyogolo
- College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Taiwo Crossby Omotoriogun
- Department of Biological Sciences, Elizade University, Ilara-Mokin, Nigeria
- A. P. Leventis Ornithological Research Institute, University of Jos, Jos, Nigeria
| | - Blessing Adanta Odogwu
- Regional Centre for Biotechnology and Bioresources Research, University of Port Harcourt, Port Harcourt, Nigeria
- South-South Zonal Centre of Excellence, National Biotechnology Development Agency, Port Harcourt, Nigeria
| | - Girish Beedessee
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - Rae Marvin Smith
- College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | | | | | - Adil El Hamouchi
- Research Department, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Alia Benkahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics-LR16IPT09, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Amal Boukteb
- Field Crops Laboratory, National Institute of Agricultural Research of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Amine Elmouhtadi
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Rabat, Morocco
| | - Antoine Lusala Mafwila
- Laboratory of Molecular Biology, Department of Basic Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Asmaa Mohammed Abushady
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
- Biotechnology School, Nile University, Giza, Egypt
| | | | - Bulbul Ahmed
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | | | | | | | - Craig J Kinnear
- South African Medical Research Council Genomics Platform, Cape Town, South Africa
| | | | - Driss Iraqi
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Rabat, Morocco
| | | | - Ermias Assefa
- Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| | - Faissal Ouardi
- Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Fatima Zohra Belharfi
- Applied Genetics in Agriculture, Ecology and Public Health Laboratory, University of Abou Bekr Belkaid Tlemcen, Tlemcen, Algeria
| | | | - Fatu Badiane Markey
- Science for Africa Foundation, Nairobi, Kenya
- Rutgers University-Newark, Newark, NJ, USA
| | - Fouzia Radouani
- Research Department, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Francis Zeukeng
- Biotechnology Centre, University of Yaoundé 1, Yaoundé, Cameroon
| | - Georges Lelo Mvumbi
- Laboratory of Molecular Biology, Department of Basic Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | | - Mariem Hanachi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics-LR16IPT09, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Helen Nigussie
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hicham Charoute
- Research Department, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Ichrak Benamri
- Research Department, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Ikram Mkedder
- Applied Genetics in Agriculture, Ecology and Public Health Laboratory, University of Abou Bekr Belkaid Tlemcen, Tlemcen, Algeria
| | - Imane Haddadi
- Applied Genetics in Agriculture, Ecology and Public Health Laboratory, University of Abou Bekr Belkaid Tlemcen, Tlemcen, Algeria
| | - Issam Meftah-Kadmiri
- Plant and Microbial Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Jackson Franco Mubiru
- Department of Breeding and Reproduction, National Animal Genetic Resources Centre and Data Bank, Entebbe, Uganda
| | | | - Joan Bayowa Rokani
- Department of Breeding and Reproduction, National Animal Genetic Resources Centre and Data Bank, Entebbe, Uganda
| | - Joel Ogwang
- Department of Breeding and Reproduction, National Animal Genetic Resources Centre and Data Bank, Entebbe, Uganda
| | | | - Judy Omumbo
- Science for Africa Foundation, Nairobi, Kenya
| | | | - Khaoula Errafii
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - Kim Labuschagne
- Foundational Biodiversity Science, South African National Biodiversity Institute, Pretoria, South Africa
| | - Komi Koukoura Komi
- Laboratoire des Sciences Biomédicales, Alimentaires et de Santé Environnementale (LaSBASE), Département des Analyses Biomédicales (AMB), Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA), Université de Lomé, Lomé, Togo
| | | | | | | | - Mamohale Chaisi
- Foundational Biodiversity Science, South African National Biodiversity Institute, Pretoria, South Africa
| | - Marietjie W Botes
- Division of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Marija Kvas
- Separations (Pty) Ltd, Johannesburg, South Africa
| | - Marouane Melloul
- National Center for Scientific and Technical Research, Rabat, Morocco
| | - Melek Chaouch
- Laboratory of Bioinformatics, Biomathematics and Biostatistics-LR16IPT09, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Meriem Khyatti
- Research Department, Institut Pasteur du Maroc, Casablanca, Morocco
| | | | | | - Mohamed Hijri
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - Mohammed Rida Mediouni
- Applied Genetics in Agriculture, Ecology and Public Health Laboratory, University of Abou Bekr Belkaid Tlemcen, Tlemcen, Algeria
| | | | - Mohammed Piro
- Veterinary Genetic Analysis Laboratory, Hassan II Agronomy and Veterinary Institute (IAV), Rabat, Morocco
| | - Monica Mwale
- Foundational Biodiversity Science, South African National Biodiversity Institute, Pretoria, South Africa
| | | | - Mudzuli Mavhunga
- Foundational Biodiversity Science, South African National Biodiversity Institute, Pretoria, South Africa
| | - Nicholas Abraham Olivier
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Oumaima Aminou
- Veterinary Genetic Analysis Laboratory, Hassan II Agronomy and Veterinary Institute (IAV), Rabat, Morocco
| | - Oumayma Arbani
- Department of Veterinary Pathology and Public Health, Hassan II Agronomy and Veterinary Institute (IAV), Rabat, Morocco
| | - Oussema Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics-LR16IPT09, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | | | - Rachid Mentag
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Rabat, Morocco
| | - Renate Dorothea Zipfel
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - Rosette Megnekou
- Biotechnology Centre, University of Yaoundé 1, Yaoundé, Cameroon
| | | | - Sadye Paez
- Department of Neurogenetics of Language, Rockefeller University, New York, NY, USA
| | - Samson Pandam Salifu
- Faculty of Bioscience, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Sarra Selka
- Applied Genetics in Agriculture, Ecology and Public Health Laboratory, University of Abou Bekr Belkaid Tlemcen, Tlemcen, Algeria
| | | | - Semir Bechir Suheil Gaouar
- Applied Genetics in Agriculture, Ecology and Public Health Laboratory, University of Abou Bekr Belkaid Tlemcen, Tlemcen, Algeria
| | | | - Siham Fellahi
- Veterinary Genetic Analysis Laboratory, Hassan II Agronomy and Veterinary Institute (IAV), Rabat, Morocco
| | - Slimane Khayi
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Rabat, Morocco
| | - Soumia Ayed
- Applied Genetics in Agriculture, Ecology and Public Health Laboratory, University of Abou Bekr Belkaid Tlemcen, Tlemcen, Algeria
| | - Thabang Madisha
- Agricultural Research Council, Biotechnology Platform, Pretoria, South Africa
| | | | | | - Verena Ras
- University of Cape Town, Cape Town, South Africa
| | - Victor Ezebuiro
- Regional Centre for Biotechnology and Bioresources Research, University of Port Harcourt, Port Harcourt, Nigeria
- South-South Zonal Centre of Excellence, National Biotechnology Development Agency, Port Harcourt, Nigeria
| | - Vincent C Duru
- Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka, Nigeria
| | | | | | - Yves H Tchiechoua
- Department of Biology, Chemistry and Pharmacy, Free University Berlin, Berlin, Germany
| | | | | | - Christian Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
| | | | | | - Appolinaire Djikeng
- College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
- International Livestock Research Institute, Nairobi, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Bouabid Badaoui
- Laboratory of Biodiversity, Ecology, and Genome, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco.
| | - Ntanganedzeni Mapholi
- College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa.
| | - Anne Muigai
- National Defence University-Kenya, Nakuru, Kenya.
- Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya.
| | - Julian O Osuji
- Regional Centre for Biotechnology and Bioresources Research, University of Port Harcourt, Port Harcourt, Nigeria.
- South-South Zonal Centre of Excellence, National Biotechnology Development Agency, Port Harcourt, Nigeria.
- Department of Plant Science and Biotechnology, University of Port Harcourt, Port Harcourt, Nigeria.
| | - ThankGod Echezona Ebenezer
- Early Cancer Institute, Department of Oncology, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
42
|
Scott AM, Kovach AI. FecalSeq enrichment with RAD Sequencing from non-invasive environmental samples holds promise for genetic monitoring of an imperiled lagomorph. Sci Rep 2024; 14:17575. [PMID: 39080335 PMCID: PMC11289273 DOI: 10.1038/s41598-024-67764-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Despite advances in genomic sequencing and bioinformatics, conservation genomics is still often hindered by a reliance on non-invasive samples. The presence of exogenous DNA and the low quantity and poor quality of DNA in non-invasive samples have been a roadblock to sequencing, thereby limiting the potential for genomic monitoring of endangered species. Recent molecular advances, such as host DNA enrichment, hold promise for facilitating sequencing from non-invasive samples. We used the FecalSeq method to enrich DNA extracted from wild-collected fecal pellets of the imperiled New England cottontail and identified SNPs from 3RAD Sequencing. We obtained SNPs from rabbit pellets, including pellets that were collected in poor environmental conditions and samples that performed poorly with microsatellites. Measures of sequencing success improved with greater amounts of starting DNA and 32% of samples generated SNP genotypes that passed quality control filtering. Genotyping error rates were high, however, and the approach was unable to consistently distinguish unique individuals or matching genotypes, while it was suitable for recovering the expected population structure. Pairing FecalSeq enrichment with RADseq is a promising low-cost method for monitoring wild populations using non-invasive samples in an environmental context, but it may be better suited for informing conservation through population genomics.
Collapse
Affiliation(s)
- Amy M Scott
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, 03824, USA.
| | - Adrienne I Kovach
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, 03824, USA
| |
Collapse
|
43
|
Kryukov K, Nakahama N, Kuraku S. Genome assembly catalog for species in the Japanese Red List: unlocking endangered biodiversity through genomic inventory. F1000Res 2024; 13:583. [PMID: 39050029 PMCID: PMC11267146 DOI: 10.12688/f1000research.149793.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Improvements in DNA sequencing technology are allowing the dramatic increase of whole genome data for a wide variety of species. Such genome sequence data can assist the monitoring of intraspecific genetic diversity, but is often lacking for threatened species. In this project, we focused on the national Red List, a catalog of extinct and threatened species, issued by the Japanese government. We combined the data included in it with the record of genome assembly in NCBI and tabulated the assembly availability of the species in the list. The combined data shows a low percentage (2.1%) of the availability of whole genome sequence data for the taxa ranked on the Japanese Red List as well as a strong bias towards mammals and birds in Animalia and vascular plants in Plantae. Our data presentation highlights potential systematic limitations in genome sequencing (e.g., budget for sequencing large genomes of amphibians) and instructs future policies including which taxon needs more effort for genome sequencing. The resultant tables are available in the original website https://treethinkers.nig.ac.jp/redlist/ and are regularly updated.
Collapse
Affiliation(s)
- Kirill Kryukov
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, 411-8540, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Naoyuki Nakahama
- Institute of Natural and Environmental Sciences, University of Hyogo, Sanda, Hyogo, 669-1546, Japan
- Division of Ecological Restoration, Museum of Nature and Human Activities, Hyogo, Sanda, Hyogo, 669-1546, Japan
| | - Shigehiro Kuraku
- Molecular Life History Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Department of Genetics, Sokendai Graduate University for Advanced Studies, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
44
|
Bezerra AMR, Di Russo E, Castiglia R. Disseminating "hidden" scientific collections: the medium and large-sized terrestrial mammals at the Museo di Anatomia Comparata "Giovanni Battista Grassi", Roma, Italy. Biodivers Data J 2024; 12:e124810. [PMID: 39015796 PMCID: PMC11250177 DOI: 10.3897/bdj.12.e124810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/03/2024] [Indexed: 07/18/2024] Open
Abstract
The dissemination of specimen data in scientific collections is a crucial step in making them available to the scientific community. However, even today, especially in some countries, little or nothing is known about the contents of the naturalistic collections of some museums. This is regrettable, especially in cases where the collections include historic specimens and endangered species. The Museum of Comparative Anatomy "Giovanni Battista Grassi", situated in Rome, Italy, houses historical anatomical and didactic collections, with specimens gathered from 1600s and almost worldwide. The collection holds 444 specimens of medium and large-sized terrestrial mammals, comprising 25 fossils, 40 skins, 186 skulls, 70 skeletons and 123 anatomical pieces, representing 63% of recent mammal orders, mainly from localities of Africa and Europe. A list of this material, indexed by the orders and families, is provided, as well as comments on the conservation status of the species. Remarkable data are summarised, including new data on a hippopotamus specimen from an extinct population and the record of three rhinoceros species from 1600s. Besides comparative anatomical studies, the Museum of Comparative Anatomy of Sapienza University emerges as a source of important material for biodiversity genomics.
Collapse
Affiliation(s)
- Alexandra M. R. Bezerra
- Museu Paraense Emilio Goeldi, Belém, BrazilMuseu Paraense Emilio GoeldiBelémBrazil
- Fiocruz/IOC, Rio de janeiro, BrazilFiocruz/IOCRio de janeiroBrazil
- Dipartimento Biologia e Biotecnologie "Charles Darwin", Università di Roma "La Sapienza", Rome, ItalyDipartimento Biologia e Biotecnologie "Charles Darwin", Università di Roma "La Sapienza"RomeItaly
| | - Edoardo Di Russo
- Dipartimento Biologia e Biotecnologie "Charles Darwin", Università di Roma "La Sapienza", Rome, ItalyDipartimento Biologia e Biotecnologie "Charles Darwin", Università di Roma "La Sapienza"RomeItaly
- Istituto Scienze Marine ISMAR, Consiglio Nazionale delle Ricerche CNR, Venice, ItalyIstituto Scienze Marine ISMAR, Consiglio Nazionale delle Ricerche CNRVeniceItaly
| | - Riccardo Castiglia
- Dipartimento Biologia e Biotecnologie "Charles Darwin", Università di Roma "La Sapienza", Rome, ItalyDipartimento Biologia e Biotecnologie "Charles Darwin", Università di Roma "La Sapienza"RomeItaly
| |
Collapse
|
45
|
Lu S, Zeng H, Xiong F, Yao M, He S. Advances in environmental DNA monitoring: standardization, automation, and emerging technologies in aquatic ecosystems. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1368-1384. [PMID: 38512561 DOI: 10.1007/s11427-023-2493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 03/23/2024]
Abstract
Environmental DNA (eDNA) monitoring, a rapidly advancing technique for assessing biodiversity and ecosystem health, offers a noninvasive approach for detecting and quantifying species from various environmental samples. In this review, a comprehensive overview of current eDNA collection and detection technologies is provided, emphasizing the necessity for standardization and automation in aquatic ecological monitoring. Furthermore, the intricacies of water bodies, from streams to the deep sea, and the associated challenges they pose for eDNA capture and analysis are explored. The paper delineates three primary eDNA survey methods, namely, bringing back water, bringing back filters, and bringing back data, each with specific advantages and constraints in terms of labor, transport, and data acquisition. Additionally, innovations in eDNA sampling equipment, including autonomous drones, subsurface samplers, and in-situ filtration devices, and their applications in monitoring diverse taxa are discussed. Moreover, recent advancements in species-specific detection and eDNA metabarcoding are addressed, highlighting the integration of novel techniques such as CRISPR-Cas and nanopore sequencing that enable precise and rapid detection of biodiversity. The implications of environmental RNA and epigenetic modifications are considered for future applications in providing nuanced ecological data. Lastly, the review stresses the critical role of standardization and automation in enhancing data consistency and comparability for robust long-term biomonitoring. We propose that the amalgamation of these technologies represents a paradigm shift in ecological monitoring, aligning with the urgent call for biodiversity conservation and sustainable management of aquatic ecosystems.
Collapse
Affiliation(s)
- Suxiang Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fan Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
- School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
46
|
Meier R, Hartop E, Pylatiuk C, Srivathsan A. Towards holistic insect monitoring: species discovery, description, identification and traits for all insects. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230120. [PMID: 38705187 PMCID: PMC11070263 DOI: 10.1098/rstb.2023.0120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/25/2024] [Indexed: 05/07/2024] Open
Abstract
Holistic insect monitoring needs scalable techniques to overcome taxon biases, determine species abundances, and gather functional traits for all species. This requires that we address taxonomic impediments and the paucity of data on abundance, biomass and functional traits. We here outline how these data deficiencies could be addressed at scale. The workflow starts with large-scale barcoding (megabarcoding) of all specimens from mass samples obtained at biomonitoring sites. The barcodes are then used to group the specimens into molecular operational taxonomic units that are subsequently tested/validated as species with a second data source (e.g. morphology). New species are described using barcodes, images and short diagnoses, and abundance data are collected for both new and described species. The specimen images used for species discovery then become the raw material for training artificial intelligence identification algorithms and collecting trait data such as body size, biomass and feeding modes. Additional trait data can be obtained from vouchers by using genomic tools developed by molecular ecologists. Applying this pipeline to a few samples per site will lead to greatly improved insect monitoring regardless of whether the species composition of a sample is determined with images, metabarcoding or megabarcoding. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Rudolf Meier
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
- Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Emily Hartop
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway
| | - Christian Pylatiuk
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Amrita Srivathsan
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
| |
Collapse
|
47
|
Pechlivanis N, Karakatsoulis G, Kyritsis K, Tsagiopoulou M, Sgardelis S, Kappas I, Psomopoulos F. Microbial co-occurrence network demonstrates spatial and climatic trends for global soil diversity. Sci Data 2024; 11:672. [PMID: 38909071 PMCID: PMC11193810 DOI: 10.1038/s41597-024-03528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024] Open
Abstract
Despite recent research efforts to explore the co-occurrence patterns of diverse microbes within soil microbial communities, a substantial knowledge-gap persists regarding global climate influences on soil microbiota behaviour. Comprehending co-occurrence patterns within distinct geoclimatic groups is pivotal for unravelling the ecological structure of microbial communities, that are crucial for preserving ecosystem functions and services. Our study addresses this gap by examining global climatic patterns of microbial diversity. Using data from the Earth Microbiome Project, we analyse a meta-community co-occurrence network for bacterial communities. This method unveils substantial shifts in topological features, highlighting regional and climatic trends. Arid, Polar, and Tropical zones show lower diversity but maintain denser networks, whereas Temperate and Cold zones display higher diversity alongside more modular networks. Furthermore, it identifies significant co-occurrence patterns across diverse climatic regions. Central taxa associated with different climates are pinpointed, highlighting climate's pivotal role in community structure. In conclusion, our study identifies significant correlations between microbial interactions in diverse climatic regions, contributing valuable insights into the intricate dynamics of soil microbiota.
Collapse
Affiliation(s)
- Nikos Pechlivanis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001, Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Georgios Karakatsoulis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001, Thessaloniki, Greece
| | - Konstantinos Kyritsis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001, Thessaloniki, Greece
| | - Maria Tsagiopoulou
- Centro Nacional de Analisis Genomico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
| | - Stefanos Sgardelis
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ilias Kappas
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001, Thessaloniki, Greece.
| |
Collapse
|
48
|
Oliveira HFM, Freire-Jr GB, Silva DC, Mata VA, Abra FD, Camargo NFD, Araujo Goebel LG, Longo GR, Silva JM, Colli GR, Domingos FMCB. Barcoding Brazilian mammals to monitor biological diversity and threats: Trends, perspectives, and knowledge gaps. ENVIRONMENTAL RESEARCH 2024; 258:119374. [PMID: 38885824 DOI: 10.1016/j.envres.2024.119374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/11/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
DNA barcoding and environmental DNA (eDNA) represent significant advances for biomonitoring the world's biodiversity and its threats. However, these methods are highly dependent on the presence of species sequences on molecular databases. Brazil is one of the world's largest and most biologically diverse countries. However, many knowledge gaps still exist for describing, identifying, and monitoring of mammalian biodiversity using molecular methods. We aimed to unravel the patterns of the presence of Brazilian mammal species on molecular databases to improve our understanding of how effectively it would be to monitor them using DNA barcoding and environmental DNA, and contribute to mammalian conservation. We foundt many gaps in molecular databases, with many taxa being poorly represented, particularly from Amazonia, the order Lagomorpha, and arboreal, gomivorous, near extinct, and illegally traded species. Moreover, our analyses revealed that species description year was the most important factor determining the probability of a species to being sequenced. Primates are the group with the highest number of species considered a priority for sequencing due to their high level of combined threats. We highlight where investments are needed to fill knowledge gaps and increase the representativity of species on molecular databases to enable a better monitoring ability of Brazilian mammals encompassing different traits using DNA barcoding and environmental DNA.
Collapse
Affiliation(s)
- Hernani Fernandes Magalhães Oliveira
- Departamento de Zoologia, Universidade Federal do Paraná - UFPR, Curitiba, Brazil; Departamento de Zoologia, Universidade de Brasília - UnB, Brasília, Brazil; Knowledge Center for Biodiversity, Belo Horizonte, MG, 31270-901, Brazil.
| | - Geraldo Brito Freire-Jr
- Departamento de Ecologia, Universidade de Brasília - UnB, Brasília, Brazil; Department of Biology, University of Nevada - UNR, Reno, USA
| | - Daiana Cardoso Silva
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso - UNEMAT, Nova Xavantina, Brazil
| | - Vanessa Alves Mata
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Vila do Conde, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Vila do Conde, Portugal
| | - Fernanda Delborgo Abra
- Smithsonian National Zoo and Conservation Biology Institute-Center for Conservation and Sustainability, Washington, DC, USA; ViaFAUNA Estudos Ambientais, São Paulo, SP, Brazil; Instituto Pró-Carnívoros, Atibaia, SP, Brazil
| | | | - L G Araujo Goebel
- Programa de Pós-graduação em Ciências Ambientais, Universidade do Estado de Mato Grosso - UNEMAT, Cáceres, Brazil
| | - Gabriela Rodrigues Longo
- Programa de Pós-graduação em Ensino de Ciências, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, Brazil
| | - Joaquim Manoel Silva
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso - UNEMAT, Nova Xavantina, Brazil
| | | | | |
Collapse
|
49
|
Bonassin L, Pârvulescu L, Boštjančić LL, Francesconi C, Paetsch J, Rutz C, Lecompte O, Theissinger K. Genomic insights into the conservation status of the Idle Crayfish Austropotamobius bihariensis Pârvulescu, 2019: low genetic diversity in the endemic crayfish species of the Apuseni Mountains. BMC Ecol Evol 2024; 24:78. [PMID: 38862896 PMCID: PMC11165767 DOI: 10.1186/s12862-024-02268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Biodiversity in freshwater ecosystems is declining due to an increased anthropogenic footprint. Freshwater crayfish are keystone species in freshwater ecosystems and play a crucial role in shaping the structure and function of their habitats. The Idle Crayfish Austropotamobius bihariensis is a native European species with a narrow distribution range, endemic to the Apuseni Mountains (Romania). Although its area is small, the populations are anthropogenically fragmented. In this context, the assessment of its conservation status is timely. RESULTS Using a reduced representation sequencing approach, we identified 4875 genomic SNPs from individuals belonging to 13 populations across the species distribution range. Subsequent population genomic analyses highlighted low heterozygosity levels, low number of private alleles and small effective population size. Our structuring analyses revealed that the genomic similarity of the populations is conserved within the river basins. CONCLUSION Genomic SNPs represented excellent tools to gain insights into intraspecific genomic diversity and population structure of the Idle Crayfish. Our study highlighted that the analysed populations are at risk due to their limited genetic diversity, which makes them extremely vulnerable to environmental alterations. Thus, our results emphasize the need for conservation measures and can be used as a baseline to establish species management programs.
Collapse
Affiliation(s)
- Lena Bonassin
- Department of Computer Science, Centre de Recherche en Biomédecine de Strasbourg, UMR 7357, University of Strasbourg, CNRS, Rue Eugène Boeckel 1, 67000, ICube, Strasbourg, France
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Institute for Environmental Sciences, Department of Molecular Ecology, Rhineland-Palatinate Technical University Kaiserslautern Landau, Fortstr. 7, 76829, Landau, Germany
| | - Lucian Pârvulescu
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Str. Pestalozzi 16A, 300115, Timisoara, Romania.
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Oituz 4, 300086, Timisoara, Romania.
| | - Ljudevit Luka Boštjančić
- Department of Computer Science, Centre de Recherche en Biomédecine de Strasbourg, UMR 7357, University of Strasbourg, CNRS, Rue Eugène Boeckel 1, 67000, ICube, Strasbourg, France
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Institute for Environmental Sciences, Department of Molecular Ecology, Rhineland-Palatinate Technical University Kaiserslautern Landau, Fortstr. 7, 76829, Landau, Germany
| | - Caterina Francesconi
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Institute for Environmental Sciences, Department of Molecular Ecology, Rhineland-Palatinate Technical University Kaiserslautern Landau, Fortstr. 7, 76829, Landau, Germany
| | - Judith Paetsch
- Department of Biogeography, University of Trier, Behringstraße 21, D-54296, Geozentrum, Trier, Germany
| | - Christelle Rutz
- Department of Computer Science, Centre de Recherche en Biomédecine de Strasbourg, UMR 7357, University of Strasbourg, CNRS, Rue Eugène Boeckel 1, 67000, ICube, Strasbourg, France
| | - Odile Lecompte
- Department of Computer Science, Centre de Recherche en Biomédecine de Strasbourg, UMR 7357, University of Strasbourg, CNRS, Rue Eugène Boeckel 1, 67000, ICube, Strasbourg, France
| | - Kathrin Theissinger
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany
| |
Collapse
|
50
|
Dutheil JY. On the estimation of genome-average recombination rates. Genetics 2024; 227:iyae051. [PMID: 38565705 PMCID: PMC11232287 DOI: 10.1093/genetics/iyae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
The rate at which recombination events occur in a population is an indicator of its effective population size and the organism's reproduction mode. It determines the extent of linkage disequilibrium along the genome and, thereby, the efficacy of both purifying and positive selection. The population recombination rate can be inferred using models of genome evolution in populations. Classic methods based on the patterns of linkage disequilibrium provide the most accurate estimates, providing large sample sizes are used and the demography of the population is properly accounted for. Here, the capacity of approaches based on the sequentially Markov coalescent (SMC) to infer the genome-average recombination rate from as little as a single diploid genome is examined. SMC approaches provide highly accurate estimates even in the presence of changing population sizes, providing that (1) within genome heterogeneity is accounted for and (2) classic maximum-likelihood optimization algorithms are employed to fit the model. SMC-based estimates proved sensitive to gene conversion, leading to an overestimation of the recombination rate if conversion events are frequent. Conversely, methods based on the correlation of heterozygosity succeed in disentangling the rate of crossing over from that of gene conversion events, but only when the population size is constant and the recombination landscape homogeneous. These results call for a convergence of these two methods to obtain accurate and comparable estimates of recombination rates between populations.
Collapse
Affiliation(s)
- Julien Y Dutheil
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön 24306, Germany
| |
Collapse
|