1
|
Wani SN, Grewal AK, Khan H, Singh TG. Elucidating the molecular symphony: unweaving the transcriptional & epigenetic pathways underlying neuroplasticity in opioid dependence and withdrawal. Psychopharmacology (Berl) 2024; 241:1955-1981. [PMID: 39254835 DOI: 10.1007/s00213-024-06684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
The persistent use of opioids leads to profound changes in neuroplasticity of the brain, contributing to the emergence and persistence of addiction. However, chronic opioid use disrupts the delicate balance of the reward system in the brain, leading to neuroadaptations that underlie addiction. Chronic cocaine usage leads to synchronized alterations in gene expression, causing modifications in the Nucleus Accumbens (NAc), a vital part of the reward system of the brain. These modifications assist in the development of maladaptive behaviors that resemble addiction. Neuroplasticity in the context of addiction involves changes in synaptic connectivity, neuronal morphology, and molecular signaling pathways. Drug-evoked neuroplasticity in opioid addiction and withdrawal represents a complicated interaction between environmental, genetic, and epigenetic factors. Identifying specific transcriptional and epigenetic targets that can be modulated to restore normal neuroplasticity without disrupting essential physiological processes is a critical consideration. The discussion in this article focuses on the transcriptional aspects of drug-evoked neuroplasticity, emphasizing the role of key transcription factors, including cAMP response element-binding protein (CREB), ΔFosB, NF-kB, Myocyte-enhancing factor 2 (MEF2), Methyl-CpG binding protein 2 (MeCP2), E2F3a, and FOXO3a. These factors regulate gene expression and lead to the neuroadaptive changes observed in addiction and withdrawal. Epigenetic regulation, which involves modifying gene accessibility by controlling these structures, has been identified as a critical component of addiction development. By unraveling these complex molecular processes, this study provides valuable insights that may pave the way for future therapeutic interventions targeting the mechanisms underlying addiction and withdrawal.
Collapse
Affiliation(s)
- Shahid Nazir Wani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Aman Pharmacy College, Dholakhera, Udaipurwati, Jhunjhunu, Rajasthan, 333307, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
2
|
Yao Z, Gan F, Zeng Y, Ren L, Zeng Y. Elucidating Cyathula Officinals' mechanism in osteoarthritis treatment: Network pharmacology and empirical evidence on anti-inflammatory actions. Heliyon 2024; 10:e27999. [PMID: 38524622 PMCID: PMC10958415 DOI: 10.1016/j.heliyon.2024.e27999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
In this study, we explored the therapeutic potential of Cyathula Officinals (CNX) in Knee Osteoarthritis (KOA) treatment. Utilizing network pharmacology and in vitro experiments, we identified active ingredients, action targets and pathways in CNX. Our analysis, integrating databases like TCMSP, SwissTarget Prediction, Genecards, CTD, STRING, and DAVID, highlighted 396 action targets and 283 disease targets, pinpointing 64 intersection genes linked to KOA. The significant involvement of the MAPK and NF-κB pathways in CNX's anti-inflammatory action was validated through qPCR, which might underlie CNX's efficacy in inhibiting chondrocyte apoptosis and IL-6 expression. These findings suggest CNX's potential in KOA management, offering insights for its clinical application.
Collapse
Affiliation(s)
- Zhicheng Yao
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China
- Shenzhen Hospital, Beijing University of Chinese Medicine, China
| | - Fengping Gan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China
| | - Yuqing Zeng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, China
| | - Litong Ren
- Shenzhen Hospital, Beijing University of Chinese Medicine, China
| | - Yirong Zeng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Department of Orthopedics, China
| |
Collapse
|
3
|
Zhao L, Tao X, Wang Q, Yu X, Dong D. Diosmetin alleviates neuropathic pain by regulating the Keap1/Nrf2/NF-κB signaling pathway. Biomed Pharmacother 2024; 170:116067. [PMID: 38150877 DOI: 10.1016/j.biopha.2023.116067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Neuropathic pain, a chronic condition with a high incidence, imposes psychological burdens on both patients and society. It is urgent to improve pain management and develop new analgesic drugs. Traditional Chinese medicine has gained popularity as a method for pain relief. Diosmetin (Dio) is mainly found in Chinese herbal medicines with effective antioxidant, anti-cancer, and anti-inflammatory properties. There are few known mechanisms underlying the effectiveness of Dio in treating neuropathic pain. However, the complete understanding of its therapeutic effect is missing. PURPOSE This study aimed to evaluate Dio's therapeutic effects on neuropathic pain models and determine its possible mechanism of action. We hypothesized that Dio may activate antioxidants and reduce inflammation, inhibit the activation of Kelch-like epichlorohydrin-associated protein 1 (Keap1) and nuclear factor-k-gene binding (NF-κB), promote the metastasis of nuclear factor erythroid 2-related factor 2 (Nrf2) and the expression of heme oxygenase 1 (HO-1), thus alleviating the neuropathic pain caused by spinal nerve ligation. METHODS Chronic nociceptive pain mouse models were established in vivo by L4 spinal nerve ligation (SNL). Different dosages of Dio (10, 50, 100 mg/kg) were intragastrically administered daily from the third day after the establishment of the SNL model. Allodynia, caused by mechanical stimuli, and hyperalgesia, caused by heat, were assessed using the paw withdrawal response frequency (PWF) and paw withdrawal latency (PWL), respectively. Cold allodynia were assessd by acetone test. RT-PCR was used to detect the content of interleukin-(IL)- 1β, IL-6 and tumor necrosis factor (TNF)-a. Immunofluorescence and western blotting were employed to assess the expression levels of Glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule (Iba1), Keap1, Nrf2, HO-1, and NF-κB p-p65 protein. RESULTS Dio administration relieved SNL-induced transient mechanical and thermal allodynia in mice. The protective effect of Dio in the SNL model was associated with its anti-inflammatory and anti-glial responses in the spinal cord. Dio inhibited both inflammatory factors and macrophage activation in the DRG. Furthermore, Dio regulated the Keap1/Nrf2/NF-κB signaling pathway. HO-1 and Nrf2 were upregulated following Dio administration, which also decreased the levels of Keap1 and NF-κB p65 protein. CONCLUSION Mice with SNL-induced neuropathic pain were therapeutically treated with Dio. Dio may protect against pain by inhibiting inflammatory responses and improved Keap1/Nrf2/NF-κB pathway. These results highlight the potential therapeutic effect of Dio for the development of new analgesic drugs.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pain, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Xueshu Tao
- Department of Pain, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Qian Wang
- Medical Oncology, Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Shenyang 110001, People's Republic of China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang 110001, People's Republic of China
| | - Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.
| |
Collapse
|
4
|
Li F, Wang X, Shi J, Wu S, Xing W, He Y. Anti-inflammatory effect of dental pulp stem cells. Front Immunol 2023; 14:1284868. [PMID: 38077342 PMCID: PMC10701738 DOI: 10.3389/fimmu.2023.1284868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Dental pulp stem cells (DPSCs) have received a lot of attention as a regenerative medicine tool with strong immunomodulatory capabilities. The excessive inflammatory response involves a variety of immune cells, cytokines, and has a considerable impact on tissue regeneration. The use of DPSCs for controlling inflammation for the purpose of treating inflammation-related diseases and autoimmune disorders such as supraspinal nerve inflammation, inflammation of the pulmonary airways, systemic lupus erythematosus, and diabetes mellitus is likely to be safer and more regenerative than traditional medicines. The mechanism of the anti-inflammatory and immunomodulatory effects of DPSCs is relatively complex, and it may be that they themselves or some of the substances they secrete regulate a variety of immune cells through inflammatory immune-related signaling pathways. Most of the current studies are still at the laboratory cellular level and animal model level, and it is believed that through the efforts of more researchers, DPSCs/SHED are expected to be transformed into excellent drugs for the clinical treatment of related diseases.
Collapse
Affiliation(s)
- FenYao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jin Shi
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - ShuTing Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - WenBo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Złotek M, Kurowska A, Herbet M, Piątkowska-Chmiel I. GLP-1 Analogs, SGLT-2, and DPP-4 Inhibitors: A Triad of Hope for Alzheimer's Disease Therapy. Biomedicines 2023; 11:3035. [PMID: 38002034 PMCID: PMC10669527 DOI: 10.3390/biomedicines11113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's is a prevalent, progressive neurodegenerative disease marked by cognitive decline and memory loss. The disease's development involves various pathomechanisms, including amyloid-beta accumulation, neurofibrillary tangles, oxidative stress, inflammation, and mitochondrial dysfunction. Recent research suggests that antidiabetic drugs may enhance neuronal survival and cognitive function in diabetes. Given the well-documented correlation between diabetes and Alzheimer's disease and the potential shared mechanisms, this review aimed to comprehensively assess the potential of new-generation anti-diabetic drugs, such as GLP-1 analogs, SGLT-2 inhibitors, and DPP-4 inhibitors, as promising therapeutic approaches for Alzheimer's disease. This review aims to comprehensively assess the potential therapeutic applications of novel-generation antidiabetic drugs, including GLP-1 analogs, SGLT-2 inhibitors, and DPP-4 inhibitors, in the context of Alzheimer's disease. In our considered opinion, antidiabetic drugs offer a promising avenue for groundbreaking developments and have the potential to revolutionize the landscape of Alzheimer's disease treatment.
Collapse
Affiliation(s)
| | | | | | - Iwona Piątkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (M.Z.); (A.K.); (M.H.)
| |
Collapse
|
6
|
Zhou F, Liu J, Xu X, Luo Y, Yang S. Albiflorin alleviation efficacy in osteoarthritis injury using in-vivo and in-vitro models. J Pharm Pharmacol 2023; 75:1332-1343. [PMID: 37403239 DOI: 10.1093/jpp/rgad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
OBJECTIVES Osteoarthritis seriously affects the daily life of people. Albiflorin (AF) has anti-inflammatory and antioxidant functions in various human diseases. This study aimed to clarify the function and mechanism of AF in osteoarthritis. METHODS The functions of AF on rat chondrocyte proliferation and apoptosis, inflammatory response, oxidative stress and extracellular matrix (ECM) degradation in rat chondrocytes induced by interleukin-1beta (IL-1β) were evaluated by Western blot, immunofluorescence, flow cytometry and enzyme-linked immunosorbent assay. The mechanism of AF on the IL-1β induced rat chondrocyte injury was investigated by multiple experiments in vitro. Meanwhile, the AF function in vivo was assessed using haematoxylin-eosin staining, Alcian blue, Safranin O/Fast green staining, immunohistochemical analysis and TUNEL assay. KEY FINDINGS Functionally, AF accelerated the rat chondrocyte proliferation and repressed cell apoptosis. Meanwhile, AF reduced the inflammatory response, oxidative stress and ECM degradation in rat chondrocytes caused by IL-1β. Mechanistically, the receptor activator of the NF-kappaB ligand (RANKL), an activator for the NF-κB signalling pathway, partially reversed the alleviating effect of AF on IL-1β-induced chondrocyte injury. Furthermore, the in-vitro results confirmed that AF exerted protective properties against osteoarthritis injury in vivo. CONCLUSION Albiflorin relieved osteoarthritis injury in rats by inactivating the NF-κB pathway.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Orthopedics & Soft Tissue, Hunan Cancer Hospital, Changsha, Hunan, P.R. China
| | - Jianfan Liu
- Department of Orthopedics & Soft Tissue, Hunan Cancer Hospital, Changsha, Hunan, P.R. China
| | - Xuezheng Xu
- Department of Orthopedics & Soft Tissue, Hunan Cancer Hospital, Changsha, Hunan, P.R. China
| | - Yi Luo
- Department of Orthopedics & Soft Tissue, Hunan Cancer Hospital, Changsha, Hunan, P.R. China
| | - Shuo Yang
- Department of Orthopedics & Soft Tissue, Hunan Cancer Hospital, Changsha, Hunan, P.R. China
| |
Collapse
|
7
|
Ma Q, Ruan H, Dai H, Yao WD. USP48/USP31 Is a Nuclear Deubiquitinase that Potently Regulates Synapse Remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558317. [PMID: 37781625 PMCID: PMC10541093 DOI: 10.1101/2023.09.19.558317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Deubiquitinases present locally at synapses regulate synaptic development, function, and plasticity. It remains largely unknown, however, whether deubiquitinases localized outside of the synapse control synapse remodeling. Here we identify ubiquitin specific protease 48 (USP48; formerly USP31) as a nuclear deubiquitinase mediating robust synapse removal. USP48 is expressed primarily during the first postnatal week in the rodent brain and is virtually restricted to nuclei, mediated by a conserved, 13-amino acid nuclear localization signal. When exogenously expressed, USP48, in a deubiquitinase and nuclear localization-dependent manner, induces striking filopodia elaboration, marked spine loss, and significantly reduced synaptic protein clustering in vitro, and erases ~70% of functional synapses in vivo. USP48 interacts with the transcription factor NF-κB, deubiquitinates NF-κB subunit p65 and promotes its stability and activation, and up-regulates NF-κB target genes known to inhibit synaptogenesis. Depleting NF-κB prevents USP48-dependent spine pruning. These findings identify a novel nucleus-enriched deubiquitinase that plays critical roles in synapse remodeling.
Collapse
Affiliation(s)
- Qi Ma
- Departments of Psychiatry and Neuroscience, State University of New York, Upstate Medical University, Syracuse, NY 13210
| | - Hongyu Ruan
- Departments of Psychiatry and Neuroscience, State University of New York, Upstate Medical University, Syracuse, NY 13210
| | - Huihui Dai
- Departments of Psychiatry and Neuroscience, State University of New York, Upstate Medical University, Syracuse, NY 13210
| | - Wei-Dong Yao
- Departments of Psychiatry and Neuroscience, State University of New York, Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
8
|
Torres-Méndez JK, Niño-Narvión J, Martinez-Santos P, Diarte-Añazco EMG, Méndez-Lara KA, Del Olmo TV, Rotllan N, Julián MT, Alonso N, Mauricio D, Camacho M, Muñoz JP, Rossell J, Julve J. Nicotinamide Prevents Diabetic Brain Inflammation via NAD+-Dependent Deacetylation Mechanisms. Nutrients 2023; 15:3083. [PMID: 37513501 PMCID: PMC10383777 DOI: 10.3390/nu15143083] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
This study investigated the effect of nicotinamide (NAM) supplementation on the development of brain inflammation and microglial activation in a mouse model of type 1 diabetes mellitus. C57BL/6J male mice, which were made diabetic with five consecutive, low-dose (55 mg/kg i.p.) streptozotocin (STZ) injections. Diabetic mice were randomly distributed in different experimental groups and challenged to different doses of NAM (untreated, NAM low-dose, LD, 0.1%; NAM high-dose, HD, 0.25%) for 25 days. A control, non-diabetic group of mice was used as a reference. The NAD+ content was increased in the brains of NAM-treated mice compared with untreated diabetic mice (NAM LD: 3-fold; NAM HD: 3-fold, p-value < 0.05). Immunohistochemical staining revealed that markers of inflammation (TNFα: NAM LD: -35%; NAM HD: -46%; p-value < 0.05) and microglial activation (IBA-1: NAM LD: -29%; NAM HD: -50%; p-value < 0.05; BDKRB1: NAM LD: -36%; NAM HD: -37%; p-value < 0.05) in brains from NAM-treated diabetic mice were significantly decreased compared with non-treated T1D mice. This finding was accompanied by a concomitant alleviation of nuclear NFκB (p65) signaling in treated diabetic mice (NFκB (p65): NAM LD: -38%; NAM HD: -53%, p-value < 0.05). Notably, the acetylated form of the nuclear NFκB (p65) was significantly decreased in the brains of NAM-treated, diabetic mice (NAM LD: -48%; NAM HD: -63%, p-value < 0.05) and inversely correlated with NAD+ content (r = -0.50, p-value = 0.03), suggesting increased activity of NAD+-dependent deacetylases in the brains of treated mice. Thus, dietary NAM supplementation in diabetic T1D mice prevented brain inflammation via NAD+-dependent deacetylation mechanisms, suggesting an increased action of sirtuin signaling.
Collapse
Affiliation(s)
| | - Julia Niño-Narvión
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia (UMU), 30120 Murcia, Spain
| | | | | | | | | | - Noemi Rotllan
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Teresa Julián
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Núria Alonso
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| | - Didac Mauricio
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Faculty of Medicine, University of Vic/Central University of Catalonia (UVIC/UCC), 08500 Vic, Spain
| | - Mercedes Camacho
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Juan Pablo Muñoz
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Joana Rossell
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Josep Julve
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| |
Collapse
|
9
|
Dueker N, Wang L, Gardener H, Gomez L, Kaur S, Beecham A, Blanton SH, Dong C, Gutierrez J, Cheung YK, Moon YP, Levin B, Wright CB, Elkind MSV, Sacco RL, Rundek T. Genome-wide association study of executive function in a multi-ethnic cohort implicates LINC01362: Results from the northern Manhattan study. Neurobiol Aging 2023; 123:216-221. [PMID: 36658081 PMCID: PMC10064578 DOI: 10.1016/j.neurobiolaging.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Executive function is a cognitive domain with sizable heritability representing higher-order cognitive abilities. Genome-wide association studies (GWAS) of executive function are sparse, particularly in populations underrepresented in medical research. We performed a GWAS on a composite measure of executive function that included measures of mental flexibility and reasoning using data from the Northern Manhattan Study, a racially and ethnically diverse cohort (N = 1077, 69% Hispanic, 17% non-Hispanic Black and 14% non-Hispanic White). Four SNPs located in the long intergenic non-protein coding RNA 1362 gene, LINC01362, on chromosome 1p31.1, were significantly associated with the composite measure of executive function in this cohort (top SNP rs2788328, ß = 0.22, p = 3.1 × 10-10). The associated SNPs have been shown to influence expression of the tubulin tyrosine ligase like 7 gene, TTLL7 and the protein kinase CAMP-activated catalytic subunit beta gene, PRKACB, in several regions of the brain involved in executive function. Together, these findings present new insight into the genetic underpinnings of executive function in an understudied population.
Collapse
Affiliation(s)
- Nicole Dueker
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA.
| | - Liyong Wang
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald, Department of Human Genetics, University of Miami, Miami, FL USA
| | - Hannah Gardener
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Sonya Kaur
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL USA; Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami, Miami FL USA
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Susan H Blanton
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald, Department of Human Genetics, University of Miami, Miami, FL USA
| | - Chuanhui Dong
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Jose Gutierrez
- Department of Neurology and the Gertrude H Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY USA
| | - Ying Kuen Cheung
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Yeseon P Moon
- Department of Neurology and the Gertrude H Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY USA
| | - Bonnie Levin
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL USA; Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami, Miami FL USA
| | - Clinton B Wright
- National Institute of Neurological Disorders and Stroke, Bethesda, MD USA
| | - Mitchell S V Elkind
- Department of Neurology and the Gertrude H Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY USA
| | - Ralph L Sacco
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL USA; Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami, Miami FL USA; Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Tatjana Rundek
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL USA; Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami, Miami FL USA; Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL USA
| |
Collapse
|
10
|
Liu XG. Normalization of Neuroinflammation: A New Strategy for Treatment of Persistent Pain and Memory/Emotional Deficits in Chronic Pain. J Inflamm Res 2022; 15:5201-5233. [PMID: 36110505 PMCID: PMC9469940 DOI: 10.2147/jir.s379093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/18/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic pain, which affects around 1/3 of the world population and is often comorbid with memory deficit and mood depression, is a leading source of suffering and disability. Studies in past decades have shown that hyperexcitability of primary sensory neurons resulting from abnormal expression of ion channels and central sensitization mediated pathological synaptic plasticity, such as long-term potentiation in spinal dorsal horn, underlie the persistent pain. The memory/emotional deficits are associated with impaired synaptic connectivity in hippocampus. Dysregulation of numerous endogenous proteins including receptors and intracellular signaling molecules is involved in the pathological processes. However, increasing knowledge contributes little to clinical treatment. Emerging evidence has demonstrated that the neuroinflammation, characterized by overproduction of pro-inflammatory cytokines and glial activation, is reliably detected in humans and animals with chronic pain, and is sufficient to induce persistent pain and memory/emotional deficits. The abnormal expression of ion channels and pathological synaptic plasticity in spinal dorsal horn and in hippocampus are resulting from neuroinflammation. The neuroinflammation is initiated and maintained by the interactions of circulating monocytes, glial cells and neurons. Obviously, unlike infectious diseases and cancer, which are caused by pathogens or malignant cells, chronic pain is resulting from alterations of cells and molecules which have numerous physiological functions. Therefore, normalization (counterbalance) but not simple inhibition of the neuroinflammation is the right strategy for treating neuronal disorders. Currently, no such agent is available in clinic. While experimental studies have demonstrated that intracellular Mg2+ deficiency is a common feature of chronic pain in animal models and supplement Mg2+ are capable of normalizing the neuroinflammation, activation of upregulated proteins that promote recovery, such as translocator protein (18k Da) or liver X receptors, has a similar effect. In this article, relevant experimental and clinical evidence is reviewed and discussed.
Collapse
Affiliation(s)
- Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
11
|
ADAR3 activates NF-κB signaling and promotes glioblastoma cell resistance to temozolomide. Sci Rep 2022; 12:13362. [PMID: 35922651 DOI: 10.1038/s41598-022-17559-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022] Open
Abstract
The RNA binding protein ADAR3 is expressed exclusively in the brain and reported to have elevated expression in tumors of patients suffering from glioblastoma compared to adjacent brain tissue. Yet, other studies have indicated that glioblastoma tumors exhibit hemizygous deletions of the genomic region encompassing ADAR3 (10p15.3). As the molecular and cellular consequences of altered ADAR3 expression are largely unknown, here we directly examined the impacts of elevated ADAR3 in a glioblastoma cell line model. Transcriptome-wide sequencing revealed 641 differentially expressed genes between control and ADAR3-expressing U87-MG glioblastoma cells. A vast majority of these genes belong to pathways involved in glioblastoma progression and are regulated by NF-κB signaling. Biochemical and molecular analysis indicated that ADAR3-expressing U87-MG cells exhibit increased NF-κB activation, and treatment with an NF-κB inhibitor abrogated the impacts of ADAR3 on gene expression. Similarly, we found that increased cell survival of ADAR3-expressing cells to temozolomide, the preferred chemotherapeutic for glioblastoma, was due to increased NF-κB activity. Aberrant constitutive NF-κB activation is a common event in glioblastoma and can impact both tumor progression and resistance to treatment. Our results suggest that elevated ADAR3 promotes NF-κB activation and a gene expression program that provides a growth advantage to glioblastoma cells.
Collapse
|
12
|
Gupta S, Guleria RS. Involvement of Nuclear Factor-κB in Inflammation and Neuronal Plasticity Associated with Post-Traumatic Stress Disorder. Cells 2022; 11:cells11132034. [PMID: 35805118 PMCID: PMC9265339 DOI: 10.3390/cells11132034] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition which develops either due to stress or witnessing a traumatic situation. PTSD is characterized by acute and chronic stress response exhibit anxiety, fear, and an increased inflammatory etiology. Inflammation contributes a critical role in several parts of the brain that control fear and flashback cognatic function. It is known that impairment of the neurological circuit leads to the development of PTSD. Evidence has suggested that dysregulation of the sympathetic nervous system and hypothalamic-pituitary adrenal (HPA) axis and inflammatory responsiveness are pivotal and a greater risk in PTSD. NF-κB, a master regulator for inflammation, has been showed to modulate memory reconsolidation and synaptic plasticity; however, NF-κB’s association with PTSD remain elusive. In this review, we provide relevant findings regarding NF-κB activity in various components of brain and describe a potential mechanism linking PTSD using preclinical and clinical models. We envisage NF-κB signaling as a crucial mediator for inflammation, cognitive function, memory restoration and behavioral actions of stress and suggest that it could be used for therapeutic intervention in PTSD.
Collapse
|
13
|
Zajicek AS, Ruan H, Dai H, Skolfield MC, Phillips HL, Burnette WJ, Javidfar B, Sun SC, Akbarian S, Yao WD. Cylindromatosis drives synapse pruning and weakening by promoting macroautophagy through Akt-mTOR signaling. Mol Psychiatry 2022; 27:2414-2424. [PMID: 35449295 PMCID: PMC9278694 DOI: 10.1038/s41380-022-01571-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/09/2022]
Abstract
The lysine-63 deubiquitinase cylindromatosis (CYLD) is long recognized as a tumor suppressor in immunity and inflammation, and its loss-of-function mutations lead to familial cylindromatosis. However, recent studies reveal that CYLD is enriched in mammalian brain postsynaptic densities, and a gain-of-function mutation causes frontotemporal dementia (FTD), suggesting critical roles at excitatory synapses. Here we report that CYLD drives synapse elimination and weakening by acting on the Akt-mTOR-autophagy axis. Mice lacking CYLD display abnormal sociability, anxiety- and depression-like behaviors, and cognitive inflexibility. These behavioral impairments are accompanied by excessive synapse numbers, increased postsynaptic efficacy, augmented synaptic summation, and impaired NMDA receptor-dependent hippocampal long-term depression (LTD). Exogenous expression of CYLD results in removal of established dendritic spines from mature neurons in a deubiquitinase activity-dependent manner. In search of underlying molecular mechanisms, we find that CYLD knockout mice display marked overactivation of Akt and mTOR and reduced autophagic flux, and conversely, CYLD overexpression potently suppresses Akt and mTOR activity and promotes autophagy. Consequently, abrogating the Akt-mTOR-autophagy signaling pathway abolishes CYLD-induced spine loss, whereas enhancing autophagy in vivo by the mTOR inhibitor rapamycin rescues the synaptic pruning and LTD deficits in mutant mice. Our findings establish CYLD, via Akt-mTOR signaling, as a synaptic autophagy activator that exerts critical modulations on synapse maintenance, function, and plasticity.
Collapse
Affiliation(s)
- Alexis S Zajicek
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Neuroscience Graduate Program, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Hongyu Ruan
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Huihui Dai
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mary C Skolfield
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Neuroscience Graduate Program, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Hannah L Phillips
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Neuroscience Graduate Program, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Wendi J Burnette
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Neuroscience Graduate Program, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Behnam Javidfar
- Friedman Brain Institute, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shao-Cong Sun
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wei-Dong Yao
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
- Neuroscience Graduate Program, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
- Harvard Medical School, New England Primate Research Center, Southborough, MA, USA.
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
14
|
Tendulkar S, Hegde S, Garg L, Thulasidharan A, Kaduskar B, Ratnaparkhi A, Ratnaparkhi GS. Caspar, an adapter for VAPB and TER94, modulates the progression of ALS8 by regulating IMD/NFκB mediated glial inflammation in a drosophila model of human disease. Hum Mol Genet 2022; 31:2857-2875. [PMID: 35377453 PMCID: PMC9433731 DOI: 10.1093/hmg/ddac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, late-onset, progressive motor neurodegenerative disorder. A key pathological feature of the disease is the presence of heavily ubiquitinated protein inclusions. Both the unfolded protein response and the ubiquitin–proteasome system appear significantly impaired in patients and animal models of ALS. We have studied cellular and molecular mechanisms involved in ALS using a vesicle-associated membrane protein-associated protein B (VAPB/ALS8) Drosophila model [Moustaqim-Barrette, A., Lin, Y.Q., Pradhan, S., Neely, G.G., Bellen, H.J. and Tsuda, H. (2014) The ALS 8 protein, VAP, is required for ER protein quality control. Hum. Mol. Genet., 23, 1975–1989], which mimics many systemic aspects of the human disease. Here, we show that VAPB, located on the cytoplasmic face of the endoplasmic reticulum membrane, interacts with Caspar, an orthologue of human fas associated factor 1 (FAF1). Caspar, in turn, interacts with transitional endoplasmic reticulum ATPase (TER94), a fly orthologue of ALS14 (VCP/p97, valosin-containing protein). Caspar overexpression in the glia extends lifespan and also slows the progression of motor dysfunction in the ALS8 disease model, a phenomenon that we ascribe to its ability to restrain age-dependent inflammation, which is modulated by Relish/NFκB signalling. Caspar binds to VAPB via an FFAT motif, and we find that Caspar’s ability to negatively regulate NFκB signalling is not dependent on the VAPB:Caspar interaction. We hypothesize that Caspar is a key molecule in the pathogenesis of ALS. The VAPB:Caspar:TER94 complex appears to be a candidate for regulating both protein homeostasis and NFκB signalling, with our study highlighting a role for Caspar in glial inflammation. We project human FAF1 as an important protein target to alleviate the progression of motor neuron disease.
Collapse
Affiliation(s)
- Shweta Tendulkar
- Indian Institute of Science Education & Research (IISER) Pune 411008, India
| | - Sushmitha Hegde
- Indian Institute of Science Education & Research (IISER) Pune 411008, India
| | - Lovleen Garg
- Indian Institute of Science Education & Research (IISER) Pune 411008, India
| | | | | | | | | |
Collapse
|
15
|
Role of miRNAs in diabetic neuropathy: mechanisms and possible interventions. Mol Neurobiol 2022; 59:1836-1849. [PMID: 35023058 DOI: 10.1007/s12035-021-02662-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
Accelerating cases of diabetes worldwide have given rise to higher incidences of diabetic complications. MiRNAs, a much-explored class of non-coding RNAs, play a significant role in the pathogenesis of diabetes mellitus by affecting insulin release, β-cell proliferation, and dysfunction. Besides, disrupted miRNAs contribute to various complications, diabetic retinopathy, nephropathy, and neuropathy as well as severe conditions like diabetic foot. MiRNAs regulate various processes involved in diabetic complications like angiogenesis, vascularization, inflammations, and various signaling pathways like PI3K, MAPK, SMAD, and NF-KB signaling pathways. Diabetic neuropathy is the most common diabetic complication, characterized mainly by pain and numbness, especially in the legs and feet. MiRNAs implicated in diabetic neuropathy include mir-9, mir-106a, mir-146a, mir-182, miR-23a and b, miR-34a, and miR-503. The diabetic foot is the most common diabetic neuropathy, often leading to amputations. Mir-203, miR-23c, miR-145, miR-29b and c, miR-126, miR-23a and b, miR-503, and miR-34a are associated with diabetic foot. This review has been compiled to summarize miRNA involved in initiation, progression, and miRNAs affecting various signaling pathways involved in diabetic neuropathy including the diabetic foot. Besides, potential applications of miRNAs as biomarkers and therapeutic targets in this microvascular complication will also be discussed.
Collapse
|
16
|
Zhang J, Mai CL, Xiong Y, Lin ZJ, Jie YT, Mai JZ, Liu C, Xie MX, Zhou X, Liu XG. The Causal Role of Magnesium Deficiency in the Neuroinflammation, Pain Hypersensitivity and Memory/Emotional Deficits in Ovariectomized and Aged Female Mice. J Inflamm Res 2021; 14:6633-6656. [PMID: 34908863 PMCID: PMC8665878 DOI: 10.2147/jir.s330894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose Postmenopausal women often suffer from chronic pain, memory decline and mood depression. The mechanisms underlying the neuronal disorders are not fully understood, and effective treatment is still lacking. Methods Oral administration of magnesium-L-threonate was tested to treat the neuronal disorders in ovariectomized and aged female mice. The pain hypersensitivity, memory function and depression-like behaviors were measured with a set of behavioral tests. Western blots, immunochemistry and in situ hybridization were used to assess molecular changes. Results Chronic oral administration of magnesium-L-threonate substantially prevented or reversed the chronic pain and memory/emotional deficits in both ovariectomized and aged female mice. We found that phospho-p65, an active form of nuclear factor-kappaB, tumor necrosis factor-alpha and interleukin-1 beta were significantly upregulated in the neurons of dorsal root ganglion, spinal dorsal horn and hippocampus in ovariectomized and aged mice. The microglia and astrocytes were activated in spinal dorsal horn and hippocampus. Calcitonin gene–related peptide, a marker for peptidergic C-fibers, was upregulated in dorsal horn, which is associated with potentiation of C-fiber-mediated synaptic transmission in the model mice. In parallel with neuroinflammation and synaptic potentiation, free Mg2+ levels in plasma, cerebrospinal fluid and in dorsal root ganglion neurons were significantly reduced. Oral magnesium-L-threonate normalized the neuroinflammation, synaptic potentiation and Mg2+ deficiency, but did not affect the estrogen decline in ovariectomized and aged mice. Furthermore, in cultured dorsal root ganglion neurons, estrogen at physiological concentration elevated intracellular Mg2+, and downregulated phospho-p65, tumor necrosis factor-alpha and interleukin-1 beta exclusively in the presence of extracellular Mg2+. Conclusion Estrogen decline in menopause may cause neuroinflammation by reducing intracellular Mg2+ in neurons, leading to chronic pain, memory/emotional deficits. Supplement Mg2+ by oral magnesium-L-threonate may be a novel approach for treating menopause-related neuronal disorders.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,Guangdong Cardiovascular Institute, Guangzhou, 510080, People's Republic of China
| | - Chun-Lin Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Ying Xiong
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Zhen-Jia Lin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Ying-Tao Jie
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Jie-Zhen Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Chong Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China
| | - Xin Zhou
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,Guangdong Cardiovascular Institute, Guangzhou, 510080, People's Republic of China
| | - Xian-Guo Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Department of Anesthesiology, Guangdong Second Provincial Central Hospital, Guangzhou, 510317, People's Republic of China.,Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
17
|
|
18
|
Mostafizar M, Cortes-Pérez C, Snow W, Djordjevic J, Adlimoghaddam A, Albensi BC. Challenges with Methods for Detecting and Studying the Transcription Factor Nuclear Factor Kappa B (NF-κB) in the Central Nervous System. Cells 2021; 10:1335. [PMID: 34071243 PMCID: PMC8228352 DOI: 10.3390/cells10061335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
The transcription factor nuclear factor kappa B (NF-κB) is highly expressed in almost all types of cells. NF-κB is involved in many complex biological processes, in particular in immunity. The activation of the NF-κB signaling pathways is also associated with cancer, diabetes, neurological disorders and even memory. Hence, NF-κB is a central factor for understanding not only fundamental biological presence but also pathogenesis, and has been the subject of intense study in these contexts. Under healthy physiological conditions, the NF-κB pathway promotes synapse growth and synaptic plasticity in neurons, while in glia, NF-κB signaling can promote pro-inflammatory responses to injury. In addition, NF-κB promotes the maintenance and maturation of B cells regulating gene expression in a majority of diverse signaling pathways. Given this, the protein plays a predominant role in activating the mammalian immune system, where NF-κB-regulated gene expression targets processes of inflammation and host defense. Thus, an understanding of the methodological issues around its detection for localization, quantification, and mechanistic insights should have a broad interest across the molecular neuroscience community. In this review, we summarize the available methods for the proper detection and analysis of NF-κB among various brain tissues, cell types, and subcellular compartments, using both qualitative and quantitative methods. We also summarize the flexibility and performance of these experimental methods for the detection of the protein, accurate quantification in different samples, and the experimental challenges in this regard, as well as suggestions to overcome common challenges.
Collapse
Affiliation(s)
- Marina Mostafizar
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Claudia Cortes-Pérez
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Wanda Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Jelena Djordjevic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Aida Adlimoghaddam
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
| | - Benedict C. Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB R2H 2A6, Canada; (M.M.); (C.C.-P.); (W.S.); (J.D.); (A.A.)
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
19
|
Jover-Mengual T, Hwang JY, Byun HR, Court-Vazquez BL, Centeno JM, Burguete MC, Zukin RS. The Role of NF-κB Triggered Inflammation in Cerebral Ischemia. Front Cell Neurosci 2021; 15:633610. [PMID: 34040505 PMCID: PMC8141555 DOI: 10.3389/fncel.2021.633610] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Cerebral ischemia is a devastating disease that affects many people worldwide every year. The neurodegenerative damage as a consequence of oxygen and energy deprivation, to date, has no known effective treatment. The ischemic insult is followed by an inflammatory response that involves a complex interaction between inflammatory cells and molecules which play a role in the progression towards cell death. However, there is presently a matter of controversy over whether inflammation could either be involved in brain damage or be a necessary part of brain repair. The inflammatory response is triggered by inflammasomes, key multiprotein complexes that promote secretion of pro-inflammatory cytokines. An early event in post-ischemic brain tissue is the release of certain molecules and reactive oxygen species (ROS) from injured neurons which induce the expression of the nuclear factor-kappaB (NF-κB), a transcription factor involved in the activation of the inflammasome. There are conflicting observations related to the role of NF-κB. While some observe that NF-κB plays a damaging role, others suggest it to be neuroprotective in the context of cerebral ischemia, indicating the need for additional investigation. Here we discuss the dual role of the major inflammatory signaling pathways and provide a review of the latest research aiming to clarify the relationship between NF-κB mediated inflammation and neuronal death in cerebral ischemia.
Collapse
Affiliation(s)
- Teresa Jover-Mengual
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States.,Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe-Universidad de Valencia, Valencia, Spain.,Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - Jee-Yeon Hwang
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States.,Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, United States
| | - Hyae-Ran Byun
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Brenda L Court-Vazquez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - José M Centeno
- Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - María C Burguete
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe-Universidad de Valencia, Valencia, Spain.,Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
20
|
Rasheed M, Liang J, Wang C, Deng Y, Chen Z. Epigenetic Regulation of Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2021; 22:4956. [PMID: 34066949 PMCID: PMC8125491 DOI: 10.3390/ijms22094956] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation is one of the most significant factors involved in the initiation and progression of Parkinson's disease. PD is a neurodegenerative disorder with a motor disability linked with various complex and diversified risk factors. These factors trigger myriads of cellular and molecular processes, such as misfolding defective proteins, oxidative stress, mitochondrial dysfunction, and neurotoxic substances that induce selective neurodegeneration of dopamine neurons. This neuronal damage activates the neuronal immune system, including glial cells and inflammatory cytokines, to trigger neuroinflammation. The transition of acute to chronic neuroinflammation enhances the susceptibility of inflammation-induced dopaminergic neuron damage, forming a vicious cycle and prompting an individual to PD development. Epigenetic mechanisms recently have been at the forefront of the regulation of neuroinflammatory factors in PD, proposing a new dawn for breaking this vicious cycle. This review examined the core epigenetic mechanisms involved in the activation and phenotypic transformation of glial cells mediated neuroinflammation in PD. We found that epigenetic mechanisms do not work independently, despite being coordinated with each other to activate neuroinflammatory pathways. In this regard, we attempted to find the synergic correlation and contribution of these epigenetic modifications with various neuroinflammatory pathways to broaden the canvas of underlying pathological mechanisms involved in PD development. Moreover, this study highlighted the dual characteristics (neuroprotective/neurotoxic) of these epigenetic marks, which may counteract PD pathogenesis and make them potential candidates for devising future PD diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | - Zixuan Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (M.R.); (J.L.); (C.W.); (Y.D.)
| |
Collapse
|
21
|
Bialek K, Czarny P, Wigner P, Synowiec E, Barszczewska G, Bijak M, Szemraj J, Niemczyk M, Tota-Glowczyk K, Papp M, Sliwinski T. Chronic Mild Stress and Venlafaxine Treatment Were Associated with Altered Expression Level and Methylation Status of New Candidate Inflammatory Genes in PBMCs and Brain Structures of Wistar Rats. Genes (Basel) 2021; 12:genes12050667. [PMID: 33946816 PMCID: PMC8146372 DOI: 10.3390/genes12050667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023] Open
Abstract
Preclinical studies conducted to date suggest that depression could be elicited by the elevated expression of proinflammatory molecules: these play a key role in the mediation of neurochemical, neuroendocrine and behavioral changes. Thus, this study investigates the effect of chronic mild stress (CMS) and administration of venlafaxine (SSRI) on the expression and methylation status of new target inflammatory genes: TGFA, TGFB, IRF1, PTGS2 and IKBKB, in peripheral blood mononuclear cells (PMBCs) and in selected brain structures of rats. Adult male Wistar rats were subjected to the CMS and further divided into matched subgroups to receive vehicle or venlafaxine. TaqMan gene expression assay and methylation-sensitive high-resolution melting (MS-HRM) were used to evaluate the expression of the genes and the methylation status of their promoters, respectively. Our results indicate that both CMS and chronic treatment with venlafaxine were associated with changes in expression of the studied genes and their promoter methylation status in PMBCs and the brain. Moreover, the effect of antidepressant administration clearly differed between brain structures. Summarizing, our results confirm at least a partial association between TGFA, TGFB, IRF1, PTGS2 and IKBKB and depressive disorders.
Collapse
Affiliation(s)
- Katarzyna Bialek
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland; (P.C.); (J.S.)
| | - Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
| | - Gabriela Barszczewska
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland; (P.C.); (J.S.)
| | - Monika Niemczyk
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (M.N.); (K.T.-G.); (M.P.)
| | - Katarzyna Tota-Glowczyk
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (M.N.); (K.T.-G.); (M.P.)
| | - Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (M.N.); (K.T.-G.); (M.P.)
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
- Correspondence: ; Tel.: +48-42-635-44-86; Fax: +48-42-635-44-84
| |
Collapse
|
22
|
Källstig E, McCabe BD, Schneider BL. The Links between ALS and NF-κB. Int J Mol Sci 2021; 22:3875. [PMID: 33918092 PMCID: PMC8070122 DOI: 10.3390/ijms22083875] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease wherein motor neuron degeneration leads to muscle weakness, progressive paralysis, and death within 3-5 years of diagnosis. Currently, the cause of ALS is unknown but, as with several neurodegenerative diseases, the potential role of neuroinflammation has become an increasingly popular hypothesis in ALS research. Indeed, upregulation of neuroinflammatory factors have been observed in both ALS patients and animal models. One such factor is the inflammatory inducer NF-κB. Besides its connection to inflammation, NF-κB activity can be linked to several genes associated to familial forms of ALS, and many of the environmental risk factors of the disease stimulate NF-κB activation. Collectively, this has led many to hypothesize that NF-κB proteins may play a role in ALS pathogenesis. In this review, we discuss the genetic and environmental connections between NF-κB and ALS, as well as how this pathway may affect different CNS cell types, and finally how this may lead to motor neuron degeneration.
Collapse
Affiliation(s)
| | | | - Bernard L. Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland; (E.K.); (B.D.M.)
| |
Collapse
|
23
|
Li X, Ye Z, Guo Q, Wang E, Pan Y. PDTC ameliorates neuropathic pain by inhibiting microglial activation <em>via</em> blockage of the TNFα-CX3CR1 pathway. Eur J Histochem 2021; 65:3184. [PMID: 33728865 PMCID: PMC7970247 DOI: 10.4081/ejh.2021.3184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/18/2021] [Indexed: 11/22/2022] Open
Abstract
Previous studies have suggested that pyrrolidine dithiocarbamate (PDTC), a nuclear factor κB (NF-κB) inhibitor, play a role in deterring nerve injury-induced neuropathic pain (NP) The activation of NF-κB pathway may contribute to spinal microglial activation, CX3CR1 and tumor necrosis factor-alpha (TNF-a) up-regulation. The aim of this study was to clarify whether PDTC could inhibit the development of neuropathic pain via decreasing TNF-a-induced CX3CR1 up-regulation. Sprague-Dawley rats were randomly divided into sham group and NP group. Rats in each group were treated with intrathecal infusion of PDTC (100 or 1000 pmol/d) or saline. The sciatic nerve chronic constriction injury (CCI) model was used to induce NP in rats. Mechanical stimuli and radiant heat were used to evaluate mechanical allodynia and thermal hyperalgesia. Spinal microglial marker OX42 and TNF-a were detected by immunohistochemistry. In vitro BV-2 microglia activation was induced by TNF-a incubation, and the levels of CX3CR1 were assessed by Western blot and reverse transcription-polymerase chain reaction. Pain behavior and immunohistochemistry results showed that intrathecal infusion of PDTC at 100 or 1000 pmol/d prevented the development of mechanical and thermal hyperalgesia, spinal microglial activation and TNF-a expression induced by sciatic nerve CCI in rats. In vitro experiment results showed that PDTC inhibited the TNF-a-induced CX3CR1 up-regulation in BV-2 microglial cells. In conclusion, intrathecal infusion of PDTC could attenuate the pain-related behaviors induced by sciatic nerve CCI through suppressing the spinal microglia activation and TNF-a up-regulation in rats. The NF-κB activation might be responsible for TNF-a-induced CX3CR1 up-regulation in microglia.
Collapse
Affiliation(s)
- Xilei Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan.
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan.
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan.
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan.
| | - Yundan Pan
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan.
| |
Collapse
|
24
|
Woods C, Marques-Lopes J, Contoreggi NH, Milner TA, Pickel VM, Wang G, Glass MJ. Tumor Necrosis Factor α Receptor Type 1 Activation in the Hypothalamic Paraventricular Nucleus Contributes to Glutamate Signaling and Angiotensin II-Dependent Hypertension. J Neurosci 2021; 41:1349-1362. [PMID: 33303682 PMCID: PMC7888211 DOI: 10.1523/jneurosci.2360-19.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
There are significant neurogenic and inflammatory influences on blood pressure, yet the role played by each of these processes in the development of hypertension is unclear. Tumor necrosis factor α (TNFα) has emerged as a critical modulator of blood pressure and neural plasticity; however, the mechanism by which TNFα signaling contributes to the development of hypertension is uncertain. We present evidence that following angiotensin II (AngII) infusion the TNFα type 1 receptor (TNFR1) plays a key role in heightened glutamate signaling in the hypothalamic paraventricular nucleus (PVN), a key central coordinator of blood pressure control. Fourteen day administration of a slow-pressor dose of AngII in male mice was associated with transcriptional and post-transcriptional (increased plasma membrane affiliation) regulation of TNFR1 in the PVN. Further, TNFR1 was shown to be critical for elevated NMDA-mediated excitatory currents in sympathoexcitatory PVN neurons following AngII infusion. Finally, silencing PVN TNFR1 prevented the increase in systolic blood pressure induced by AngII. These findings indicate that TNFR1 modulates a cellular pathway involving an increase in NMDA-mediated currents in the PVN following AngII infusion, suggesting a mechanism whereby TNFR1 activation contributes to hypertension via heightened hypothalamic glutamate-dependent signaling.SIGNIFICANCE STATEMENT Inflammation is critical for the emergence of hypertension, yet the mechanisms by which inflammatory mediators contribute to this dysfunction are not clearly defined. We show that tumor necrosis factor α receptor 1 (TNFR1) in the paraventricular hypothalamic nucleus (PVN), a critical neuroregulator of cardiovascular function, plays an important role in the development of hypertension in mice. In the PVN, TNFR1 expression and plasma membrane localization are upregulated during hypertension induced by angiotensin II (AngII). Further, TNFR1 activation was essential for NMDA signaling and the heightening NMDA currents during hypertension. Finally, TNFR1 silencing in the PVN inhibits elevated blood pressure induced by AngII. These results point to a critical role for hypothalamic TNFR1 signaling in hypertension.
Collapse
Affiliation(s)
- Clara Woods
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065
| | - Virginia M Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
25
|
Muniz Santana Bastos E, Bispo da Silva A, Cerqueira Coelho PL, Pereira Borges JM, Amaral da Silva VD, Moreau da Cunha VH, Costa SL. Anti-inflammatory activity of Jatropha curcas L. in brain glial cells primary cultures. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113201. [PMID: 32814081 DOI: 10.1016/j.jep.2020.113201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jatropha curcas L. (Euphorbiaceae), a medicinal plant known in Brazil as "Pinhão Manso", is highly adaptable, being cultivated in different tropical and subtropical regions of the world. Antimicrobial, antioxidant and antiinflammatory activities have been attributed to different parts of the plant. In the central nervous sytem (CNS), neuroinflammation is mediated by glial cells, mainly by astrocytes and microglia, a process that plays an important role in neurodegenerative diseases and other CNS disorders. In this study, we investigated the anti-inflammatory activity of the methanolic extract obtained from the leaves of J. curcas L. (MEJc) in primary cultures of glial cells submited to inflammatory stimulus. MATERIALS AND METHODS Primary cultures of glial cells obtained from the cerebral cortex of neonate Wistar rats were treated with MEJc (0.1-50,000 μg mL-1) and its fractions (FnJc) (0.1 μg mL-1) with or without lipopolysaccharide of Escherichia coli (LPS) (1 μg mL-1). Cell viability was determined with MTT test. Modifications in glial cell morphology were investigated by means of phase contrast microscopy and May-Grünwald staining. The reactivity of astrocytes and microglia were investigated with immunocytochemistry for GFAP, Iba1 and transcription factor NF-kB, as well as with Greiss reaction to determine the nitric oxide (NO) production. RESULTS MEJc at 0.1-1000 μg mL-1 was non-toxic to glial cells and the DE50 was 10.794 μg mL-1. The treatment with LPS induced the activation of astrocytes and microglia marked by morphological modifications and changes in the expression of GFAP and Iba1, as well as the increase in NF-kB expression and NO production. Treatment with MEJc inhibited the morphological modifications, changes in GFAP and Iba1 expression, and the increase in NF-kB and NO production induced by LPS. CONCLUSION This study demonstrates that the MEJc and its fractions modulate inflammatory response of astrocytes and microglia to LPS and may be considered as a potential therapeutic strategy for neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Eduardo Muniz Santana Bastos
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia - Institute of Health Sciences, 40100-902, Salvador, BA, Brazil; Department of Biotechnology, Institute of Health Sciences, Federal University of Bahia, 40100-902, Salvador, BA, Brazil
| | - Alessandra Bispo da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia - Institute of Health Sciences, 40100-902, Salvador, BA, Brazil
| | - Paulo Lucas Cerqueira Coelho
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia - Institute of Health Sciences, 40100-902, Salvador, BA, Brazil
| | - Julita Maria Pereira Borges
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia - Institute of Health Sciences, 40100-902, Salvador, BA, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia - Institute of Health Sciences, 40100-902, Salvador, BA, Brazil
| | - Vitor Hugo Moreau da Cunha
- Department of Biotechnology, Institute of Health Sciences, Federal University of Bahia, 40100-902, Salvador, BA, Brazil.
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Federal University of Bahia - Institute of Health Sciences, 40100-902, Salvador, BA, Brazil.
| |
Collapse
|
26
|
Remodeling without destruction: non-proteolytic ubiquitin chains in neural function and brain disorders. Mol Psychiatry 2021; 26:247-264. [PMID: 32709994 PMCID: PMC9229342 DOI: 10.1038/s41380-020-0849-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022]
Abstract
Ubiquitination is a fundamental posttranslational protein modification that regulates diverse biological processes, including those in the CNS. Several topologically and functionally distinct polyubiquitin chains can be assembled on protein substrates, modifying their fates. The classical and most prevalent polyubiquitin chains are those that tag a substrate to the proteasome for degradation, which has been established as a major mechanism driving neural circuit deconstruction and remodeling. In contrast, proteasome-independent non-proteolytic polyubiquitin chains regulate protein scaffolding, signaling complex formation, and kinase activation, and play essential roles in an array of signal transduction processes. Despite being a cornerstone in immune signaling and abundant in the mammalian brain, these non-proteolytic chains are underappreciated in neurons and synapses in the brain. Emerging studies have begun to generate exciting insights about some fundamental roles played by these non-degradative chains in neuronal function and plasticity. In addition, their roles in a number of brain diseases are being recognized. In this article, we discuss recent advances on these nonconventional ubiquitin chains in neural development, function, plasticity, and related pathologies.
Collapse
|
27
|
Bochukova EG. Transcriptomics of the Prader-Willi syndrome hypothalamus. HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:369-379. [PMID: 34238471 DOI: 10.1016/b978-0-12-820683-6.00027-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prader-Willi syndrome (PWS) is a complex neurodevelopmental disorder, arising from a loss of paternity expressed genetic material on the imprinted chromosome locus 15q11-q13. Despite increasing clarity on the underlying genetic defects, the molecular basis of the condition remains poorly understood. Hypothalamic dysfunction is widely recognized as the basis of the core symptoms of PWS, which include a deficiency in growth hormone and reproductive hormones, circadian rhythm abnormalities, and a lack of satiety, leading to an extreme obesity, among others. Genome-wide gene expression analysis (transcriptomics) offers an unbiased interrogation of complex disease pathogenesis and a potential window into the dysregulated pathways involved in disease. In this chapter, we review the findings from recent work investigating the PWS hypothalamic transcriptome, discuss the significance of the findings in relation to the clinical presentation and molecular underpinnings of PWS, and highlight future research directions.
Collapse
Affiliation(s)
- Elena G Bochukova
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
28
|
Eskandari N, Boroujeni ME, Abdollahifar MA, Piryaei A, Khodagholi F, Mirbehbahani SH, Siroosi S, Moghaddam MH, Aliaghaei A, Sadeghi Y. Transplantation of human dental pulp stem cells compensates for striatal atrophy and modulates neuro-inflammation in 3-nitropropionic acid rat model of Huntington's disease. Neurosci Res 2020; 170:133-144. [PMID: 33359180 DOI: 10.1016/j.neures.2020.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/09/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Stem cell-based therapy has recently offered a promising alternative for the remedy of neurodegenerative disorders like Huntington's disease (HD). Herein, we investigated the potential ameliorative effects of implantation of dental pulp stem cells (DPSCs) in 3-nitropropionic acid (3-NP) rat models of HD. In this regard, human DPSCs were isolated, culture-expanded and implanted in rats lesioned with 3-NP. Post-transplantation examinations revealed that DPSCs were able to survive and augment motor skills and muscle activity. Histological analysis showed DPSCs treatment hampered the shrinkage of the striatum along with the inhibition of gliosis and microgliosis in the striatum of 3-NP rat models. We also detected the downregulation of Caspase-3 and pro-inflammatory cytokines such as TNF and IL-1β upon DPSCs grafting. Overall, these findings imply that the grafting of DPSCs could repair motor-skill impairment and induce neurogenesis, probably through the secretion of neurotrophic factors and the modulation of neuroinflammatory response in HD animal models.
Collapse
Affiliation(s)
- Neda Eskandari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Eskandarian Boroujeni
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mohammad Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shokoofeh Siroosi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Yousef Sadeghi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Anatomy & Neuroscience, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
29
|
Sun H, Ding H, Shi Y, Li C, Jin H, Yang X, Chen Z, Tian P, Zhu J, Sun H. Exogenous Hydrogen Sulfide Within the Nucleus Ambiguus Inhibits Gastrointestinal Motility in Rats. Front Physiol 2020; 11:545184. [PMID: 33013478 PMCID: PMC7516268 DOI: 10.3389/fphys.2020.545184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/21/2020] [Indexed: 11/13/2022] Open
Abstract
Hydrogen sulfide (H2S) is a neuromodulator in the central nervous system. However, the physiological role of H2S in the nucleus ambiguus (NA) has rarely been reported. This research aimed to elucidate the role of H2S in the regulation of gastrointestinal motility in rats. Male Wistar rats were randomly assigned to sodium hydrosulfide (NaHS; 4 and 8 nmol) groups, physiological saline (PS) group, capsazepine (10 pmol) + NaHS (4 nmol) group, L703606 (4 nmol) + NaHS (4 nmol) group, and pyrrolidine dithiocarbamate (PDTC, 4 nmol) + NaHS (4 nmol) group. Gastrointestinal motility curves before and after the injection were recorded using a latex balloon attached with a pressure transducer, which was introduced into the pylorus through gastric fundus. The results demonstrated that NaHS (4 and 8 nmol), an exogenous H2S donor, remarkably suppressed gastrointestinal motility in the NA of rats (P < 0.01). The suppressive effect of NaHS on gastrointestinal motility could be prevented by capsazepine, a transient receptor potential vanilloid 1 (TRPV1) antagonist, and PDTC, a NF-κB inhibitor. However, the same amount of PS did not induce significant changes in gastrointestinal motility (P > 0.05). Our findings indicate that NaHS within the NA can remarkably suppress gastrointestinal motility in rats, possibly through TRPV1 channels and NF-κB-dependent mechanism.
Collapse
Affiliation(s)
- Hongzhao Sun
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Haikun Ding
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Yuan Shi
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Chenyu Li
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Haoran Jin
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Xiaoyue Yang
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Zhaosong Chen
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Pengpeng Tian
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Jianping Zhu
- Key Laboratory of Animal Resistance, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Haiji Sun
- Key Laboratory of Animal Resistance, School of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
30
|
Lan T, Bai M, Chen X, Wang Y, Li Y, Tian Y, He Y, Wu Z, Yu H, Chen Z, Chen C, Yu Y, Cheng K, Xie P. iTRAQ-based proteomics implies inflammasome pathway activation in the prefrontal cortex of CSDS mice may influence resilience and susceptibility. Life Sci 2020; 262:118501. [PMID: 32991880 DOI: 10.1016/j.lfs.2020.118501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 11/18/2022]
Abstract
AIMS Major depressive disorder, as a destructive mental health disorder, is a major contributor to disability and death. Numerous studies have illustrated that activation of inflammation and fluctuating immune reactions play a crucial role in the physiopathology of depression. The effectiveness of antidepressants is affected by the intensity of the inflammatory response. Thus, we aim to reveal the correlation of inflammatory factors and depression. MAIN METHODS Isobaric tags for relative and absolute quantitation (iTRAQ™)-based proteomics was applied to verify the quantitation of target proteins in the PFC of chronic social defeat stress (CSDS) model mice. Ingenuity pathway analysis (IPA) was performed to explore related pathways, and the involvement of molecules was validated by western blotting and real time-quantitative polymerase chain reaction (RT-qPCR). KEY FINDINGS According to the IPA results, CSDS-susceptible mice and CSDS-resilient mice both exhibited alterations of the inflammasome pathway in the PFC. Compared with control mice, susceptible mice subjected to CSDS showed an increased ATP-activated purinergic receptor P2X7 (also known as P2RX7) protein level. Nevertheless, the expression levels of cysteinyl aspartate-specific protease 1 (Caspase 1) and apoptosis-associated speck-like protein containing a CARD (ASC) were reduced in CSDS mice, and downregulation of interleukin-1β (IL-1β) was found in susceptible mice. Moreover, no significant difference was found in nuclear factor-κB levels among the three groups. SIGNIFICANCE CSDS administration leads to dysfunctions of key molecules in the inflammasome pathway, promoting depressive-like behaviors in mice.
Collapse
Affiliation(s)
- Tianlan Lan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China; College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Mengge Bai
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Laboratory Medical Diagnostics designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiangyu Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Yan Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Yu Tian
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Yong He
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Zhonghao Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China; College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Heming Yu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Zhi Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Chong Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Yaping Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China
| | - Ke Cheng
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xie
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
31
|
Zhou X, Huang Z, Zhang J, Chen JL, Yao PW, Mai CL, Mai JZ, Zhang H, Liu XG. Chronic Oral Administration of Magnesium-L-Threonate Prevents Oxaliplatin-Induced Memory and Emotional Deficits by Normalization of TNF-α/NF-κB Signaling in Rats. Neurosci Bull 2020; 37:55-69. [PMID: 32857294 DOI: 10.1007/s12264-020-00563-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/14/2020] [Indexed: 01/06/2023] Open
Abstract
Antineoplastic drugs such as oxaliplatin (OXA) often induce memory and emotional deficits. At present, the mechanisms underlying these side-effects are not fully understood, and no effective treatment is available. Here, we show that the short-term memory deficits and anxiety-like and depression-like behaviors induced by intraperitoneal injections of OXA (4 mg/kg per day for 5 consecutive days) were accompanied by synaptic dysfunction and downregulation of the NR2B subunit of N-methyl-D-aspartate receptors in the hippocampus, which is critically involved in memory and emotion. The OXA-induced behavioral and synaptic changes were prevented by chronic oral administration of magnesium-L-threonate (L-TAMS, 604 mg/kg per day, from 2 days before until the end of experiments). We found that OXA injections significantly reduced the free Mg2+ in serum and cerebrospinal fluid (from ~ 0.8 mmol/L to ~ 0.6 mmol/L). The Mg2+ deficiency (0.6 mmol/L) upregulated tumor necrosis factor (TNF-α) and phospho-p65 (p-p65), an active form of nuclear factor-kappaB (NF-κB), and downregulated the NR2B subunit in cultured hippocampal slices. Oral L-TAMS prevented the OXA-induced upregulation of TNF-α and p-p65, as well as microglial activation in the hippocampus and the medial prefrontal cortex. Finally, similar to oral L-TAMS, intracerebroventricular injection of PDTC, an NF-κB inhibitor, also prevented the OXA-induced memory/emotional deficits and the changes in TNF-α, p-p65, and microglia. Taken together, the activation of TNF-α/NF-κB signaling resulting from reduced brain Mg2+ is responsible for the memory/emotional deficits induced by OXA. Chronic oral L-TAMS may be a novel approach to treating chemotherapy-induced memory/emotional deficits.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhuo Huang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Zhang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia-Liang Chen
- Department of Urology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Pei-Wen Yao
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chun-Lin Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jie-Zhen Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Zhang
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| | - Xian-Guo Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
32
|
Hadj-Moussa H, Wijenayake S, Storey KB. Multi-tissue profile of NFκB pathway regulation during mammalian hibernation. Comp Biochem Physiol B Biochem Mol Biol 2020; 246-247:110460. [PMID: 32445797 DOI: 10.1016/j.cbpb.2020.110460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022]
Abstract
Hibernators have evolved effective mechanisms to overcome the challenges of torpor-arousal cycling. This study focuses on the antioxidant and inflammatory defenses under the control of the redox-sensitive and inflammatory-centered NFκB transcription factor in the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), a well-established model of mammalian hibernation. While hibernators significantly depress oxygen consumption and overall metabolic rate during torpor, arousal brings with it a rapid increase in respiration that is associated with an influx of reactive oxygen species. As such, hibernators employ a variety of antioxidant defenses to combat oxidative damage. Herein, we used Luminex multiplex technology to examine the expression of key proteins in the NFκB transcriptional network, including NFκB, super-repressor IκBα, upstream activators TNFR1 and FADD, and downstream target c-Myc. Transcription factor DNA-binding ELISAs were also used to measure the relative degree of NFκB binding to DNA during hibernation. Analyses were performed across eight different tissues, cerebral cortex, brainstem, white and brown adipose tissue, heart, liver, kidney, and spleen, during euthermic control and late torpor to highlight tissue-specific NFκB mediated cytoprotective responses against oxidative stress experienced during torpor-arousal. Our findings demonstrated brain-specific NFκB activation during torpor, with elevated levels of upstream activators, inactive-phosphorylated IκBα, active-phosphorylated NFκB, and enhanced NFκB-DNA binding. Protein levels of downstream protein, c-Myc, also increased in the brain and adipose tissues during late torpor. The results show that NFκB regulation might serve a critical neuroprotective and cytoprotective role in hibernating brains and selective peripheral tissue.
Collapse
Affiliation(s)
- Hanane Hadj-Moussa
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Sanoji Wijenayake
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada; Department of Biological Sciences and Center for Environmental Epigenetics and Development, University of Toronto, Toronto, ON, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
33
|
Pourheydar B, Biabanghard A, Azari R, Khalaji N, Chodari L. Exercise improves aging-related decreased angiogenesis through modulating VEGF-A, TSP-1 and p-NF-Ƙb protein levels in myocardiocytes. J Cardiovasc Thorac Res 2020; 12:129-135. [PMID: 32626553 PMCID: PMC7321007 DOI: 10.34172/jcvtr.2020.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction: Aging-dependent decline in the angiogenesis of heart is a risk factor for cardiovascular disease. This study was aimed to characterize effect of exercise on angiogenesis alterations and molecular mediators which are related to angiogenesis in the heart under aging condition. Methods: Twenty-one male Wistar rats were assigned into three groups: young, aged, and exercise. Aged animals in the exercise group run on treadmill for 8 weeks. At the end, heart samples were collected and used for histological evaluation , determination of angiogenesis by immunostaining for PECAM-1/ CD31 and expressions of vascular endothelial growth factor-A (VEGF-A), thrombospondin-1 (TSP-1) and nuclear factor kappa B (NF-κB) levels by ELISA. P<0.05 is considered as statistically significant. Results: Our results showed that angiogenesis, and VEGF-A levels were significantly decreased, TSP1 (P >0.0001) and p-NF-κB (P >0.001) levels were significantly increased in the heart of aged group compared to young group. Exercise group showed significant increase in angiogenesis, VEGF-A (P >0.0001), and p-NF-κB (P >0.001) and showed significant decrease in TSP-1 levels (P >0.001) compared to aged group. Moreover, compared to the young group, aged group showed histological changes in the heart, such as interstitial edema, and congestion, whereas, treatment with exercise improved these undesirable changes in the heart of exercise groups. Conclusion: These findings indicated that aging-related decrease in angiogenesis in the heart may mediated by downexpression of VEGF-A and overexpression of TSP-1 proteins. Also, we showed that p-NF-κB protein was increased in the heart of aged rats, this probably mediated by compensatory mechanism. It was also showed that exercise as novel non-pharmacological therapy modifies VEGF-A and TSP-1 and increases p-NF-κB protein levels in the aged heart.
Collapse
Affiliation(s)
- Bagher Pourheydar
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute,Urmia University of Medical Sciences, Urmia, Iran
| | - Abdolrahman Biabanghard
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Azari
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Naser Khalaji
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute,Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
34
|
Yang C, Shi Z, You L, Du Y, Ni J, Yan D. Neuroprotective Effect of Catalpol via Anti-Oxidative, Anti-Inflammatory, and Anti-Apoptotic Mechanisms. Front Pharmacol 2020; 11:690. [PMID: 32477145 PMCID: PMC7240050 DOI: 10.3389/fphar.2020.00690] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation and neuro-oxidative damage are now considered to be key factors in the neurological diseases. Therefore, it is important to study anti-inflammatory and neuroprotective agents. The present study investigated the anti-inflammatory and neuroprotective effects of catalpol (CAT), and the potential molecular mechanisms involved. The findings revealed that CAT markedly downregulated pro-inflammatory mediator nitric oxide (NO) and cytokines, including interleukin (IL)-6 and tumor necrosis factor (TNF)-a in lipopolysaccharide (LPS)-treated BV2 microglial cells. Moreover, CAT significantly decreased the levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), increased superoxide dismutase (SOD) activity and glutathione (GSH) level, reversed apoptosis, and restored mitochondrial membrane potential (MMP) in primary cortical neurons stimulated with hydrogen peroxide (H2O2). Furthermore, mechanistic studies showed that CAT inhibited nuclear factor-κB (NF-κB) pathway and p53-mediated Bcl-2/Bax/casaspe-3 apoptotic pathway. Moreover, it targeted the Kelch-like ECH-associated protein 1(Keap1)/Nuclear factor E2-related factor 2 (Nrf2) pathway. In summary, CAT may exert neuroprotective potential by attenuating microglial-mediated neuroinflammatory response through inhibition of the NF-κB signaling pathway. It blocked cortical neuronal oxidative damage by inhibiting p53-mediated Bcl-2/Bax/casaspe-3 apoptosis pathway and regulating Keap1/Nrf2 pathway. These results collectively indicate the potential of CAT as a highly effective therapeutic agent for neuroinflammatory and neuro-oxidative disorders.
Collapse
Affiliation(s)
- Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China.,International Cooperation & Joint Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Zhengyuan Shi
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China.,International Cooperation & Joint Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Yan
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China.,International Cooperation & Joint Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| |
Collapse
|
35
|
Saboory E, Gholizadeh-Ghaleh Aziz S, Samadi M, Biabanghard A, Chodari L. Exercise and insulin-like growth factor 1 supplementation improve angiogenesis and angiogenic cytokines in a rat model of diabetes-induced neuropathy. Exp Physiol 2020; 105:783-792. [PMID: 32053260 DOI: 10.1113/ep088069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do changes in levels of angiogenesis-related mediators [vascular endothelial growth factor-A (VEGF-A), thrombospondin-1 (TSP-1) and nuclear factor-κB (NF-κB)] in the sciatic nerve mediate diabetic neuropathy in the streptozotocin-induced type 1 diabetic male rat? Can exercise and insulin-like growth factor 1 (IGF-I) treatment improve the diabetes-related decrease in angiogenesis in sciatic nerve in these animals? What is the main finding and its importance? Levels of VEGF-A, TSP-1 and NF-κB change in the sciatic nerve of diabetic rats and might mediate diabetic neuropathy. Treatment with IGF-I and exercise could increase angiogenesis in the diabetic rats by increasing VEGF-A and decreasing TSP-1 and NF-κB expression in the sciatic nerve. ABSTRACT Diabetic neuropathy is a severe complication of diabetes that affects 40-50% of diabetic people in the world. The aim of this study was to characterize alterations in angiogenesis and related molecular mediators in the sciatic nerve in diabetic conditions alone or in diabetes in combination with exercise and/or administration of insulin-like growth factor 1 (IGF-I). Forty male Wistar rats were assigned into one of five groups, namely control, diabetes, diabetes + exercise, diabetes + IGF-I and diabetes + exercise + IGF-I. Type 1 diabetes was induced by i.p. injection of streptozotocin (60 mg kg-1 ). After 30 days of treatment with exercise or IGF-I alone or in combination, diabetic neuropathy was evaluated with a hotplate, glycated haemoglobin was measured, angiogenesis was determined by immunostaining for PECAM-1/CD31, and expressions of vascular endothelial growth factor-A (VEGF-A), thrombospondin-1 (TSP-1) and nuclear factor-κB (NF-κB) were determined by enzyme-linked immunosorbent assay.After 4 weeks, the diabetes group showed a significant decrease in capillary density and VEGF-A levels, but a significant increase in glycated haemoglobin in blood, TSP-1 and NF-κB levels in the sciatic nerve compared with the control group, and these effects were ameliorated by exercise and IGF-I. However, simultaneous treatment of diabetic rats with IGF-I and exercise did not have any synergistic effects. These findings indicate that diabetes-induced neuropathy may be associated, in part, with decreased angiogenesis mediated by overproduction of TSP-1 and NF-κB, in addition to reduced production of VEGF-A. The findings also showed that exercise and IGF-I can reduce neuropathy, followed by increased angiogenesis, by changes in TSP-1, NF-κB and VEGF-A production levels.
Collapse
Affiliation(s)
- Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Urmia, Zanjan, Iran
| | | | - Mahrokh Samadi
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Abdolrahman Biabanghard
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
36
|
Bellucci A, Bubacco L, Longhena F, Parrella E, Faustini G, Porrini V, Bono F, Missale C, Pizzi M. Nuclear Factor-κB Dysregulation and α-Synuclein Pathology: Critical Interplay in the Pathogenesis of Parkinson's Disease. Front Aging Neurosci 2020; 12:68. [PMID: 32265684 PMCID: PMC7105602 DOI: 10.3389/fnagi.2020.00068] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
The loss of dopaminergic neurons of the nigrostriatal system underlies the onset of the typical motor symptoms of Parkinson's disease (PD). Lewy bodies (LB) and Lewy neurites (LN), proteinaceous inclusions mainly composed of insoluble α-synuclein (α-syn) fibrils are key neuropathological hallmarks of the brain of affected patients. Compelling evidence supports that in the early prodromal phases of PD, synaptic terminal and axonal alterations initiate and drive a retrograde degeneration process culminating with the loss of nigral dopaminergic neurons. This notwithstanding, the molecular triggers remain to be fully elucidated. Although it has been shown that α-syn fibrillary aggregation can induce early synaptic and axonal impairment and cause nigrostriatal degeneration, we still ignore how and why α-syn fibrillation begins. Nuclear factor-κB (NF-κB) transcription factors, key regulators of inflammation and apoptosis, are involved in the brain programming of systemic aging as well as in the pathogenesis of several neurodegenerative diseases. The NF-κB family of factors consists of five different subunits (c-Rel, p65/RelA, p50, RelB, and p52), which combine to form transcriptionally active dimers. Different findings point out a role of RelA in PD. Interestingly, the nuclear content of RelA is abnormally increased in nigral dopamine (DA) neurons and glial cells of PD patients. Inhibition of RelA exert neuroprotection against (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP and 1-methyl-4-phenylpyridinium (MPP+) toxicity, suggesting that this factor decreases neuronal resilience. Conversely, the c-Rel subunit can exert neuroprotective actions. We recently described that mice deficient for c-Rel develop a PD-like motor and non-motor phenotype characterized by progressive brain α-syn accumulation and early synaptic changes preceding the frank loss of nigrostriatal neurons. This evidence supports that dysregulations in this transcription factors may be involved in the onset of PD. This review highlights observations supporting a possible interplay between NF-κB dysregulation and α-syn pathology in PD, with the aim to disclose novel potential mechanisms involved in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padua, Padua, Italy
| | - Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Edoardo Parrella
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vanessa Porrini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Bono
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Missale
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
37
|
The ubiquitin-editing enzyme A20 regulates synapse remodeling and efficacy. Brain Res 2020; 1727:146569. [PMID: 31783001 PMCID: PMC9255268 DOI: 10.1016/j.brainres.2019.146569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 12/31/2022]
Abstract
Ubiquitination and its reverse process, deubiquitination, play essential roles in neural development, function, and plasticity. A20, a ubiquitin editing enzyme that can remove K63-polyubiquitin chains from substrates and attach K48-polyubiquitin chains to them, is a critical component in the NF-κB signaling pathway in the immune system. This dual ubiquitin enzyme is also present in mammalian brains, but its potential role in neurons and synapses is unknown. We show that A20 in pyramidal neurons potently regulates dendritic arborization, spine morphogenesis, and synaptic transmission through an NF-κB-dependent mechanism. In cultured hippocampal neurons, overexpression of A20 reduced dendritic complexity and spine size and density, whereas A20 knockdown increased spine size and density, as well as clustering of the postsynaptic scaffold PSD-95 and glutamate receptor subunit GluA1. A20 effects in vitro were recapitulated in vivo where increasing or decreasing A20 expression in mouse brains reduced and enhanced spine density, respectively. Functionally, A20 knockdown significantly increased the amplitude, but not frequency of miniature excitatory postsynaptic currents, suggesting a role in postsynaptic efficacy. A20 negatively regulated NF-κB activation in neurons and A20 mutants deficient in either the deubiquitinase or the ubiquitin ligase activity failed to suppress NF-κB activation or reduce spine morphogenesis. Finally, selective inhibition of NF-κB abolished A20 knockdown-elicited spine formation, suggesting that A20 exerts its modulation on synapses through NF-κB signaling. Together, our study reveals a previously unknown role for A20, the only known ubiquitin editing enzyme with both deubiquitinase and ubiquitin ligase activity, in dendritic arborization, spine remodeling, and synaptic plasticity.
Collapse
|
38
|
NF-κB-Mediated Neuroinflammation in Parkinson's Disease and Potential Therapeutic Effect of Polyphenols. Neurotox Res 2019; 37:491-507. [PMID: 31823227 DOI: 10.1007/s12640-019-00147-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
Abstract
Different animal and human studies from last two decades in the case of Parkinson's disease (PD) have concentrated on oxidative stress due to increased inflammation and cytokine-dependent neurotoxicity leading to induction of dopaminergic (DA) degeneration pathway in the nigrostriatal region. Chronic inflammation, the principle hallmark of PD, forms the basis of neurodegeneration. Aging in association with activation of glia due to neuronal injury, perhaps because of immune alterations and genetic predispositions, leads to deregulation of inflammatory pathways premising the onset of PD. A family of inducible transcription factors, nuclear factor-κB (NF-κB), is found to show expression in various cells and tissues, such as microglia, neurons, and astrocytes which play an important role in activation and regulation of inflammatory intermediates during inflammation. Both canonical and non-canonical NF-κB pathways are involved in the regulation of the stimulated cells. During the prodromal/asymptomatic stage of age-associated neurodegenerative diseases (i.e., PD and AD), chronic neuroinflammation may act silently as the driver of neuronal dysfunction. Though research has provided an insight over age-related neurodegeneration in PD, elaborative role of NF-κB in neuroinflammation is yet to be completely understood and thus requires more investigation. Polyphenols, a group of naturally occurring compound in medicinal plants, have gained attention because of their anti-oxidative and anti-neuroinflammatory properties in neurodegenerative diseases. In this aspect, this review highlights the role of NF-κB and the possible therapeutic roles of polyphenols in NF-κB-mediated neuroinflammation in PD.
Collapse
|
39
|
Wang Y, Wang L, Wen X, Hao D, Zhang N, He G, Jiang X. NF-κB signaling in skin aging. Mech Ageing Dev 2019; 184:111160. [PMID: 31634486 DOI: 10.1016/j.mad.2019.111160] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 02/05/2023]
Abstract
Skin is the largest organ of the body, and is prone to be affected by external environmental factors. Skin aging is caused by both genetic and environmental factors. Furthermore, aging skin tissue is known to create a permissive tissue microenvironment that promotes the initiation, progression and resistance of cancer cells by promoting the senescence-associated secretory phenotype (SASP). Therefore, more attention should be paid to skin aging. In this review, we highlight the common Rel proteins and two activation pathways: the canonical activation pathway and the non-canonical activation pathway. Furthermore, we summarize the role of NF-κB in skin aging. The effects of UV on the skin results from the production of ROS. Excessive free radicals activate the NF-κB signaling pathway and MAPK signaling pathway, contributing to the activation of AP-1 and NF-κB. Then it increased the level of TNF-α and the expression of MMPs, which induce the degradation of ECM and accelerated skin aging. We also summarize some reported natural antioxidants and synthetic antioxidants which are related to NF-κB signals. On the other hand, NF-κB plays a key role in SASP. Upon senescence-inducing signals, ATM and ATR block p62-dependent autophagic degradation of GATA4, contributing to NF-κB activation and SASP induction.
Collapse
Affiliation(s)
- Yujia Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Hao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nan Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Gu He
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
40
|
Xie MX, Zhang XL, Xu J, Zeng WA, Li D, Xu T, Pang RP, Ma K, Liu XG. Nuclear Factor-kappaB Gates Na v1.7 Channels in DRG Neurons via Protein-Protein Interaction. iScience 2019; 19:623-633. [PMID: 31446225 PMCID: PMC6715905 DOI: 10.1016/j.isci.2019.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/04/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
It is well known that nuclear factor-kappaB (NF-κB) regulates neuronal structures and functions by nuclear transcription. Here, we showed that phospho-p65 (p-p65), an active form of NF-κB subunit, reversibly interacted with Nav1.7 channels in the membrane of dorsal root ganglion (DRG) neurons of rats. The interaction increased Nav1.7 currents by slowing inactivation of Nav1.7 channels and facilitating their recovery from inactivation, which may increase the resting state of the channels ready for activation. In cultured DRG neurons TNF-α upregulated the membrane p-p65 and enhanced Nav1.7 currents within 5 min but did not affect nuclear NF-κB within 40 min. This non-transcriptional effect on Nav1.7 may underlie a rapid regulation of the sensibility of the somatosensory system. Both NF-κB and Nav1.7 channels are critically implicated in many physiological functions and diseases. Our finding may shed new light on the investigation into the underlying mechanisms. NF-κB p-p65 interacts with Nav1.7 in the membrane of DRG neurons The interaction is reversible, depending on the cytoplasmic p-p65 content Reducing cytoplasmic p-p65 rapidly attenuates the interaction and Nav1.7 currents The rapid effect on Nav1.7 channels is independent of p-p65 nuclear translocation
Collapse
Affiliation(s)
- Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Xiao-Long Zhang
- Medical Research Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road 2, Guangzhou 510080, China
| | - Jing Xu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Wei-An Zeng
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Dai Li
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Ting Xu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Rui-Ping Pang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Ke Ma
- Department of Pain Management, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 91603, China.
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China; Department of Pain Management, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 91603, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
41
|
Dresselhaus EC, Meffert MK. Cellular Specificity of NF-κB Function in the Nervous System. Front Immunol 2019; 10:1043. [PMID: 31143184 PMCID: PMC6520659 DOI: 10.3389/fimmu.2019.01043] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/24/2019] [Indexed: 12/17/2022] Open
Abstract
Nuclear Factor Kappa B (NF-κB) is a ubiquitously expressed transcription factor with key functions in a wide array of biological systems. While the role of NF-κB in processes, such as host immunity and oncogenesis has been more clearly defined, an understanding of the basic functions of NF-κB in the nervous system has lagged behind. The vast cell-type heterogeneity within the central nervous system (CNS) and the interplay between cell-type specific roles of NF-κB contributes to the complexity of understanding NF-κB functions in the brain. In this review, we will focus on the emerging understanding of cell-autonomous regulation of NF-κB signaling as well as the non-cell-autonomous functional impacts of NF-κB activation in the mammalian nervous system. We will focus on recent work which is unlocking the pleiotropic roles of NF-κB in neurons and glial cells (including astrocytes and microglia). Normal physiology as well as disorders of the CNS in which NF-κB signaling has been implicated will be discussed with reference to the lens of cell-type specific responses.
Collapse
Affiliation(s)
- Erica C Dresselhaus
- Department of Biological Chemistry and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mollie K Meffert
- Department of Biological Chemistry and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
42
|
Yu C, Shi D, Li Z, Wan G, Shi X. Long noncoding RNA CHRF exacerbates IL-6-induced inflammatory damages by downregulating microRNA-146a in ATDC5 cells. J Cell Physiol 2019; 234:21851-21859. [PMID: 31026064 DOI: 10.1002/jcp.28749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 01/05/2023]
Abstract
Osteoarthritis (OA) is a frequent chronic musculoskeletal disorder which lacks applicably effective therapeutic strategy. In this study, we attempted to investigate whether long noncoding RNA (lncRNA) cardiac hypertrophy-related factor (CHRF) participated in mediating interleukin-6 (IL-6)-induced in vitro inflammatory damages as well as the regulatory mechanisms. ATDC5 cells were stimulated with IL-6, and then cellular damages were evaluated on the basis of cell viability by CCK-8, apoptotic cells by observation with flow cytometry, apoptosis-associated proteins by western blot analysis, and accumulation of inflammatory factors by quantitative reverse transcription polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and western blot analysis. Then, effects of lncRNA CHRF on IL-6-treated cells were evaluated. We further explored the downstream factor of lncRNA CHRF and demonstrated whether lncRNA CHRF functioned through the downstream factor. Afterwards, crucial signaling cascades were anatomized. We found that IL-6 reduced cell viability, elevated apoptosis, induced upregulation of inflammatory factors, as well as upregulated lncRNA CHRF and down-regulated miR-146a expression. Then, we found lncRNA CHRF overexpression aggravated IL-6-induced alterations, and lncRNA CHRF knockdown showed the opposite effects. Furthermore, miR-146a was identified to be negatively regulated by lncRNA CHRF, and its overexpression abrogated the roles of lncRNA CHRF in IL-6-treated cells. IL-6-induced the accumulation of IκBα, p65, JAK1, and STAT3 at phosphorylated level was further facilitated by lncRNA CHRF whereas repressed by miR-146a. In conclusion, lncRNA CHRF aggravated the IL-6-induced inflammatory damages in ATDC5 cells. We further outlined a possible mechanism that through downregulating miR-146a, lncRNA CHRF evoked the activation of NF-κB and JAK1/STAT3 signaling cascades.
Collapse
Affiliation(s)
- Chuandong Yu
- Department of Orthopedics, Heze Municipal Hospital, Heze, China
| | - Donglei Shi
- Department of Orthopedics, Heze Municipal Hospital, Heze, China
| | - Zhilin Li
- Department of Orthopedics, Heze Municipal Hospital, Heze, China
| | - Guang Wan
- Department of Orthopedics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Xuefeng Shi
- Department of Orthopedics, Trauma & Hand and Foot Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
43
|
Nataf S, Uriagereka J, Benitez-Burraco A. The Promoter Regions of Intellectual Disability-Associated Genes Are Uniquely Enriched in LTR Sequences of the MER41 Primate-Specific Endogenous Retrovirus: An Evolutionary Connection Between Immunity and Cognition. Front Genet 2019; 10:321. [PMID: 31031802 PMCID: PMC6473030 DOI: 10.3389/fgene.2019.00321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
Social behavior and neuronal connectivity in rodents have been shown to be shaped by the prototypical T lymphocyte-derived pro-inflammatory cytokine Interferon-gamma (IFNγ). It has also been demonstrated that STAT1 (Signal Transducer And Activator Of Transcription 1), a transcription factor (TF) crucially involved in the IFNγ pathway, binds consensus sequences that, in humans, are located with a high frequency in the LTRs (Long Terminal Repeats) of the MER41 family of primate-specific HERVs (Human Endogenous Retroviruses). However, the putative role of an IFNγ/STAT1/MER41 pathway in human cognition and/or behavior is still poorly documented. Here, we present evidence that the promoter regions of intellectual disability-associated genes are uniquely enriched in LTR sequences of the MER41 HERVs. This observation is specific to MER41 among more than 130 HERVs examined. Moreover, we have not found such a significant enrichment in the promoter regions of genes that associate with autism spectrum disorder (ASD) or schizophrenia. Interestingly, ID-associated genes exhibit promoter-localized MER41 LTRs that harbor TF binding sites (TFBSs) for not only STAT1 but also other immune TFs such as, in particular, NFKB1 (Nuclear Factor Kappa B Subunit 1) and STAT3 (Signal Transducer And Activator Of Transcription 3). Moreover, IL-6 (Interleukin 6) rather than IFNγ, is identified as the main candidate cytokine regulating such an immune/MER41/cognition pathway. Of note, differences between humans and chimpanzees are observed regarding the insertion sites of MER41 LTRs in the promoter regions of ID-associated genes. Finally, a survey of the human proteome has allowed us to map a protein-protein network which links the identified immune/MER41/cognition pathway to FOXP2 (Forkhead Box P2), a key TF involved in the emergence of human speech. Our work suggests that together with the evolution of immune genes, the stepped self-domestication of MER41 in the genomes of primates could have contributed to cognitive evolution. We further propose that non-inherited forms of ID might result from the untimely or quantitatively inappropriate expression of immune signals, notably IL-6, that putatively regulate cognition-associated genes via promoter-localized MER41 LTRs.
Collapse
Affiliation(s)
- Serge Nataf
- CarMeN Laboratory, INSERM U1060, INRA U1397, INSA de Lyon, Lyon-Sud Faculty of Medicine, University of Lyon, Lyon, France
- Claude Bernard University Lyon 1, Lyon, France
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Juan Uriagereka
- Department of Linguistics and School of Languages, Literatures and Cultures, University of Maryland, College Park, MD, United States
| | - Antonio Benitez-Burraco
- Department of Spanish Language, Linguistics and Literary Theory, Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|
44
|
Excessive mechanical loading promotes osteoarthritis through the gremlin-1-NF-κB pathway. Nat Commun 2019; 10:1442. [PMID: 30926814 PMCID: PMC6441020 DOI: 10.1038/s41467-019-09491-5] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
Exposure of articular cartilage to excessive mechanical loading is deeply involved in the pathogenesis of osteoarthritis. Here, we identify gremlin-1 as a mechanical loading-inducible factor in chondrocytes, detected at high levels in middle and deep layers of cartilage after cyclic strain or hydrostatic pressure loading. Gremlin-1 activates nuclear factor-κB signalling, leading to subsequent induction of catabolic enzymes. In mice intra-articular administration of gremlin-1 antibody or chondrocyte-specific deletion of Gremlin-1 decelerates osteoarthritis development, while intra-articular administration of recombinant gremlin-1 exacerbates this process. Furthermore, ras-related C3 botulinum toxin substrate 1 activation induced by mechanical loading enhances reactive oxygen species (ROS) production. Amongst ROS-activating transcription factors, RelA/p65 induces Gremlin-1 transcription, which antagonizes induction of anabolic genes such as Sox9, Col2a1, and Acan by bone morphogenetic proteins. Thus, gremlin-1 plays essential roles in cartilage degeneration by excessive mechanical loading. Excessive mechanical stress promotes the development of osteoarthritis. Here Chang et al. identify gremlin-1 as a factor expressed in chondrocytes in response to mechanical stress, and contributing to osteoarthritis via activation of the NF-κB pathway.
Collapse
|
45
|
Jha NK, Jha SK, Kar R, Nand P, Swati K, Goswami VK. Nuclear factor-kappa β as a therapeutic target for Alzheimer's disease. J Neurochem 2019; 150:113-137. [PMID: 30802950 DOI: 10.1111/jnc.14687] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/16/2019] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a typical progressive, chronic neurodegenerative disorder with worldwide prevalence. Its clinical manifestation involves the presence of extracellular plaques and intracellular neurofibrillary tangles (NFTs). NFTs occur in brain tissues as a result of both Aβ agglomeration and Tau phosphorylation. Although there is no known cure for AD, research into possible cures and treatment options continues using cell-cultures and model animals/organisms. The nuclear factor-kappa β (NF-κβ) plays an active role in the progression of AD. Impairment to this signaling module triggers undesirable phenotypic changes such as neuroinflammation, activation of microglia, oxidative stress related complications, and apoptotic cell death. These imbalances further lead to homeostatic abnormalities in the brain or in initial stages of AD essentially pushing normal neurons toward the degeneration process. Interestingly, the role of NF-κβ signaling associated receptor-interacting protein kinase is currently observed in apoptotic and necrotic cell death, and has been reported in brains. Conversely, the NF-κβ signaling pathway has also been reported to be involved in normal brain functioning. This pathway plays a crucial role in maintaining synaptic plasticity and balancing between learning and memory. Since any impairment in the pathways associated with NF-κβ signaling causes altered neuronal dynamics, neurotherapeutics using compounds including, antioxidants, bioflavonoids, and non-steroidal anti-inflammatory drugs against such abnormalities offer possibilities to rectify aberrant excitatory neuronal activity in AD. In this review, we have provided an extensive overview of the crucial role of NF-κβ signaling in normal brain homeostasis. We have also thoroughly outlined several established pathomechanisms associated with NF-κβ pathways in AD, along with their respective therapeutic approaches.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Rohan Kar
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Kumari Swati
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Vineet Kumar Goswami
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
46
|
Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. Proc Natl Acad Sci U S A 2019; 116:6995-7004. [PMID: 30894483 DOI: 10.1073/pnas.1810692116] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aging is associated with impaired tissue regeneration. Stem cell number and function have been identified as potential culprits. We first demonstrate a direct correlation between stem cell number and time to bone fracture union in a human patient cohort. We then devised an animal model recapitulating this age-associated decline in bone healing and identified increased cellular senescence caused by a systemic and local proinflammatory environment as the major contributor to the decline in skeletal stem/progenitor cell (SSPC) number and function. Decoupling age-associated systemic inflammation from chronological aging by using transgenic Nfkb1KO mice, we determined that the elevated inflammatory environment, and not chronological age, was responsible for the decrease in SSPC number and function. By using a pharmacological approach inhibiting NF-κB activation, we demonstrate a functional rejuvenation of aged SSPCs with decreased senescence, increased SSPC number, and increased osteogenic function. Unbiased, whole-genome RNA sequencing confirmed the reversal of the aging phenotype. Finally, in an ectopic model of bone healing, we demonstrate a functional restoration of regenerative potential in aged SSPCs. These data identify aging-associated inflammation as the cause of SSPC dysfunction and provide mechanistic insights into its reversal.
Collapse
|
47
|
Qing Z, Ye J, Wu S. Lipopolysaccharide-induced expression of astrocyte elevated gene-1 promotes degeneration and inflammation of chondrocytes via activation of nuclear factor-κB signaling. Int Immunopharmacol 2019; 71:84-92. [PMID: 30878819 DOI: 10.1016/j.intimp.2019.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/20/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023]
Abstract
Osteoarthritis is an inflammatory disease characterized by joint degeneration and inflammation. Astrocyte elevated gene-1 (AEG-1) has been suggested as a novel inflammation-related factor in the pathological processes of various inflammatory diseases. To date, little is known about the role of AEG-1 in osteoarthritis. The aim of the present study was to explore the potential role of AEG-1 in the regulation of lipopolysaccharide-induced apoptosis and inflammation of chondrocytes. The results showed that AEG-1 expression was significantly upregulated in chondrocytes following exposure to lipopolysaccharide. Knockdown of AEG-1 increased the survival and decreased the expression of matrix metalloproteinases in chondrocytes treated with lipopolysaccharide. Moreover, silencing of AEG-1 restricted the lipopolysaccharide-induced production of proinflammatory cytokines. In contrast, AEG-1 overexpression caused opposite effects. Notably, we found that AEG-1 inhibition blocked the lipopolysaccharide-induced activation of nuclear factor-κB signaling through impeding the nuclear translocation of nuclear factor-κB p65 subunit. Additionally, inhibition of nuclear factor-κB partially reversed the AEG-1-mediated promotion of lipopolysaccharide-induced inflammatory injury in chondrocytes. In conclusion, our results demonstrate that inhibition of AEG-1 expression attenuates lipopolysaccharide-induced degeneration and inflammation of chondrocytes through suppressing the activation of nuclear factor-κB signaling. This work therefore highlights a potential role of AEG-1 in the pathogenesis of osteoarthritis, and indicates its potential as a therapeutic target.
Collapse
Affiliation(s)
- Zhong Qing
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; The Department of Joint Surgery, Knee Word, Honghui Hospital, Xian Jiaotong University, Xi'an 710054, China
| | - Jiumin Ye
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
48
|
Guan ZF, Zhang XM, Tao YH, Zhang Y, Huang YY, Chen G, Tang WJ, Ji G, Guo QL, Liu M, Zhang Q, Wang NN, Yu ZY, Wu GF, Tang ZP, Du ZG, Shang XL, Liu YC, Mei GH, Guo JC, Zhou HG. EGb761 improves the cognitive function of elderly db/db -/- diabetic mice by regulating the beclin-1 and NF-κB signaling pathways. Metab Brain Dis 2018; 33:1887-1897. [PMID: 30187180 PMCID: PMC6244769 DOI: 10.1007/s11011-018-0295-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/23/2018] [Indexed: 12/23/2022]
Abstract
To assess whether EGb761 could protect elderly diabetic mice with cognitive disorders and explore the role of beclin-1-mediated autophagy in these protective effects. Two-month-old male db/db-/- mice and wild-type C57/BL6 mice were randomly divided into six groups: db/db-/- control, db/db-/- 50 mg, db/db-/- 100 mg, wild-type (WT) control, WT 50 mg, and WT 100 mg. EGb761 (50 mg/kg or 100 mg/kg of bodyweight) was given by gavage once a day for 1 month from the age of 6 months. Y-maze and social choice tests were performed at 8th months. The blood pressure was measured. The imaging changes in the brain were measured using magnetic resonance imaging (MRI). The expression and distribution of beclin-1, LC3, and NF-κB were detected using immunohistochemistry staining and western blotting. Ultrastructure alterations in the hippocampus were observed using transmission electron microscopy. Compared with WT mice, the learning ability, memory and overall cognitive function of db/db-/- mice decreased (P < 0.05), and EGb761 could significantly improve the learning and memory function of db/db-/- mice (P < 0.05). EGb761 significantly improved systolic blood pressure in db/db-/- mice (P < 0.01). In addition, fMRI-bold showed a decline in the hippocampus of mice in the db/db-/- group compared with WT. EGb761 could improve these above changes. Immunohistochemistry staining and western blotting confirmed that EGb761 significantly increased beclin-1 and reduced LC3-II/I levels in the brains of db/db-/- mice (P < 0.05). NF-κB levels were obviously higher in the db/db-/- group than that in the WT group, and EGb761 significantly reduced NF-κB levels in db/db-/- mice (P < 0.05). There was a trend of increased autophagosomes in db/db-/- mice, but EGb761 did not change obviously the number of autophagosomes. Compared with normal aged WT mice, aging db/db-/- mice had more common complications of cerebral small vessel disease and cognitive dysfunction. EGb761 could significantly improve the cognitive function of aging db/db-/- mice via a mechanism that may involve the regulation of beclin-1, LC3, and NF-κB.
Collapse
Affiliation(s)
- Zhu-Fei Guan
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiao-Ming Zhang
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ying-Hong Tao
- Department of Medical Examination Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yu Zhang
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yan-Yan Huang
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Gang Chen
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wei-Jun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Gang Ji
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qi-Lin Guo
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ming Liu
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Zhang
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Na-Na Wang
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhong-Yu Yu
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Guo-Feng Wu
- Department of Emergency Neurology, Guiyang Medical University, Guiyang, 550004, China
| | - Zhou-Ping Tang
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zun-Guo Du
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xi-Liang Shang
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ying-Chao Liu
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Guang-Hai Mei
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jing-Chun Guo
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Neurobiology, Department of Neurobiology School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Hou-Guang Zhou
- Department of Geriatrics, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
49
|
Wang Q, Dong X, Li N, Wang Y, Guan X, Lin Y, Kang J, Zhang X, Zhang Y, Li X, Xu T. JSH-23 prevents depressive-like behaviors in mice subjected to chronic mild stress: Effects on inflammation and antioxidant defense in the hippocampus. Pharmacol Biochem Behav 2018; 169:59-66. [PMID: 29684396 DOI: 10.1016/j.pbb.2018.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 12/26/2022]
Abstract
Nuclear factor-kappa B (NF-κB), which is reported to play an important role in the pathogenesis of depression, also has a central role in the genesis and progression of inflammation. Here, we have targeted the nuclear translocation of NF-κB using 4-methyl-N1-(3-phenyl-propyl)-benzene-1,2-diamine (JSH-23) to elucidate its role in depression. We investigated the antidepressant-like effects of JSH-23 in the chronic mild stress (CMS) mouse model, which is a valid, reasonably reliable, and useful model of depression. The antidepressant-like effects of JSH-23 were evaluated using the sucrose preference test (SPT) and the forced swimming test (FST). We also assessed inflammatory markers [interleukin (IL)-6 and tumor necrosis factor-α (TNF-α)] and components of antioxidant defense [superoxide dismutase (SOD) and nuclear factor erythroid-2-related factor 2 (Nrf 2)] in the hippocampus. Fluoxetine, a classical antidepressant, was used in this study as a positive control. Administration of JSH-23 significantly prevented the decreased sucrose preference in the SPT and prevented the increased immobility time in the FST caused by CMS, but had no effect on locomotor activity. Expression of NF-κB p65 protein in the hippocampus was decreased, and elevated levels of IL-6 and TNF-α were reduced, after JSH-23 administration. In addition to its anti-inflammatory effect, JSH-23 treatment increased the expression of SOD and Nrf 2 in the hippocampus, suggesting that it strengthens antioxidant defense. The current study demonstrated that inhibiting the NF-κB signaling cascade using JSH-23 prevented depressive-like behaviors by decreasing inflammation and improving antioxidant defense in the hippocampus. We concluded that NF-κB activation plays an important role in the pathophysiology of depression and that targeting NF-κB signaling may provide a novel and effective therapy for depression. Additional preclinical studies and clinical trials are, however, needed to further elucidate the effects of this therapeutic strategy.
Collapse
Affiliation(s)
- Qi Wang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaomei Dong
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Nannan Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yan Wang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaofeng Guan
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yiwei Lin
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jiguang Kang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xia Zhang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yuchen Zhang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaobai Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Tianchao Xu
- Department of Medical Psychiatry, General Hospital of Shenyang Military Command, Shenyang, Liaoning Province, China.
| |
Collapse
|
50
|
Ogundele OM, Lee CC. CaMKIIα expression in a mouse model of NMDAR hypofunction schizophrenia: Putative roles for IGF-1R and TLR4. Brain Res Bull 2018; 137:53-70. [PMID: 29137928 PMCID: PMC5835406 DOI: 10.1016/j.brainresbull.2017.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 12/29/2022]
Abstract
Schizophrenia (SCZ) is a neuropsychiatric disorder that is linked to social behavioral deficits and other negative symptoms associated with hippocampal synaptic dysfunction. Synaptic mechanism of schizophrenia is characterized by loss of hippocampal N-Methyl-d-Aspartate Receptor (NMDAR) activity (NMDAR hypofunction) and dendritic spines. Previous studies show that genetic deletion of hippocampal synaptic regulatory calcium-calmodulin dependent kinase II alpha (CaMKIIα) cause synaptic and behavioral defects associated with schizophrenia in mice. Although CaMKIIα is involved in modulation of NMDAR activity, it is equally linked to inflammatory and neurotropin signaling in neurons. Based on these propositions, we speculate that non-neurotransmitter upstream receptors associated with neurotropic and inflammatory signaling activities of CaMKIIα may alter its synaptic function. Besides, how these receptors (i.e. inflammatory and neurotropic receptors) alter CaMKIIα function (phosphorylation) relative to hippocampal NMDAR activity in schizophrenia is poorly understood. Here, we examined the relationship between toll-like receptor (TLR4; inflammatory), insulin-like growth factor receptor 1 (IGF-1R; neurotropic) and CaMKIIα expression in the hippocampus of behaviorally deficient schizophrenic mice after we induced schizophrenia through NMDAR inhibition. Schizophrenia was induced in WT (C57BL/6) mice through intraperitoneal administration of 30mg/Kg ketamine (NMDAR antagonist) for 5days (WT/SCZ). Five days after the last ketamine treatment, wild type schizophrenic mice show deficiencies in sociability and social novelty behavior. Furthermore, there was a significant decrease in hippocampal CaMKIIα (p<0.001) and IGF-1R (p<0.001) expression when assessed through immunoblotting and confocal immunofluorescence microscopy. Additionally, WT schizophrenic mice show an increased percentage of phosphorylated CaMKIIα in addition to upregulated TLR4 signaling (TLR4, NF-κB, and MAPK/ErK) in the hippocampus. To ascertain the functional link between TLR4, IGF-1R and CaMKIIα relative to NMDAR hypofunction in schizophrenia, we created hippocampal-specific TLR4 knockdown mouse using AAV-driven Cre-lox technique (TLR4 KD). Subsequently, we inhibited NMDAR function in TLR4 KD mice in an attempt to induce schizophrenia (TLR4 KD SCZ). Interestingly, IGF-1R and CaMKIIα expressions were preserved in the TLR4 KD hippocampus after attenuation of NMDAR function. Furthermore, TLR4 KD SCZ mice showed no prominent defects in sociability and social novelty behavior when compared with the control (WT). Our results show that a sustained IGF-1R expression may preserve the synaptic activity of CaMKIIα while TLR4 signaling ablates hippocampal CaMKIIα expression in NMDAR hypofunction schizophrenia. Together, we infer that IGF-1R depletion and increased TLR4 signaling are non-neurotransmitter pro-schizophrenic cues that can reduce synaptic CaMKIIα activity in a pharmacologic mouse model of schizophrenia.
Collapse
Affiliation(s)
- O M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States.
| | - C C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States.
| |
Collapse
|