1
|
Machado da Silva MC, Iglesias LP, Candelario-Jalil E, Khoshbouei H, Moreira FA, de Oliveira ACP. Role of Microglia in Psychostimulant Addiction. Curr Neuropharmacol 2023; 21:235-259. [PMID: 36503452 PMCID: PMC10190137 DOI: 10.2174/1570159x21666221208142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
The use of psychostimulant drugs can modify brain function by inducing changes in the reward system, mainly due to alterations in dopaminergic and glutamatergic transmissions in the mesocorticolimbic pathway. However, the etiopathogenesis of addiction is a much more complex process. Previous data have suggested that microglia and other immune cells are involved in events associated with neuroplasticity and memory, which are phenomena that also occur in addiction. Nevertheless, how dependent is the development of addiction on the activity of these cells? Although the mechanisms are not known, some pathways may be involved. Recent data have shown psychoactive substances may act directly on immune cells, alter their functions and induce various inflammatory mediators that modulate synaptic activity. These could, in turn, be involved in the pathological alterations that occur in substance use disorder. Here, we extensively review the studies demonstrating how cocaine and amphetamines modulate microglial number, morphology, and function. We also describe the effect of these substances in the production of inflammatory mediators and a possible involvement of some molecular signaling pathways, such as the toll-like receptor 4. Although the literature in this field is scarce, this review compiles the knowledge on the neuroimmune axis that is involved in the pathogenesis of addiction, and suggests some pharmacological targets for the development of pharmacotherapy.
Collapse
Affiliation(s)
- Maria Carolina Machado da Silva
- Department of Pharmacology, Neuropharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil;
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lia Parada Iglesias
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fabrício Araujo Moreira
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
2
|
Plaza-Florido A, Pérez-Prieto I, Molina-Garcia P, Radom-Aizik S, Ortega FB, Altmäe S. Transcriptional and Epigenetic Response to Sedentary Behavior and Physical Activity in Children and Adolescents: A Systematic Review. Front Pediatr 2022; 10:917152. [PMID: 35813370 PMCID: PMC9263076 DOI: 10.3389/fped.2022.917152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The links of sedentary behavior and physical activity with health outcomes in children and adolescents is well known. However, the molecular mechanisms involved are poorly understood. We aimed to synthesize the current knowledge of the association of sedentary behavior and physical activity (acute and chronic effects) with gene expression and epigenetic modifications in children and adolescents. METHODS PubMed, Web of Science, and Scopus databases were systematically searched until April 2022. A total of 15 articles were eligible for this review. The risk of bias assessment was performed using the Joanna Briggs Institute Critical Appraisal Tool for Systematic Reviews and/or a modified version of the Downs and Black checklist. RESULTS Thirteen studies used candidate gene approach, while only 2 studies performed high-throughput analyses. The candidate genes significantly linked to sedentary behavior or physical activity were: FOXP3, HSD11B2, IL-10, TNF-α, ADRB2, VEGF, HSP70, SOX, and GPX. Non-coding Ribonucleic acids (RNAs) regulated by sedentary behavior or physical activity were: miRNA-222, miRNA-146a, miRNA-16, miRNA-126, miR-320a, and long non-coding RNA MALAT1. These molecules are involved in inflammation, immune function, angiogenic process, and cardiovascular disease. Transcriptomics analyses detected thousands of genes that were altered following an acute bout of physical activity and are linked to gene pathways related to immune function, apoptosis, and metabolic diseases. CONCLUSION The evidence found to date is rather limited. Multidisciplinary studies are essential to characterize the molecular mechanisms in response to sedentary behavior and physical activity in the pediatric population. Larger cohorts and randomized controlled trials, in combination with multi-omics analyses, may provide the necessary data to bring the field forward. SYSTEMATIC REVIEW REGISTRATION [www.ClinicalTrials.gov], identifier [CRD42021235431].
Collapse
Affiliation(s)
- Abel Plaza-Florido
- Department of Physical and Sports Education, Faculty of Sport Sciences, PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Inmaculada Pérez-Prieto
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain
| | - Pablo Molina-Garcia
- Department of Physical and Sports Education, Faculty of Sport Sciences, PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs.Granada), Physical Medicine and Rehabilitation Service, Virgen de las Nieves University Hospital, Granada, Spain
| | - Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center, UC Irvine School of Medicine, Irvine, CA, United States
| | - Francisco B Ortega
- Department of Physical and Sports Education, Faculty of Sport Sciences, PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain.,Division of Obstetrics and Gynecology, CLINTEC, Karolinska Institutet, Stockholm, Sweden.,Competence Centre on Health Technologies, Tartu, Estonia
| |
Collapse
|
3
|
Hepp Rehfeldt SC, Majolo F, Goettert MI, Laufer S. c-Jun N-Terminal Kinase Inhibitors as Potential Leads for New Therapeutics for Alzheimer's Diseases. Int J Mol Sci 2020; 21:E9677. [PMID: 33352989 PMCID: PMC7765872 DOI: 10.3390/ijms21249677] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's Disease (AD) is becoming more prevalent as the population lives longer. For individuals over 60 years of age, the prevalence of AD is estimated at 40.19% across the world. Regarding the cognitive decline caused by the disease, mitogen-activated protein kinases (MAPK) pathways such as the c-Jun N-terminal kinase (JNK) pathway are involved in the progressive loss of neurons and synapses, brain atrophy, and augmentation of the brain ventricles, being activated by synaptic dysfunction, oxidative stress, and excitotoxicity. Nowadays, AD symptoms are manageable, but the disease itself remains incurable, thus the inhibition of JNK3 has been explored as a possible therapeutic target, considering that JNK is best known for its involvement in propagating pro-apoptotic signals. This review aims to present biological aspects of JNK, focusing on JNK3 and how it relates to AD. It was also explored the recent development of inhibitors that could be used in AD treatment since several drugs/compounds in phase III clinical trials failed. General aspects of the MAPK family, therapeutic targets, and experimental treatment in models are described and discussed throughout this review.
Collapse
Affiliation(s)
- Stephanie Cristine Hepp Rehfeldt
- Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado CEP 95914-014, Rio Grande do Sul, Brazil; (S.C.H.R.); (F.M.)
| | - Fernanda Majolo
- Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado CEP 95914-014, Rio Grande do Sul, Brazil; (S.C.H.R.); (F.M.)
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre CEP 90619-900, Rio Grande do Sul, Brazil
| | - Márcia Inês Goettert
- Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado CEP 95914-014, Rio Grande do Sul, Brazil; (S.C.H.R.); (F.M.)
| | - Stefan Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, D-72076 Tuebingen, Germany
| |
Collapse
|
4
|
Kim S, Kim N, Lee J, Kim S, Hong J, Son S, Do Heo W. Dynamic Fas signaling network regulates neural stem cell proliferation and memory enhancement. SCIENCE ADVANCES 2020; 6:eaaz9691. [PMID: 32494656 PMCID: PMC7176421 DOI: 10.1126/sciadv.aaz9691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/31/2020] [Indexed: 06/11/2023]
Abstract
Activation of Fas (CD95) is observed in various neurological disorders and can lead to both apoptosis and prosurvival outputs, yet how Fas signaling operates dynamically in the hippocampus is poorly understood. The optogenetic dissection of a signaling network can yield molecular-level explanations for cellular responses or fates, including the signaling dysfunctions seen in numerous diseases. Here, we developed an optogenetically activatable Fas that works in a physiologically plausible manner. Fas activation in immature neurons of the dentate gyrus triggered mammalian target of rapamycin (mTOR) activation and subsequent brain-derived neurotrophic factor secretion. Phosphorylation of extracellular signal-regulated kinase (Erk) in neural stem cells was induced under prolonged Fas activation. Repetitive activation of this signaling network yielded proliferation of neural stem cells and a transient increase in spatial working memory in mice. Our results demonstrate a novel Fas signaling network in the dentate gyrus and illuminate its consequences for adult neurogenesis and memory enhancement.
Collapse
Affiliation(s)
- Seokhwi Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Nury Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jinsu Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Sungsoo Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Jongryul Hong
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Seungkyu Son
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Won Do Heo
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Nazarian A, Yashin AI, Kulminski AM. Genome-wide analysis of genetic predisposition to Alzheimer's disease and related sex disparities. ALZHEIMERS RESEARCH & THERAPY 2019; 11:5. [PMID: 30636644 PMCID: PMC6330399 DOI: 10.1186/s13195-018-0458-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia in the elderly and the sixth leading cause of death in the United States. AD is mainly considered a complex disorder with polygenic inheritance. Despite discovering many susceptibility loci, a major proportion of AD genetic variance remains to be explained. METHODS We investigated the genetic architecture of AD in four publicly available independent datasets through genome-wide association, transcriptome-wide association, and gene-based and pathway-based analyses. To explore differences in the genetic basis of AD between males and females, analyses were performed on three samples in each dataset: males and females combined, only males, or only females. RESULTS Our genome-wide association analyses corroborated the associations of several previously detected AD loci and revealed novel significant associations of 35 single-nucleotide polymorphisms (SNPs) outside the chromosome 19q13 region at the suggestive significance level of p < 5E-06. These SNPs were mapped to 21 genes in 19 chromosomal regions. Of these, 17 genes were not associated with AD at genome-wide or suggestive levels of associations by previous genome-wide association studies. Also, the chromosomal regions corresponding to 8 genes did not contain any previously detected AD-associated SNPs with p < 5E-06. Our transcriptome-wide association and gene-based analyses revealed that 26 genes located in 20 chromosomal regions outside chromosome 19q13 had evidence of potential associations with AD at a false discovery rate of 0.05. Of these, 13 genes/regions did not contain any previously AD-associated SNPs at genome-wide or suggestive levels of associations. Most of the newly detected AD-associated SNPs and genes were sex specific, indicating sex disparities in the genetic basis of AD. Also, 7 of 26 pathways that showed evidence of associations with AD in our pathway-bases analyses were significant only in females. CONCLUSIONS Our findings, particularly the newly discovered sex-specific genetic contributors, provide novel insight into the genetic architecture of AD and can advance our understanding of its pathogenesis.
Collapse
Affiliation(s)
- Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA.
| | - Anatoliy I Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA.
| |
Collapse
|
6
|
Komnig D, Gertz K, Habib P, Nolte KW, Meyer T, Brockmann MA, Endres M, Rathkolb B, Hrabě de Angelis M, Schulz JB, Falkenburger BH, Reich A. Faim2 contributes to neuroprotection by erythropoietin in transient brain ischemia. J Neurochem 2018; 145:258-270. [PMID: 29315561 DOI: 10.1111/jnc.14296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 11/28/2022]
Abstract
Delayed cell death in the penumbra region of acute ischemic stroke occurs through apoptotic mechanisms, making it amenable to therapeutic interventions. Fas/CD95 mediates apoptotic cell death in response to external stimuli. In mature neurons, Fas/CD95 signaling is modulated by Fas-apoptotic inhibitory molecule 2 (Faim2), which reduces cell death in animal models of stroke, meningitis, and Parkinson disease. Erythropoietin (EPO) has been studied as a therapeutic strategy in ischemic stroke. Erythropoietin stimulates the phosphatidylinositol-3 kinase/Akt (PI3K/Akt) pathway, which regulates Faim2 expression. Therefore, up-regulation of Faim2 may contribute to neuroprotection by EPO. Male Faim2-deficient mice (Faim2-/- ) and wild-type littermates (WT) were subjected to 30 min of middle cerebral artery occlusion (MCAo) followed by 72 h of reperfusion. EPO was applied before (30 min) and after (24 and 48 h) MCAo. In WT mice application of EPO at a low dose (5000 U/kg) significantly reduced stroke volume, whereas treatment with high dose (90 000 U/kg) did not. In Faim2-/- animals administration of low-dose EPO did not result in a significant reduction in stroke volume. Faim2 expression as measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) increased after low-dose EPO but not with high dose. An extensive phenotyping including analysis of cerebral vessel architecture did not reveal confounding differences between the genotypes. In human post-mortem brain Faim2 displayed a differential expression in areas of penumbral ischemia. Faim2 up-regulation may contribute to the neuroprotective effects of low-dose erythropoietin in transient brain ischemia. The dose-dependency may explain mixed effects of erythropoietin observed in clinical stroke trials.
Collapse
Affiliation(s)
- Daniel Komnig
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Karen Gertz
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Pardes Habib
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Kay W Nolte
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Tareq Meyer
- Department of Diagnostic and Interventional Neuroradiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Endres
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany.,Excellence Cluster NeuroCure, Berlin, Germany.,German Center for Neurodegenerative Disease (DZNE), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Ludwig-Maximilians-Universität München, Gene Center, Institute of Molecular Animal Breeding and Biotechnology, München, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | | | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Björn H Falkenburger
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Arno Reich
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Chen X, Yu X, Wang Y, Zhu J, Gu J. Soluble Fas/FasLare elevated in the serum and cerebrospinal fluid of patients with neurocysticercosis. Parasitol Res 2017; 116:3027-3036. [DOI: 10.1007/s00436-017-5613-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022]
|
8
|
Siegmund D, Lang I, Wajant H. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J 2016; 284:1131-1159. [PMID: 27865080 DOI: 10.1111/febs.13968] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022]
Abstract
Since their identification more than 20 years ago, the death receptors CD95, TRAILR1, and TRAILR2 have been intensively studied with respect to their cell death-inducing activities. These receptors, however, can also trigger a variety of cell death-independent cellular responses reaching from the activation of proinflammatory gene transcription programs over the stimulation of proliferation and differentiation to induction of cell migration. The cell death-inducing signaling mechanisms of CD95 and the TRAIL death receptors are well understood. In contrast, despite the increasing recognition of the biological and pathophysiological relevance of the cell death-independent activities of CD95, TRAILR1, and TRAILR2, the corresponding signaling mechanisms are less understood and give no fully coherent picture. This review is focused on the cell death-independent activities of CD95 and the TRAIL death receptors and addresses mainly three questions: (a) how are these receptors linked to noncell death pathways at the molecular level, (b) which factors determine the balance of cell death and cell death-independent activities of CD95 and the TRAIL death receptors at the cellular level, and (c) what are the consequences of the cell death-independent functions of these receptors for their role in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Daniela Siegmund
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Germany
| |
Collapse
|
9
|
Komnig D, Schulz JB, Reich A, Falkenburger BH. Mice lacking Faim2 show increased cell death in the MPTP mouse model of Parkinson disease. J Neurochem 2016; 139:848-857. [PMID: 27638043 DOI: 10.1111/jnc.13847] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/24/2022]
Abstract
The death receptor Fas/CD95 mediates apoptotic cell death in response to external stimuli. In neurons, Fas-induced apoptosis is prevented by Fas-apoptotic inhibitory molecule 2 (Faim2). Mice lacking Faim2 showed increased neurodegeneration in animal models of stroke and bacterial meningitis. We therefore tested the relevance of Faim2 in a classical animal model of Parkinson disease and determined the toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Faim2-deficient mice. Without MPTP treatment, there was no difference in the dopaminergic system between Faim2-deficient mice and control mice. MPTP was applied i.p. in doses of 30 mg per kg on five consecutive days. Fourteen days after the last MPTP injection, the number of dopaminergic neurons in the lateral substantia nigra, assayed by stereological counting, was reduced by 39% in control mice and 53% in Faim2-deficient mice. The density of dopaminergic fibers in the dorsal striatum was reduced by 36% in control mice and 69% in Faim2-deficient mice, in the ventral striatum 44% in control mice and 76% in Faim2-deficient mice. Fiber density recovered at 90 days after MPTP with similar density in both groups. Striatal catecholamine levels were reduced by 81-84% in both groups and recovered at 90 days. Faim2 expression was documented in mouse midbrain using quantitative reverse transcription-PCR (qRT-PCR) and found decreased after MPTP administration. Taken together, our findings demonstrate increased degeneration of dopaminergic neurons with Faim2 deficiency, indicating that Fas-induced apoptosis contributes to cell death in the MPTP mouse model. Along with the decreased expression of Faim2 after MPTP, this finding indicates that boosting Faim2 function might represent a therapeutic strategy for Parkinson disease.
Collapse
Affiliation(s)
- Daniel Komnig
- Department of Neurology, RWTH University Aachen, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, RWTH University Aachen, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Arno Reich
- Department of Neurology, RWTH University Aachen, Aachen, Germany
| | - Björn H Falkenburger
- Department of Neurology, RWTH University Aachen, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
The Fas Ligand/Fas Death Receptor Pathways Contribute to Propofol-Induced Apoptosis and Neuroinflammation in the Brain of Neonatal Rats. Neurotox Res 2016; 30:434-52. [PMID: 27189477 DOI: 10.1007/s12640-016-9629-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 03/25/2016] [Accepted: 05/03/2016] [Indexed: 01/11/2023]
Abstract
A number of experimental studies have reported that exposure to common, clinically used anesthetics induce extensive neuroapoptosis and cognitive impairment when applied to young rodents, up to 2 weeks old, in phase of rapid synaptogenesis. Propofol is the most used general anesthetic in clinical practice whose mechanisms of neurotoxicity on the developing brain remains to be examined in depth. This study investigated effects of different exposures to propofol anesthesia on Fas receptor and Fas ligand expressions, which mediate proapoptotic and proinflammation signaling in the brain. Propofol (20 mg/kg) was administered to 7-day-old rats in multiple doses sufficient to maintain 2-, 4- and 6-h duration of anesthesia. Animals were sacrificed at 0, 4, 16 and 24 h after termination of anesthesia. It was found that propofol anesthesia induced Fas/FasL and downstream caspase-8 expression more prominently in the thalamus than in the cortex. Opposite, Bcl-2 and caspase-9, markers of intrinsic pathway activation, were shown to be more influenced by propofol treatment in the cortex. Further, we have established upregulation of caspase-1 and IL-1β cytokine transcription as well as subsequent activation of microglia that is potentially associated with brain inflammation. Behavioral analyses revealed that P35 and P60 animals, neonatally exposed to propofol, had significantly higher motor activity during three consecutive days of testing in the open field, though formation of the intersession habituation was not prevented. This data, together with our previous results, contributes to elucidation of complex mechanisms of propofol toxicity in developing brain.
Collapse
|
11
|
Relationship between somatostatin and death receptor expression in the orbital frontal cortex in schizophrenia: a postmortem brain mRNA study. NPJ SCHIZOPHRENIA 2015; 1:14004. [PMID: 27336026 PMCID: PMC4849439 DOI: 10.1038/npjschz.2014.4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/20/2014] [Accepted: 10/20/2014] [Indexed: 11/09/2022]
Abstract
Background: Recently, we provided evidence showing reductions in GAD67 and Dlx mRNAs in the orbital frontal cortex (OFC) in schizophrenia. It is unknown whether these reductions relate mainly to somatostatin (SST) or parvalbumin (PV) mRNA expression changes, and/or whether these reductions are related to decreased SST mRNA+ interneuron density. Aims: To determine whether inhibitory interneuron deficits in the OFC from people with schizophrenia are greatest for SST or PV mRNAs, and whether any such deficits relate to mRNAs encoding cell death signalling molecules. Methods: Inhibitory interneuron mRNAs (SST; PV: in situ hybridization, quantitative PCR (qPCR)) and death signaling mRNAs [FAS receptor (FASR); TNFSF13: qPCR] were measured in control and schizophrenia subjects (38/38). SST mRNA+ interneuron-like cells were quantified in layer II in the gyrus rectus. Gray matter SST and PV mRNAs were correlated with interstitial white matter neuron (IWMN) density (GAD65/67; NeuN) and death signaling mRNAs. Results: SST mRNA was reduced in OFC layers I–VI in schizophrenia (both in situ and qPCR), with greatest deficit in layer II (67%). Layer II SST mRNA+ neuron density was reduced in schizophrenia (~29%). PV mRNA was reduced in layers III (18%) and IV (31%) with no significant diagnostic difference in PV mRNA measured by qPCR. FASR mRNA was increased in schizophrenia (34%). SST, but not PV, expression correlated negatively with FASR and TNFSF13 expressions and with IWMN density. Conclusions: Our study demonstrates that SST interneurons are predominantly linked to the inhibitory interneuron pathology in the OFC in schizophrenia and that increased death receptor signaling mRNAs relate to prominent laminar deficits in SST mRNA in the OFC in schizophrenia. We suggest that SST interneurons may be more vulnerable to increased death receptor signaling than PV interneurons.
Collapse
|
12
|
Modulation of hippocampal neuroplasticity by Fas/CD95 regulatory protein 2 (Faim2) in the course of bacterial meningitis. J Neuropathol Exp Neurol 2014; 73:2-13. [PMID: 24335530 PMCID: PMC3978830 DOI: 10.1097/nen.0000000000000020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Supplemental digital content is available in the text. Fas-apoptotic inhibitory molecule 2 (Faim2) is a neuron-specific membrane protein and a member of the evolutionary conserved lifeguard apoptosis regulatory gene family. Its neuroprotective effect in acute neurological diseases has been demonstrated in an in vivo model of focal cerebral ischemia. Here we show that Faim2 is physiologically expressed in the human brain with a changing pattern in cases of infectious meningoencephalitis.In Faim2-deficient mice, there was increased caspase-associated hippocampal apoptotic cell death and an increased extracellular signal-regulated kinase pattern during acute bacterial meningitis induced by subarachnoid infection with Streptococcus pneumoniae type 3 strain. However, after rescuing the animals by antibiotic treatment, Faim2 deficiency led to increased hippocampal neurogenesis at 7 weeks after infection. This was associated with improved performance of Faim2-deficient mice compared to wild-type littermates in the Morris water maze, a paradigm for hippocampal spatial learning and memory. Thus, Faim2 deficiency aggravated degenerative processes in the acute phase but induced regenerative processes in the repair phase of a mouse model of pneumococcal meningitis. Hence, time-dependent modulation of neuroplasticity by Faim2 may offer a new therapeutic approach for reducing hippocampal neuronal cell death and improving cognitive deficits after bacterial meningitis.
Collapse
|
13
|
Neuronal apoptosis and motor deficits in mice with genetic inhibition of GSK-3 are Fas-dependent. PLoS One 2013; 8:e70952. [PMID: 23940673 PMCID: PMC3734180 DOI: 10.1371/journal.pone.0070952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/24/2013] [Indexed: 11/19/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) inhibitors have been postulated as useful therapeutic tools for the treatment of chronic neurodegenerative and neuropsychiatric diseases. Nevertheless the clinical use of these inhibitors has been limited by their common side effects. Lithium, a non-selective GSK-3 inhibitor has been classically administered to treat bipolar patients but its prescription is decreasing due to its frequent side effects such as hand tremor. This toxicity seems to be higher in the elderly and a clinical trial with lithium for Alzheimer’s disease was stopped due to high rate of discontinuation. We have previously described a mechanism for the adverse effects of chronic lithium that involves neuronal apoptosis via Fas signaling. As lithium inhibits many other enzymatic activities such as inositol monophosphatase and histone deacetylase, here we aim to genetically test whether GSK-3 inhibition induces those adverse effects through Fas receptor. For this purpose we took advantage of a transgenic mouse line with decreased GSK-3 activity (Tet/DN-GSK-3 mice) that shows increased rate of neuronal apoptosis as well as motor deficits and brought it to a Fas deficient background (lpr mice). We found that apoptosis induced by GSK-3 inhibition was absent in Fas deficient background. Interestingly, motor deficits were also absent in Fas deficient Tet/DN-GSK-3 mice. These results demonstrate that Fas signaling contributes to the neurological toxicity of GSK-3 inhibition and suggest that a combination of GSK-3 inhibitors with blockers of Fas signaling could help to improve the application of GSK-3 inhibitors to clinics.
Collapse
|
14
|
Sung TC, Chen Z, Thuret S, Vilar M, Gage FH, Riek R, Lee KF. P45 forms a complex with FADD and promotes neuronal cell survival following spinal cord injury. PLoS One 2013; 8:e69286. [PMID: 23935974 PMCID: PMC3720591 DOI: 10.1371/journal.pone.0069286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/06/2013] [Indexed: 12/02/2022] Open
Abstract
Fas-associated death domain (DD) adaptor (FADD), a member of the DD superfamily, contains both a DD and a death effector domain (DED) that are important in mediating FAS ligand-induced apoptotic signaling. P45 is a unique member of the DD superfamily in that it has a domain with sequence and structural characteristics of both DD and DED. We show that p45 forms a complex with FADD and diminishes Fas-FADD mediated death signaling. The DED of FADD is required for the complex formation with p45. Following spinal cord injury, transgenic mice over-expressing p45 exhibit increased neuronal survival, decreased retraction of corticospinal tract fibers and improved functional recovery. Understanding p45-mediated cellular and molecular mechanisms may provide insights into facilitating nerve regeneration in humans.
Collapse
Affiliation(s)
- Tsung-Chang Sung
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
| | - Zhijiang Chen
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
| | - Sandrine Thuret
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
- Centre for the Cellular Basis of Behaviour & Medical Research Council Centre for Neurodegeneration Research, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Marçal Vilar
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
- Neurodegeneration Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Fred H. Gage
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
| | - Roland Riek
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
- Laboratory for Physical Chemistry, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Kuo-Fen Lee
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Kisiswa L, Osório C, Erice C, Vizard T, Wyatt S, Davies AM. TNFα reverse signaling promotes sympathetic axon growth and target innervation. Nat Neurosci 2013; 16:865-73. [PMID: 23749144 PMCID: PMC3785146 DOI: 10.1038/nn.3430] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
Abstract
Reverse signaling via members of the tumor necrosis factor (TNF) superfamily controls multiple aspects of immune function. Here we document TNFα reverse signaling in the nervous system to our knowledge for the first time and show that it has a crucial role in establishing sympathetic innervation. During postnatal development, sympathetic axons express TNFα as they grow and branch in their target tissues, which in turn express TNF receptor 1 (TNFR1). In culture, soluble forms of TNFR1 act directly on postnatal sympathetic axons to promote growth and branching by a mechanism that depends on membrane-integrated TNFα and on downstream activation of ERK. Sympathetic innervation density is substantially lower in several tissues in postnatal and adult mice lacking either TNFα or TNFR1. These findings reveal that target-derived TNFR1 acts as a reverse-signaling ligand for membrane-integrated TNFα to promote growth and branching of sympathetic axons.
Collapse
MESH Headings
- ADAM Proteins/pharmacology
- ADAM17 Protein
- Animals
- Animals, Newborn
- Axons/physiology
- Calcium/metabolism
- Cells, Cultured
- Chelating Agents/pharmacology
- Dose-Response Relationship, Drug
- Egtazic Acid/analogs & derivatives
- Egtazic Acid/pharmacology
- Embryo, Mammalian
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/genetics
- Mice
- Mice, Transgenic
- Nerve Fibers/physiology
- Nerve Growth Factor/pharmacology
- Neurons/cytology
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/physiology
- Superior Cervical Ganglion/cytology
- Sympathetic Nervous System/cytology
- Sympathetic Nervous System/embryology
- Sympathetic Nervous System/growth & development
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Lilian Kisiswa
- Division of Molecular Biosciences, School of Biosciences, Cardiff University, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
16
|
Vernet-der Garabedian B, Derer P, Bailly Y, Mariani J. Innate immunity in the Grid2Lc/+ mouse model of cerebellar neurodegeneration: glial CD95/CD95L plays a non-apoptotic role in persistent neuron loss-associated inflammatory reactions in the cerebellum. J Neuroinflammation 2013; 10:65. [PMID: 23672668 PMCID: PMC3657541 DOI: 10.1186/1742-2094-10-65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/12/2013] [Indexed: 11/10/2022] Open
Abstract
Background There is growing evidence that the death receptor CD95 has a wider role in non-apoptotic functions. In the brain, it may contribute to neural death and to the associated inflammatory reaction via a non-apoptotic pathway. Brain injury triggers an inflammatory reaction in which the CD95/CD95L system acts principally through peripheral cells recruited to the lesion. In cases of inflammation within the brain, with no blood–brain barrier leakage, the role of the CD95/CD95L system is thus unclear. We investigated the possible role of CD95 and CD95L in such conditions, by studying the relationships between glial cell activation, neuron death and CD95/CD95L expression in the cerebellum of the Lurcher (Grid2Lc/+) mutant mouse, a model of cerebellar neurodegeneration. Methods Glial cells in slices of wild-type and Lurcher mouse cerebella were observed by light microscopy at various ages overlapping periods of neuron loss and of pre- and post-neurodegeneration. Subcellular organization was studied by electron microscopy. We assessed CD95 levels by western blotting, RT-PCR and glial cell cultures. The levels of CD95L and IL-6 were studied by ELISA and a biological assay, respectively. Results In the Grid2Lc/+cerebellum, neuron loss triggers a typical, but abnormally persistent, inflammatory reaction. We identified two phases of astrogliosis: an early burst of large glial cell activation, peaking at postnatal days 25 to 26, coinciding with peak cerebellar neuron loss, followed by a long period of slow decline indicating that the strength of the glial reaction is modulated by neuron mortality rates. Comparisons of time-courses of glial cell activation, cytokine production and neuron loss revealed that the number of surviving neurons decreased as CD95 increased. Thus, CD95 cannot be directly involved in neuron death, and its role must be limited to a contribution to the inflammatory reaction. The upregulation of CD95 likely on astrocytes coincides with increases in the levels of IL-6, a cytokine produced principally by astrocytes, and soluble CD95L. Conclusions These results suggest that CD95 and soluble CD95L contribute, via non-apoptotic signaling, to the inflammatory reaction initiated early in neuron death within the Grid2Lc/+ cerebellum.
Collapse
|
17
|
Almeida A. Genetic determinants of neuronal vulnerability to apoptosis. Cell Mol Life Sci 2013; 70:71-88. [PMID: 22695677 PMCID: PMC11113535 DOI: 10.1007/s00018-012-1029-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/22/2012] [Accepted: 05/07/2012] [Indexed: 12/18/2022]
Abstract
Apoptosis is a common mode of cell death that contributes to neuronal loss associated with neurodegeneration. Single-nucleotide polymorphisms (SNPs) in chromosomal DNA are contributing factors dictating natural susceptibility of humans to disease. Here, the most common SNPs affecting neuronal vulnerability to apoptosis are reviewed in the context of neurological disorders. Polymorphic variants in genes encoding apoptotic proteins, either from the extrinsic (FAS, TNF-α, CASP8) or the intrinsic (BAX, BCL2, CASP3, CASP9) pathways could be highly valuable in the diagnosis of neurodegenerative diseases and stroke. Interestingly, the Arg72Pro SNP in TP53, the gene encoding tumor suppressor p53, was recently revealed a biomarker of poor prognosis in stroke due to its ability to modulate neuronal apoptotic death. Search for new SNPs responsible for genetic variability to apoptosis will ensure the implementation of novel diagnostic and prognostic tools, as well as therapeutic strategies against neurological diseases.
Collapse
Affiliation(s)
- Angeles Almeida
- Instituto de Investigación Biomédica de Salamanca, Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
18
|
Boender AJ, van Rozen AJ, Adan RAH. Nutritional state affects the expression of the obesity-associated genes Etv5, Faim2, Fto, and Negr1. Obesity (Silver Spring) 2012; 20:2420-5. [PMID: 22627920 DOI: 10.1038/oby.2012.128] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Obesity is a risk factor for type II diabetes, atherosclerosis, and some forms of cancer. Variation in common measures of obesity (e.g., BMI, waist/hip ratio) is largely explained by heritability. The advent of genome-wide association studies (GWAS) has made it possible to identify several genetic variants that associate with measures of obesity, but how exactly these genetic variants contribute to overweight has remained largely unresolved. One first hint is given by the fact that many of the associated variants reside in or near genes that act in the central nervous system, which implicates neuronal signaling in the etiology of obesity. Although the brain controls both energy intake and expenditure, it has more capacity to regulate energy intake rather than energy expenditure. In environments where food is abundant, this renders the body prone to weight increases. To gain more insight into the neurobiological mechanisms involved, we set out to investigate the effect of dietary exposure on the expression levels of obesity-associated genes in the ventro-medial hypothalamus (VMH)/arcuate nucleus (ARC) and the substantia nigra (SN)/ventral tegmental area (VTA), two brain regions that are implicated in feeding behavior. We show that the expression of Etv5, Faim2, Fto, Negr1 but not Sh2b1 is affected by nutritional state in these two areas, thereby providing insight into the relationship between nutritional state and expression levels of obesity-associated genes in two brain areas relevant to feeding.
Collapse
Affiliation(s)
- Arjen J Boender
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
19
|
Catts VS, Weickert CS. Gene expression analysis implicates a death receptor pathway in schizophrenia pathology. PLoS One 2012; 7:e35511. [PMID: 22545112 PMCID: PMC3335850 DOI: 10.1371/journal.pone.0035511] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 03/16/2012] [Indexed: 12/22/2022] Open
Abstract
An increase in apoptotic events may underlie neuropathology in schizophrenia. By data-mining approaches, we identified significant expression changes in death receptor signaling pathways in the dorsolateral prefrontal cortex (DLPFC) of patients with schizophrenia, particularly implicating the Tumor Necrosis Factor Superfamily member 6 (FAS) receptor and the Tumor Necrosis Factor [ligand] Superfamily member 13 (TNFSF13) in schizophrenia. We sought to confirm and replicate in an independent tissue collection the noted mRNA changes with quantitative real-time RT-PCR. To test for regional and diagnostic specificity, tissue from orbital frontal cortex (OFC) was examined and a bipolar disorder group included. In schizophrenia, we confirmed and replicated significantly increased expression of TNFSF13 mRNA in the DLPFC. Also, a significantly larger proportion of subjects in the schizophrenia group had elevated FAS receptor expression in the DLPFC relative to unaffected controls. These changes were not observed in the bipolar disorder group. In the OFC, there were no significant differences in TNFSF13 or FAS receptor mRNA expression. Decreases in BH3 interacting domain death agonist (BID) mRNA transcript levels were found in the schizophrenia and bipolar disorder groups affecting both the DLPFC and the OFC. We tested if TNFSF13 mRNA expression correlated with neuronal mRNAs in the DLPFC, and found significant negative correlations with interneuron markers, parvalbumin and somatostatin, and a positive correlation with PPP1R9B (spinophilin), but not DLG4 (PSD-95). The expression of TNFSF13 mRNA in DLPFC correlated negatively with tissue pH, but decreasing pH in cultured cells did not cause increased TNFSF13 mRNA nor did exogenous TNFSF13 decrease pH. We concluded that increased TNFSF13 expression may be one of several cell-death cytokine abnormalities that contribute to the observed brain pathology in schizophrenia, and while increased TNFSF13 may be associated with lower brain pH, the change is not necessarily causally related to brain pH.
Collapse
Affiliation(s)
- Vibeke Sørensen Catts
- Schizophrenia Research Laboratory, Schizophrenia Research Institute, Sydney, New South Wales, Australia.
| | | |
Collapse
|
20
|
Hermann DM, Chopp M. Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol 2012; 11:369-80. [PMID: 22441198 DOI: 10.1016/s1474-4422(12)70039-x] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent laboratory findings suggest that it might be possible to promote cerebral plasticity and neurological recovery after stroke by use of exogenous pharmacological or cell-based treatments. Brain microvasculature and glial cells respond in concert to ischaemic stressors and treatment, creating an environment in which successful recovery can ensue. Neurons remote from and adjacent to the ischaemic lesion are enabled to sprout, and neural precursor cells that accumulate with cerebral microvessels in the perilesional tissue further stimulate brain plasticity and neurological recovery. These factors interact in a highly dynamic way, facilitating temporally and spatially orchestrated responses of brain networks. In view of the complexity of the systems involved, stroke treatments that stimulate and amplify these endogenous restorative mechanisms might also provoke unwanted side-effects. In experimental studies, adverse effects have been identified when neurorestorative treatments were administered to animals with severe associated illnesses, after thrombolysis with alteplase, and when therapies were initiated outside appropriate time windows. Balancing the opportunities and possible risks, we provide suggestions for the translation of restorative therapies from the laboratory to the clinic.
Collapse
Affiliation(s)
- Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany.
| | | |
Collapse
|
21
|
Mi S, Lee X, Hu Y, Ji B, Shao Z, Yang W, Huang G, Walus L, Rhodes K, Gong BJ, Miller RH, Pepinsky RB. Death receptor 6 negatively regulates oligodendrocyte survival, maturation and myelination. Nat Med 2011; 17:816-21. [PMID: 21725297 DOI: 10.1038/nm.2373] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 04/06/2011] [Indexed: 12/11/2022]
Abstract
Survival and differentiation of oligodendrocytes are important for the myelination of central nervous system (CNS) axons during development and crucial for myelin repair in CNS demyelinating diseases such as multiple sclerosis. Here we show that death receptor 6 (DR6) is a negative regulator of oligodendrocyte maturation. DR6 is expressed strongly in immature oligodendrocytes and weakly in mature myelin basic protein (MBP)-positive oligodendrocytes. Overexpression of DR6 in oligodendrocytes leads to caspase 3 (casp3) activation and cell death. Attenuation of DR6 function leads to enhanced oligodendrocyte maturation, myelination and downregulation of casp3. Treatment with a DR6 antagonist antibody promotes remyelination in both lysolecithin-induced demyelination and experimental autoimmune encephalomyelitis (EAE) models. Consistent with the DR6 antagoinst antibody studies, DR6-null mice show enhanced remyelination in both demyelination models. These studies reveal a pivotal role for DR6 signaling in immature oligodendrocyte maturation and myelination that may provide new therapeutic avenues for the treatment of demyelination disorders such as multiple sclerosis.
Collapse
Affiliation(s)
- Sha Mi
- Biogen Idec, Cambridge, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gouraud SS, Waki H, Bhuiyan ME, Takagishi M, Kohsaka A, Maeda M. Increased anti-apoptotic conditions in the nucleus tractus solitarii of spontaneously hypertensive rat. Auton Neurosci 2011; 162:15-23. [DOI: 10.1016/j.autneu.2011.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 01/14/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
23
|
Abstract
Death receptor (DR) signaling has a major impact on the outcome of numerous neurological diseases, including ischemic stroke. DRs mediate not only cell death signals, but also proinflammatory responses and cell proliferation. Identification of regulatory proteins that control the switch between apoptotic and alternative DR signaling opens new therapeutic opportunities. Fas apoptotic inhibitory molecule 2 (Faim2) is an evolutionary conserved, neuron-specific inhibitor of Fas/CD95-mediated apoptosis. To investigate its role during development and in disease models, we generated Faim2-deficient mice. The ubiquitous null mutation displayed a viable and fertile phenotype without overt deficiencies. However, lack of Faim2 caused an increase in susceptibility to combined oxygen-glucose deprivation in primary neurons in vitro as well as in caspase-associated cell death, stroke volume, and neurological impairment after cerebral ischemia in vivo. These processes were rescued by lentiviral Faim2 gene transfer. In summary, we provide evidence that Faim2 is a novel neuroprotective molecule in the context of cerebral ischemia.
Collapse
|
24
|
Kang SW, Chung JH, Kim DH, Yun DH, Yoo SD, Kim HS, Seo W, Yoon JS, Baik HH. A Promoter SNP (rs1800682, -670C/T) of FAS Is Associated with Stroke in a Korean Population. Genomics Inform 2010. [DOI: 10.5808/gi.2010.8.4.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Synthesis and biological evaluation of 3-substituted-benzofuran-2-carboxylic esters as a novel class of ischemic cell death inhibitors. Bioorg Med Chem Lett 2010; 20:6362-5. [DOI: 10.1016/j.bmcl.2010.09.102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/08/2010] [Accepted: 09/21/2010] [Indexed: 01/05/2023]
|
26
|
The adaptor protein TRIP6 antagonizes Fas-induced apoptosis but promotes its effect on cell migration. Mol Cell Biol 2010; 30:5582-96. [PMID: 20876301 DOI: 10.1128/mcb.00134-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Fas/CD95 receptor mediates apoptosis but is also capable of triggering nonapoptotic signals. However, the mechanisms that selectively regulate these opposing effects are not yet fully understood. Here we demonstrate that the activation of Fas or stimulation with lysophosphatidic acid (LPA) induces cytoskeletal reorganization, leading to the association of Fas with actin stress fibers and the adaptor protein TRIP6. TRIP6 binds to the cytoplasmic juxtamembrane domain of Fas and interferes with the recruitment of FADD to Fas. Furthermore, through physical interactions with NF-κB p65, TRIP6 regulates nuclear translocation and the activation of NF-κB upon Fas activation or LPA stimulation. As a result, TRIP6 antagonizes Fas-induced apoptosis and further enhances the antiapoptotic effect of LPA in cells that express high levels of TRIP6. On the other hand, TRIP6 promotes Fas-mediated cell migration in apoptosis-resistant glioma cells. This effect is regulated via the Src-dependent phosphorylation of TRIP6 at Tyr-55. As TRIP6 is overexpressed in glioblastomas, this may have a significant impact on enhanced NF-κB activity, resistance to apoptosis, and Fas-mediated cell invasion in glioblastomas.
Collapse
|
27
|
Rossin A, Kral R, Lounnas N, Chakrabandhu K, Mailfert S, Marguet D, Hueber AO. Identification of a lysine-rich region of Fas as a raft nanodomain targeting signal necessary for Fas-mediated cell death. Exp Cell Res 2010; 316:1513-22. [DOI: 10.1016/j.yexcr.2010.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 02/11/2010] [Accepted: 03/04/2010] [Indexed: 11/28/2022]
|
28
|
Allais A, Burel D, Roy V, Arthaud S, Galas L, Isaac ER, Desfeux A, Parent B, Fournier A, Chapillon P, Sherwood NM, Vaudry H, Gonzalez BJ. Balanced effect of PACAP and FasL on granule cell death during cerebellar development: a morphological, functional and behavioural characterization. J Neurochem 2010; 113:329-40. [DOI: 10.1111/j.1471-4159.2009.06555.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
29
|
Fujita KI, Srinivasula SM. Ubiquitination and TNFR1 signaling. Results Probl Cell Differ 2010; 49:87-114. [PMID: 19582409 DOI: 10.1007/400_2009_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Death receptors are a subset of the tumor necrosis factor receptor (TNFR) family of proteins and share a characteristic cytoplasmic motif called the "death domain". In addition to mediating cell death, these receptors regulate cell proliferation, inflammatory responses, and tumor progression. Receptor occupancy triggers the assembly of several cytoplasmic molecules into distinct complexes, each initiating separate signaling events leading to different biological responses. Post-translational modifications involving ubiquitin, a peptide of 76 amino acids, regulate events at nearly all stages of signaling. All ubiquitin chains function as docking platforms for molecules with specific recognition motifs that either propagate the signal or target the protein for proteasomal degradation. Moreover, enzymes with ubiquitin thioesterase activity (deubiquitinating enzymes, or DUBs) reverse modifications by removing the ubiquitin chains, allowing ubiquitin editing at the molecular level. Ubiquitin protein ligases (E3s), DUBs, and signaling molecules with ubiquitin recognition motifs control TNFR1 mediated cell death and activation of NF-kappaB and JNK. Here, we discuss the current understanding of how these proteins regulate TNFR1 signaling.
Collapse
Affiliation(s)
- Ken-ichi Fujita
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 3016A, 9000 Rockville Pike, Bethesda, MD 20892-4256, USA.
| | | |
Collapse
|
30
|
|
31
|
Abstract
Although CD95 (Fas/Apo-1) has long been known to be broadly expressed in the brain, its function has remained enigmatic. In this issue of Cell Stem Cell, Corsini et al. (2009) now show that CD95 serves as a potent activator of neurogenesis in both the healthy and injured brain.
Collapse
Affiliation(s)
- Christoph P Beier
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | | |
Collapse
|
32
|
Ramos-Miguel A, García-Fuster M, Callado L, La Harpe R, Meana J, García-Sevilla J. Phosphorylation of FADD (Fas-associated death domain protein) at serine 194 is increased in the prefrontal cortex of opiate abusers: Relation to mitogen activated protein kinase, phosphoprotein enriched in astrocytes of 15 kDa, and Akt signaling pathways involved in neuroplasticity. Neuroscience 2009; 161:23-38. [DOI: 10.1016/j.neuroscience.2009.03.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/27/2009] [Accepted: 03/11/2009] [Indexed: 02/07/2023]
|
33
|
Voss M, Lettau M, Paulsen M, Janssen O. Posttranslational regulation of Fas ligand function. Cell Commun Signal 2008; 6:11. [PMID: 19114018 PMCID: PMC2647539 DOI: 10.1186/1478-811x-6-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 12/29/2008] [Indexed: 12/29/2022] Open
Abstract
The TNF superfamily member Fas ligand acts as a prototypic death factor. Due to its ability to induce apoptosis in Fas (APO-1, CD95) expressing cells, Fas ligand participates in essential effector functions of the immune system. It is involved in natural killer cell- and T cell-mediated cytotoxicity, the establishment of immune privilege, and in termination of immune responses by induction of activation-induced cell death. In addition, Fas ligand-positive tumours may evade immune surveillance by killing Fas-positive tumour-infiltrating cells. Given these strong cytotoxic capabilities of Fas ligand, it is obvious that its function has to be strictly regulated to avoid uncontrolled damage. In hematopoietic cells, the death factor is stored in secretory lysosomes and is mobilised to the immunological synapse only upon activation. The selective sorting to and the release from this specific lysosomal compartment requires interactions of the Fas ligand cytosolic moiety, which mediates binding to various adapter proteins involved in trafficking and cytoskeletal reorganisation. In addition, Fas ligand surface expression is further regulated by posttranslational ectodomain shedding and subsequent regulated intramembrane proteolysis, releasing a soluble ectodomain cytokine into the extracellular space and an N-terminal fragment with a potential role in intracellular signalling processes. Moreover, other posttranslational modifications of the cytosolic domain, including phosphorylation and ubiquitylation, have been described to affect various aspects of Fas ligand biology. Since FasL is regarded as a potential target for immunotherapy, the further characterisation of its biological regulation and function will be of great importance for the development and evaluation of future therapeutic strategies.
Collapse
Affiliation(s)
- Matthias Voss
- Molecular Immunology, Institute of Immunology, Medical Center Schleswig-Holstein Campus Kiel, Arnold-Heller-Str, 3, Bldg, 17, D-24105 Kiel, Germany.
| | | | | | | |
Collapse
|