1
|
Villamar-Flores CI, Rodríguez-Violante M, Abundes-Corona A, Alatriste-Booth V, Valencia-Flores M, Rodríguez-Agudelo Y, Cervantes-Arriaga A, Solís-Vivanco R. Association between alterations in sleep spindles and cognitive decline in persons with Parkinson's disease. Neurosci Lett 2024; 842:138006. [PMID: 39362461 DOI: 10.1016/j.neulet.2024.138006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Sleep macro and microstructural features have a relevant role for cognition. Although alterations in sleep macrostructure have been reported in persons with neurodegenerative disorders, including Parkinson's disease (PD), it is unknown whether there is a relationship between alterations in microstructure (sleep spindles) and global cognitive deficits in this disease. OBJECTIVE To explore the association between the macro and microstructure of sleep (sleep spindles) and the general cognitive state in persons with PD. METHODS Thirty-three patients with idiopathic PD underwent a one-night polysomnography (PSG) and a global cognitive assessment using the Montreal Cognitive Assessment (MoCA) test. PSG-based macrostructural sleep values and quantification and spectral estimation of sleep spindles were obtained. RESULTS We found increases in total sleep time, latency to rapid eye movement (REM) sleep, and percentage of N1 stage, as well as a decrease in percentage of REM sleep and sleep efficiency compared to values reported in healthy adults. Compared to expected values, a decrease in the number of sleep spindles was found at frontal regions. Participants with cognitive impairment showed an even lower count of sleep spindles, as well as an increase in the amplitude of underlying sigma (12-16 Hz) waves (fast spindles). When exploring MoCA subdomains, we found a consistent relationship between the number and amplitude of sleep spindles and attention capacity. CONCLUSIONS Decreased number and increased amplitude of sleep spindles are linked to cognitive impairment in persons with PD, especially in attention capacity. Therefore, sleep spindles characteristics could serve as prognostic indicators of cognitive deterioration in PD.
Collapse
Affiliation(s)
- Christopher I Villamar-Flores
- Laboratory of Cognitive and Clinical Neurophysiology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico; Faculty of Psychology, Universidad Nacional Autónoma de México (UNAM), Mexico; Faculty of High Studies Zaragoza (FESZ), Universidad Nacional Autónoma de México (UNAM), Mexico
| | | | | | | | - Matilde Valencia-Flores
- Faculty of Psychology, Universidad Nacional Autónoma de México (UNAM), Mexico; Sleep Clinic, Neurology and Psychiatry Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico
| | | | | | - Rodolfo Solís-Vivanco
- Laboratory of Cognitive and Clinical Neurophysiology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico; Faculty of Psychology, Universidad Nacional Autónoma de México (UNAM), Mexico.
| |
Collapse
|
2
|
Kegyes-Brassai AC, Pierson-Bartel R, Bolla G, Kamondi A, Horvath AA. Disruption of sleep macro- and microstructure in Alzheimer's disease: overlaps between neuropsychology, neurophysiology, and neuroimaging. GeroScience 2024:10.1007/s11357-024-01357-z. [PMID: 39333449 DOI: 10.1007/s11357-024-01357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, often associated with impaired sleep quality and disorganized sleep structure. This study aimed to characterize changes in sleep macrostructure and K-complex density in AD, in relation to neuropsychological performance and brain structural changes. We enrolled 30 AD and 30 healthy control participants, conducting neuropsychological exams, brain MRI, and one-night polysomnography. AD patients had significantly reduced total sleep time (TST), sleep efficiency, and relative durations of non-rapid eye movement (NREM) stages 2 (S2), 3 (S3), and rapid eye movement (REM) sleep (p < 0.01). K-complex (KC) density during the entire sleep period and S2 (p < 0.001) was significantly decreased in AD. We found strong correlations between global cognitive performance and relative S3 (p < 0.001; r = 0.86) and REM durations (p < 0.001; r = 0.87). TST and NREM stage 1 (S1) durations showed a moderate negative correlation with amygdaloid and hippocampal volumes (p < 0.02; r = 0.51-0.55), while S3 and REM sleep had a moderate positive correlation with cingulate cortex volume (p < 0.02; r = 0.45-0.61). KC density strongly correlated with global cognitive function (p < 0.001; r = 0.66) and the thickness of the anterior cingulate cortex (p < 0.05; r = 0.45-0.47). Our results indicate significant sleep organization changes in AD, paralleling cognitive decline. Decreased slow wave sleep and KCs are strongly associated with cingulate cortex atrophy. Since sleep changes are prominent in early AD, they may serve as prognostic markers or therapeutic targets.
Collapse
Affiliation(s)
| | | | - Gergo Bolla
- School of PhD Studies, Semmelweis University, Budapest, Hungary
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary
| | - Anita Kamondi
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary
- Department of Neurosurgery and Neurointervention, Semmelweis University, Budapest, Hungary
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Andras Attila Horvath
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary
- Department of Anatomy Histology and Embryology, Semmelweis University, Budapest, Hungary
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
3
|
Blanco-Duque C, Bond SA, Krone LB, Dufour JP, Gillen ECP, Purple RJ, Kahn MC, Bannerman DM, Mann EO, Achermann P, Olbrich E, Vyazovskiy VV. Oscillatory-Quality of sleep spindles links brain state with sleep regulation and function. SCIENCE ADVANCES 2024; 10:eadn6247. [PMID: 39241075 PMCID: PMC11378912 DOI: 10.1126/sciadv.adn6247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/30/2024] [Indexed: 09/08/2024]
Abstract
Here, we characterized the dynamics of sleep spindles, focusing on their damping, which we estimated using a metric called oscillatory-Quality (o-Quality), derived by fitting an autoregressive model to electrophysiological signals, recorded from the cortex in mice. The o-Quality of sleep spindles correlates weakly with their amplitude, shows marked laminar differences and regional topography across cortical regions, reflects the level of synchrony within and between cortical networks, is strongly modulated by sleep-wake history, reflects the degree of sensory disconnection, and correlates with the strength of coupling between spindles and slow waves. As most spindle events are highly localized and not detectable with conventional low-density recording approaches, o-Quality thus emerges as a valuable metric that allows us to infer the spread and dynamics of spindle activity across the brain and directly links their spatiotemporal dynamics with local and global regulation of brain states, sleep regulation, and function.
Collapse
Affiliation(s)
- Cristina Blanco-Duque
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA
| | - Suraya A Bond
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
- UK Dementia Research Institute at UCL, University College London, WC1E 6BT London, UK
| | - Lukas B Krone
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Jean-Phillipe Dufour
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| | - Edward C P Gillen
- Astrophysics Group, Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB30HE, UK
- Astronomy Unit, Queen Mary University of London, Mile End Road, London E14NS, UK
| | - Ross J Purple
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
- School of Physiology Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Martin C Kahn
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Edward O Mann
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Eckehard Olbrich
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
- Sleep and Circadian Neuroscience Institute, University of Oxford, Sherrington Rd, Oxford OX1 3QU, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Sherrington Rd, Oxford OX1 3QU, UK
| |
Collapse
|
4
|
Kwon H, Chinappen DM, Kinard EA, Goodman SK, Huang JF, Berja ED, Walsh KG, Shi W, Manoach DS, Kramer MA, Chu CJ. Impaired sleep-dependent memory consolidation predicted by reduced sleep spindles in Rolandic epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594515. [PMID: 38798414 PMCID: PMC11118409 DOI: 10.1101/2024.05.16.594515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background and Objectives Sleep spindles are prominent thalamocortical brain oscillations during sleep that have been mechanistically linked to sleep-dependent memory consolidation in animal models and healthy controls. Sleep spindles are decreased in Rolandic epilepsy and related sleep-activated epileptic encephalopathies. We investigate the relationship between sleep spindle deficits and deficient sleep dependent memory consolidation in children with Rolandic epilepsy. Methods In this prospective case-control study, children were trained and tested on a validated probe of memory consolidation, the motor sequence task (MST). Sleep spindles were measured from high-density EEG during a 90-minute nap opportunity between MST training and testing using a validated automated detector. Results Twenty-three children with Rolandic epilepsy (14 with resolved disease), and 19 age- and sex-matched controls were enrolled. Children with active Rolandic epilepsy had decreased memory consolidation compared to control children (p=0.001, mean percentage reduction: 25.7%, 95% CI [10.3, 41.2]%) and compared to children with resolved Rolandic epilepsy (p=0.007, mean percentage reduction: 21.9%, 95% CI [6.2, 37.6]%). Children with active Rolandic epilepsy had decreased sleep spindle rates in the centrotemporal region compared to controls (p=0.008, mean decrease 2.5 spindles/min, 95% CI [0.7, 4.4] spindles/min). Spindle rate positively predicted sleep-dependent memory consolidation (p=0.004, mean MST improvement of 3.9%, 95% CI [1.3, 6.4]%, for each unit increase in spindles per minute). Discussion Children with Rolandic epilepsy have a sleep spindle deficit during the active period of disease which predicts deficits in sleep dependent memory consolidation. This finding provides a mechanism and noninvasive biomarker to aid diagnosis and therapeutic discovery for cognitive dysfunction in Rolandic epilepsy and related sleep activated epilepsy syndromes.
Collapse
Affiliation(s)
- Hunki Kwon
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Dhinakaran M. Chinappen
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
| | - Elizabeth A. Kinard
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Skyler K. Goodman
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jonathan F. Huang
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Erin D. Berja
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine G. Walsh
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Wen Shi
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Dara S. Manoach
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Mark A. Kramer
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Catherine J. Chu
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Schoch SF, Jaramillo V, Markovic A, Huber R, Kohler M, Jenni OG, Lustenberger C, Kurth S. Bedtime to the brain: how infants' sleep behaviours intertwine with non-rapid eye movement sleep electroencephalography features. J Sleep Res 2024; 33:e13936. [PMID: 37217191 DOI: 10.1111/jsr.13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Adequate sleep is critical for development and facilitates the maturation of the neurophysiological circuitries at the basis of cognitive and behavioural function. Observational research has associated early life sleep problems with worse later cognitive, psychosocial, and somatic health outcomes. Yet, the extent to which day-to-day sleep behaviours (e.g., duration, regularity) in early life relate to non-rapid eye movement (NREM) neurophysiology-acutely and the long-term-remains to be studied. We measured sleep behaviours in 32 healthy 6-month-olds assessed with actimetry and neurophysiology with high-density electroencephalography (EEG) to investigate the association between NREM sleep and habitual sleep behaviours. Our study revealed four findings: first, daytime sleep behaviours are related to EEG slow-wave activity (SWA). Second, night-time movement and awakenings from sleep are connected with spindle density. Third, habitual sleep timing is linked to neurophysiological connectivity quantified as delta coherence. And lastly, delta coherence at 6 months predicts night-time sleep duration at 12 months. These novel findings widen our understanding that infants' sleep behaviours are closely intertwined with three particular levels of neurophysiology: sleep pressure (determined by SWA), the maturation of the thalamocortical system (spindles), and the maturation of cortical connectivity (coherence). The crucial next step is to extend this concept to clinical groups to objectively characterise infants' sleep behaviours 'at risk' that foster later neurodevelopmental problems.
Collapse
Affiliation(s)
- Sarah F Schoch
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Valeria Jaramillo
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, UK
| | - Andjela Markovic
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Reto Huber
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
| | - Oskar G Jenni
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland
- Children's Research Center, University Children's Hospital Zürich, University of Zürich (UZH), Zürich, Switzerland
| | - Caroline Lustenberger
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Salome Kurth
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
Wang Y, Zhou J, Zha F, Zhou M, Li D, Zheng Q, Chen S, Yan S, Geng X, Long J, Wan L, Wang Y. Comparative analysis of sleep parameters and structures derived from wearable flexible electrode sleep patches and polysomnography in young adults. J Neurophysiol 2024; 131:738-749. [PMID: 38383290 DOI: 10.1152/jn.00465.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024] Open
Abstract
Polysomnography (PSG) is the gold standard for clinical sleep monitoring, but its cost, discomfort, and limited suitability for continuous use present challenges. The flexible electrode sleep patch (FESP) emerges as an economically viable and patient-friendly solution, offering lightweight, simple operation, and self-applicable. Nevertheless, its utilization in young individuals remains uncertain. The objective of this study was to compare sleep data obtained by FESP and PSG in healthy young individuals and analyze agreement for sleep parameters and structure classification. Overnight monitoring with FESP and PSG recordings in 48 participants (mean age: 23 yr) was done. Correlation analysis, Bland-Altman plots, and Cohen's kappa coefficient assessed consistency. Sensitivity, specificity, and predictive values compared classification against PSG. FESP showed strong correlation and consistency with PSG for sleep monitoring. Bland-Altman plots indicated small errors and high consistency. Kappa values (0.70-0.84) suggested substantial agreement for sleep stage classification. Pearson correlation coefficient values for sleep stages (0.75-0.88) and sleep parameters (0.80-0.96) confirm that FESP has a strong application. Intraclass correlation coefficient yielded values between 0.65 and 0.97. In addition, FESP demonstrated an impressive accuracy range of 84.12-93.47% for sleep stage classification. The FESP also features a wearable self-test program with an error rate of no more than 8% for both deep sleep and wake. In young adults, FESP demonstrated reliable monitoring capabilities comparable to PSG. With its low cost and user-friendly design, FESP is a potential alternative for portable sleep assessment in clinical and research applications. Further studies involving larger populations are needed to validate its diagnostic potential.NEW & NOTEWORTHY By comparison with PSG, this study confirmed the reliability of an efficient, objective, low-cost, and noninvasive portable automatic sleep-monitoring device FESP, which provides effective information for long-term family sleep disorder diagnosis and sleep quality monitoring.
Collapse
Affiliation(s)
- Yuqi Wang
- Rehabilitation Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Zhou
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Fubing Zha
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Mingchao Zhou
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Dongxia Li
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qian Zheng
- College of Computer Science and Control Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shugeng Chen
- Huashan Hospital, Fudan University, Shanghai, China
| | - Shuiping Yan
- Shenzhen Flexolink Technology Co., Ltd, Shenzhen, China
| | - Xinling Geng
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Jianjun Long
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Li Wan
- Shenzhen Flexolink Technology Co., Ltd, Shenzhen, China
| | - Yulong Wang
- Department of Rehabilitation Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
7
|
Yook S, Choi SJ, Zang C, Joo EY, Kim H. Are there effects of light exposure on daytime sleep for rotating shift nurses after night shift?: an EEG power analysis. Front Neurosci 2024; 18:1306070. [PMID: 38601092 PMCID: PMC11004303 DOI: 10.3389/fnins.2024.1306070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Night-shift workers often face various health issues stemming from circadian rhythm shift and the consequent poor sleep quality. We aimed to study nurses working night shifts, evaluate the electroencephalogram (EEG) pattern of daytime sleep, and explore possible pattern changes due to ambient light exposure (30 lux) compared to dim conditions (<5 lux) during daytime sleep. Moethods The study involved 31 participants who worked night shifts and 24 healthy adults who had never worked night shifts. The sleep macro and microstructures were analyzed, and electrophysiological activity was compared (1) between nighttime sleep and daytime sleep with dim light and (2) between daytime sleep with dim and 30 lux light conditions. Results The daytime sleep group showed lower slow or delta wave power during non-rapid eye movement (NREM) sleep than the nighttime sleep group. During daytime sleep, lower sigma wave power in N2 sleep was observed under light exposure compared to no light exposure. Moreover, during daytime sleep, lower slow wave power in N3 sleep in the last cycle was observed under light exposure compared to no light exposure. Discussion Our study demonstrated that night shift work and subsequent circadian misalignment strongly affect sleep quality and decrease slow and delta wave activities in NREM sleep. We also observed that light exposure during daytime sleep could additionally decrease N2 sleep spindle activity and N3 waves in the last sleep cycle.
Collapse
Affiliation(s)
- Soonhyun Yook
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Su Jung Choi
- Graduate School of Clinical Nursing Science, Sungkyunkwan University, Seoul, Republic of Korea
| | - Cong Zang
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Eun Yeon Joo
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hosung Kim
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
8
|
Klocke B, Britzolaki A, Saurine J, Ott H, Krone K, Bahamonde K, Thelen C, Tzimas C, Sanoudou D, Kranias EG, Pitychoutis PM. A novel role for phospholamban in the thalamic reticular nucleus. Sci Rep 2024; 14:6376. [PMID: 38493225 PMCID: PMC10944534 DOI: 10.1038/s41598-024-56447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
The thalamic reticular nucleus (TRN) is a brain region that influences vital neurobehavioral processes, including executive functioning and the generation of sleep rhythms. TRN dysfunction underlies hyperactivity, attention deficits, and sleep disturbances observed across various neurodevelopmental disorders. A specialized sarco-endoplasmic reticulum calcium (Ca2+) ATPase 2 (SERCA2)-dependent Ca2+ signaling network operates in the dendrites of TRN neurons to regulate their bursting activity. Phospholamban (PLN) is a prominent regulator of SERCA2 with an established role in myocardial Ca2+-cycling. Our findings suggest that the role of PLN extends beyond the cardiovascular system to impact brain function. Specifically, we found PLN to be expressed in TRN neurons of the adult mouse brain, and utilized global constitutive and innovative conditional genetic knockout mouse models in concert with electroencephalography (EEG)-based somnography and the 5-choice serial reaction time task (5-CSRTT) to investigate the role of PLN in sleep and executive functioning, two complex behaviors that map onto thalamic reticular circuits. The results of the present study indicate that perturbed PLN function in the TRN results in aberrant TRN-dependent phenotypes in mice (i.e., hyperactivity, impulsivity and sleep deficits) and support a novel role for PLN as a critical regulator of SERCA2 in the TRN neurocircuitry.
Collapse
Affiliation(s)
- Benjamin Klocke
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Aikaterini Britzolaki
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Joseph Saurine
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Hayden Ott
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Kylie Krone
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Kiara Bahamonde
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Connor Thelen
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Christos Tzimas
- Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, "Attikon" Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Evangelia G Kranias
- Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Pothitos M Pitychoutis
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA.
| |
Collapse
|
9
|
Wei R, Ganglberger W, Sun H, Hadar P, Gollub R, Pieper S, Billot B, Au R, Eugenio Iglesias J, Cash SS, Kim S, Shin C, Westover MB, Joseph Thomas R. Linking brain structure, cognition, and sleep: insights from clinical data. Sleep 2024; 47:zsad294. [PMID: 37950486 PMCID: PMC10851868 DOI: 10.1093/sleep/zsad294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
STUDY OBJECTIVES To use relatively noisy routinely collected clinical data (brain magnetic resonance imaging (MRI) data, clinical polysomnography (PSG) recordings, and neuropsychological testing), to investigate hypothesis-driven and data-driven relationships between brain physiology, structure, and cognition. METHODS We analyzed data from patients with clinical PSG, brain MRI, and neuropsychological evaluations. SynthSeg, a neural network-based tool, provided high-quality segmentations despite noise. A priori hypotheses explored associations between brain function (measured by PSG) and brain structure (measured by MRI). Associations with cognitive scores and dementia status were studied. An exploratory data-driven approach investigated age-structure-physiology-cognition links. RESULTS Six hundred and twenty-three patients with sleep PSG and brain MRI data were included in this study; 160 with cognitive evaluations. Three hundred and forty-two participants (55%) were female, and age interquartile range was 52 to 69 years. Thirty-six individuals were diagnosed with dementia, 71 with mild cognitive impairment, and 326 with major depression. One hundred and fifteen individuals were evaluated for insomnia and 138 participants had an apnea-hypopnea index equal to or greater than 15. Total PSG delta power correlated positively with frontal lobe/thalamic volumes, and sleep spindle density with thalamic volume. rapid eye movement (REM) duration and amygdala volume were positively associated with cognition. Patients with dementia showed significant differences in five brain structure volumes. REM duration, spindle, and slow-oscillation features had strong associations with cognition and brain structure volumes. PSG and MRI features in combination predicted chronological age (R2 = 0.67) and cognition (R2 = 0.40). CONCLUSIONS Routine clinical data holds extended value in understanding and even clinically using brain-sleep-cognition relationships.
Collapse
Affiliation(s)
- Ruoqi Wei
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Wolfgang Ganglberger
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Sleep and Health Zurich, University of Zurich, Zurich, Switzerland
| | - Haoqi Sun
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Peter N Hadar
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Randy L Gollub
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | | | - Benjamin Billot
- Computer Science and Artificial Intelligence Lab, MIT, Boston, MA, USA
| | - Rhoda Au
- Anatomy& Neurobiology, Neurology, Medicine and Epidemiology, Boston University Chobanian & Avedisian School of Medicine and School of Public Health, Boston University, Boston, MA, USA
| | - Juan Eugenio Iglesias
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Isomics, Inc. Cambridge, MA, USA
- Center for Medical Image Computing, University College London, London, UK
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Soriul Kim
- Institute of Human Genomic Study, College of Medicine, Kore University, Seoul, Republic of Korea
| | - Chol Shin
- Institute of Human Genomic Study, College of Medicine, Kore University, Seoul, Republic of Korea
- Biomedical Research Center, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - M Brandon Westover
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert Joseph Thomas
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
10
|
Orlando IF, O'Callaghan C, Lam A, McKinnon AC, Tan JBC, Michaelian JC, Kong SDX, D'Rozario AL, Naismith SL. Sleep spindle architecture associated with distinct clinical phenotypes in older adults at risk for dementia. Mol Psychiatry 2024; 29:402-411. [PMID: 38052981 PMCID: PMC11116104 DOI: 10.1038/s41380-023-02335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Sleep spindles are a hallmark of non-REM sleep and play a fundamental role in memory consolidation. Alterations in these spindles are emerging as sensitive biomarkers for neurodegenerative diseases of ageing. Understanding the clinical presentations associated with spindle alterations may help to elucidate the functional role of these distinct electroencephalographic oscillations and the pathophysiology of sleep and neurodegenerative disorders. Here, we use a data-driven approach to examine the sleep, memory and default mode network connectivity phenotypes associated with sleep spindle architecture in older adults (mean age = 66 years). Participants were recruited from a specialist clinic for early diagnosis and intervention for cognitive decline, with a proportion showing mild cognitive deficits on neuropsychological testing. In a sample of 88 people who underwent memory assessment, overnight polysomnography and resting-state fMRI, a k-means cluster analysis was applied to spindle measures of interest: fast spindle density, spindle duration and spindle amplitude. This resulted in three clusters, characterised by preserved spindle architecture with higher fast spindle density and longer spindle duration (Cluster 1), and alterations in spindle architecture (Clusters 2 and 3). These clusters were further characterised by reduced memory (Clusters 2 and 3) and nocturnal hypoxemia, associated with sleep apnea (Cluster 3). Resting-state fMRI analysis confirmed that default mode connectivity was related to spindle architecture, although directionality of this relationship differed across the cluster groups. Together, these results confirm a diversity in spindle architecture in older adults, associated with clinically meaningful phenotypes, including memory function and sleep apnea. They suggest that resting-state default mode connectivity during the awake state can be associated with sleep spindle architecture; however, this is highly dependent on clinical phenotype. Establishing relationships between clinical and neuroimaging features and sleep spindle alterations will advance our understanding of the bidirectional relationships between sleep changes and neurodegenerative diseases of ageing.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Aaron Lam
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew C McKinnon
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Joshua B C Tan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Johannes C Michaelian
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Shawn D X Kong
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Angela L D'Rozario
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Sharon L Naismith
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia.
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia.
| |
Collapse
|
11
|
Klocke B, Britzolaki A, Saurine J, Ott H, Krone K, Bahamonde K, Thelen C, Tzimas C, Sanoudou D, Kranias EG, Pitychoutis PM. A Novel Role for Phospholamban in the Thalamic Reticular Nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568306. [PMID: 38045420 PMCID: PMC10690257 DOI: 10.1101/2023.11.22.568306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The thalamic reticular nucleus (TRN) is a critical brain region that greatly influences vital neurobehavioral processes, including executive functioning and the generation of sleep rhythms. Recently, TRN dysfunction was suggested to underlie hyperactivity, attention deficits, and sleep disturbances observed across various devastating neurodevelopmental disorders, including autism, schizophrenia and attention-deficit/hyperactivity disorder (ADHD). Notably, a highly specialized sarco- endoplasmic reticulum calcium (Ca 2+ ) ATPase 2 (SERCA2)-dependent Ca 2+ signaling network operates in the dendrites of TRN neurons to regulate their high-frequency bursting activity. Phospholamban (PLN) is a prominent regulator of the SERCA2 with an established role in maintaining Ca 2+ homeostasis in the heart; although the interaction of PLN with SERCA2 has been largely regarded as cardiac-specific, our findings challenge this view and suggest that the role of PLN extends beyond the cardiovascular system to impact brain function. Specifically, we found PLN to be expressed in the TRN neurons of the adult mouse brain and utilized global constitutive and innovative conditional genetic mouse models, in combination with 5-choice serial reaction time task (5-CSRTT) and electroencephalography (EEG)-based somnography to assess the role of PLN in regulating executive functioning and sleep, two complex behaviors that map onto thalamic reticular circuits. Overall, the results of the present study show that perturbed PLN function in the TRN results in aberrant thalamic reticular behavioral phenotypes in mice (i.e., hyperactivity, impulsivity and sleep deficits) and support a novel role for PLN as a critical regulator of the SERCA2 in the thalamic reticular neurocircuitry.
Collapse
|
12
|
Liang ZW, Weng YY, Li X, Liu XY, Lin GJ, Yu J. The influence of cognitive activity on subsequent daytime nap: A deep neural network model based on sleep spindles. Physiol Behav 2023; 269:114287. [PMID: 37406789 DOI: 10.1016/j.physbeh.2023.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
OBJECTIVES Understanding the influence of cognitive activity on subsequent sleep has both theoretical and applied implications. This study aims to investigate the effect of pre-sleep cognitive activity, in the context of avoiding emotional interference, on macro-sleep and sleep spindles. METHODS In a within-subjects design, participants' sleep electroencephalography was collected in both the with and without pre-sleep cognitive activity conditions. Subsequent macro-sleep (i.e., sleep stage distribution and sleep parameters) and spindle characteristics (i.e., density, amplitude, duration, and frequency) were analyzed. In addition, a novel machine learning framework (i.e., deep neural network, DNN) was used to discriminate between cognitive activity and control conditions. RESULTS There were no significant differences in macro-sleep and sleep spindles between the cognitive activity and control conditions. Spindles-based DNN models achieved over 96% accuracy in differentiating between the two conditions, with fast spindles performing better than full-range and slow spindles. CONCLUSIONS These results suggest a weak but positive effect of pre-sleep cognitive activity on subsequent sleep. It sheds light on a possible low-cost and easily accessible sleep intervention strategy for clinical and educational purposes.
Collapse
Affiliation(s)
- Zi-Wei Liang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Yuan-Yuan Weng
- Faculty of Psychology, Southwest University, Chongqing, China; Department of Experimental Psychology, University of Groningen, Groningen, Netherlands
| | | | - Xiao-Yi Liu
- Faculty of Psychology, Southwest University, Chongqing, China; Department of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, China
| | - Guo-Jun Lin
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Jing Yu
- Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
13
|
Memon AA, Edney BS, Baumgartner AJ, Gardner AJ, Catiul C, Irwin ZT, Joop A, Miocinovic S, Amara AW. Effects of deep brain stimulation on quantitative sleep electroencephalogram during non-rapid eye movement in Parkinson's disease. Front Hum Neurosci 2023; 17:1269864. [PMID: 37810765 PMCID: PMC10551142 DOI: 10.3389/fnhum.2023.1269864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Sleep dysfunction is frequently experienced by people with Parkinson's disease (PD) and negatively influences quality of life. Although subthalamic nucleus (STN) deep brain stimulation (DBS) can improve sleep in PD, sleep microstructural features such as sleep spindles provide additional insights about healthy sleep. For example, sleep spindles are important for better cognitive performance and for sleep consolidation in healthy adults. We hypothesized that conventional STN DBS settings would yield a greater enhancement in spindle density compared to OFF and low frequency DBS. Methods In a previous within-subject, cross-sectional study, we evaluated effects of low (60 Hz) and conventional high (≥130 Hz) frequency STN DBS settings on sleep macroarchitectural features in individuals with PD. In this post hoc, exploratory analysis, we conducted polysomnography (PSG)-derived quantitative electroencephalography (qEEG) assessments in a cohort of 15 individuals with PD who had undergone STN DBS treatment a median 13.5 months prior to study participation. Fourteen participants had unilateral DBS and 1 had bilateral DBS. During three nonconsecutive nights of PSG, the participants were assessed under three different DBS conditions: DBS OFF, DBS LOW frequency (60 Hz), and DBS HIGH frequency (≥130 Hz). The primary objective of this study was to investigate the changes in sleep spindle density across the three DBS conditions using repeated-measures analysis of variance. Additionally, we examined various secondary outcomes related to sleep qEEG features. For all participants, PSG-derived EEG data underwent meticulous manual inspection, with the exclusion of any segments affected by movement artifact. Following artifact rejection, sleep qEEG analysis was conducted on frontal and central leads. The measures included slow wave (SW) and spindle density and morphological characteristics, SW-spindle phase-amplitude coupling, and spectral power analysis during non-rapid eye movement (NREM) sleep. Results The analysis revealed that spindle density was significantly higher in the DBS HIGH condition compared to the DBS LOW condition. Surprisingly, we found that SW amplitude during NREM was significantly higher in the DBS LOW condition compared to DBS OFF and DBS HIGH conditions. However, no significant differences were observed in the other sleep qEEG features during sleep at different DBS conditions. Conclusion This study presents preliminary evidence suggesting that conventional HIGH frequency DBS settings enhance sleep spindle density in PD. Conversely, LOW frequency settings may have beneficial effects on increasing slow wave amplitude during sleep. These findings may inform mechanisms underlying subjective improvements in sleep quality reported in association with DBS. Moreover, this work supports the need for additional research on the influence of surgical interventions on sleep disorders, which are prevalent and debilitating non-motor symptoms in PD.
Collapse
Affiliation(s)
- Adeel A. Memon
- Department of Neurology, West Virginia University Rockefeller Neuroscience Institute, Morgantown, WV, United States
| | - Brandon S. Edney
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alexander J. Baumgartner
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Alan J. Gardner
- Neuroscience Undergraduate Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Corina Catiul
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zachary T. Irwin
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Allen Joop
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Amy W. Amara
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
14
|
Zanus C, Miladinović A, De Dea F, Skabar A, Stecca M, Ajčević M, Accardo A, Carrozzi M. Sleep Spindle-Related EEG Connectivity in Children with Attention-Deficit/Hyperactivity Disorder: An Exploratory Study. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1244. [PMID: 37761543 PMCID: PMC10530036 DOI: 10.3390/e25091244] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurobehavioral disorder with known brain abnormalities but no biomarkers to support clinical diagnosis. Recently, EEG analysis methods such as functional connectivity have rekindled interest in using EEG for ADHD diagnosis. Most studies have focused on resting-state EEG, while connectivity during sleep and spindle activity has been underexplored. Here we present the results of a preliminary study exploring spindle-related connectivity as a possible biomarker for ADHD. We compared sensor-space connectivity parameters in eight children with ADHD and nine age/sex-matched healthy controls during sleep, before, during, and after spindle activity in various frequency bands. All connectivity parameters were significantly different between the two groups in the delta and gamma bands, and Principal Component Analysis (PCA) in the gamma band distinguished ADHD from healthy subjects. Cluster coefficient and path length values in the sigma band were also significantly different between epochs, indicating different spindle-related brain activity in ADHD.
Collapse
Affiliation(s)
- Caterina Zanus
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (C.Z.); (M.C.)
| | - Aleksandar Miladinović
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (C.Z.); (M.C.)
| | - Federica De Dea
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy (M.A.); (A.A.)
- Department of Life Science, University of Trieste, 34127 Trieste, Italy
| | - Aldo Skabar
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (C.Z.); (M.C.)
| | - Matteo Stecca
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (C.Z.); (M.C.)
| | - Miloš Ajčević
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy (M.A.); (A.A.)
| | - Agostino Accardo
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy (M.A.); (A.A.)
| | - Marco Carrozzi
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (C.Z.); (M.C.)
| |
Collapse
|
15
|
Ngomba RT, Lüttjohann A, Dexter A, Ray S, van Luijtelaar G. The Metabotropic Glutamate 5 Receptor in Sleep and Wakefulness: Focus on the Cortico-Thalamo-Cortical Oscillations. Cells 2023; 12:1761. [PMID: 37443795 PMCID: PMC10341329 DOI: 10.3390/cells12131761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Sleep is an essential innate but complex behaviour which is ubiquitous in the animal kingdom. Our knowledge of the distinct neural circuit mechanisms that regulate sleep and wake states in the brain are, however, still limited. It is therefore important to understand how these circuits operate during health and disease. This review will highlight the function of mGlu5 receptors within the thalamocortical circuitry in physiological and pathological sleep states. We will also evaluate the potential of targeting mGlu5 receptors as a therapeutic strategy for sleep disorders that often co-occur with epileptic seizures.
Collapse
Affiliation(s)
| | - Annika Lüttjohann
- Institute of Physiology I, University of Münster, 48149 Münster, Germany
| | - Aaron Dexter
- School of Pharmacy, University of Lincoln, Lincoln LN6 7DL, UK
| | - Swagat Ray
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7DL, UK
| | | |
Collapse
|
16
|
Dimitriades ME, Markovic A, Gefferie SR, Buckley A, Driver DI, Rapoport JL, Nosadini M, Rostasy K, Sartori S, Suppiej A, Kurth S, Franscini M, Walitza S, Huber R, Tarokh L, Bölsterli BK, Gerstenberg M. Sleep spindles across youth affected by schizophrenia or anti- N-methyl-D-aspartate-receptor encephalitis. Front Psychiatry 2023; 14:1055459. [PMID: 37377467 PMCID: PMC10292628 DOI: 10.3389/fpsyt.2023.1055459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Background Sleep disturbances are intertwined with the progression and pathophysiology of psychotic symptoms in schizophrenia. Reductions in sleep spindles, a major electrophysiological oscillation during non-rapid eye movement sleep, have been identified in patients with schizophrenia as a potential biomarker representing the impaired integrity of the thalamocortical network. Altered glutamatergic neurotransmission within this network via a hypofunction of the N-methyl-D-aspartate receptor (NMDAR) is one of the hypotheses at the heart of schizophrenia. This pathomechanism and the symptomatology are shared by anti-NMDAR encephalitis (NMDARE), where antibodies specific to the NMDAR induce a reduction of functional NMDAR. However, sleep spindle parameters have yet to be investigated in NMDARE and a comparison of these rare patients with young individuals with schizophrenia and healthy controls (HC) is lacking. This study aims to assess and compare sleep spindles across young patients affected by Childhood-Onset Schizophrenia (COS), Early-Onset Schizophrenia, (EOS), or NMDARE and HC. Further, the potential relationship between sleep spindle parameters in COS and EOS and the duration of the disease is examined. Methods Sleep EEG data of patients with COS (N = 17), EOS (N = 11), NMDARE (N = 8) aged 7-21 years old, and age- and sex-matched HC (N = 36) were assessed in 17 (COS, EOS) or 5 (NMDARE) electrodes. Sleep spindle parameters (sleep spindle density, maximum amplitude, and sigma power) were analyzed. Results Central sleep spindle density, maximum amplitude, and sigma power were reduced when comparing all patients with psychosis to all HC. Between patient group comparisons showed no differences in central spindle density but lower central maximum amplitude and sigma power in patients with COS compared to patients with EOS or NMDARE. Assessing the topography of spindle density, it was significantly reduced over 15/17 electrodes in COS, 3/17 in EOS, and 0/5 in NMDARE compared to HC. In the pooled sample of COS and EOS, a longer duration of illness was associated with lower central sigma power. Conclusions Patients with COS demonstrated more pronounced impairments of sleep spindles compared to patients with EOS and NMDARE. In this sample, there is no strong evidence that changes in NMDAR activity are related to spindle deficits.
Collapse
Affiliation(s)
- Maria E. Dimitriades
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andjela Markovic
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Silvano R. Gefferie
- Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Ashura Buckley
- Pediatrics and Neurodevelopmental Neuroscience, National Institute of Mental Health, Bethesda, MD, United States
| | - David I. Driver
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Judith L. Rapoport
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Margherita Nosadini
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
- Neuroimmunology Group, Paediatric Research Institute Città della Speranza, Padova, Italy
| | - Kevin Rostasy
- Department of Pediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University, Datteln, Germany
| | - Stefano Sartori
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
- Neuroimmunology Group, Paediatric Research Institute Città della Speranza, Padova, Italy
| | - Agnese Suppiej
- Department of Medical Sciences, Pediatric Section, University of Ferrara, Ferrara, Italy
| | - Salome Kurth
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Maurizia Franscini
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Leila Tarokh
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Bigna K. Bölsterli
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Pediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Pediatric Neurology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Miriam Gerstenberg
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Campbell IG, Zhang ZY, Grimm KJ. Sleep restriction effects on sleep spindles in adolescents and relation of these effects to subsequent daytime sleepiness and cognition. Sleep 2023; 46:zsad071. [PMID: 36916319 PMCID: PMC10413429 DOI: 10.1093/sleep/zsad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/13/2023] [Indexed: 03/15/2023] Open
Abstract
STUDY OBJECTIVES Limiting spindle activity via sleep restriction could explain some of the negative cognitive effects of sleep loss in adolescents. The current study evaluates how sleep restriction affects sleep spindle number, incidence, amplitude, duration, and wave frequency and tests whether sleep restriction effects on spindles change across the years of adolescence. The study determines whether sleep restriction effects on daytime sleepiness, vigilance, and cognition are related to changes in sleep spindles. METHODS In each year of this 3-year longitudinal study, 77 participants, ranging in age from 10 to 16 years, each completed three different time in bed (TIB) schedules: 7, 8.5, or 10 hours in bed for 4 consecutive nights. A computer algorithm detected and analyzed sleep spindles in night four central and frontal electroencephalogram. Objective and self-reported daytime sleepiness and cognition were evaluated on the day following the 4th night. RESULTS For 7 versus 10 hours TIB average all-night frontal and central spindle counts were reduced by 35% and 32%, respectively. Reducing TIB also significantly decreased spindle incidence in the first 5 hours of non-rapid eye movement sleep, produced small but significant reductions in spindle amplitude, and had little to no effect on spindle duration and spindle wave frequency. Sleep restriction effects did not change with age. The reductions in spindle count and incidence were related to daytime sleepiness on the following day but were not related to working memory. CONCLUSIONS The sleep loss effects on daytime functioning in adolescents are partially mediated by reduced sleep spindles impacting daytime sleepiness.
Collapse
Affiliation(s)
- Ian G Campbell
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, CA, USA
| | - Zoey Y Zhang
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, CA, USA
| | - Kevin J Grimm
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
18
|
Wang X, Leong ATL, Tan SZK, Wong EC, Liu Y, Lim LW, Wu EX. Functional MRI reveals brain-wide actions of thalamically-initiated oscillatory activities on associative memory consolidation. Nat Commun 2023; 14:2195. [PMID: 37069169 PMCID: PMC10110623 DOI: 10.1038/s41467-023-37682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
As a key oscillatory activity in the brain, thalamic spindle activities are long believed to support memory consolidation. However, their propagation characteristics and causal actions at systems level remain unclear. Using functional MRI (fMRI) and electrophysiology recordings in male rats, we found that optogenetically-evoked somatosensory thalamic spindle-like activities targeted numerous sensorimotor (cortex, thalamus, brainstem and basal ganglia) and non-sensorimotor limbic regions (cortex, amygdala, and hippocampus) in a stimulation frequency- and length-dependent manner. Thalamic stimulation at slow spindle frequency (8 Hz) and long spindle length (3 s) evoked the most robust brain-wide cross-modal activities. Behaviorally, evoking these global cross-modal activities during memory consolidation improved visual-somatosensory associative memory performance. More importantly, parallel visual fMRI experiments uncovered response potentiation in brain-wide sensorimotor and limbic integrative regions, especially superior colliculus, periaqueductal gray, and insular, retrosplenial and frontal cortices. Our study directly reveals that thalamic spindle activities propagate in a spatiotemporally specific manner and that they consolidate associative memory by strengthening multi-target memory representation.
Collapse
Affiliation(s)
- Xunda Wang
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Alex T L Leong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shawn Z K Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Eddie C Wong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yilong Liu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lee-Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
19
|
IntelliSleepScorer, a software package with a graphic user interface for automated sleep stage scoring in mice based on a light gradient boosting machine algorithm. Sci Rep 2023; 13:4275. [PMID: 36922536 PMCID: PMC10017698 DOI: 10.1038/s41598-023-31288-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Machine learning has been applied in recent years to categorize sleep stages (NREM, REM, and wake) using electroencephalogram (EEG) recordings; however, a well-validated sleep scoring automatic pipeline in rodent research is still not publicly available. Here, we present IntelliSleepScorer, a software package with a graphic user interface to score sleep stages automatically in mice. IntelliSleepScorer uses the light gradient boosting machine (LightGBM) to score sleep stages for each epoch of recordings. We developed LightGBM models using a large cohort of data, which consisted of 5776 h of sleep EEG and electromyogram (EMG) signals across 519 unique recordings from 124 mice. The LightGBM model achieved an overall accuracy of 95.2% and a Cohen's kappa of 0.91, which outperforms the baseline models such as the logistic regression model (accuracy = 93.3%, kappa = 0.88) and the random forest model (accuracy = 94.3%, kappa = 0.89). The overall performance of the LightGBM model as well as the performance across different sleep stages are on par with that of the human experts. Most importantly, we validated the generalizability of the LightGBM models: (1) The LightGBM model performed well on two publicly available, independent datasets (kappa > = 0.80), which have different sampling frequency and epoch lengths; (2) The LightGBM model performed well on data recorded at a lower sampling frequency (kappa = 0.90); (3) The performance of the LightGBM model is not affected by the light/dark cycle; and (4) A modified LightGBM model performed well on data containing only one EEG and one EMG electrode (kappa > = 0.89). Taken together, the LightGBM models offer state-of-the-art performance for automatic sleep stage scoring in mice. Last, we implemented the IntelliSleepScorer software package based on the validated model to provide an out-of-box solution to sleep researchers (available for download at https://sites.broadinstitute.org/pan-lab/resources ).
Collapse
|
20
|
Bibineyshvili Y, Schiff ND, Calderon DP. Dexmedetomidine-mediated sleep phase modulation ameliorates motor and cognitive performance in a chronic blast-injured mouse model. Front Neurol 2022; 13:1040975. [PMID: 36388181 PMCID: PMC9663850 DOI: 10.3389/fneur.2022.1040975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 10/22/2024] Open
Abstract
Multiple studies have shown that blast injury is followed by sleep disruption linked to functional sequelae. It is well established that improving sleep ameliorates such functional deficits. However, little is known about longitudinal brain activity changes after blast injury. In addition, the effects of directly modulating the sleep/wake cycle on learning task performance after blast injury remain unclear. We hypothesized that modulation of the sleep phase cycle in our injured mice would improve post-injury task performance. Here, we have demonstrated that excessive sleep electroencephalographic (EEG) patterns are accompanied by prominent motor and cognitive impairment during acute stage after secondary blast injury (SBI) in a mouse model. Over time we observed a transition to more moderate and prolonged sleep/wake cycle disturbances, including changes in theta and alpha power. However, persistent disruptions of the non-rapid eye movement (NREM) spindle amplitude and intra-spindle frequency were associated with lasting motor and cognitive deficits. We, therefore, modulated the sleep phase of injured mice using subcutaneous (SC) dexmedetomidine (Dex), a common, clinically used sedative. Dex acutely improved intra-spindle frequency, theta and alpha power, and motor task execution in chronically injured mice. Moreover, dexmedetomidine ameliorated cognitive deficits a week after injection. Our results suggest that SC Dex might potentially improve impaired motor and cognitive behavior during daily tasks in patients that are chronically impaired by blast-induced injuries.
Collapse
Affiliation(s)
- Yelena Bibineyshvili
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States
| | - Nicholas D. Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| | - Diany P. Calderon
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
21
|
Elder GJ, Lazar AS, Alfonso‐Miller P, Taylor J. Sleep disturbances in Lewy body dementia: A systematic review. Int J Geriatr Psychiatry 2022; 37:10.1002/gps.5814. [PMID: 36168299 PMCID: PMC9827922 DOI: 10.1002/gps.5814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Lewy body dementia (LBD) refers to both dementia with Lewy bodies (DLB) and Parkinson's disease with dementia (PDD). Sleep disturbances are common in LBD, and can include poor sleep quality, excessive daytime sleepiness (EDS), and rapid eye movement behaviour disorder (RBD). Despite the high clinical prevalence of sleep disturbances in LBD, they are under-studied relative to other dementias. The aim of the present systematic review was to examine the nature of sleep disturbances in LBD, summarise the effect of treatment studies upon sleep, and highlight specific and necessary directions for future research. METHODS Published studies in English were located by searching PubMED and PSYCArticles databases (until 10 June 2022). The search protocol was pre-registered in PROSPERO (CRD42021293490) and performed in accordance with PRISMA guidelines. RESULTS Following full-text review, a final total of 70 articles were included. These included 20 studies focussing on subjective sleep, 14 on RBD, 8 on EDS, 7 on objective sleep, and 1 on circadian rhythms. The majority of the 18 treatment studies used pharmacological interventions (n = 12), had an open-label design (n = 8), and were of low-to-moderate quality. Most studies (n = 55) included only patients with DLB. Due to the heterogeneity of the studies, we reported a narrative synthesis without meta-analysis. CONCLUSIONS At least one form of sleep disturbance may be present in as many as 90% of people with LBD. Subjectively poor sleep quality, excessive daytime sleepiness, and RBD are more common and severe in LBD relative to other dementias.
Collapse
Affiliation(s)
- Greg J. Elder
- Northumbria Sleep ResearchDepartment of PsychologyFaculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Alpar S. Lazar
- Sleep and Brain Research UnitFaculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Pam Alfonso‐Miller
- Northumbria Sleep ResearchDepartment of PsychologyFaculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - John‐Paul Taylor
- Translational and Clinical Research InstituteNewcastle UniversityCampus for Ageing and VitalityNewcastle Upon TyneUK
| |
Collapse
|
22
|
Pre-Sleep Cognitive Arousal Is Unrelated to Sleep Misperception in Healthy Sleepers When Unexpected Sounds Are Played during Non-Rapid Eye Movement Sleep: A Polysomnography Study. Brain Sci 2022; 12:brainsci12091220. [PMID: 36138955 PMCID: PMC9497057 DOI: 10.3390/brainsci12091220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background: It is well-established that environmental noise can disrupt sleep, and cause a mismatch between subjective and objective sleep, which is known as “sleep misperception”. Naturalistic studies indicate that pre-sleep cognitive arousal and sleep misperception are associated in the context of noise. However, it is not known if this is the case when ecologically valid noises are specifically played during non-rapid eye movement (NREM) sleep, which is susceptible to noise-related disruption. The present study evaluated if pre-sleep cognitive arousal was associated with sleep misperception in healthy normal sleepers, when unexpected ecologically valid common nocturnal noises were played during NREM sleep. Methods: Eighteen healthy sleepers (Mage = 23.37 years, SDage = 3.21 years) participated. Sleep was measured objectively on three consecutive nights using polysomnography, in a sleep laboratory environment, and subjectively, through participant estimates of total sleep time (TST). Night 1 was a baseline night where no noises were played. On Night 2, noises, which were chosen to be representative of habitual nocturnal noises heard in home environments, were played to participants via in-ear headphones after 5 min of objective sleep. Results: Unexpectedly, habitual pre-sleep cognitive arousal was not associated with subjective–objective TST discrepancy on Night 2. Conclusions: These results suggest that in healthy sleepers, when ecologically valid noises are played unexpectedly during NREM sleep in an unfamiliar sleep laboratory environment the subjective experience of sleep is not associated with pre-sleep cognitive arousal, or negatively impacted by noise exposure.
Collapse
|
23
|
Sákovics A, Csukly G, Borbély C, Virág M, Kelemen A, Bódizs R, Erőss L, Fabó D. Prolongation of cortical sleep spindles during hippocampal interictal epileptiform discharges in epilepsy patients. Epilepsia 2022; 63:2256-2268. [PMID: 35723195 PMCID: PMC9796153 DOI: 10.1111/epi.17337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Memory deficits are frequent among patients with epilepsies affecting the temporal lobe. Hippocampal interictal epileptic discharges (hIEDs), the presumed epileptic exaggeration of sharp wave-ripples (SWRs), are known to contribute to memory dysfunction, but the potential underlying mechanism is unknown. The precise temporal coordination between hippocampal SWRs and corticothalamic spindles during sleep is critical for memory consolidation. Moreover, previous investigation indicated that hIEDs induce neocortical spindlelike oscillation. In the present study, we aimed to assess the influence of hIEDs on neocortical spindles. METHODS We analyzed the spindle characteristics (duration, amplitude, frequency) of 21 epilepsy patients implanted with foramen ovale (FO) electrodes during a whole night sleep. Scalp sleep spindles were categorized based on their temporal relationship to hIEDs detected on the FO electrodes. Three groups were created: (1) spindles coinciding with hIEDs, (2) spindles "induced" by hIEDs, and (3) spindles without hIED co-occurrence. RESULTS We found that spindles co-occurring with hIEDs had altered characteristics in all measured properties, lasted longer by 126 ± 48 ms (mean ± SD), and had higher amplitude by 3.4 ± 3.2 μV, and their frequency range shifted toward the higher frequencies within the 13-15-Hz range. Also, hIED-induced spindles had identical oscillatory properties to spindles without any temporal relationships with hIEDs. In more than half of our subjects, clear temporal coherence was revealed between hIEDs and spindles, but the direction of the coupling was patient-specific. SIGNIFICANCE We investigated the effect of hippocampal IEDs on neocortical spindle activity and found spindle alterations in cases of spindle-hIED co-occurrence, but not in cases of hIED-initiated spindles. We propose that this is a marker of a pathologic process, where IEDs may have direct effect on spindle generation. It could mark a potential mechanism whereby IEDs disrupt memory processes, and also provide a potential therapeutic target to treat memory disturbances in epilepsy.
Collapse
Affiliation(s)
- Anna Sákovics
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary,School of PhDSemmelweis UniversityBudapestHungary
| | - Gábor Csukly
- Department of Psychiatry and PsychotherapySemmelweis UniversityBudapestHungary
| | - Csaba Borbély
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary
| | - Márta Virág
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary
| | - Anna Kelemen
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary,András Pető FacultySemmelweis UniversityBudapestHungary
| | - Róbert Bódizs
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary,Institute of Behavioral SciencesSemmelweis UniversityBudapestHungary
| | - Loránd Erőss
- Department of Functional NeurosurgeryNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary
| | - Dániel Fabó
- Department of NeurologyNational Institute of Mental Health, Neurology, and NeurosurgeryBudapestHungary
| |
Collapse
|
24
|
Associations of environmental and lifestyle factors with spatial navigation in younger and older adults. J Int Neuropsychol Soc 2022; 29:377-387. [PMID: 36039948 PMCID: PMC9971349 DOI: 10.1017/s1355617722000303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Advanced age is associated with prominent impairment in allocentric navigation dependent on the hippocampus. This study examined whether age-related impairment in allocentric navigation and strategy selection was associated with sleep disruption or circadian rest-activity fragmentation. Further, we examined whether associations with navigation were moderated by perceived stress and physical activity. METHOD Sleep fragmentation and total sleep time over the course of 1 week were assayed in younger (n = 42) and older (n = 37) adults via wrist actigraphy. Subsequently, participants completed cognitive mapping and route learning tasks, as well a measure of spontaneous navigation strategy selection. Measurements of perceived stress and an actigraphy-based index of physical activity were also obtained. Circadian rest-activity fragmentation was estimated via actigraphy post-hoc. RESULTS Age was associated with reduced cognitive mapping, route learning, allocentric strategy use, and total sleep time (ps < .01), replicating prior findings. Novel findings included that sleep fragmentation increased with advancing age (p = .009) and was associated with lower cognitive mapping (p = .022) within the older adult cohort. Total sleep time was not linearly associated with the navigation tasks (ps > .087). Post-hoc analyses revealed that circadian rest-activity fragmentation increased with advancing age within the older adults (p = .026) and was associated with lower cognitive mapping across the lifespan (p = .001) and within older adults (p = .005). Neither stress nor physical activity were robust moderators of sleep fragmentation associations with the navigation tasks (ps > .113). CONCLUSION Sleep fragmentation and circadian rest-activity fragmentation are potential contributing factors to age effects on cognitive mapping within older adults.
Collapse
|
25
|
Toor B, van den Berg NH, Fang Z, Pozzobon A, Ray LB, Fogel SM. Age-related differences in problem-solving skills: Reduced benefit of sleep for memory trace consolidation. Neurobiol Aging 2022; 116:55-66. [DOI: 10.1016/j.neurobiolaging.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 10/18/2022]
|
26
|
Leong CWY, Leow JWS, Grunstein RR, Naismith SL, Teh JZ, D’Rozario AL, Saini B. A systematic scoping review of the effects of central nervous system active drugs on sleep spindles and sleep-dependent memory consolidation. Sleep Med Rev 2022; 62:101605. [DOI: 10.1016/j.smrv.2022.101605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
|
27
|
Campbell IG, Cruz-Basilio A, Darchia N, Zhang ZY, Feinberg I. Effects of sleep restriction on the sleep electroencephalogram of adolescents. Sleep 2021; 44:6121931. [PMID: 33507305 DOI: 10.1093/sleep/zsaa280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES This report describes findings from an ongoing longitudinal study of the effects of varied sleep durations on wake and sleep electroencephalogram (EEG) and daytime function in adolescents. Here, we focus on the effects of age and time in bed (TIB) on total sleep time (TST) and nonrapid eye movement (NREM) and rapid eye movement (REM) EEG. METHODS We studied 77 participants (41 male) ranging in age from 9.9 to 16.2 years over the 3 years of this study. Each year, participants adhered to each of three different sleep schedules: four consecutive nights of 7, 8.5, or 10 h TIB. RESULTS Altering TIB successfully modified TST, which averaged 406, 472 and 530 min on the fourth night of 7, 8.5, and 10 h TIB, respectively. As predicted by homeostatic models, shorter sleep durations produced higher delta power in both NREM and REM although these effects were small. Restricted sleep more substantially reduced alpha power in both NREM and REM sleep. In NREM but not REM sleep, sleep restriction strongly reduced both the all-night accumulation of sigma EEG activity (11-15 Hz energy) and the rate of sigma production (11-15 Hz power). CONCLUSIONS The EEG changes in response to TIB reduction are evidence of insufficient sleep recovery. The decrease in sigma activity presumably reflects depressed sleep spindle activity and suggests a manner by which sleep restriction reduces waking cognitive function in adolescents. Our results thus far demonstrate that relatively modest TIB manipulations provide a useful tool for investigating adolescent sleep biology.
Collapse
Affiliation(s)
- Ian G Campbell
- Department of Psychiatry, University of California Davis
| | - Alejandro Cruz-Basilio
- Department of Psychiatry, University of California Davis.,Department of Psychology, Northwestern University, Evanston, IL
| | | | - Zoey Y Zhang
- Department of Psychiatry, University of California Davis
| | - Irwin Feinberg
- Department of Psychiatry, University of California Davis
| |
Collapse
|
28
|
Mesbah-Oskui L, Gurges P, Liu WY, Horner RL. Optical Stimulation of Thalamic Spindle Circuitry Sustains Electroencephalogram Patterns of General Anesthesia but not Duration of Loss of Consciousness. Neuroscience 2021; 468:110-122. [PMID: 34126184 DOI: 10.1016/j.neuroscience.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Alterations in thalamic GABAergic signaling are implicated in mediating the rise in 12-30 Hz electroencephalogram (EEG) activity that signals anesthetic-induced loss-of-consciousness with GABAA receptor-targeting general anesthetics. A number of modeling studies have identified that anesthetic-induced alterations in thalamocortico-corticothalamic signaling in the same network that generates sleep spindles would be sufficient to elicit this key EEG signature of anesthetic hypnosis with general anesthetic agents. Accordingly, we hypothesize that targeted stimulation of this thalamic GABAergic circuitry into a sleep-spindle mode of activity would promote the general anesthetic effects of etomidate. We recorded EEG activity and loss-of-righting reflex in transgenic mice expressing channel rhodopsin-2 on GABAergic neurons (ChR2-VGAT, n = 8) and control, wild-type mice (C57BL/6J, n = 8). On two consecutive days mice were randomly assigned to receive spindle-rhythm stimulation via an optical probe targeting the left reticular thalamic nucleus or no stimulation. After an initial 30-minute recording, mice were administered etomidate (12 mg/kg, intraperitoneal) and recorded for 90 min with or without optical stimulation. Etomidate elicited an increase in 12-30 Hz EEG power in wild-type and ChR2-VGAT mice for 20 min following administration (p < 0.001). Optical spindle-rhythm stimulation prolonged the increase in 12-30 Hz activity in ChR2-VGAT mice only (p = 0.023). Spindle-rhythm stimulation also increased the incidence and duration of sleep spindle-like oscillations in ChR2-VGAT mice only (all p ≤ 0.001). Despite the maintained anesthetic-like changes in EEG activity, optical spindle-rhythm stimulation was not associated with changes in the time to and duration of the loss-of-righting reflex, a behavioral endpoint of etomidate-induced general anesthesia in rodents.
Collapse
Affiliation(s)
- Lia Mesbah-Oskui
- Department of Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Patrick Gurges
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wen-Ying Liu
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai 200032, China
| | - Richard L Horner
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
29
|
Zhang ZY, Campbell IG, Dhayagude P, Espino HC, Feinberg I. Longitudinal Analysis of Sleep Spindle Maturation from Childhood through Late Adolescence. J Neurosci 2021; 41:4253-4261. [PMID: 33785642 PMCID: PMC8143202 DOI: 10.1523/jneurosci.2370-20.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 11/21/2022] Open
Abstract
Sleep spindles are intermittent bursts of 11-15 Hz EEG waves that occur during non-rapid eye movement sleep. Spindles are believed to help maintain sleep and to play a role in sleep-dependent memory consolidation. Here we applied an automated sleep spindle detection program to our large longitudinal sleep EEG dataset (98 human subjects, 6-18 years old, >2000 uninterrupted nights) to evaluate maturational trends in spindle wave frequency, density, amplitude, and duration. This large dataset enabled us to apply nonlinear as well as linear age models, thereby extending the findings of prior cross-sectional studies that used linear models. We found that spindle wave frequency increased with remarkable linearity across the age range. Central spindle density increased nonlinearly to a peak at age 15.1 years. Central spindle wave amplitude declined in a sigmoidal pattern with the age of fastest decline at 13.5 years. Spindle duration decreased linearly with age. Of the four measures, only spindle amplitude showed a sex difference in dynamics such that the age of most rapid decline in females preceded that in males by 1.4 years. This amplitude pattern, including the sex difference in timing, paralleled the maturational pattern for δ (1-4 Hz) wave power. We interpret these age-related changes in spindle characteristics as indicators of maturation of thalamocortical circuits and changes in sleep depth. These robust age-effects could facilitate the search for cognitive-behavioral correlates of spindle waveforms and might also help guide basic research on EEG mechanisms and postnatal brain maturation.SIGNIFICANCE STATEMENT The brain reorganization of adolescence produces massive changes in sleep EEG. These changes include the morphology and abundance of sleep spindles, an EEG marker of non-rapid eye movement sleep believed to reflect offline memory processes and/or protection of the sleep state. We analyzed >2000 nights of longitudinal sleep EEG from 98 subjects (age 6-18 years old) to investigate maturational changes in spindle amplitude, frequency, density, and duration. The large dataset enabled us to detect nonlinear as well as linear age changes. All measures showed robust age effects that we hypothesize reflect the maturation of thalamocortical circuits and decreasing sleep depth. These findings could guide further research into the cognitive-behavioral correlates of sleep spindles and their underlying brain mechanisms.
Collapse
Affiliation(s)
- Zoey Y Zhang
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, California 95817
| | - Ian G Campbell
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, California 95817
| | - Pari Dhayagude
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, California 95817
| | - Harrison C Espino
- Department of Computer Science, University of California Davis, Davis, California 95616
| | - Irwin Feinberg
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, California 95817
| |
Collapse
|
30
|
Joechner AK, Wehmeier S, Werkle-Bergner M. Electrophysiological indicators of sleep-associated memory consolidation in 5- to 6-year-old children. Psychophysiology 2021; 58:e13829. [PMID: 33951193 DOI: 10.1111/psyp.13829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
In adults, the synchronized interplay of sleep spindles (SP) and slow oscillations (SO) supports memory consolidation. Given tremendous developmental changes in SP and SO morphology, it remains elusive whether across childhood the same mechanisms as identified in adults are functional. Based on topography and frequency, we characterize slow and fast SPs and their temporal coupling to SOs in 24 pre-school children. Further, we ask whether slow and fast SPs and their modulation during SOs are associated with behavioral indicators of declarative memory consolidation as suggested by the literature on adults. Employing an individually tailored approach, we reliably identify an inherent, development-specific fast centro-parietal SP type, nested in the adult-like slow SP frequency range, along with a dominant slow frontal SP type. Further, we provide evidence that the modulation of fast centro-parietal SPs during SOs is already present in pre-school children. However, the temporal coordination between fast centro-parietal SPs and SOs is weaker and less precise than expected from research on adults. While we do not find evidence for a critical contribution of SP-SO coupling for memory consolidation, crucially, slow frontal and fast centro-parietal SPs are each differentially related to sleep-associated consolidation of items of varying quality. Whereas a higher number of slow frontal SPs is associated with stronger maintenance of medium-quality memories, a higher number of fast centro-parietal SPs is linked to a greater gain of low-quality items. Our results demonstrate two functionally relevant inherent SP types in pre-school children although SP-SO coupling is not yet fully mature.
Collapse
Affiliation(s)
- Ann-Kathrin Joechner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Sarah Wehmeier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
31
|
Liu J, Ghastine L, Um P, Rovit E, Wu T. Environmental exposures and sleep outcomes: A review of evidence, potential mechanisms, and implications. ENVIRONMENTAL RESEARCH 2021; 196:110406. [PMID: 33130170 PMCID: PMC8081760 DOI: 10.1016/j.envres.2020.110406] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 06/02/2023]
Abstract
Environmental exposures and poor sleep outcomes are known to have consequential effects on human health. This integrative review first seeks to present and synthesize existing literature investigating the relationship between exposure to various environmental factors and sleep health. We then present potential mechanisms of action as well as implications for policy and future research for each environmental exposure. Broadly, although studies are still emerging, empirical evidence has begun to show a positive association between adverse effects of heavy metal, noise pollution, light pollution, second-hand smoke, and air pollution exposures and various sleep problems. Specifically, these negative sleep outcomes range from subjective sleep manifestations, such as general sleep quality, sleep duration, daytime dysfunction, and daytime sleepiness, as well as objective sleep measures, including difficulties with sleep onset and maintenance, sleep stage or circadian rhythm interference, sleep arousal, REM activity, and sleep disordered breathing. However, the association between light exposure and sleep is less clear. Potential toxicological mechanisms are thought to include the direct effect of various environmental toxicants on the nervous, respiratory, and cardiovascular systems, oxidative stress, and inflammation. Nevertheless, future research is required to tease out the exact pathways of action to explain the associations between each environmental factor and sleep, to inform possible therapies to negate the detrimental effects, and to increase efforts in decreasing exposure to these harmful environmental factors to improve health.
Collapse
Affiliation(s)
- Jianghong Liu
- University of Pennsylvania School of Nursing, 418 Curie Blvd, Philadelphia, PA, 19104, USA.
| | - Lea Ghastine
- Ohio State University College of Medicine, 370 W 9th Ave, Columbus, OH, 43210, USA
| | - Phoebe Um
- Ohio State University College of Medicine, 370 W 9th Ave, Columbus, OH, 43210, USA
| | - Elizabeth Rovit
- University of Pennsylvania School of Nursing, 418 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Tina Wu
- University of Pennsylvania School of Nursing, 418 Curie Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|
32
|
Jin X, Chen H, Li Y, Xu W, Chen X, Tian L, Teng W. Association between daytime napping and stroke: A dose-response meta-analysis. J Sleep Res 2021; 30:e13366. [PMID: 33870591 DOI: 10.1111/jsr.13366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Daytime napping is common in many regions around the world and has been an important part of people's daily life. Daytime napping has attracted increasing attention in recent years. Thus, we conducted a meta-analysis to evaluate the relationship between daytime napping and stroke, and help reduce the risk of stroke by improving living habits. The Embase, PubMed, Web of Science and PsycINFO databases were searched for cohort studies published before October 2020 and eight eligible studies with 524,408 participants and 5,875 stroke cases were included in the final analysis. The pooled relative risk (RR) of stroke was 1.47 (95% confidence interval [CI]: 1.24-1.74; p < .001) with significant heterogeneity (I2 = 58%, p for heterogeneity = 0.02). However, the heterogeneity decreased when the study in which adjusting for sleep duration and stratifying the results based on sleep duration was not performed was excluded (RR: 1.38; 95% CI: 1.19-1.60, I2 = 44%, p for heterogeneity = 0.10). In dose-response analysis, the linear trend indicated that for every 10-min increase in daytime napping, the risk of stroke increased by 3%. Further well-designed large studies are needed to explore the effects of daytime napping on stroke and the underlying biological mechanisms.
Collapse
Affiliation(s)
- Xiaolin Jin
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Hanze Chen
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yuru Li
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Wenying Xu
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xinxin Chen
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Li Tian
- Department of Geriatrics, Shengjing Hospital, China Medical University, Shenyang, China
| | - Weiyu Teng
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
33
|
Soltani A, Bahrami F, Bahari Z, Shankayi Z, Graily-Afra M, Sahraei H. The effects of Valerian on sleep spindles in a model of neuropathic pain. Sleep Sci 2021; 14:133-139. [PMID: 35082982 PMCID: PMC8764951 DOI: 10.5935/1984-0063.20200110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/11/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction Valeriana officinalis is known to be one of the most famous herbal supplements for the treatment of anxiety and insomnia. Despite its widespread use in most countries all around the world, there is little scientific information and research on how this medication affects sleep patterns, and there are almost no studies on its effects on the characteristics of sleep spindles. Material and Methods The present study was conducted to investigate the effects of Valerian extract (VAL) on sleep spindles and induced anxiety in chronic neuropathic pain model in rats. 24 male rats were divided into three groups: neuropathic group (n=9) in which the rats underwent chronic constriction injury (CCI), sham group (n=7) in which the sciatic nerves of the animals were exposed without any constriction and also fed with the vehicle, and the third group was under CCI condition and treated with Valerian (n=8). All the rats underwent electrode implant surgery so that we could record electroencephalogram and electromyography waves. In all the three groups, EEG and EMG recordings were recorded three times (150min each time). The initial recording was just prior to the CCI surgery and the rest were 3 and 6 days following CCI surgery. Moreover, cold allodynia and elevated plus maze tests were performed 3 and 6 days following the CCI surgery. Results Valerian treatment could repair the allodynia induced by neuropathy. On the other hand, by Valerian treatment (400mg/kg) during neuropathy, the REM sleep, decreased and the non-REM sleep increased. Moreover, there was an increment in sleep spindle density and spindle frequency even in neuropathic condition. Discussion This herbal supplement improves the quality of sleep in neuropathy conditions.
Collapse
Affiliation(s)
- Ashkan Soltani
- Baqiyatallah University of Medical Sciences, Neuroscience Research Center - Tehran - Tehran -Iran
| | - Farideh Bahrami
- Baqiyatallah University of Medical Sciences, Neuroscience Research Center - Tehran - Tehran -Iran.,Baqiyatallah University of Medical Sciences, Physiology and Medical Physics, School of Medicine - Tehran - Tehran - Iran
| | - Zahra Bahari
- Baqiyatallah University of Medical Sciences, Neuroscience Research Center - Tehran - Tehran -Iran.,Baqiyatallah University of Medical Sciences, Physiology and Medical Physics, School of Medicine - Tehran - Tehran - Iran
| | - Zeinab Shankayi
- Baqiyatallah University of Medical Sciences, Neuroscience Research Center - Tehran - Tehran -Iran.,Baqiyatallah University of Medical Sciences, Physiology and Medical Physics, School of Medicine - Tehran - Tehran - Iran
| | - Mehdi Graily-Afra
- Baqiyatallah University of Medical Sciences, Neuroscience Research Center - Tehran - Tehran -Iran.,Baqiyatallah University of Medical Sciences, Physiology and Medical Physics, School of Medicine - Tehran - Tehran - Iran
| | - Hedayat Sahraei
- Baqiyatallah University of Medical Sciences, Neuroscience Research Center - Tehran - Tehran -Iran.,Baqiyatallah University of Medical Sciences, Physiology and Medical Physics, School of Medicine - Tehran - Tehran - Iran
| |
Collapse
|
34
|
O'Reilly C, Iavarone E, Yi J, Hill SL. Rodent somatosensory thalamocortical circuitry: Neurons, synapses, and connectivity. Neurosci Biobehav Rev 2021; 126:213-235. [PMID: 33766672 DOI: 10.1016/j.neubiorev.2021.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/15/2021] [Accepted: 03/14/2021] [Indexed: 01/21/2023]
Abstract
As our understanding of the thalamocortical system deepens, the questions we face become more complex. Their investigation requires the adoption of novel experimental approaches complemented with increasingly sophisticated computational modeling. In this review, we take stock of current data and knowledge about the circuitry of the somatosensory thalamocortical loop in rodents, discussing common principles across modalities and species whenever appropriate. We review the different levels of organization, including the cells, synapses, neuroanatomy, and network connectivity. We provide a complete overview of this system that should be accessible for newcomers to this field while nevertheless being comprehensive enough to serve as a reference for seasoned neuroscientists and computational modelers studying the thalamocortical system. We further highlight key gaps in data and knowledge that constitute pressing targets for future experimental work. Filling these gaps would provide invaluable information for systematically unveiling how this system supports behavioral and cognitive processes.
Collapse
Affiliation(s)
- Christian O'Reilly
- Azrieli Centre for Autism Research, Montreal Neurological Institute, McGill University, Montreal, Canada; Ronin Institute, Montclair, NJ, USA; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Elisabetta Iavarone
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jane Yi
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sean L Hill
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
35
|
Jiang D, Ma Y, Wang Y. A robust two-stage sleep spindle detection approach using single-channel EEG. J Neural Eng 2021; 18. [PMID: 33326950 DOI: 10.1088/1741-2552/abd463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/16/2020] [Indexed: 11/12/2022]
Abstract
Objective.Sleep spindles in the electroencephalogram (EEG) are significant in sleep analysis related to cognitive functions and neurological diseases, and thus are of great clinical interests. An automatic sleep spindle detection algorithm could help decrease the workload of visual inspection by sleep clinicians.Approach.We propose a robust two-stage approach for sleep spindle detection using single-channel EEG. In the pre-detection stage, a stable number of sleep spindle candidates are discovered using the Teager energy operator with adaptive parameters, where the number of true sleep spindles are ensured as many as possible to maximize the detection sensitivity. In the refinement stage, representative features are designed and a bagging classifier is exploited to further recognize the true spindles from all candidates, in order to remove the false detection in the first stage.Main results.Using the union of all experts' annotations as the ground truth, its performance outperforms state-of-the-art works in terms of F1-score (F1) on two public databases (F1: 0.814 for Montreal archive of sleep studies dataset and 0.690 for DREAMS dataset). The annotation consistency between the proposed method and certain selected expert as the trainer could exceed the consistency between two human experts.Significance.The proposed sleep spindle detection method is based on single-channel EEG thus introduces as less interference to the subjects as possible. It is robust to subject variations between databases and is capable of learning certain annotation rules, which is expected to help facilitate the manual labeling of certain experts. In addition, this method is fast enough for real-time applications.
Collapse
Affiliation(s)
- Dihong Jiang
- Department of Electronic Engineering, Fudan University, Shanghai, People's Republic of China
| | - Yu Ma
- Department of Electronic Engineering, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, People's Republic of China
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, People's Republic of China
| |
Collapse
|
36
|
Mohammadi H, Aarabi A, Rezaei M, Khazaie H, Brand S. Sleep Spindle Characteristics in Obstructive Sleep Apnea Syndrome (OSAS). Front Neurol 2021; 12:598632. [PMID: 33716919 PMCID: PMC7947924 DOI: 10.3389/fneur.2021.598632] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/21/2021] [Indexed: 01/08/2023] Open
Abstract
Background: We compared the density and duration of sleep spindles topographically in stage 2 and 3 of non-rapid eye movement sleep (N2 and N3) among adults diagnosed with Obstructive Sleep Apnea Syndrome (OSAS) and healthy controls. Materials and Methods: Thirty-one individuals with OSAS (mean age: 48.50 years) and 23 healthy controls took part in the study. All participants underwent a whole night polysomnography. Additionally, those with OSAS were divided into mild, moderate and severe cases of OSAS. Results: For N2, sleep spindle density did not significantly differ between participants with and without OSAS, or among those with mild, moderate and severe OSAS. For N3, post-hoc analyses revealed significantly higher spindle densities in healthy controls and individuals with mild OSAS than in those with moderate or severe OSAS. Last, in N2 a higher AHI was associated with a shorter sleep spindle duration. Conclusion: OSAS is associated with a significantly lower spindle density in N3 and a shorter spindle duration in N2. Our results also revealed that, in contrast to moderate and severe OSAS, the sleep spindle characteristics of individuals with mild OSAS were very similar to those of healthy controls.
Collapse
Affiliation(s)
- Hiwa Mohammadi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Neurology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ardalan Aarabi
- Laboratory of Functional Neuroscience and Pathologies (LNFP, EA4559), University Research Center (CURS), University Hospital of Amiens, Amiens, France.,Faculty of Medicine, University of Picardie Jules Verne, Amiens, France
| | - Mohammad Rezaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Serge Brand
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,University of Basel, Psychiatric Clinics (UPK), Center for Affective, Stress and Sleep Disorders (ZASS), Basel, Switzerland.,Department of Sport, Exercise and Health, Division of Sport Science and Psychosocial Health, University of Basel, Basel, Switzerland.,Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Iotchev IB, Kubinyi E. Shared and unique features of mammalian sleep spindles - insights from new and old animal models. Biol Rev Camb Philos Soc 2021; 96:1021-1034. [PMID: 33533183 DOI: 10.1111/brv.12688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/29/2022]
Abstract
Sleep spindles are phasic events observed in mammalian non-rapid eye movement sleep. They are relevant today in the study of memory consolidation, sleep quality, mental health and ageing. We argue that our advanced understanding of their mechanisms has not exhausted the utility and need for animal model work. This is both because some topics, like cognitive ageing, have not yet been addressed sufficiently in comparative efforts and because the evolutionary history of this oscillation is still poorly understood. Comparisons across species often are either limited to referencing the classical cat and rodent models, or are over-inclusive, uncritically including reports of sleep spindles in rarely studied animals. In this review, we discuss the emergence of new (dog and sheep) models for sleep spindles and compare the strengths and shortcomings of new and old models based on the three validation criteria for animal models - face, predictive, and construct validity. We conclude that an emphasis on cognitive ageing might dictate the future of comparative sleep spindle studies, a development that is already becoming visible in studies on dogs. Moreover, reconstructing the evolutionary history of sleep spindles will require more stringent criteria for their identification, across more species. In particular, a stronger emphasis on construct and predictive validity can help verify if spindle-like events in other species are actual sleep spindles. Work in accordance with such stricter validation suggests that sleep spindles display more universally shared features, like defining frequency, than previously thought.
Collapse
Affiliation(s)
- Ivaylo Borislavov Iotchev
- Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Eniko Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| |
Collapse
|
38
|
Djonlagic I, Mariani S, Fitzpatrick AL, Van Der Klei VMGTH, Johnson DA, Wood AC, Seeman T, Nguyen HT, Prerau MJ, Luchsinger JA, Dzierzewski JM, Rapp SR, Tranah GJ, Yaffe K, Burdick KE, Stone KL, Redline S, Purcell SM. Macro and micro sleep architecture and cognitive performance in older adults. Nat Hum Behav 2021; 5:123-145. [PMID: 33199858 PMCID: PMC9881675 DOI: 10.1038/s41562-020-00964-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 09/15/2020] [Indexed: 01/31/2023]
Abstract
We sought to determine which facets of sleep neurophysiology were most strongly linked to cognitive performance in 3,819 older adults from two independent cohorts, using whole-night electroencephalography. From over 150 objective sleep metrics, we identified 23 that predicted cognitive performance, and processing speed in particular, with effects that were broadly independent of gross changes in sleep quality and quantity. These metrics included rapid eye movement duration, features of the electroencephalography power spectra derived from multivariate analysis, and spindle and slow oscillation morphology and coupling. These metrics were further embedded within broader associative networks linking sleep with aging and cardiometabolic disease: individuals who, compared with similarly aged peers, had better cognitive performance tended to have profiles of sleep metrics more often seen in younger, healthier individuals. Taken together, our results point to multiple facets of sleep neurophysiology that track coherently with underlying, age-dependent determinants of cognitive and physical health trajectories in older adults.
Collapse
Affiliation(s)
- Ina Djonlagic
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sara Mariani
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - Alexis C Wood
- USDA/ARS Children's Nutrition Center, Baylor College of Medicine, Houston, TX, USA
| | - Teresa Seeman
- University of California, Los Angeles, Los Angeles, CA, USA
| | - Ha T Nguyen
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Michael J Prerau
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - Stephen R Rapp
- Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Kristine Yaffe
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Katherine E Burdick
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Katie L Stone
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Susan Redline
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Shaun M Purcell
- Harvard Medical School, Boston, MA, USA.
- Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
39
|
Dudysová D, Janků K, Šmotek M, Saifutdinova E, Kopřivová J, Bušková J, Mander BA, Brunovský M, Zach P, Korčák J, Andrashko V, Viktorinová M, Tylš F, Bravermanová A, Froese T, Páleníček T, Horáček J. The Effects of Daytime Psilocybin Administration on Sleep: Implications for Antidepressant Action. Front Pharmacol 2020; 11:602590. [PMID: 33343372 PMCID: PMC7744693 DOI: 10.3389/fphar.2020.602590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/13/2020] [Indexed: 12/02/2022] Open
Abstract
Serotonergic agonist psilocybin is a psychedelic with antidepressant potential. Sleep may interact with psilocybin’s antidepressant properties like other antidepressant drugs via induction of neuroplasticity. The main aim of the study was to evaluate the effect of psilocybin on sleep architecture on the night after psilocybin administration. Regarding the potential antidepressant properties, we hypothesized that psilocybin, similar to other classical antidepressants, would reduce rapid eye movement (REM) sleep and prolong REM sleep latency. Moreover, we also hypothesized that psilocybin would promote slow-wave activity (SWA) expression in the first sleep cycle, a marker of sleep-related neuroplasticity. Twenty healthy volunteers (10 women, age 28–53) underwent two drug administration sessions, psilocybin or placebo, in a randomized, double-blinded design. Changes in sleep macrostructure, SWA during the first sleep cycle, whole night EEG spectral power across frequencies in non-rapid eye movement (NREM) and REM sleep, and changes in subjective sleep measures were analyzed. The results revealed prolonged REM sleep latency after psilocybin administration and a trend toward a decrease in overall REM sleep duration. No changes in NREM sleep were observed. Psilocybin did not affect EEG power spectra in NREM or REM sleep when examined across the whole night. However, psilocybin suppressed SWA in the first sleep cycle. No evidence was found for sleep-related neuroplasticity, however, a different dosage, timing, effect on homeostatic regulation of sleep, or other mechanisms related to antidepressant effects may play a role. Overall, this study suggests that potential antidepressant properties of psilocybin might be related to changes in sleep.
Collapse
Affiliation(s)
- Daniela Dudysová
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Karolina Janků
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Michal Šmotek
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Elizaveta Saifutdinova
- National Institute of Mental Health, Klecany, Czechia.,Czech Technical University in Prague, Prague, Czechia
| | - Jana Kopřivová
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jitka Bušková
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Bryce Anthony Mander
- Department of Psychiatry and Human Behavior, School of Medicine, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| | - Martin Brunovský
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Peter Zach
- National Institute of Mental Health, Klecany, Czechia
| | - Jakub Korčák
- National Institute of Mental Health, Klecany, Czechia
| | | | - Michaela Viktorinová
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Filip Tylš
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Anna Bravermanová
- National Institute of Mental Health, Klecany, Czechia.,First Faculty of Medicine, Charles University, Prague, Czechia
| | - Tom Froese
- Embodied Cognitive Science Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tomáš Páleníček
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jiří Horáček
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
40
|
Wang C, Laxminarayan S, Ramakrishnan S, Dovzhenok A, Cashmere JD, Germain A, Reifman J. Increased oscillatory frequency of sleep spindles in combat-exposed veteran men with post-traumatic stress disorder. Sleep 2020; 43:5814942. [PMID: 32239159 DOI: 10.1093/sleep/zsaa064] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/25/2020] [Indexed: 02/05/2023] Open
Abstract
STUDY OBJECTIVES Sleep disturbances are core symptoms of post-traumatic stress disorder (PTSD), but reliable sleep markers of PTSD have yet to be identified. Sleep spindles are important brain waves associated with sleep protection and sleep-dependent memory consolidation. The present study tested whether sleep spindles are altered in individuals with PTSD and whether the findings are reproducible across nights and subsamples of the study. METHODS Seventy-eight combat-exposed veteran men with (n = 31) and without (n = 47) PTSD completed two consecutive nights of high-density EEG recordings in a laboratory. We identified slow (10-13 Hz) and fast (13-16 Hz) sleep spindles during N2 and N3 sleep stages and performed topographical analyses of spindle parameters (amplitude, duration, oscillatory frequency, and density) on both nights. To assess reproducibility, we used the first 47 consecutive participants (18 with PTSD) for initial discovery and the remaining 31 participants (13 with PTSD) for replication assessment. RESULTS In the discovery analysis, compared to non-PTSD participants, PTSD participants exhibited (1) higher slow-spindle oscillatory frequency over the antero-frontal regions on both nights and (2) higher fast-spindle oscillatory frequency over the centro-parietal regions on the second night. The first finding was preserved in the replication analysis. We found no significant group differences in the amplitude, duration, or density of slow or fast spindles. CONCLUSIONS The elevated spindle oscillatory frequency in PTSD may indicate a deficient sensory-gating mechanism responsible for preserving sleep continuity. Our findings, if independently validated, may assist in the development of sleep-focused PTSD diagnostics and interventions.
Collapse
Affiliation(s)
- Chao Wang
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| | - Srinivas Laxminarayan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| | - Sridhar Ramakrishnan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| | - Andrey Dovzhenok
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| | - J David Cashmere
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Anne Germain
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD
| |
Collapse
|
41
|
Deibel SH, Rota R, Steenland HW, Ali K, McNaughton BL, Tatsuno M, McDonald RJ. Assessment of Sleep, K-Complexes, and Sleep Spindles in a T21 Light-Dark Cycle. Front Neurosci 2020; 14:551843. [PMID: 33122986 PMCID: PMC7573124 DOI: 10.3389/fnins.2020.551843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Circadian rhythm misalignment has a deleterious impact on the brain and the body. In rats, exposure to a 21-hour day length impairs hippocampal dependent memory. Sleep, and particularly K-complexes and sleep spindles in the cortex, have been hypothesized to be involved in memory consolidation. Altered K-complexes, sleep spindles, or interaction between the cortex and hippocampus could be a mechanism for the memory consolidation failure but has yet to be assessed in any circadian misalignment paradigm. In the current study, continuous local field potential recordings from five rats were used to assess the changes in aspects of behavior and sleep, including wheel running activity, quiet wakefulness, motionless sleep, slow wave sleep, REM sleep, K-complexes and sleep spindles, in rats exposed to six consecutive days of a T21 light-dark cycle (L9:D12). Except for a temporal redistribution of sleep and activity during the T21, there were no changes in period, or total amount for any aspect of sleep or activity. These data suggest that the memory impairment elicited from 6 days of T21 exposure is likely not due to changes in sleep architecture. It remains possible that hippocampal plasticity is affected by experiencing light when subjective circadian phase is calling for dark. However, if there is a reduction in hippocampal plasticity, changes in sleep appear not to be driving this effect.
Collapse
Affiliation(s)
- Scott H Deibel
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ryan Rota
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Hendrik W Steenland
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,NeuroTek Innovative Technology Inc., Toronto, ON, Canada
| | - Karim Ali
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Bruce L McNaughton
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Masami Tatsuno
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
42
|
Wang C, Laxminarayan S, David Cashmere J, Germain A, Reifman J. Inter-channel phase differences during sleep spindles are altered in Veterans with PTSD. NEUROIMAGE-CLINICAL 2020; 28:102390. [PMID: 32882644 PMCID: PMC7479269 DOI: 10.1016/j.nicl.2020.102390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/30/2020] [Accepted: 08/17/2020] [Indexed: 01/07/2023]
Abstract
We assessed the spatiotemporal dynamics of slow and fast spindles in PTSD. Inter-channel phase differences during slow spindles were reduced in PTSD. This effect was reproducible across nights and subsamples of the study population. The spatiotemporal dynamics of fast spindles was not altered in PTSD.
Sleep disturbances are common complaints in patients with post-traumatic stress disorder (PTSD). To date, however, objective markers of PTSD during sleep remain elusive. Sleep spindles are distinctive bursts of brain oscillatory activity during non-rapid eye movement (NREM) sleep and have been implicated in sleep protection and sleep-dependent memory processes. In healthy sleep, spindles observed in electroencephalogram (EEG) data are highly synchronized across different regions of the scalp. Here, we aimed to investigate whether the spatiotemporal synchronization patterns between EEG channels during sleep spindles, as quantified by the phase-locking value (PLV) and the mean phase difference (MPD), are altered in PTSD. Using high-density (64-channel) EEG data recorded from 78 combat-exposed Veteran men (31 with PTSD and 47 without PTSD) during two consecutive nights of sleep, we examined group differences in the PLV and MPD for slow (10–13 Hz) and fast (13–16 Hz) spindles separately. To evaluate the reproducibility of our findings, we set apart the first 47 consecutive participants (18 with PTSD) for the initial discovery and reserved the remaining 31 participants (13 with PTSD) for replication analysis. In the discovery analysis, compared to the non-PTSD group, the PTSD group showed smaller MPDs during slow spindles between the frontal and centro-parietal channel pairs on both nights. We obtained reproducible results in the replication analysis in terms of statistical significance and effect size. The PLVs during slow or fast spindles did not significantly differ between groups. The reduced inter-channel phase difference during slow spindles in PTSD may reflect pathological changes in the underlying thalamocortical circuits. This novel finding, if independently validated, may prove useful in developing sleep-focused PTSD diagnostics and interventions.
Collapse
Affiliation(s)
- Chao Wang
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., USA
| | - Srinivas Laxminarayan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., USA
| | - J David Cashmere
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA
| | - Anne Germain
- Department of Psychiatry, University of Pittsburgh School of Medicine, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, USA.
| |
Collapse
|
43
|
Ballesteros JJ, Briscoe JB, Ishizawa Y. Neural signatures of α2-Adrenergic agonist-induced unconsciousness and awakening by antagonist. eLife 2020; 9:57670. [PMID: 32857037 PMCID: PMC7455241 DOI: 10.7554/elife.57670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/09/2020] [Indexed: 12/29/2022] Open
Abstract
How the brain dynamics change during anesthetic-induced altered states of consciousness is not completely understood. The α2-adrenergic agonists are unique. They generate unconsciousness selectively through α2-adrenergic receptors and related circuits. We studied intracortical neuronal dynamics during transitions of loss of consciousness (LOC) with the α2-adrenergic agonist dexmedetomidine and return of consciousness (ROC) in a functionally interconnecting somatosensory and ventral premotor network in non-human primates. LOC, ROC and full task performance recovery were all associated with distinct neural changes. The early recovery demonstrated characteristic intermediate dynamics distinguished by sustained high spindle activities. Awakening by the α2-adrenergic antagonist completely eliminated this intermediate state and instantaneously restored awake dynamics and the top task performance while the anesthetic was still being infused. The results suggest that instantaneous functional recovery is possible following anesthetic-induced unconsciousness and the intermediate recovery state is not a necessary path for the brain recovery.
Collapse
Affiliation(s)
- Jesus Javier Ballesteros
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Jessica Blair Briscoe
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Yumiko Ishizawa
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
44
|
Ngo HV, Fell J, Staresina B. Sleep spindles mediate hippocampal-neocortical coupling during long-duration ripples. eLife 2020; 9:57011. [PMID: 32657268 PMCID: PMC7363445 DOI: 10.7554/elife.57011] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023] Open
Abstract
Sleep is pivotal for memory consolidation. According to two-stage accounts, memory traces are gradually translocated from hippocampus to neocortex during non-rapid-eye-movement (NREM) sleep. Mechanistically, this information transfer is thought to rely on interactions between thalamocortical spindles and hippocampal ripples. To test this hypothesis, we analyzed intracranial and scalp Electroencephalography sleep recordings from pre-surgical epilepsy patients. We first observed a concurrent spindle power increase in hippocampus (HIPP) and neocortex (NC) time-locked to individual hippocampal ripple events. Coherence analysis confirmed elevated levels of hippocampal-neocortical spindle coupling around ripples, with directionality analyses indicating an influence from NC to HIPP. Importantly, these hippocampal-neocortical dynamics were particularly pronounced during long-duration compared to short-duration ripples. Together, our findings reveal a potential mechanism underlying active consolidation, comprising a neocortical-hippocampal-neocortical reactivation loop initiated by the neocortex. This hippocampal-cortical dialogue is mediated by sleep spindles and is enhanced during long-duration hippocampal ripples.
Collapse
Affiliation(s)
- Hong-Viet Ngo
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Juergen Fell
- Department of Epileptology, University of Bonn, Bonn, Germany
| | - Bernhard Staresina
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
45
|
Bojarskaite L, Bjørnstad DM, Pettersen KH, Cunen C, Hermansen GH, Åbjørsbråten KS, Chambers AR, Sprengel R, Vervaeke K, Tang W, Enger R, Nagelhus EA. Astrocytic Ca 2+ signaling is reduced during sleep and is involved in the regulation of slow wave sleep. Nat Commun 2020; 11:3240. [PMID: 32632168 PMCID: PMC7338360 DOI: 10.1038/s41467-020-17062-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/09/2020] [Indexed: 12/31/2022] Open
Abstract
Astrocytic Ca2+ signaling has been intensively studied in health and disease but has not been quantified during natural sleep. Here, we employ an activity-based algorithm to assess astrocytic Ca2+ signals in the neocortex of awake and naturally sleeping mice while monitoring neuronal Ca2+ activity, brain rhythms and behavior. We show that astrocytic Ca2+ signals exhibit distinct features across the sleep-wake cycle and are reduced during sleep compared to wakefulness. Moreover, an increase in astrocytic Ca2+ signaling precedes transitions from slow wave sleep to wakefulness, with a peak upon awakening exceeding the levels during whisking and locomotion. Finally, genetic ablation of an important astrocytic Ca2+ signaling pathway impairs slow wave sleep and results in an increased number of microarousals, abnormal brain rhythms, and an increased frequency of slow wave sleep state transitions and sleep spindles. Our findings demonstrate an essential role for astrocytic Ca2+ signaling in regulating slow wave sleep.
Collapse
Affiliation(s)
- Laura Bojarskaite
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Daniel M Bjørnstad
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Klas H Pettersen
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Céline Cunen
- Statistics and Data Science group, Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Gudmund Horn Hermansen
- Statistics and Data Science group, Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Knut Sindre Åbjørsbråten
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Anna R Chambers
- Lab for Neural Computation, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Rolf Sprengel
- Research Group of the Max Planck Institute for Medical Research, Institute for Anatomy and Cell Biology, Heidelberg University, 69120, Heidelberg, Germany
| | - Koen Vervaeke
- Lab for Neural Computation, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Wannan Tang
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rune Enger
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway.
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway.
- Department of Neurology, Oslo University Hospital, Rikshospitalet, 0027, Oslo, Norway.
| | - Erlend A Nagelhus
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Rikshospitalet, 0027, Oslo, Norway
| |
Collapse
|
46
|
Gerstenberg M, Furrer M, Tesler N, Franscini M, Walitza S, Huber R. Reduced sleep spindle density in adolescent patients with early-onset schizophrenia compared to major depressive disorder and healthy controls. Schizophr Res 2020; 221:20-28. [PMID: 31924372 DOI: 10.1016/j.schres.2019.11.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES During adolescence schizophrenia and major depressive disorder (MDD) increasingly emerge. Overlapping symptomatology during first presentation challenges the diagnostic process. Reduced sleep spindle density (SSD) was suggested as a biomarker in adults, discerning patients with schizophrenia from patients with depression or healthy controls (HC). We aimed to compare SSD in early-onset schizophrenia (EOS), with MDD, and HC, and to analyse associations of SSD with symptomatology and neurocognitive measures. METHODS Automatic sleep spindle detection was performed on all-night high-density EEG (128 electrodes) data of 12 EOS, 19 MDD, and 57 HC (age range 9.8-19), allowing an age- and sex-matching of 1:2 (patients vs. HC). Severity of current symptoms and neurocognitive variables were assessed in all patients. RESULTS SSD was defined between 13.75 and 14.50 Hz as within this frequency range SSD differed between EOS vs. HC in bin by bin analyses (12-15 Hz). In EOS, SSD was lower over 27 centro-temporal electrodes compared to HC and over 9 central electrodes compared to MDD. Reduced SSD in EOS compared to MDD and HC was accompanied by a high variability of SSD in all adolescents. SSD did not differ between MDD and HC. In the pooled sample of patients, lower SSD was associated with more severe Positive and Negative Symptoms Scale total score, more impaired memory consolidation and processing speed. CONCLUSION A high variability of SSD in all adolescents may reflect the evolving character of SSD. The association of reduced SSD with the symptom dimension of impaired cognition cuts across diagnostical entities.
Collapse
Affiliation(s)
- Miriam Gerstenberg
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, Switzerland.
| | - Melanie Furrer
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Noemi Tesler
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Maurizia Franscini
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, Switzerland; Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Reto Huber
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, Switzerland; Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Peyrache A, Seibt J. A mechanism for learning with sleep spindles. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190230. [PMID: 32248788 PMCID: PMC7209910 DOI: 10.1098/rstb.2019.0230] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Spindles are ubiquitous oscillations during non-rapid eye movement (NREM) sleep. A growing body of evidence points to a possible link with learning and memory, and the underlying mechanisms are now starting to be unveiled. Specifically, spindles are associated with increased dendritic activity and high intracellular calcium levels, a situation favourable to plasticity, as well as with control of spiking output by feed-forward inhibition. During spindles, thalamocortical networks become unresponsive to inputs, thus potentially preventing interference between memory-related internal information processing and extrinsic signals. At the system level, spindles are co-modulated with other major NREM oscillations, including hippocampal sharp wave-ripples (SWRs) and neocortical slow waves, both previously shown to be associated with learning and memory. The sequential occurrence of reactivation at the time of SWRs followed by neuronal plasticity-promoting spindles is a possible mechanism to explain NREM sleep-dependent consolidation of memories. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Adrien Peyrache
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 1A1
| | - Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| |
Collapse
|
48
|
Bastuji H, Lamouroux P, Villalba M, Magnin M, Garcia‐Larrea L. Local sleep spindles in the human thalamus. J Physiol 2020; 598:2109-2124. [DOI: 10.1113/jp279045] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/20/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Hélène Bastuji
- Central Integration of Pain (NeuroPain) Lab – Lyon Neuroscience Research Center Université Claude Bernard INSERM U1028; CNRS, UMR5292 Bron France
- Centre du Sommeil & Service de Neurologie Fonctionnelle et d’Épileptologie Hospices Civils de Lyon Lyon France
| | - Pierre Lamouroux
- Central Integration of Pain (NeuroPain) Lab – Lyon Neuroscience Research Center Université Claude Bernard INSERM U1028; CNRS, UMR5292 Bron France
| | - Manon Villalba
- Central Integration of Pain (NeuroPain) Lab – Lyon Neuroscience Research Center Université Claude Bernard INSERM U1028; CNRS, UMR5292 Bron France
| | - Michel Magnin
- Central Integration of Pain (NeuroPain) Lab – Lyon Neuroscience Research Center Université Claude Bernard INSERM U1028; CNRS, UMR5292 Bron France
| | - Luis Garcia‐Larrea
- Central Integration of Pain (NeuroPain) Lab – Lyon Neuroscience Research Center Université Claude Bernard INSERM U1028; CNRS, UMR5292 Bron France
- Centre d’évaluation et de traitement de la douleur Hôpital Neurologique Lyon France
| |
Collapse
|
49
|
Alteration in REM sleep and sleep spindles’ characteristics by a model of immobilization stress in rat. Sleep Biol Rhythms 2020. [DOI: 10.1007/s41105-020-00263-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Li W, Duan Y, Yan J, Gao H, Li X. Association between Loss of Sleep-specific Waves and Age, Sleep Efficiency, Body Mass Index, and Apnea-Hypopnea Index in Human N3 Sleep. Aging Dis 2020; 11:73-81. [PMID: 32010482 PMCID: PMC6961777 DOI: 10.14336/ad.2019.0420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/20/2019] [Indexed: 12/22/2022] Open
Abstract
Sleep spindles (SS) and K-complexes (KC) play important roles in human sleep. It has been reported that age, body mass index (BMI), and apnea-hypopnea index (AHI) may influence the number of SS or KC in non-rapid-eye-movement (NREM) 2 (N2) sleep. In this study, we investigated whether the loss of SS or KC is associated with the above factors in NREM 3 (N3) sleep. A total of 152 cases were enrolled from 2013 to 2017. The correlations between the number of SS or KC in N3 sleep and participants’ characteristics were analyzed using Spearman rank correlation. Chi-squared test was used to assess the effects of age, sleep efficiency, and BMI on the loss of N3 sleep, N3 spindle and N3 KC. Our results showed that there were negative correlations between the number of SS in N3 sleep with age, BMI, and AHI (P < 0.001), and similar trends were found for KC as well. The loss of SS and KC in N3 sleep was related with age, BMI, and AHI (P < 0.01), as was the loss of N3 sleep (P < 0.01). However, sleep efficiency was not related with the loss of N3 sleep, SS and KC in N3 sleep (P > 0.05). The present study supports that age, BMI, and AHI are all influencing factors of SS and KC loss in human N3 sleep, but sleep efficiency was not an influencing factor in the loss of N3 sleep and the loss of SS and KC in N3 sleep.
Collapse
Affiliation(s)
- Weiguang Li
- 1State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ying Duan
- 2Clinical Sleep Medical Center, Air Force Medical Center, PLA, Beijing 100036, China
| | - Jiaqing Yan
- 3College of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China
| | - He Gao
- 2Clinical Sleep Medical Center, Air Force Medical Center, PLA, Beijing 100036, China
| | - Xiaoli Li
- 1State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|