1
|
Geller S, Sommer W, Hildebrandt A. Parenthood status and plasma oxytocin levels predict specific emotion perception abilities. Cogn Emot 2024:1-20. [PMID: 39585690 DOI: 10.1080/02699931.2024.2430403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 11/26/2024]
Abstract
Superior recognition of positive emotional facial expressions compared to negative expressions is well established. However, it is unclear whether this superiority effect differs between non-parents and parents, for whom emotion perception (EP) is an indispensable skill. Although EP has been shown to be modulated by the neuropeptide oxytocin, a central factor in the development of parental care, very little research has addressed the relationship between EP skills, the transition to parenthood, and plasma oxytocin levels. In the present study, we assessed EP abilities with a test battery and measured plasma oxytocin in 77 non-parent and 79 parent couples and applied structural equation modelling to the data. The results showed increased happiness perception abilities in both parents and individuals with elevated oxytocin levels. Furthermore, non-parents showed superior abilities to recognise anger expressions. No significant associations were found regarding the perception of other basic emotion categories or with a general EP factor. The findings are consistent with previous research indicating that elevated oxytocin levels are associated with enhanced EP abilities. They also extend the existing literature by demonstrating that mothers and fathers, regardless of their oxytocin levels, exhibit increased EP superiority.
Collapse
Affiliation(s)
- Susann Geller
- Department of Psychology, Psychological Methods and Statistics, Carl von Ossietzky Universität Oldenburg, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Werner Sommer
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Physics and Life Science Imaging Center, Hong Kong, SAR China
- Faculty of Education, National University of Malaysia, Kula Lumpur, Malaysia
| | - Andrea Hildebrandt
- Department of Psychology, Psychological Methods and Statistics, Carl von Ossietzky Universität Oldenburg, Germany
| |
Collapse
|
2
|
Li M. Is melanin-concentrating hormone in the medial preoptic area a signal for the decline of maternal care in late postpartum? Front Neuroendocrinol 2024; 75:101155. [PMID: 39222798 DOI: 10.1016/j.yfrne.2024.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
This manuscript proposes that melanin-concentrating hormone (MCH) in the medial preoptic area (MPOA) is an neurochemical signal evolved to trigger the declining process of maternal care. MCH in the MPOA appears only after parturition and is progressively increased with the progression of lactation, while maternal behavior declines progressively. Intra-MPOA injection of MCH decreases active maternal responses. MCH is also highly responsive to infant characteristics and maternal condition. Behavioral changes induced by MCH in late postpartum period are conducive to the decline of infant-directed maternal behavior. The MPOA MCH system may mediate the maternal behavior decline by suppressing the maternal approach motivation and/or increasing maternal withdrawal via its inhibitory action onto the mesolimbic dopamine D1/D2 receptors and its stimulating action on serotonin 5-HT2C receptors in the ventral tegmental area. Research into the MCH maternal effects will enhance our understanding of the neurochemical mechanisms underlying the maternal behavior decline.
Collapse
Affiliation(s)
- Ming Li
- Department of Psychology, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Benenson JF, Markovits H. Young adults' desired life tradeoffs: love first, sex last. Sci Rep 2024; 14:19680. [PMID: 39181945 PMCID: PMC11344816 DOI: 10.1038/s41598-024-70742-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Every human and non-human animal must make tradeoffs in investments in terms of time, energy, and resources. The aim of this study was to extrapolate from the types of investments in survival and reproduction that non-human animals make and translate these into human motivations. 16 potential goals were presented to 851 childless, 18-23-year-old adults from 11 world regions in an online study. Each young adult was asked to weight the importance of every goal to his or her ideal life. Weights had to sum to 100, requiring tradeoffs. Results revealed striking agreement across young adults with only four goals weighted above chance: Finding a beloved romantic partner, being physically and emotionally healthy, and earning money or resources. Having lots of sexual partners was the least important goal across all world regions for both sexes. Nevertheless, men more than women valued having many sexual partners, being talented outside work, being physically strong, and having a physically attractive romantic partner. Overall, there was cultural variation in some of the less important goals. Helping young adults achieve success requires understanding their own goals, rather than focusing on popularized depictions of what young adults desire.
Collapse
Affiliation(s)
- Joyce F Benenson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, 02138, USA.
| | - Henry Markovits
- Département de Psychologie, Université du Québec à Montréal, Montreal, H3C 3P8, Canada
| |
Collapse
|
4
|
Alcantara IC, Li C, Mickelsen LE, Mazzone CM, de Araujo Salgado I, Gao C, Papas BN, Xiao C, Karolczak EO, Goldschmidt AI, Gonzalez SR, Piñol RA, Li JL, Cui G, Reitman ML, Krashes MJ. A Hypothalamic Circuit that Modulates Feeding and Parenting Behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604437. [PMID: 39091749 PMCID: PMC11291030 DOI: 10.1101/2024.07.22.604437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Across mammalian species, new mothers undergo considerable behavioral changes to nurture their offspring and meet the caloric demands of milk production1-5. While many neural circuits underlying feeding and parenting behaviors are well characterized6-9, it is unclear how these different circuits interact and adapt during lactation. Here, we characterized the transcriptomic changes in the arcuate nucleus (ARC) and the medial preoptic area (MPOA) of the mouse hypothalamus in response to lactation and hunger. Furthermore, we showed that heightened appetite in lactating mice was accompanied by increased activity of hunger-promoting agouti-related peptide (AgRP) neurons in the ARC. To assess the strength of hunger versus maternal drives, we designed a conflict assay where female mice chose between a food source or a chamber containing pups and nesting material. Although food-deprived lactating mothers prioritized parenting over feeding, hunger reduced the duration and disrupted the sequences of parenting behaviors in both lactating and virgin females. We discovered that ARCAgRP neurons directly inhibit bombesin receptor subtype-3 (BRS3) neurons in the MPOA, a population that governs both parenting and satiety. Selective activation of this ARCAgRP to MPOABRS3 circuit shifted behaviors from parenting to food-seeking. Thus, hypothalamic networks are modulated by physiological states and work antagonistically during the prioritization of competing motivated behaviors.
Collapse
Affiliation(s)
- Ivan C. Alcantara
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
- Department of Neuroscience, Brown University, Providence, RI, USA 20912
| | - Chia Li
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Laura E. Mickelsen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Christopher M. Mazzone
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA 27709
| | - Isabel de Araujo Salgado
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Claire Gao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Brian N. Papas
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA 27709
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Eva O. Karolczak
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Abigail I. Goldschmidt
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Shakira Rodriguez Gonzalez
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Ramón A. Piñol
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Jian-Liang Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA 27709
| | - Guohong Cui
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA 27709
| | - Marc L. Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Michael J. Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| |
Collapse
|
5
|
Kuroda KO, Fukumitsu K, Kurachi T, Ohmura N, Shiraishi Y, Yoshihara C. Parental brain through time: The origin and development of the neural circuit of mammalian parenting. Ann N Y Acad Sci 2024; 1534:24-44. [PMID: 38426943 DOI: 10.1111/nyas.15111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This review consolidates current knowledge on mammalian parental care, focusing on its neural mechanisms, evolutionary origins, and derivatives. Neurobiological studies have identified specific neurons in the medial preoptic area as crucial for parental care. Unexpectedly, these neurons are characterized by the expression of molecules signaling satiety, such as calcitonin receptor and BRS3, and overlap with neurons involved in the reproductive behaviors of males but not females. A synthesis of comparative ecology and paleontology suggests an evolutionary scenario for mammalian parental care, possibly stemming from male-biased guarding of offspring in basal vertebrates. The terrestrial transition of tetrapods led to prolonged egg retention in females and the emergence of amniotes, skewing care toward females. The nocturnal adaptation of Mesozoic mammalian ancestors reinforced maternal care for lactation and thermal regulation via endothermy, potentially introducing metabolic gate control in parenting neurons. The established maternal care may have served as the precursor for paternal and cooperative care in mammals and also fostered the development of group living, which may have further contributed to the emergence of empathy and altruism. These evolution-informed working hypotheses require empirical validation, yet they offer promising avenues to investigate the neural underpinnings of mammalian social behaviors.
Collapse
Affiliation(s)
- Kumi O Kuroda
- RIKEN Center for Brain Science, Saitama, Japan
- School of Life Sciences and Technologies, Tokyo Institute of Technology, Kanagawa, Japan
| | - Kansai Fukumitsu
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takuma Kurachi
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Nami Ohmura
- RIKEN Center for Brain Science, Saitama, Japan
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Yuko Shiraishi
- RIKEN Center for Brain Science, Saitama, Japan
- Kawamura Gakuen Woman's University, Chiba, Japan
| | - Chihiro Yoshihara
- RIKEN Center for Brain Science, Saitama, Japan
- School of Life Sciences and Technologies, Tokyo Institute of Technology, Kanagawa, Japan
| |
Collapse
|
6
|
Yano-Nashimoto S, Truzzi A, Shinozuka K, Murayama AY, Kurachi T, Moriya-Ito K, Tokuno H, Miyazawa E, Esposito G, Okano H, Nakamura K, Saito A, Kuroda KO. Anxious about rejection, avoidant of neglect: Infant marmosets tune their attachment based on individual caregiver's parenting style. Commun Biol 2024; 7:212. [PMID: 38378797 PMCID: PMC10879543 DOI: 10.1038/s42003-024-05875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Children's secure attachment with their primary caregivers is crucial for physical, cognitive, and emotional maturation. Yet, the causal links between specific parenting behaviors and infant attachment patterns are not fully understood. Here we report infant attachment in New World monkeys common marmosets, characterized by shared infant care among parents and older siblings and complex vocal communications. By integrating natural variations in parenting styles and subsecond-scale microanalyses of dyadic vocal and physical interactions, we demonstrate that marmoset infants signal their needs through context-dependent call use and selective approaches toward familiar caregivers. The infant attachment behaviors are tuned to each caregiver's parenting style; infants use negative calls when carried by rejecting caregivers and selectively avoid neglectful and rejecting caregivers. Family-deprived infants fail to develop such adaptive uses of attachment behaviors. With these similarities with humans, marmosets offer a promising model for investigating the biological mechanisms of attachment security.
Collapse
Affiliation(s)
- Saori Yano-Nashimoto
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
- Laboratory of Physiology, Department of Basic Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Anna Truzzi
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, TN, Italy
| | - Kazutaka Shinozuka
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
- Planning, Review and Research Institute for Social insurance and Medical program, Chiyoda-ku, Japan
| | - Ayako Y Murayama
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan
- Neural Circuit Unit, Okinawa Institute Science and Technology Graduate University, Onna, Japan
| | - Takuma Kurachi
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
- Department of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Keiko Moriya-Ito
- Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Hironobu Tokuno
- Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Eri Miyazawa
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
| | - Gianluca Esposito
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, TN, Italy
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan
| | - Katsuki Nakamura
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Atsuko Saito
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan.
- Department of Psychology, Sophia University, Chiyoda-ku, Japan.
| | - Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan.
- Kuroda Laboratory, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
7
|
Wilson KM, Arquilla AM, Hussein M, Rosales-Torres KM, Chan MG, Saltzman W. Effects of reproductive status on behavioral and neural responses to isolated pup stimuli in female California mice. Behav Brain Res 2024; 457:114727. [PMID: 37871656 DOI: 10.1016/j.bbr.2023.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
The transition to motherhood in mammals is marked by changes in females' perception of and responsiveness to sensory stimuli from infants. Our understanding of maternally induced sensory plasticity relies most heavily on studies in uniparental, promiscuous house mice and rats, which may not be representative of rodent species with different life histories. We exposed biparental, monogamous California mouse (Peromyscus californicus) mothers and ovariectomized virgin females to one of four acoustic and olfactory stimulus combinations (Control: clean cotton and white noise; Call: clean cotton and pup vocalizations; Odor: pup-scented cotton and white noise; Call + Odor: pup-scented cotton and pup vocalizations) and quantified females' behavior and Fos expression in select brain regions. Behavior did not differ between mothers and ovariectomized virgins. Among mothers, however, those exposed to the Control condition took the longest to sniff the odor stimulus, and mothers exposed to the Odor condition were quicker to sniff the odor ball compared to those in the Call condition. Behavior did not differ among ovariectomized virgins exposed to the different conditions. Fos expression differed across conditions only in the anterior hypothalamic nucleus (AHN), which responds to aversive stimuli: among mothers, the Control condition elicited the highest AHN Fos and Call + Odor elicited the lowest. Among ovariectomized virgin females, Call elicited the lowest Fos in the AHN. Thus, reproductive status in California mice alters females' behavioral responses to stimuli from pups, especially odors, and results in the inhibition of defense circuitry in response to pup stimuli.
Collapse
Affiliation(s)
- Kerianne M Wilson
- Department of Biology, Pomona College, Claremont, CA, USA; Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA.
| | - April M Arquilla
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Manal Hussein
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Kelsey M Rosales-Torres
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - May G Chan
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
8
|
Abstract
Fathers have been an important source of child endurance and prosperity since the dawn of civilization, promoting adaptation to social rules, defining cultural meaning systems, teaching daily living skills, and providing the material background against which children developed; still, the recent reformulation in the role of the father requires theory-building. Paternal caregiving is rare in mammals, occurring in 3-5% of species, expresses in multiple formats, and involves flexible neurobiological accommodations to ecological conditions and active caregiving. Here, we discuss father contribution to resilience across development. Our model proposes three tenets of resilience - plasticity, sociality, and meaning - and discussion focuses on father-specific contributions to each tenet at different developmental stages; newborn, infant, preschooler, child, and adolescent. Father's style of high arousal, energetic physicality, guided participation in daily skills, joint adventure, and conflict resolution promotes children's flexible approach and social competence within intimate bonds and social groups. By expanding children's interests, sharpening cognitions, tuning affect regulation, encouraging exploration, and accompanying the search for identity, fathers support the sense of meaning, enhancing the human-specific dimension of resilience. We end by highlighting pitfalls to paternal contribution, including absence, abuse, rigidity, expectations, and gender typing, and the need to formulate novel theories to accommodate the "involved dad."
Collapse
Affiliation(s)
- Ruth Feldman
- Center for Developmental Social Neuroscience, Reichman University,Israel
- Yale Child Study Center, New Haven, USA
| |
Collapse
|
9
|
Parise LF, Joseph Burnett C, Russo SJ. Early life stress and altered social behaviors: A perspective across species. Neurosci Res 2023:S0168-0102(23)00200-6. [PMID: 37992997 PMCID: PMC11102940 DOI: 10.1016/j.neures.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/21/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
Childhood and adolescent affiliations guide how individuals engage in social relationships throughout their lifetime and adverse experiences can promote biological alterations that facilitate behavioral maladaptation. Indeed, childhood victims of abuse are more likely to be diagnosed with conduct or mood disorders which are both characterized by altered social engagement. A key domain particularly deserving of attention is aggressive behavior, a hallmark of many disorders characterized by deficits in reward processing. Animal models have been integral in identifying both the short- and long-term consequences of stress exposure and suggest that whether it is disruption to parental care or social isolation, chronic exposure to early life stress increases corticosterone, changes the expression of neurotransmitters and neuromodulators, and facilitates structural alterations to the hypothalamus, hippocampus, and amygdala, influencing how these brain regions communicate with other reward-related substrates. Herein, we describe how adverse early life experiences influence social behavioral outcomes across a wide range of species and highlight the long-term biological mechanisms that are most relevant to maladaptive aggressive behavior.
Collapse
Affiliation(s)
- Lyonna F Parise
- Icahn School of Medicine, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, NY, USA.
| | - C Joseph Burnett
- Icahn School of Medicine, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, NY, USA
| | - Scott J Russo
- Icahn School of Medicine, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, NY, USA.
| |
Collapse
|
10
|
Cossin-Sevrin N, Stier A, Hukkanen M, Zahn S, Viblanc VA, Anttila K, Ruuskanen S. Early-life environmental effects on mitochondrial aerobic metabolism: a brood size manipulation in wild great tits. J Exp Biol 2023; 226:jeb245932. [PMID: 37815441 DOI: 10.1242/jeb.245932] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
In avian species, the number of chicks in the nest and subsequent sibling competition for food are major components of the offspring's early-life environment. A large brood size is known to affect chick growth, leading in some cases to long-lasting effects for the offspring, such as a decrease in size at fledgling and in survival after fledging. An important pathway underlying different growth patterns could be the variation in offspring mitochondrial metabolism through its central role in converting energy. Here, we performed a brood size manipulation in great tits (Parus major) to unravel its impact on offspring mitochondrial metabolism and reactive oxygen species (ROS) production in red blood cells. We investigated the effects of brood size on chick growth and survival, and tested for long-lasting effects on juvenile mitochondrial metabolism and phenotype. As expected, chicks raised in reduced broods had a higher body mass compared with enlarged and control groups. However, mitochondrial metabolism and ROS production were not significantly affected by the treatment at either chick or juvenile stages. Interestingly, chicks raised in very small broods were smaller in size and had higher mitochondrial metabolic rates. The nest of rearing had a significant effect on nestling mitochondrial metabolism. The contribution of the rearing environment in determining offspring mitochondrial metabolism emphasizes the plasticity of mitochondrial metabolism in relation to the nest environment. This study opens new avenues regarding the effect of postnatal environmental conditions in shaping offspring early-life mitochondrial metabolism.
Collapse
Affiliation(s)
- Nina Cossin-Sevrin
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67087 Strasbourg, France
| | - Antoine Stier
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67087 Strasbourg, France
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622 Villeurbanne, France
| | - Mikaela Hukkanen
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sandrine Zahn
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67087 Strasbourg, France
| | - Vincent A Viblanc
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67087 Strasbourg, France
| | - Katja Anttila
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Suvi Ruuskanen
- Department of Biology, University of Turku, FI-20014 Turku, Finland
- Department of Biological and Environmental Sciences, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| |
Collapse
|
11
|
John RM, Higgs MJ, Isles AR. Imprinted genes and the manipulation of parenting in mammals. Nat Rev Genet 2023; 24:783-796. [PMID: 37714957 DOI: 10.1038/s41576-023-00644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/17/2023]
Abstract
Genomic imprinting refers to the parent-of-origin expression of genes, which originates from epigenetic events in the mammalian germ line. The evolution of imprinting may reflect a conflict over resource allocation early in life, with silencing of paternal genes in offspring soliciting increased maternal provision and silencing of maternal genes limiting demands on the mother. Parental caregiving has been identified as an area of potential conflict, with several imprinted genes serendipitously found to directly influence the quality of maternal care. Recent systems biology approaches, based on single-cell RNA sequencing data, support a more deliberate relationship, which is reinforced by the finding that imprinted genes expressed in the offspring influence the quality of maternal caregiving. These bidirectional, reiterative relationships between parents and their offspring are critical both for short-term survival and for lifelong wellbeing, with clear implications for human health.
Collapse
|
12
|
Shibata M, Hosoi M, Anno K, Hirabayashi N, Hirakawa Y, Kawata H, Iwaki R, Sawamoto R, Sudo N, Ninomiya T. Inadequate care and excessive overprotection during childhood are associated with the presence of diabetes mellitus in adulthood in a general Japanese population: a cross-sectional analysis from the Hisayama Study. BMC Endocr Disord 2023; 23:222. [PMID: 37821847 PMCID: PMC10568832 DOI: 10.1186/s12902-023-01474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 09/30/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVE To investigate associations between parenting styles during childhood and diabetes in adulthood in a Japanese community. METHODS In 2011, 710 community-dwelling Japanese residents aged ≥ 40 years were assessed for the presence of diabetes and for their perceptions of the parenting style of their parents, as measured using the "care" and "overprotection" scales of the Parental Bonding Instrument. Care and overprotection scores for each parent were dichotomized by age-specific median values. Diabetes mellitus was defined as a fasting plasma glucose level of ≥ 7.0 mmol/L, a 2-h post-loaded glucose level of ≥ 11.1 mmol/L, HbA1c ≥ 6.5%, and/or the current use of insulin or oral glucose-lowering agents. The odds ratios (ORs) for prevalent diabetes were calculated using a logistic regression model. RESULTS The prevalence of diabetes was 14.9%. Subjects with a high paternal overprotection score had a significantly greater likelihood of prevalent diabetes than those with a low paternal overprotection score after adjusting for confounders (OR 1.71, 95% confidence interval [CI] 1.06-2.77), while there was no significant association between paternal care and diabetes. Additionally, the multivariable-adjusted ORs for the presence of diabetes were significantly higher in subjects with a low maternal care score (OR 1.61, 95%CI 1.00-2.60) or in subjects with a high maternal overprotection score (OR 1.73, 95%CI 1.08-2.80). Moreover, the subjects with a low care score and high overprotection score for both their father and mother had a significantly higher multivariable-adjusted OR of diabetes than those with a high care score and low overprotection score for both parents (OR 2,12, 95%CI 1.14-3.95). CONCLUSIONS This study suggests that inadequate care and excessive overprotection during childhood may contribute to the development of diabetes in adulthood.
Collapse
Grants
- JSPS KAKENHI Grant Number JP19H03752, JP19H03752, JP21H03200, JP21K07522, JP21K11725, JP21K10448, JP22K07421, JP22K17396, JP23K09692, JP23K09717, JP23K16330, JP23K06787, and JP23K09060 Ministry of Education, Culture, Sports, Science and Technology of Japan
- JSPS KAKENHI Grant Number JP19H03752, JP19H03752, JP21H03200, JP21K07522, JP21K11725, JP21K10448, JP22K07421, JP22K17396, JP23K09692, JP23K09717, JP23K16330, JP23K06787, and JP23K09060 Ministry of Education, Culture, Sports, Science and Technology of Japan
- JSPS KAKENHI Grant Number JP19H03752, JP19H03752, JP21H03200, JP21K07522, JP21K11725, JP21K10448, JP22K07421, JP22K17396, JP23K09692, JP23K09717, JP23K16330, JP23K06787, and JP23K09060 Ministry of Education, Culture, Sports, Science and Technology of Japan
- JPMH23FA1006, and JPMH23FA1022 Health and Labour Sciences Research Grants of the Ministry of Health, Labour and Welfare of Japan
- JP23dk0207053, JP23km0405209 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Mao Shibata
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan.
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
- Division of Research Management, Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Masako Hosoi
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kozo Anno
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Naoki Hirabayashi
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoichiro Hirakawa
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Kawata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Rie Iwaki
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Ryoko Sawamoto
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuyuki Sudo
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Division of Research Management, Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Higgs MJ, Webberley AE, Allan AJ, Talat M, John RM, Isles AR. The parenting hub of the hypothalamus is a focus of imprinted gene action. PLoS Genet 2023; 19:e1010961. [PMID: 37856383 PMCID: PMC10586610 DOI: 10.1371/journal.pgen.1010961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Imprinted genes are subject to germline epigenetic modification resulting in parental-specific allelic silencing. Although genomic imprinting is thought to be important for maternal behaviour, this idea is based on serendipitous findings from a small number of imprinted genes. Here, we undertook an unbiased systems biology approach, taking advantage of the recent delineation of specific neuronal populations responsible for controlling parental care, to test whether imprinted genes significantly converge to regulate parenting behaviour. Using single-cell RNA sequencing datasets, we identified a specific enrichment of imprinted gene expression in a recognised "parenting hub", the galanin-expressing neurons of the preoptic area. We tested the validity of linking enriched expression in these neurons to function by focusing on MAGE family member L2 (Magel2), an imprinted gene not previously linked to parenting behaviour. We confirmed expression of Magel2 in the preoptic area galanin expressing neurons. We then examined the parenting behaviour of Magel2-null(+/p) mice. Magel2-null mothers, fathers and virgin females demonstrated deficits in pup retrieval, nest building and pup-directed motivation, identifying a central role for this gene in parenting. Finally, we show that Magel2-null mothers and fathers have a significant reduction in POA galanin expressing cells, which in turn contributes to a reduced c-Fos response in the POA upon exposure to pups. Our findings identify a novel imprinted gene that impacts parenting behaviour and, moreover, demonstrates the utility of using single-cell RNA sequencing data to predict gene function from expression and in doing so here, have identified a purposeful role for genomic imprinting in mediating parental behaviour.
Collapse
Affiliation(s)
- Matthew J. Higgs
- Behavioural Genetics Group, Centre for Neuropsychiatric, Genetics and Genomics, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
| | - Anna E. Webberley
- Behavioural Genetics Group, Centre for Neuropsychiatric, Genetics and Genomics, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
| | | | - Moaz Talat
- The Mary Lyon Centre, MRC Harwell, Didcot, United Kingdom
| | - Rosalind M. John
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anthony R. Isles
- Behavioural Genetics Group, Centre for Neuropsychiatric, Genetics and Genomics, Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
14
|
Corona A, Choe J, Muñoz-Castañeda R, Osten P, Shea SD. A circuit from the locus coeruleus to the anterior cingulate cortex modulates offspring interactions in mice. Cell Rep 2023; 42:112771. [PMID: 37421626 PMCID: PMC10529180 DOI: 10.1016/j.celrep.2023.112771] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/01/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023] Open
Abstract
Social sensitivity to other individuals in distress is crucial for survival. The anterior cingulate cortex (ACC) is a structure involved in making behavioral choices and is influenced by observed pain or distress. Nevertheless, our understanding of the neural circuitry underlying this sensitivity is incomplete. Here, we reveal unexpected sex-dependent activation of ACC when parental mice respond to distressed pups by returning them to the nest ("pup retrieval"). We observe sex differences in the interactions between excitatory and inhibitory ACC neurons during parental care, and inactivation of ACC excitatory neurons increased pup neglect. Locus coeruleus (LC) releases noradrenaline in ACC during pup retrieval, and inactivation of the LC-ACC pathway disrupts parental care. We conclude that ACC maintains sex-dependent sensitivity to pup distress under LC modulation. We propose that ACC's involvement in parenting presents an opportunity to identify neural circuits that support sensitivity to the emotional distress of others.
Collapse
Affiliation(s)
- Alberto Corona
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jane Choe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Stephen D Shea
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
15
|
Baxter A, Karaskiewicz CL, Campbell LA, Kinnally EL, Ferrer E, Seelke AHM, Freeman SM, Bales KL. Parental experience is linked with lower vasopressin receptor 1a binding and decreased postpartum androgens in titi monkeys. J Neuroendocrinol 2023; 35:e13304. [PMID: 37267441 PMCID: PMC10521943 DOI: 10.1111/jne.13304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/10/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Parenting induces many neurological and behavioral changes that enable parents to rear offspring. Vasopressin plays an important role in this process via its effects on cognition, affect, and neuroplasticity, and in some cases, via interactions with decreased parental androgens. Thus far, the role of these hormones has been primarily studied in rodents. To address this gap, we explored vasopressin receptors and androgens in titi monkeys, a pair-bonding and biparental primate species. In Studies 1 and 2, we used receptor autoradiography to correlate arginine vasopressin receptor 1a (AVPR1a) binding in the hippocampus (Study 1, n = 10) and the rest of the forebrain (Study 2, n = 23) with parental status, parental experience, parity, infant carrying, and pair affiliation. We found that parents exhibited lower AVPR1a binding than non-parents throughout most brain regions assessed, with especially strong effects in the hippocampus (β = -.61), superior colliculus (β = -.88), lateral septum (β = -.35), and medial preoptic area (β = -.29). The other measures of parental experience also tended to be negatively associated with AVPR1a binding across different brain regions. In Study 3 (n = 44), we compared pre- and postpartum urinary androgen levels in parents and non-parents and found that mothers exhibited a sustained androgen decrease across 3-4 months postpartum (relative to 3 months prepartum; β ranged from -.72 to -.62 for different comparisons). For males, we found that multiparous fathers exhibited decreased androgen levels at 1-2 weeks postpartum (β = -.25) and at 3-4 months postpartum (β = -.40) compared to the prepartum, indicating both immediate and long-term reductions with subsequent paternal experience. Together, the results of this study suggest that decreases in AVPR1a binding and circulating androgens are associated with parental behavior and physiology in titi monkeys.
Collapse
Affiliation(s)
- Alexander Baxter
- Department of Psychology, University of California, Davis
- California National Primate Research Center
| | - Chloe L. Karaskiewicz
- Department of Psychology, University of California, Davis
- California National Primate Research Center
| | - Lindsey A. Campbell
- California National Primate Research Center
- Department of Animal Biology, University of California, Davis
| | - Erin L. Kinnally
- Department of Psychology, University of California, Davis
- California National Primate Research Center
| | - Emilio Ferrer
- Department of Psychology, University of California, Davis
| | - Adele H. M. Seelke
- Department of Psychology, University of California, Davis
- California National Primate Research Center
| | - Sara M. Freeman
- California National Primate Research Center
- Utah State University, Department of Biology
| | - Karen L. Bales
- Department of Psychology, University of California, Davis
- California National Primate Research Center
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis
| |
Collapse
|
16
|
Wilson KM, Arquilla AM, Saltzman W. The parental umwelt: Effects of parenthood on sensory processing in rodents. J Neuroendocrinol 2023; 35:e13237. [PMID: 36792373 DOI: 10.1111/jne.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
An animal's umwelt, comprising its perception of the sensory environment, which is inherently subjective, can change across the lifespan in accordance with major life events. In mammals, the onset of motherhood, in particular, is associated with a neural and sensory plasticity that alters a mother's detection and use of sensory information such as infant-related sensory stimuli. Although the literature surrounding mammalian mothers is well established, very few studies have addressed the effects of parenthood on sensory plasticity in mammalian fathers. In this review, we summarize the major findings on the effects of parenthood on behavioural and neural responses to sensory stimuli from pups in rodent mothers, with a focus on the olfactory, auditory, and somatosensory systems, as well as multisensory integration. We also review the available literature on sensory plasticity in rodent fathers. Finally, we discuss the importance of sensory plasticity for effective parental care, hormonal modulation of plasticity, and an exploration of temporal, ecological, and life-history considerations of sensory plasticity associated with parenthood. The changes in processing and/or perception of sensory stimuli associated with the onset of parental care may have both transient and long-lasting effects on parental behaviour and cognition in both mothers and fathers; as such, several promising areas of study, such as on the molecular/genetic, neurochemical, and experiential underpinnings of parenthood-related sensory plasticity, as well as determinants of interspecific variation, remain potential avenues for further exploration.
Collapse
Affiliation(s)
- Kerianne M Wilson
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Department of Biology, Pomona College, Claremont, CA, USA
| | - April M Arquilla
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, USA
| |
Collapse
|
17
|
Rogers FD, Peña CJ, Mallarino R. African striped mice (Rhabdomys pumilio) as a neurobehavioral model for male parental care. Horm Behav 2023; 152:105364. [PMID: 37087766 DOI: 10.1016/j.yhbeh.2023.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Parental care is diversely demonstrated across the animal kingdom, such that active practitioners and repertoires of parental behavior vary dramatically between and within taxa. For mammals, maternal care is ubiquitous while paternal and alloparental care are rare. The African striped mouse, a rodent species in the family Muridae, demonstrates maternal, paternal, and alloparental care. Because socio-environmental factors can considerably influence the development of their social behavior, including that of paternal and alloparental care, African striped mice are considered socially flexible. Here, we highlight African striped mice as a new model for the neurobiological study of male parental care. We first provide essential background information on the species' natural ecological setting and reproductive behavior, as well as the species-relevant interaction between ecology and reproduction. We then introduce the nature of maternal, paternal, and alloparental care in the species. Lastly, we provide a review of existing developmental and neurobiological perspectives and highlight potential avenues for future research.
Collapse
Affiliation(s)
- Forrest Dylan Rogers
- Princeton Neuroscience Institute, Princeton University, Washington Rd., Princeton, NJ 08544, United States of America; Department of Molecular Biology, Princeton University, 119 Lewis Thomas Laboratory, Washington Rd., Princeton, NJ 08544, United States of America.
| | - Catherine Jensen Peña
- Princeton Neuroscience Institute, Princeton University, Washington Rd., Princeton, NJ 08544, United States of America
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, 119 Lewis Thomas Laboratory, Washington Rd., Princeton, NJ 08544, United States of America
| |
Collapse
|
18
|
Arquilla AM, Wilson KM, Razak KA, Saltzman W. Fatherhood increases attraction to sensory stimuli from unrelated pups in male California mice, Peromyscus californicus. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
19
|
Haimson B, Mizrahi A. Plasticity in auditory cortex during parenthood. Hear Res 2023; 431:108738. [PMID: 36931020 DOI: 10.1016/j.heares.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Most animals display robust parental behaviors that support the survival and well-being of their offspring. The manifestation of parental behaviors is accompanied by physiological and hormonal changes, which affect both the body and the brain for better care giving. Rodents exhibit a behavior called pup retrieval - a stereotyped sequence of perception and action - used to identify and retrieve their newborn pups back to the nest. Pup retrieval consists of a significant auditory component, which depends on plasticity in the auditory cortex (ACx). We review the evidence of neural changes taking place in the ACx of rodents during the transition to parenthood. We discuss how the plastic changes both in and out of the ACx support the encoding of pup vocalizations. Key players in the mechanism of this plasticity are hormones and experience, both of which have a clear dynamic signature during the transition to parenthood. Mothers, co caring females, and fathers have been used as models to understand parental plasticity at disparate levels of organization. Yet, common principles of cortical plasticity and the biological mechanisms underlying its involvement in parental behavior are just beginning to be unpacked.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
20
|
Farrar VS, Morales Gallardo J, Calisi RM. Prior parental experience attenuates hormonal stress responses and alters hippocampal glucocorticoid receptors in biparental rock doves. J Exp Biol 2022; 225:285344. [PMID: 36448917 DOI: 10.1242/jeb.244820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022]
Abstract
In the face of challenges, animals must balance investments in reproductive effort versus their own survival. Physiologically, this trade-off may be mediated by glucocorticoid release by the hypothalamic-pituitary-adrenal axis and prolactin release from the pituitary to maintain parental care. The degree to which animals react to and recover from stressors likely affects maintenance of parental behavior and, ultimately, fitness. However, less is known about how gaining parental experience may alter hormonal stress responses and their underlying neuroendocrine mechanisms. To address this gap, we measured the corticosterone (CORT) and prolactin (PRL) stress response in individuals of both sexes of the biparental rock dove (Columba livia) that had never raised chicks versus birds that had fledged at least one chick. We measured both CORT and PRL at baseline and after an acute stressor (30 min restraint). We also measured negative feedback ability by administering dexamethasone, a synthetic glucocorticoid that suppresses CORT release, and measured CORT and PRL after 60 min. All hormones were measured when birds were not actively nesting to assess whether effects of parental experience extend beyond the breeding bout. Experienced birds had lower stress-induced and negative-feedback CORT, and higher stress-induced PRL than inexperienced birds. In a separate experiment, we measured glucocorticoid receptor subtype expression in the hippocampus, a key site of negative feedback regulation. Experienced birds showed higher glucocorticoid receptor expression than inexperienced controls, which may mediate their ability to attenuate CORT release. Together, these results shed light on potential mechanisms by which gaining experience may improve parental performance and fitness.
Collapse
Affiliation(s)
- Victoria S Farrar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Jaime Morales Gallardo
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Rebecca M Calisi
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
21
|
Maciejewski MF, Bell AM. Insights into Parental Care from Studies on Non-mammalian Vertebrates. AFFECTIVE SCIENCE 2022; 3:792-798. [PMID: 36519149 PMCID: PMC9743901 DOI: 10.1007/s42761-022-00127-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/30/2022] [Indexed: 06/17/2023]
Abstract
Parental care has attracted attention from both proximate and ultimate perspectives. While understanding the adaptive significance of care has been the focus of work in diverse organisms in behavioral ecology, most of what we know about the proximate mechanisms underlying parental care behavior comes from studies in mammals. Although studies on mammals have greatly improved our understanding of care, viewing parental care solely through a mammalian lens can limit our understanding. Here, we draw upon examples from non-mammalian vertebrate systems to show that in many ways mammals are the exception rather than the rule for caregiving: across vertebrates, maternal care is often not the ancestral or the most common mode of care and fathering is not derivative of mothering. Embracing the diversity of parental care can improve our understanding of both the proximate basis and adaptive significance of parental care and the affective processes involved in caregiving.
Collapse
Affiliation(s)
- Meghan F. Maciejewski
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL USA
| | - Alison M. Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL USA
- Program in Ecology, Evolution and Conservation, University of Illinois Urbana-Champaign, Urbana, IL USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL USA
- Program in Neuroscience, University of Illinois Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
22
|
Rogers FD, Bales KL. Introduction to Special Issue on Affective Science in Animals: Toward a Greater Understanding of Affective Processes in Non-Human Animals. AFFECTIVE SCIENCE 2022; 3:697-702. [PMID: 36514490 PMCID: PMC9734565 DOI: 10.1007/s42761-022-00168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
How should we characterize the affective lives of non-human animals? There is a large body of work studying affective processes in non-human animals, yet this work is frequently overlooked. Ideas about the affective lives of animals have varied across culture and time and are reflected in literature, theology, and philosophy. Our contemporary ideas about animal affect are philosophically important within the discipline of affective science, and these ideas have consequences in several domains, including animal husbandry, conservation, and human and veterinary medicine. The articles contained within this special volume cover several levels of analysis and broad representation of species, from the non-mammalian, to rodents, to primates; but together, these articles are collectively concerned with the topic of affective processes in non-human animals.
Collapse
Affiliation(s)
- Forrest D. Rogers
- Princeton Neuroscience Institute, Princeton, NJ USA
- Department of Molecular Biology, Princeton University, Princeton, NJ USA
| | - Karen L. Bales
- Department of Psychology, University of California, Davis, CA USA
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616 USA
- California National Primate Research Center, Davis, CA USA
| |
Collapse
|
23
|
A calcitonin receptor-expressing subregion of the medial preoptic area is involved in alloparental tolerance in common marmosets. Commun Biol 2022; 5:1243. [PMID: 36411342 PMCID: PMC9678893 DOI: 10.1038/s42003-022-04166-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Like humans, common marmoset monkeys utilize family cooperation for infant care, but the neural mechanisms underlying primate parental behaviors remain largely unknown. We investigated infant care behaviors of captive marmosets in family settings and caregiver-infant dyadic situations. Marmoset caregivers exhibited individual variations in parenting styles, comprised of sensitivity and tolerance toward infants, consistently across infants, social contexts and multiple births. Seeking the neural basis of these parenting styles, we demonstrated that the calcitonin receptor-expressing neurons in the marmoset medial preoptic area (MPOA) were transcriptionally activated during infant care, as in laboratory mice. Further, site-specific neurotoxic lesions of this MPOA subregion, termed the cMPOA, significantly reduced alloparental tolerance and total infant carrying, while sparing general health and other social or nonsocial behaviors. These results suggest that the molecularly-defined neural site cMPOA is responsible for mammalian parenting, thus provide an invaluable model to study the neural basis of parenting styles in primates.
Collapse
|
24
|
Culbert BM, Ligocki IY, Salena MG, Wong MYL, Hamilton IM, Bernier NJ, Balshine S. Galanin expression varies with parental care and social status in a wild cooperatively breeding fish. Horm Behav 2022; 146:105275. [PMID: 36272180 DOI: 10.1016/j.yhbeh.2022.105275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022]
Abstract
As many busy parents will attest, caring for young often comes at the expense of having time to feed and care for oneself. Galanin is a neuropeptide that regulates food intake and modulates parental care; however, the relative importance of galanin in the regulation of feeding versus caring by parents has never been evaluated before under naturalistic settings. Here, we assessed how expression of the galanin system varied in two brain regions, the hypothalamus (which regulates feeding) and the preoptic area (which modulates social behaviours including care) in a wild cichlid fish, Neolamprologus pulcher. Females with young had higher hypothalamic expression of galanin receptor 1a, and the highest expression of galanin and galanin receptor 1a was observed in females that foraged the least. However, expression of five other feeding-related neuropeptides did not change while females were caring for young suggesting that changes in the hypothalamic galanin system may not have been directly related to changes in food intake. The preoptic galanin system was unaffected by the presence of young, but preoptic galanin expression was higher in dominant females (which are aggressive, regularly reproduce and care for young) compared to subordinate females (which are submissive, rarely reproduce but often help care for young). Additionally, preoptic galanin expression was higher in fish that performed more territory defense. Overall, our results indicate that galanin has brain-region-specific roles in modulating both parental care and social status in wild animals.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Isaac Y Ligocki
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Biology, Millersville University, Millersville, PA, USA
| | - Matthew G Salena
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Marian Y L Wong
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
Rashidi M, Maier E, Dekel S, Sütterlin M, Wolf RC, Ditzen B, Grinevich V, Herpertz SC. Peripartum effects of synthetic oxytocin: The good, the bad, and the unknown. Neurosci Biobehav Rev 2022; 141:104859. [PMID: 36087759 DOI: 10.1016/j.neubiorev.2022.104859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022]
Abstract
The first clinical applications of oxytocin (OT) were in obstetrics as a hormone to start and speed up labor and to control postpartum hemorrhage. Discoveries in the 1960s and 1970s revealed that the effects of OT are not limited to its peripheral actions around birth and milk ejection. Indeed, OT also acts as a neuromodulator in the brain affecting fear memory, social attachment, and other forms of social behaviors. The peripheral and central effects of OT have been separately subject to extensive scrutiny. However, the effects of peripheral OT-particularly in the form of administration of synthetic OT (synOT) around birth-on the central nervous system are surprisingly understudied. Here, we provide a narrative review of the current evidence, suggest putative mechanisms of synOT action, and provide new directions and hypotheses for future studies to bridge the gaps between neuroscience, obstetrics, and psychiatry.
Collapse
Affiliation(s)
- Mahmoud Rashidi
- Department of General Psychiatry, Heidelberg University, Heidelberg, Germany.
| | - Eduard Maier
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sharon Dekel
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Marc Sütterlin
- Department of Gynecology and Obstetrics, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Beate Ditzen
- Institute of Medical Psychology, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sabine C Herpertz
- Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
26
|
Duclot F, Liu Y, Saland SK, Wang Z, Kabbaj M. Transcriptomic analysis of paternal behaviors in prairie voles. BMC Genomics 2022; 23:679. [PMID: 36183097 PMCID: PMC9526941 DOI: 10.1186/s12864-022-08912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The importance of fathers' engagement in care and its critical role in the offspring's cognitive and emotional development is now well established. Yet, little is known on the underlying neurobiology due to the lack of appropriate animal models. In the socially monogamous and bi-parental prairie vole (Microtus ochrogaster), while 60-80% of virgin males show spontaneous paternal behaviors (Paternal), others display pup-directed aggression (Attackers). Here we took advantage of this phenotypic dichotomy and used RNA-sequencing in three important brain areas to characterize gene expression associated with paternal behaviors of Paternal males and compare it to experienced Fathers and Mothers. RESULTS While Paternal males displayed the same range and extent of paternal behaviors as experienced Fathers, we observed structure-specific transcriptomic differences between parental behaviors phenotypes. Using differential expression, gene set expression, as well as co-expression network analyses, we found that phenotypic differences between Paternal males and Attackers were mainly reflected by the lateral septum (LS), and to a lower extent, the nucleus accumbens (NAc), transcriptomes. In the medial preoptic area (MPOA), the profiles of gene expression mainly reflected differences between females and males regardless of their parental behaviors phenotype. Functional enrichment analyses of those gene sets associated with Paternal males or Attackers in the LS and the NAc revealed the involvement of processes related to the mitochondria, RNA translation, protein degradation processes, as well as epigenetic regulation of gene expression. CONCLUSIONS By leveraging the natural phenotypic differences in parental behaviors in virgin male prairie voles alongside fathers and mothers, we identified a marked structure- and phenotype-specific pattern of gene expression associated with spontaneous paternal behaviors independently from fatherhood and pair-bonding. The LS transcriptome related to the mitochondria, RNA translation, and protein degradation processes was thus highlighted as a primary candidate associated with the spontaneous display of paternal behaviors. Altogether, our observations further characterize the behavioral and transcriptomic signature of parental behaviors in the socially monogamous prairie vole and lay the groundwork to further our understanding of the molecular underpinnings of paternal behavior.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA.
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| | - Yan Liu
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Samantha K Saland
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Zuoxin Wang
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA.
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
27
|
Martínez-García M, Paternina-Die M, Cardenas SI, Vilarroya O, Desco M, Carmona S, Saxbe DE. First-time fathers show longitudinal gray matter cortical volume reductions: evidence from two international samples. Cereb Cortex 2022; 33:4156-4163. [PMID: 36057840 DOI: 10.1093/cercor/bhac333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence points to the transition to parenthood as a critical window for adult neural plasticity. Studying fathers offers a unique opportunity to explore how parenting experience can shape the human brain when pregnancy is not directly experienced. Yet very few studies have examined the neuroanatomic adaptations of men transitioning into fatherhood. The present study reports on an international collaboration between two laboratories, one in Spain and the other in California (United States), that have prospectively collected structural neuroimaging data in 20 expectant fathers before and after the birth of their first child. The Spanish sample also included a control group of 17 childless men. We tested whether the transition into fatherhood entailed anatomical changes in brain cortical volume, thickness, and area, and subcortical volumes. We found overlapping trends of cortical volume reductions within the default mode network and visual networks and preservation of subcortical structures across both samples of first-time fathers, which persisted after controlling for fathers' and children's age at the postnatal scan. This study provides convergent evidence for cortical structural changes in fathers, supporting the possibility that the transition to fatherhood may represent a meaningful window of experience-induced structural neuroplasticity in males.
Collapse
Affiliation(s)
- Magdalena Martínez-García
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - María Paternina-Die
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Sofia I Cardenas
- Department of Psychology, University of Southern California, Los Angeles, California, USA
| | - Oscar Vilarroya
- Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Barcelona, Spain.,Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Susanna Carmona
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Darby E Saxbe
- Department of Psychology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
28
|
Parker CG, Lee JS, Histed AR, Craig SE, Rhodes JS. Stable and persistent male-like behavior during male-to-female sex change in the common clownfish Amphiprion ocellaris. Horm Behav 2022; 145:105239. [PMID: 35926412 DOI: 10.1016/j.yhbeh.2022.105239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
Many fish species exhibit natural sex change as part of their life, providing unique opportunities to study sexually-differentiated social behaviors and their plasticity. Past research has shown that behavioral sex change in the female-to-male (protogynous) direction occurs rapidly and well before gonadal sex change. However, little is known about the timecourse of behavioral sex change in male-to-female (protandrous) sex-changing species, limiting our ability to compare patterns of behavioral sex change across species and identify conserved or divergent underlying mechanisms. Using the protandrous sex changing anemonefish Amphiprion ocellaris, we assessed behavior (aggression and parental care) and hormones (estradiol and 11-ketotestosterone) in fish over six months of sex change, and compared those fish against their non-changing partners as well as control males and females. Contrary to expectations, we found that sex-changing fish displayed behavior that was persistently male-like, and that their behavior did not become progressively female-like as sex change progressed. Hormones shifted to an intermediate profile between males and females and remained stable until gonads changed. These results support a new perspective that the timecourse for protandrous sex change in anemonefish is completely distinct from other well-established models, such that behavioral sex change does not occur until after gonadal sex change is complete, and that sex-changing fish have a stable and unique behavioral and hormonal phenotype that is distinct from a male-typical or female-typical phenotype. The results also identify aspects of sex change that may fundamentally differ between protandrous and protogynous modes, motivating further research into these remarkable examples of phenotypic plasticity.
Collapse
Affiliation(s)
- Coltan G Parker
- Neuroscience Program, University of Illinois, Urbana-Champaign, IL, USA
| | - Joanne S Lee
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL, USA
| | - Abigail R Histed
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL, USA
| | - Sarah E Craig
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL, USA
| | - Justin S Rhodes
- Neuroscience Program, University of Illinois, Urbana-Champaign, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL, USA; Department of Psychology, University of Illinois, Urbana-Champaign, IL, USA.
| |
Collapse
|
29
|
Bales KL, Rogers FD. Interactions between the
κ
opioid system, corticotropin-releasing hormone and oxytocin in partner loss. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210061. [PMID: 35858099 PMCID: PMC9272146 DOI: 10.1098/rstb.2021.0061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Selective adult social attachments, or ‘pair bonds’, represent central relationships for individuals in a number of social species, including humans. Loss of a pair mate has emotional consequences that may or may not diminish over time, and that often translate into impaired psychological and physical health. In this paper, we review the literature on the neuroendocrine mechanisms for the emotional consequences of partner loss, with a special focus on hypothesized interactions between oxytocin, corticotropin-releasing hormone and the κ opioid system. This article is part of the theme issue ‘Interplays between oxytocin and other neuromodulators in shaping complex social behaviours’.
Collapse
Affiliation(s)
- Karen L. Bales
- Department of Psychology, University of California, Davis, CA 95616, USA
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
- California National Primate Research Center, Davis, CA 95616, USA
| | - Forrest D. Rogers
- Princeton Neuroscience Institute, Princeton University, NJ 08540, USA
- Department of Molecular Biology, Princeton University, NJ 08540, USA
| |
Collapse
|
30
|
Wilson KM, Arquilla AM, Rosales-Torres KM, Hussein M, Chan MG, Razak KA, Saltzman W. Neural responses to pup calls and pup odors in California mouse fathers and virgin males. Behav Brain Res 2022; 434:114024. [PMID: 35882277 DOI: 10.1016/j.bbr.2022.114024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022]
Abstract
The onset of mammalian maternal care is associated with plasticity in neural processing of infant-related sensory stimuli; however, little is known about sensory plasticity associated with fatherhood. We quantified behavioral and neural responses of virgin males and new fathers to olfactory and auditory stimuli from young, unfamiliar pups in the biparental California mouse (Peromyscus californicus). Each male was exposed for 10minutes to one of four combinations of a chemosensory stimulus (pup-scented or unscented cotton [control]) and an auditory stimulus (pup vocalizations or white noise [control]). Behavior did not differ between fathers and virgins during exposure to sensory stimuli or during the following hour; however, males in both groups were more active both during and after exposure to pup-related stimuli compared to control stimuli. Fathers had lower expression of Fos in the main olfactory bulbs (MOB) but higher expression in the medial preoptic area (MPOA) and bed nucleus of the stria terminalis medial division, ventral part (STMV) compared to virgins. Lastly, males had higher Fos expression in MPOA when exposed to pup odor compared to control stimuli, and when exposed to pup odor and pup calls compared to pup calls only or control stimuli. These findings suggest that the onset of fatherhood alters activity of MOB, MPOA and STMV and that pup odors and vocalizations have additive or synergistic effects on males' behavior and MPOA activation.
Collapse
Affiliation(s)
- Kerianne M Wilson
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA.
| | - April M Arquilla
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - Kelsey M Rosales-Torres
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - Manal Hussein
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - May G Chan
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA USA; Department of Psychology, University of California Riverside, Riverside, CA, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA USA
| |
Collapse
|
31
|
Fukui K, Sato K, Murakawa S, Minami M, Amano T. Estrogen signaling modulates behavioral selection toward pups and amygdalohippocampal area in the rhomboid nucleus of the bed nucleus of the stria terminalis circuit. Neuropharmacology 2022; 204:108879. [PMID: 34785164 DOI: 10.1016/j.neuropharm.2021.108879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023]
Abstract
Gonadal steroid hormone influences behavioral choice of adult animals toward pups, parental or aggressive. We previously reported that long-term administration of 17β-estradiol (E2) to male mice during sexual maturation induces aggressive behavior toward conspecific pups, which is called "infanticide," and significantly enhanced excitatory synaptic transmission in the rhomboid nucleus of bed nucleus of the stria terminalis (BSTrh), which is an important brain region for infanticide. However, it is unclear how estrogen receptor-dependent signaling after sexual maturity regulates neural circuits including the BSTrh. Here we revealed that E2 administration to gonadectomized mice in adulthood elicited infanticidal behavior and enhanced excitatory synaptic transmission in the BSTrh by increasing the probability of glutamate release from the presynaptic terminalis. Next, we performed whole-brain mapping of E2-sensitive brain regions projecting to the BSTrh and found that amygdalohippocampal area (AHi) neurons that project to the BSTrh densely express estrogen receptor 1 (Esr1). Moreover, E2 treatment enhanced synaptic connectivity in the AHi-BSTrh pathway. Together, these results suggest that reinforcement of excitatory inputs from AHi neurons into the BSTrh by estrogen receptor-dependent signaling may contribute to the expression of infanticide.
Collapse
Affiliation(s)
- Kiyoshiro Fukui
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-0812, Japan
| | - Keiichiro Sato
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-0812, Japan
| | - Shunsaku Murakawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-0812, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-0812, Japan
| | - Taiju Amano
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-0812, Japan.
| |
Collapse
|
32
|
Condon EM, Dettmer A, Baker E, McFaul C, Stover CS. Early Life Adversity and Males: Biology, Behavior, and Implications for Fathers' Parenting. Neurosci Biobehav Rev 2022; 135:104531. [PMID: 35063493 PMCID: PMC9236197 DOI: 10.1016/j.neubiorev.2022.104531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/23/2023]
Abstract
Fathers have an important and unique influence on child development, but influences on fathers' parenting have been vastly understudied in the scientific literature. In particular, very little empirical research exists on the effects of early life adversity (ELA; e.g. childhood maltreatment, parental separation) on later parenting among fathers. In this review, we draw from both the human and non-human animal literature to examine the effects of ELA, specifically among males, in the following areas: 1) neurobiology and neurocognitive functioning, 2) hormones and hormone receptors, 3) gene-environment interactions and epigenetics, and 4) behavior and development. Based on these findings, we present a conceptual model to describe the biological and behavioral pathways through which exposure to ELA may influence parenting among males, with a goal of guiding future research and intervention development in this area. Empirical studies are needed to improve understanding of the relationship between ELA and father's parenting, inform the development of paternal and biparental interventions, and prevent intergenerational transmission of ELA.
Collapse
Affiliation(s)
- Eileen M Condon
- University of Connecticut School of Nursing, 231 Glenbrook Rd, Storrs CT 06269, United States; Yale Early Stress and Adversity Consortium, United States.
| | - Amanda Dettmer
- Yale Early Stress and Adversity Consortium, United States; Yale Child Study Center, 230 S Frontage Rd, New Haven, CT 06519, United States
| | - Ellie Baker
- Yale Child Study Center, 230 S Frontage Rd, New Haven, CT 06519, United States; Division of Psychology and Language Science, University College London (UCL), 26 Bedford Way, Bloomsbury, London WC1H 0AP, United Kingdom
| | - Ciara McFaul
- Yale Child Study Center, 230 S Frontage Rd, New Haven, CT 06519, United States
| | - Carla Smith Stover
- Yale Early Stress and Adversity Consortium, United States; Yale Child Study Center, 230 S Frontage Rd, New Haven, CT 06519, United States
| |
Collapse
|
33
|
Long M, Puhlmann L, Vrtička P. Hypothalamus volume in men: Investigating associations with paternal status, self-reported caregiving beliefs, and adult attachment style. Soc Neurosci 2021; 16:639-652. [PMID: 34704890 DOI: 10.1080/17470919.2021.1997799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Most studies on mammalian caregiving and attachment focused on the mother-child relationship, particularly in humans. Yet, changing societal roles of male caregivers have highlighted the necessity for research with fathers.We examined the volume of the hypothalamus, an important subcortical brain area for caregiving and attachment, in N = 50 fathering (child age 5-6 years) and N = 45 non-fathering men using a novel technique to identify the hypothalamus in 3T MRI. We furthermore employed three self-report measures to assess interindividual differences in adult attachment style across all men and caregiving beliefs in fathers.While we did not observe any significant difference in hypothalamus volume between fathers and non-fathers or associations between hypothalamus volume and self-reported adult attachment style across all men, self-reported caregiving beliefs were positively related to total hypothalamus volume in fathers. A follow-up analysis showed that fathers' self-reported belief that a father's role is important to child development was specifically related to tuberal hypothalamus volume, while self-reported enjoyment of spending time with the child was not associated with sub-regional hypothalamus volume.Together, these findings suggest that interindividual variability in self-reported caregiving beliefs in fathers is related to brain structure, warranting further research.
Collapse
Affiliation(s)
- M Long
- Alberta Children's Hospital Research Institute, University of Calgary, Canada.,Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - L Puhlmann
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - P Vrtička
- Research Group "Social Stress and Family Health", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Centre for Brain Science, Department of Psychology, University of Essex, Colchester, UK
| |
Collapse
|
34
|
Autry AE, O'Connell LA. The Parental Dilemma: How Evolution of Diverse Strategies for Infant Care Informs Social Behavior Circuits. Front Neural Circuits 2021; 15:734474. [PMID: 34867211 PMCID: PMC8636452 DOI: 10.3389/fncir.2021.734474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/27/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anita E. Autry
- Dominick P. Purpura Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | | |
Collapse
|
35
|
Karaskiewicz CL, Witczak LR, Lau AR, Dufek ME, Bales KL. Parenting costs time: Changes in pair bond maintenance across pregnancy and infant rearing in a monogamous primate (Plecturocebus cupreus). New Dir Child Adolesc Dev 2021; 2021:21-42. [PMID: 34766710 DOI: 10.1002/cad.20438] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Relationships support social animals' health, but maintaining relationships is challenging. When transitioning to parenthood, new parents balance pair-bond maintenance with infant care. We studied pair-bond maintenance via affiliation in 22 adult titi monkey pairs (Plecturocebus cupreus) for 16 months centered around their first offspring's birth. Pair affiliation peaked during pregnancy, decreased across the postpartum period, and rose after reaching minimum affiliation 32.6 weeks postpartum. Pairs in which fathers carry infants more than average had lower affiliation at the infant's birth and return to an increase in affiliation sooner. Parents of infants who were slow to independence had higher rates of affiliation. Titi monkey infants actively prefer their fathers; mothers may avoid their infant-carrying mate, suggesting infants play an active role in parental affiliative decline. Our data supports previous findings that affiliation between partners declines following an infant's birth, but demonstrates new knowledge about the extent and duration of affiliative decline.
Collapse
Affiliation(s)
- Chloe L Karaskiewicz
- Department of Psychology, University of California, Davis, Davis, California, USA.,California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Lynea R Witczak
- Department of Psychology, University of California, Davis, Davis, California, USA.,California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Allison R Lau
- California National Primate Research Center, University of California, Davis, Davis, California, USA.,Animal Behavior Graduate Group, University of California, Davis, Davis, California, USA
| | - Madison E Dufek
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Karen L Bales
- Department of Psychology, University of California, Davis, Davis, California, USA.,California National Primate Research Center, University of California, Davis, Davis, California, USA.,Animal Behavior Graduate Group, University of California, Davis, Davis, California, USA
| |
Collapse
|
36
|
Vullioud P, Mendonça R, Glauser G, Bennett N, Zöttl M, Katlein N, Leal R, Fuerst R, Clutton-Brock T. Increases in glucocorticoids are sufficient but not necessary to increase cooperative burrowing in Damaraland mole-rats. Horm Behav 2021; 135:105034. [PMID: 34320418 DOI: 10.1016/j.yhbeh.2021.105034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 06/01/2021] [Accepted: 07/06/2021] [Indexed: 01/24/2023]
Abstract
Despite widespread interest in the evolution of cooperative behaviour, the physiological mechanisms shaping their expression remain elusive. We tested the hypothesis that glucocorticoid (GC) hormones affect cooperative behaviour using captive Damaraland mole-rats (Fukomys damarensis), a cooperatively breeding mammal. Within groups, individuals routinely contribute to public goods that include foraging tunnels, which provide all group members access to the tubers of desert plants they feed on, communal food stores and nests. We found that experimental increases in glucocorticoid concentration (GCc) in non-breeding female helpers led them to be active for longer and to burrow more while active, raising their daily contributions to burrowing, but not food carrying or nest building. However, experimentally induced increases in burrowing did not lead to elevated GCc in helpers of both sexes. These results suggest that heightened GCc may stimulate some cooperative behaviours that are energetically demanding (a characteristic shared by many types of cooperative activities across species) but that the cooperative behaviours affected by GCc can also be regulated by other mechanisms.
Collapse
Affiliation(s)
| | - Rute Mendonça
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Switzerland; Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, South Africa
| | - Gaëtan Glauser
- Neuchatel Platform of Analytical Chemistry, Faculty of Sciences, University of Neuchâtel, Switzerland
| | - Nigel Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, South Africa
| | - Markus Zöttl
- Department of Zoology, University of Cambridge, Cambridge, UK; Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Nathan Katlein
- Kalahari Meerkat Project, Kuruman River Reserve, Northern Cape, South Africa
| | - Rita Leal
- Kalahari Meerkat Project, Kuruman River Reserve, Northern Cape, South Africa
| | - Romain Fuerst
- Kalahari Meerkat Project, Kuruman River Reserve, Northern Cape, South Africa
| | - Tim Clutton-Brock
- Department of Zoology, University of Cambridge, Cambridge, UK; Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, South Africa
| |
Collapse
|
37
|
Rogers FD, Freeman SM, Anderson M, Palumbo MC, Bales KL. Compositional variation in early-life parenting structures alters oxytocin and vasopressin 1a receptor development in prairie voles (Microtus ochrogaster). J Neuroendocrinol 2021; 33:e13001. [PMID: 34189787 PMCID: PMC8486352 DOI: 10.1111/jne.13001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022]
Abstract
Paternal absence can significantly alter bio-behavioural development in many biparental species. This effect has generally been demonstrated by comparing the development of offspring reared under biparental care with those reared by a single mother. However, studies employing this design conflate two significant modifications to early-life experience: removal of father-specific qualities and the general reduction of offspring-directed care. In the socially monogamous prairie vole (Microtus ochrogaster), the experience of paternal absence without substitution during development inhibits partner preference formation in adulthood, a hallmark of social monogamy, in females and males. Employing alloparents as substitutes for fathers, our previous work demonstrated that paternal absence affects pair-bond formation in female offspring via reduced quantity of care, although it affects pair-bond formation in male offspring by means of a missing paternal quality (or qualities). Here, we present evidence that paternal absence (with and without alloparental substitution) may alter the ontogeny of neural oxytocin receptor (OXTR) and/or vasopressin 1a receptor (AVPR1a) distribution in male and female prairie voles. Compared to biparentally reared controls (BPC), male offspring reared in mother only (MON) and maternal-plus-alloparental (MPA) conditions show lower densities of OXTR in the central amygdala; and MPA males show lower densities of OXTR in the caudate putamen and nucleus accumbens. Early-life experience was not associated with differences in AVPR1a density in males. However, MON and MPA females show greater densities of AVPR1a in the medial amygdala than BPC; and MPA females show greater densities of AVPR1a in the ventromedial nucleus of the hypothalamus. We also demonstrate with corticosterone concentrations that MON and MPA offspring are not differentially susceptible to a stressor (ie, social isolation) than BPC offspring. These findings suggest that paternal absence, although likely not a salient early-life stressor, has neuroendocrine consequences for offspring, some of which may affect partner preference formation.
Collapse
Affiliation(s)
- Forrest D Rogers
- Psychology Graduate Program, University of California, Davis, CA, USA
- Department of Psychology, University of California, Davis, CA, USA
| | - Sara M Freeman
- Department of Psychology, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
- Department of Biology, Utah State University, Logan, UT, USA
| | - Marina Anderson
- Department of Psychology, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
| | - Michelle C Palumbo
- Department of Psychology, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Karen L Bales
- Department of Psychology, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
| |
Collapse
|
38
|
Lopes PC, de Bruijn R. Neurotranscriptomic changes associated with chick-directed parental care in adult non-reproductive Japanese quail. Sci Rep 2021; 11:15481. [PMID: 34326416 PMCID: PMC8322411 DOI: 10.1038/s41598-021-94927-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
For many species, parental care critically affects offspring survival. But what drives animals to display parental behaviours towards young? In mammals, pregnancy-induced physiological transformations seem key in preparing the neural circuits that lead towards attraction (and reduced-aggression) to young. Beyond mammalian maternal behaviour, knowledge of the neural mechanisms that underlie young-directed parental care is severely lacking. We took advantage of a domesticated bird species, the Japanese quail, for which parental behaviour towards chicks can be induced in virgin non-reproductive adults through a sensitization procedure, a process that is not effective in all animals. We used the variation in parental responses to study neural transcriptomic changes associated with the sensitization procedure itself and with the outcome of the procedure (i.e., presence of parental behaviours). We found differences in gene expression in the hypothalamus and bed nucleus of the stria terminalis, but not the nucleus taeniae. Two genes identified are of particular interest. One is neurotensin, previously only demonstrated to be causally associated with maternal care in mammals. The other one is urocortin 3, causally demonstrated to affect young-directed neglect and aggression in mammals. Because our studies were conducted in animals that were reproductively quiescent, our results reflect core neural changes that may be associated with avian young-directed care independently of extensive hormonal stimulation. Our work opens new avenues of research into understanding the neural basis of parental care in non-placental species.
Collapse
Affiliation(s)
- Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
| | - Robert de Bruijn
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| |
Collapse
|
39
|
Oztan O, Talbot CF, Argilli E, Maness AC, Simmons SM, Mohsin N, Del Rosso LA, Garner JP, Sherr EH, Capitanio JP, Parker KJ. Autism-associated biomarkers: test-retest reliability and relationship to quantitative social trait variation in rhesus monkeys. Mol Autism 2021; 12:50. [PMID: 34238350 PMCID: PMC8268173 DOI: 10.1186/s13229-021-00442-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022] Open
Abstract
Background Rhesus monkeys (Macaca mulatta) exhibit pronounced individual differences in social traits as measured by the macaque Social Responsiveness Scale-Revised. The macaque Social Responsiveness Scale was previously adapted from the Social Responsiveness Scale, an instrument designed to assess social and autistic trait variation in humans. To better understand potential biological underpinnings of this behavioral variation, we evaluated the trait-like consistency of several biological measures previously implicated in autism (e.g., arginine vasopressin, oxytocin, and their receptors, as well as ERK1/2, PTEN, and AKT(1–3) from the RAS-MAPK and PI3K-AKT pathways). We also tested which biological measures predicted macaque Social Responsiveness Scale-Revised scores. Methods Cerebrospinal fluid and blood samples were collected from N = 76 male monkeys, which, as a sample, showed a continuous distribution on the macaque Social Responsiveness Scale-Revised. In a subset of these subjects (n = 43), samples were collected thrice over a 10-month period. The following statistical tests were used: “Case 2A” intra-class correlation coefficients of consistency, principal component analysis, and general linear modeling. Results All biological measures (except AKT) showed significant test–retest reliability within individuals across time points. We next performed principal component analysis on data from monkeys with complete biological measurement sets at the first time point (n = 57), to explore potential correlations between the reliable biological measures and their relationship to macaque Social Responsiveness Scale-Revised score; a three-component solution was found. Follow-up analyses revealed that cerebrospinal fluid arginine vasopressin concentration, but no other biological measure, robustly predicted individual differences in macaque Social Responsiveness Scale-Revised scores, such that monkeys with the lowest cerebrospinal fluid arginine vasopressin concentration exhibited the greatest social impairment. Finally, we confirmed that this result held in the larger study sample (in which cerebrospinal fluid arginine vasopressin values were available from n = 75 of the subjects). Conclusions These findings indicate that cerebrospinal fluid arginine vasopressin concentration is a stable trait-like measure and that it is linked to quantitative social trait variation in male rhesus monkeys. Supplementary information The online version contains supplementary material available at 10.1186/s13229-021-00442-w.
Collapse
Affiliation(s)
- Ozge Oztan
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Rd., MSLS P-104, Stanford, CA, 94305, USA
| | - Catherine F Talbot
- California National Primate Research Center, 1 Shields Ave., Davis, CA, 95616, USA
| | - Emanuela Argilli
- Department of Neurology, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Alyssa C Maness
- California National Primate Research Center, 1 Shields Ave., Davis, CA, 95616, USA
| | - Sierra M Simmons
- California National Primate Research Center, 1 Shields Ave., Davis, CA, 95616, USA
| | - Noreen Mohsin
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Rd., MSLS P-104, Stanford, CA, 94305, USA
| | - Laura A Del Rosso
- California National Primate Research Center, 1 Shields Ave., Davis, CA, 95616, USA
| | - Joseph P Garner
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Rd., MSLS P-104, Stanford, CA, 94305, USA.,Department of Comparative Medicine, Stanford University, 300 Pasteur Dr., Edwards R348, Stanford, CA, 94305, USA
| | - Elliott H Sherr
- Department of Neurology, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - John P Capitanio
- California National Primate Research Center, 1 Shields Ave., Davis, CA, 95616, USA.,Department of Psychology, University of California, 1 Shields Ave., Davis, 95616, USA
| | - Karen J Parker
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Rd., MSLS P-104, Stanford, CA, 94305, USA. .,California National Primate Research Center, 1 Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
40
|
Alyousefi‐van Dijk K, van der Knaap N, Buisman RS, Horstman LI, Lotz AM, Riem MME, Schuengel C, van IJzendoorn MH, Bakermans‐Kranenburg MJ. White matter integrity moderates the relation between experienced childhood maltreatment and fathers' behavioral response to infant crying. Dev Psychobiol 2021; 63:1399-1414. [PMID: 33200821 PMCID: PMC8451806 DOI: 10.1002/dev.22058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
The ability to provide appropriate responses to infant distress is vital to paternal care, but may be affected by fathers' experiences of childhood maltreatment. Detrimental effects of childhood maltreatment have been found in the adult brain's white matter fibers, accompanied with impaired emotional and cognitive functioning. In the current study (N = 121), we examined new and expectant fathers' childhood maltreatment experiences (i.e. emotional and physical abuse and neglect), current behavioral responses (i.e. handgrip force) to infant cry sounds, and white matter integrity using diffusion tensor imaging. First, more exposure to childhood maltreatment was associated with more use of excessive handgrip force in response to infant crying by fathers. Second, the association between experienced childhood maltreatment and white matter integrity was not significant in whole-brain analyses. Lastly, we found that the association between maltreatment exposure and excessive handgrip force during infant crying was absent in fathers with high tract integrity in the bilateral uncinate fasciculus. These findings possibly point to insufficient behavioral inhibition or emotional dysregulation in fathers who experienced childhood maltreatment, but buffering for this effect in those with larger integrity in brain fibers connecting the amygdala and prefrontal cortex.
Collapse
Affiliation(s)
- Kim Alyousefi‐van Dijk
- Clinical Child & Family StudiesFaculty of Behavioral and Movement SciencesVrije UniversiteitAmsterdamThe Netherlands
- Leiden Institute for Brain and CognitionLeiden University Medical CenterLeidenThe Netherlands
| | - Noa van der Knaap
- Leiden Institute for Brain and CognitionLeiden University Medical CenterLeidenThe Netherlands
- Department of Psychology, Education, and Child StudiesErasmus University RotterdamRotterdamThe Netherlands
| | - Renate S.M. Buisman
- Clinical Child & Family StudiesFaculty of Behavioral and Movement SciencesVrije UniversiteitAmsterdamThe Netherlands
| | - Lisa I. Horstman
- Clinical Child & Family StudiesFaculty of Behavioral and Movement SciencesVrije UniversiteitAmsterdamThe Netherlands
- Leiden Institute for Brain and CognitionLeiden University Medical CenterLeidenThe Netherlands
| | - Anna M. Lotz
- Clinical Child & Family StudiesFaculty of Behavioral and Movement SciencesVrije UniversiteitAmsterdamThe Netherlands
- Leiden Institute for Brain and CognitionLeiden University Medical CenterLeidenThe Netherlands
| | - Madelon M. E. Riem
- Clinical Child & Family StudiesFaculty of Behavioral and Movement SciencesVrije UniversiteitAmsterdamThe Netherlands
- Behavioral Science InstituteRadboud UniversityNijmegenThe Netherlands
| | - Carlo Schuengel
- Clinical Child & Family StudiesFaculty of Behavioral and Movement SciencesVrije UniversiteitAmsterdamThe Netherlands
| | - Marinus H. van IJzendoorn
- Department of Psychology, Education, and Child StudiesErasmus University RotterdamRotterdamThe Netherlands
| | - Marian J. Bakermans‐Kranenburg
- Clinical Child & Family StudiesFaculty of Behavioral and Movement SciencesVrije UniversiteitAmsterdamThe Netherlands
- Leiden Institute for Brain and CognitionLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
41
|
Provenzi L, Lindstedt J, De Coen K, Gasparini L, Peruzzo D, Grumi S, Arrigoni F, Ahlqvist-Björkroth S. The Paternal Brain in Action: A Review of Human Fathers' fMRI Brain Responses to Child-Related Stimuli. Brain Sci 2021; 11:brainsci11060816. [PMID: 34202946 PMCID: PMC8233834 DOI: 10.3390/brainsci11060816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022] Open
Abstract
As fathers are increasingly involved in childcare, understanding the neurological underpinnings of fathering has become a key research issue in developmental psychobiology research. This systematic review specifically focused on (1) highlighting methodological issues of paternal brain research using functional magnetic resonance imaging (fMRI) and (2) summarizing findings related to paternal brain responses to auditory and visual infant stimuli. Sixteen papers were included from 157 retrieved records. Sample characteristics (e.g., fathers’ and infant’s age, number of kids, and time spent caregiving), neuroimaging information (e.g., technique, task, stimuli, and processing), and main findings were synthesized by two independent authors. Most of the reviewed works used different stimuli and tasks to test fathers’ responses to child visual and/or auditory stimuli. Pre-processing and first-level analyses were performed with standard pipelines. Greater heterogeneity emerged in second-level analyses. Three main cortical networks (mentalization, embodied simulation, and emotion regulation) and a subcortical network emerged linked with fathers’ responses to infants’ stimuli, but additional areas (e.g., frontal gyrus, posterior cingulate cortex) were also responsive to infants’ visual or auditory stimuli. This review suggests that a distributed and complex brain network may be involved in facilitating fathers’ sensitivity and responses to infant-related stimuli. Nonetheless, specific methodological caveats, the exploratory nature of large parts of the literature to date, and the presence of heterogeneous tasks and measures also demonstrate that systematic improvements in study designs are needed to further advance the field.
Collapse
Affiliation(s)
- Livio Provenzi
- Child Psychiatry and Neurology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-380287
| | - Johanna Lindstedt
- Department of Psychology and Speech-Language Pathology, University of Turku, 20500 Turku, Finland; (J.L.); (S.A.-B.)
| | - Kris De Coen
- Neonatal Intensive Care Department, University Hospital of Ghent, 9000 Ghent, Belgium;
| | - Linda Gasparini
- Department of Brain and Behavioral Sciences, Università di Pavia, 27100 Pavia, Italy;
| | - Denis Peruzzo
- Neuroimaging Lab, Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy; (D.P.); (F.A.)
| | - Serena Grumi
- Child Psychiatry and Neurology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy; (D.P.); (F.A.)
| | - Sari Ahlqvist-Björkroth
- Department of Psychology and Speech-Language Pathology, University of Turku, 20500 Turku, Finland; (J.L.); (S.A.-B.)
| |
Collapse
|
42
|
Abstract
Prairie voles have emerged as an important rodent model for understanding the neuroscience of social behavior. Prairie voles are well known for their capacity for pair bonding and alloparental care. These behavioral phenomena overlap with human social behavior but are not commonly observed in traditional rodent models. In this article, we highlight the many benefits of using prairie voles in neuroscience research. We begin by describing the advantages of using diverse and non-traditional study models. We then focus on social behaviors, including pair bonding, alloparental care, and peer interactions, that have brought voles to the forefront of social neuroscience. We describe many additional features of prairie vole biology and behavior that provide researchers with opportunities to address an array of research questions. We also survey neuroethological methods that have been used with prairie voles, from classic to modern techniques. Finally, we conclude with a discussion of other vole species, particularly meadow voles, and their own unique advantages for neuroscience studies. This article provides a foundation for researchers who are new to working with voles, as well as for experienced neuroscientists who want to expand their research scope. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- William M. Kenkel
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE 19716
| | - Morgan L. Gustison
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| | - Annaliese K. Beery
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
43
|
Muzerelle A, Soiza-Reilly M, Hainer C, Ruet PL, Lesch KP, Bader M, Alenina N, Scotto-Lomassese S, Gaspar P. Dorsal raphe serotonin neurotransmission is required for the expression of nursing behavior and for pup survival. Sci Rep 2021; 11:6004. [PMID: 33727585 PMCID: PMC7966367 DOI: 10.1038/s41598-021-84368-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022] Open
Abstract
Proper maternal care is an essential factor of reproductive success in mammals, involving a repertoire of behaviors oriented toward the feeding and care of the offspring. Among the neurotransmitters involved in the initiation of these behaviors, serotonin (5-HT) seems to play an important role. Here we compared pup-oriented maternal behaviors in mice with constitutive 5-HT depletion, the tryptophan hydroxylase 2-knock-out (Tph2-KO) and the Pet1-KO mice. We report that the only common pup-oriented defect in these 2 hyposerotoninergic models is a defective nursing in parturient mice and altered nursing-like (crouching) behavior in virgin mice, while pup retrieval defects are only present in Tph2-KO. Despite a normal mammary gland development and milk production, the defect in appropriate nursing is responsible for severe growth retardation and early lethality of pups born to hyposerotonergic dams. This nursing defect is due to acute rather constitutive 5-HT depletion, as it is reproduced by adult knockdown of Tph2 in the dorsal raphe nucleus in mothers with a prior normal maternal experience. We conclude that 5-HT innervation from the dorsal raphe is required for both the initiation and maintenance of a normal nursing behavior. Our findings may be related to observations of reduced maternal/infant interactions in human depression.
Collapse
Affiliation(s)
- Aude Muzerelle
- INSERM, Institut du Fer À Moulin, Sorbonne Université UMR-S 1270, Paris, France
| | - Mariano Soiza-Reilly
- INSERM, Institut du Fer À Moulin, Sorbonne Université UMR-S 1270, Paris, France.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cornelia Hainer
- Max-Delbrück Center for Molecular Medecine (MDC), Berlin-Buch, Germany
| | - Pierre-Louis Ruet
- INSERM, Institut du Fer À Moulin, Sorbonne Université UMR-S 1270, Paris, France
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Würzburg, Würzburg, Germany.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Michael Bader
- Max-Delbrück Center for Molecular Medecine (MDC), Berlin-Buch, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany.,Charite-University Medicine, Berlin, Germany.,Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Natalia Alenina
- Max-Delbrück Center for Molecular Medecine (MDC), Berlin-Buch, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany. .,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia. .,Institute of Cytology, Russian Academy of Science, St. Petersburg, Russia.
| | | | - Patricia Gaspar
- INSERM, Institut du Fer À Moulin, Sorbonne Université UMR-S 1270, Paris, France. .,INSERM U1127, Paris Brain Institute, 75013, Paris, France.
| |
Collapse
|
44
|
Rutherford HJV, Bunderson M, Bartz C, Haitsuka H, Meins E, Groh AM, Milligan K. Imagining the baby: Neural reactivity to infant distress and mind-mindedness in expectant parents. Biol Psychol 2021; 161:108057. [PMID: 33640474 DOI: 10.1016/j.biopsycho.2021.108057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
Neural and psychological processes in pregnancy may be important antecedents for caregiving postpartum. Employing event-related potentials, we examined neural reactivity to infant emotional faces during the third trimester of pregnancy in expectant mothers (n = 38) and expectant fathers (n = 30). Specifically, expectant parents viewed infant distress and infant neutral faces while electroencephalography was simultaneously recorded. As a psychological measure, we assessed prenatal mind-mindedness towards the unborn child and examined whether neural processing of infant cues was associated with levels of mind-mindedness. Expectant fathers evidenced greater P300 reactivity to infant distress, relative to neutral, faces than expectant mothers. Furthermore, P300 reactivity to infant distress, relative to infant neutral, faces was associated with levels of prenatal mind-mindedness in expectant fathers but not expectant mothers. These findings indicate significant sex differences in the prenatal neural processing of infant cues and relations between neural reactivity to infant distress and the emergence of parental mind-mindedness.
Collapse
|
45
|
Shabalova AA, Liang M, Zhong J, Huang Z, Tsuji C, Shnayder NA, Lopatina O, Salmina AB, Okamoto H, Yamamoto Y, Zhong ZG, Yokoyama S, Higashida H. Oxytocin and CD38 in the paraventricular nucleus play a critical role in paternal aggression in mice. Horm Behav 2020; 120:104695. [PMID: 31987898 DOI: 10.1016/j.yhbeh.2020.104695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
Abstract
In mammals, the development of healthy offspring requires maternal care. Behavior by lactating mothers toward other individuals is an important component of maternal aggression. However, it is unclear whether fathers display aggression primed by pups (an external factor), and the protection mechanism is poorly understood. To address this question, we examined paternal aggression in the ICR mouse strain. We found that sires exposed to cues from pups and lactating dams showed stronger aggression toward intruders than did sires that were deprived of family cues or exposed to nonlactating mates. c-Fos immunohistochemistry showed that cells in both the paraventricular and supraoptic nuclei (PVN and SON, respectively) in the hypothalamus of sires exposed to any cues were highly activated. However, c-Fos activation in oxytocinergic neurons was increased only in sires exposed to pup cues and solely in the PVN. In Cd38-knockout sires, the presence of pups induced no or reduced parental aggression; however, this phenotype was recovered, that is, aggression increased to the wild-type level, after intraperitoneal administration of oxytocin (OT). Specific c-Fos activation patterns induced by pup cues were not found in the PVN of knockout sires. These results demonstrate that the PVN is one of the primary hypothalamic areas involved in paternal aggression and suggest that a CD38-dependent OT mechanism in oxytocinergic neurons is critical for part of the behavior associated with the protection of offspring by nurturing male mice.
Collapse
Affiliation(s)
- Anna A Shabalova
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Department of Socioneurosciences, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa Campus, Kanazawa 920-8640, Japan
| | - Mingkun Liang
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
| | - Jing Zhong
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Department of Physiology, Guangxi University of Chinese Medicine, Xianhu Campus, Nanning, Guangxi 530200, China
| | - Zhiqi Huang
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Xianhu Campus, Nanning, Guangxi 530200, China
| | - Chiharu Tsuji
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Natalia A Shnayder
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Olga Lopatina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk 660022, Russia
| | - Alla B Salmina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk 660022, Russia
| | - Hiroshi Okamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Zeng-Guo Zhong
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Center of Research & Development of New Drugs, Guangxi Traditional Chinese Medical University, Guangxi Zhuang Autonomous Region, Nanning 530001, China
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk 660022, Russia.
| |
Collapse
|
46
|
Storey AE, Alloway H, Walsh CJ. Dads: Progress in understanding the neuroendocrine basis of human fathering behavior. Horm Behav 2020; 119:104660. [PMID: 31883946 DOI: 10.1016/j.yhbeh.2019.104660] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
We outline the progress on the hormonal basis of human paternal behavior during the past twenty years. Advances in understanding the roles of testosterone, prolactin, oxytocin and vasopressin in fathering behavior are described, along with recent research on hormonal interactions, such as those between testosterone and cortisol, and testosterone and the peptide hormones. In addition, we briefly describe the recent leaps forward in elucidating the neurobiological and neuroendocrine basis of fatherhood, made possible by fMRI technology. Emerging from this literature is a developing and complicated story about fatherhood, highlighting the need to further understand the interplay between behavior, physiology, social context, and individual genetic variation. Given the changing roles of parents in many societies, the continued growth of this research area will provide a strong empirical knowledge base about paternal behavior on which to create policies promoting fathers' involvement in their infants' lives.
Collapse
Affiliation(s)
- Anne E Storey
- Department of Psychology, Memorial University, St. John's, Newfoundland and Labrador A1B 3X9, Canada.
| | - Hayley Alloway
- Cognitive and Behavioural Ecology Graduate Program, Memorial University, St. John's, Newfoundland and Labrador A1B 3X9, Canada
| | - Carolyn J Walsh
- Department of Psychology, Memorial University, St. John's, Newfoundland and Labrador A1B 3X9, Canada
| |
Collapse
|
47
|
Rogers FD, Bales KL. Revisiting paternal absence: Female alloparental replacement of fathers recovers partner preference formation in female, but not male
prairie voles
(
Microtus ochrogaster
). Dev Psychobiol 2019; 62:573-590. [DOI: 10.1002/dev.21943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/16/2019] [Accepted: 11/14/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Forrest Dylan Rogers
- Psychology Graduate Program University of California Davis CA USA
- Department of Psychology University of California Davis CA USA
| | - Karen Lisa Bales
- Department of Psychology University of California Davis CA USA
- California National Primate Research Center Davis CA USA
| |
Collapse
|
48
|
Robinson KJ, Bosch OJ, Levkowitz G, Busch KE, Jarman AP, Ludwig M. Social creatures: Model animal systems for studying the neuroendocrine mechanisms of social behaviour. J Neuroendocrinol 2019; 31:e12807. [PMID: 31679160 PMCID: PMC6916380 DOI: 10.1111/jne.12807] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
Abstract
The interaction of animals with conspecifics, termed social behaviour, has a major impact on the survival of many vertebrate species. Neuropeptide hormones modulate the underlying physiology that governs social interactions, and many findings concerning the neuroendocrine mechanisms of social behaviours have been extrapolated from animal models to humans. Neurones expressing neuropeptides show similar distribution patterns within the hypothalamic nucleus, even when evolutionarily distant species are compared. During evolution, hypothalamic neuropeptides and releasing hormones have retained not only their structures, but also their biological functions, including their effects on behaviour. Here, we review the current understanding of the mechanisms of social behaviours in several classes of animals, such as worms, insects and fish, as well as laboratory, wild and domesticated mammals.
Collapse
Affiliation(s)
- Kelly J. Robinson
- Sea Mammal Research UnitScottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK
| | - Oliver J. Bosch
- Department of Behavioural and Molecular NeurobiologyUniversity of RegensburgRegensburgGermany
| | - Gil Levkowitz
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | | | - Andrew P. Jarman
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Mike Ludwig
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- Centre for NeuroendocrinologyDepartment of ImmunologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|