1
|
Sahoo P, Sarkar D, Sharma S, Verma A, Naik SK, Prashar V, Parkash J, Singh SK. Knockdown of type 2 orexin receptor in adult mouse testis potentiates testosterone production and germ cell proliferation. Mol Cell Endocrinol 2024; 592:112312. [PMID: 38866320 DOI: 10.1016/j.mce.2024.112312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Orexins (OXs) are neuropeptides which regulate various physiological processes. OXs exist in two different forms, mainly orexin A (OXA) and orexin B (OXB) and their effects are mediated via OX1R and OX2R. Presence of OXB and OX2R in mouse testis is also reported. However, the role of OXB/OX2R in the male gonad remains unexplored. Herein we investigated the role of OXB/OX2R system in testicular physiology under in vivo and ex vivo conditions. Adult mice were given a single dose of bilateral intratesticular injection of siRNA targeting OX2R and were sacrificed 96 h post-injection. OX2R-knockdown potentiated serum and intratesticular testosterone levels with up-regulation in the expressions of major steroidogenic proteins. Germ cell proliferation also increased in siRNA-treated mice. Results of the ex vivo experiment also supported the findings of the in vivo study. In conclusion, OX2R may regulate testosterone production and thereby control the fine-tuning between steroidogenesis and germ cell dynamics.
Collapse
Affiliation(s)
- Pratikshya Sahoo
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India
| | - Debarshi Sarkar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India.
| | - Shubhangi Sharma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India
| | - Arpit Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India
| | - Suraj Kumar Naik
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India
| | - Vikash Prashar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India
| | - Jyoti Parkash
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
2
|
Wang XX, Ji X, Lin J, Wong IN, Lo HH, Wang J, Qu L, Wong VKW, Chung SK, Law BYK. GPCR-mediated natural products and compounds: Potential therapeutic targets for the treatment of neurological diseases. Pharmacol Res 2024; 208:107395. [PMID: 39241934 DOI: 10.1016/j.phrs.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
G protein-coupled receptors (GPCRs), widely expressed in the human central nervous system (CNS), perform numerous physiological functions and play a significant role in the pathogenesis of diseases. Consequently, identifying key therapeutic GPCRs targets for CNS-related diseases is garnering immense interest in research labs and pharmaceutical companies. However, using GPCRs drugs for treating neurodegenerative diseases has limitations, including side effects and uncertain effective time frame. Recognizing the rich history of herbal treatments for neurological disorders like stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), modern pharmacological research is now focusing on the understanding of the efficacy of traditional Chinese medicinal herbs and compounds in modulating GPCRs and treatment of neurodegenerative conditions. This paper will offer a comprehensive, critical review of how certain natural products and compounds target GPCRs to treat neurological diseases. Conducting an in-depth study of herbal remedies and their efficacies against CNS-related disorders through GPCRs targeting will augment our strategies for treating neurological disorders. This will not only broaden our understanding of effective therapeutic methodologies but also identify the root causes of altered GPCRs signaling in the context of pathophysiological mechanisms in neurological diseases. Moreover, it would be informative for the creation of safer and more effective GPCR-mediated drugs, thereby establishing a foundation for future treatment of various neurological diseases.
Collapse
Affiliation(s)
- Xing Xia Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiang Ji
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jing Lin
- Department of Endocrinology, Luzhou Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR China
| | - Hang Hong Lo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jian Wang
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Liqun Qu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Sookja Kim Chung
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Faculty of Medicine, Macau University of Science and Technology, Macau SAR China.
| | - Betty Yuen Kwan Law
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China.
| |
Collapse
|
3
|
Zhang J, Jin K, Chen B, Cheng S, Jin J, Yang X, Lu J, Song Q. Sex-dimorphic functions of orexin in neuropsychiatric disorders. Heliyon 2024; 10:e36402. [PMID: 39253145 PMCID: PMC11382083 DOI: 10.1016/j.heliyon.2024.e36402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The orexin system regulates a variety of physiological functions, including the sleep-wake cycle, addiction, foraging behavior, stress and cognitive functioning. Orexin levels in central and peripheral are related to the pathogenesis of many diseases, most notably the narcolepsy, eating disorders, stress-related psychiatric disorders, and neurodegenerative diseases. Recently, it has been reported that the orexin system is distinctly sexually dimorphic, and is strongly associated with neuropsychiatric disorders. In this review, we analyzed advancements in the sex differences in the orexin system and their connection to psychoneurological conditions. Considering the scarcity of research in this domain, more research is imperative to reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Jinghan Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Shangping Cheng
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Jinfan Jin
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| | - Xiaolan Yang
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Qinghai Song
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| |
Collapse
|
4
|
Reid MJ, Dunn KE, Abraham L, Ellis J, Hunt C, Gamaldo CE, Coon WG, Mun CJ, Strain EC, Smith MT, Finan PH, Huhn AS. Suvorexant alters dynamics of the sleep-electroencephalography-power spectrum and depressive-symptom trajectories during inpatient opioid withdrawal. Sleep 2024; 47:zsae025. [PMID: 38287879 PMCID: PMC11009034 DOI: 10.1093/sleep/zsae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Indexed: 01/31/2024] Open
Abstract
STUDY OBJECTIVES Opioid withdrawal is an aversive experience that often exacerbates depressive symptoms and poor sleep. The aims of the present study were to examine the effects of suvorexant on oscillatory sleep-electroencephalography (EEG) band power during medically managed opioid withdrawal, and to examine their association with withdrawal severity and depressive symptoms. METHODS Participants with opioid use disorder (N = 38: age-range:21-63, 87% male, 45% white) underwent an 11-day buprenorphine taper, in which they were randomly assigned to suvorexant (20 mg [n = 14] or 40 mg [n = 12]), or placebo [n = 12], while ambulatory sleep-EEG data was collected. Linear mixed-effect models were used to explore: (1) main and interactive effects of drug group, and time on sleep-EEG band power, and (2) associations between sleep-EEG band power change, depressive symptoms, and withdrawal severity. RESULTS Oscillatory spectral power tended to be greater in the suvorexant groups. Over the course of the study, decreases in delta power were observed in all study groups (β = -189.082, d = -0.522, p = <0.005), increases in beta power (20 mg: β = 2.579, d = 0.413, p = 0.009 | 40 mg β = 5.265, d = 0.847, p < 0.001) alpha power (20 mg: β = 158.304, d = 0.397, p = 0.009 | 40 mg: β = 250.212, d = 0.601, p = 0.001) and sigma power (20 mg: β = 48.97, d = 0.410, p < 0.001 | 40 mg: β = 71.54, d = 0.568, p < 0.001) were observed in the two suvorexant groups. During the four-night taper, decreases in delta power were associated with decreases in depressive symptoms (20 mg: β = 190.90, d = 0.308, p = 0.99 | 40 mg: β = 433.33, d = 0.889 p = <0.001), and withdrawal severity (20 mg: β = 215.55, d = 0.034, p = 0.006 | 40 mg: β = 192.64, d = -0.854, p = <0.001), in both suvorexant groups and increases in sigma power were associated with decreases in withdrawal severity (20 mg: β = -357.84, d = -0.659, p = 0.004 | 40 mg: β = -906.35, d = -1.053, p = <0.001). Post-taper decreases in delta (20 mg: β = 740.58, d = 0.964 p = <0.001 | 40 mg: β = 662.23, d = 0.882, p = <0.001) and sigma power (20 mg only: β = 335.54, d = 0.560, p = 0.023) were associated with reduced depressive symptoms in the placebo group. CONCLUSIONS Results highlight a complex and nuanced relationship between sleep-EEG power and symptoms of depression and withdrawal. Changes in delta power may represent a mechanism influencing depressive symptoms and withdrawal.
Collapse
Affiliation(s)
- Matthew J Reid
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelly E Dunn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liza Abraham
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Ellis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carly Hunt
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Charlene E Gamaldo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William G Coon
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
- Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Chung Jung Mun
- Arizona State University, Edson College of Nursing and Health Innovation, Pheonix, AZ, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric C Strain
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael T Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick H Finan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Andrew S Huhn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Jászberényi M, Thurzó B, Bagosi Z, Vécsei L, Tanaka M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024; 12:448. [PMID: 38398050 PMCID: PMC10886661 DOI: 10.3390/biomedicines12020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The orexin/hypocretin neuropeptide family has emerged as a focal point of neuroscientific research following the discovery that this family plays a crucial role in a variety of physiological and behavioral processes. These neuropeptides serve as powerful neuromodulators, intricately shaping autonomic, endocrine, and behavioral responses across species. Notably, they serve as master regulators of vigilance and stress responses; however, their roles in food intake, metabolism, and thermoregulation appear complementary and warrant further investigation. This narrative review provides a journey through the evolution of our understanding of the orexin system, from its initial discovery to the promising progress made in developing orexin derivatives. It goes beyond conventional boundaries, striving to synthesize the multifaceted activities of orexins. Special emphasis is placed on domains such as stress response, fear, anxiety, and learning, in which the authors have contributed to the literature with original publications. This paper also overviews the advancement of orexin pharmacology, which has already yielded some promising successes, particularly in the treatment of sleep disorders.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, H-6725 Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
6
|
Wijnhoven HAH, Kok AAL, Schaap LA, Hoekstra T, van Stralen MM, Twisk JWR, Visser M. The associations between sleep quality, mood, pain and appetite in community dwelling older adults: a daily experience study. J Nutr Health Aging 2024; 28:100028. [PMID: 38388106 DOI: 10.1016/j.jnha.2023.100028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/29/2023] [Indexed: 02/24/2024]
Abstract
OBJECTIVES To investigate the daily life experiences of sleep, mood, and pain in relation to appetite in community-dwelling older adults aged 75 years and older, stratified by sex. DESIGN Existing data from a daily experience study embedded in the Longitudinal Aging Study Amsterdam (LASA) among the oldest-old (≥75 years). SETTING LASA is an ongoing cohort study of a nationally representative sample of older adults aged ≥55 years from three culturally distinct regions in the Netherlands. PARTICIPANTS 434 community-dwelling older adults aged ≥75 years. MEASUREMENTS Participants filled-out a one-week diary on daily experience of pain, mood, last night sleep (10-point Likert scale), and appetite (5-point Likert scale) on five measurement occasions between 2016 and 2021. (Hybrid) linear mixed models were used to investigate overall, within-subject and between-subject association between mood, sleep, and pain (independent variables) and appetite (dependent variable), while correcting between-subject associations for season, age, educational level, partner status, body mass index, alcohol consumption, physical activity level, smoking status, chronic diseases and use of nervous system medication, stratified by sex. RESULTS Averaged over all days, males reported a poor appetite on 12% of the days and females on 19% of the days. Statistically significant between-subject associations with a poorer appetite were found for lower mood (unstandardized b = 0.084 [95% CI 0.043-0.126] (males), (b = 0.126 [95% CI 0.082-0.170] (females)), poorer sleep (b = 0.045 [95% CI 0.007-0.083] (males), (b = 0.51 [95% CI 0.017-0.085] (females)) and more severe pain in males only (b = 0.026 [95% CI 0.002-0.051]). Except for pain, within-subject associations were somewhat weaker: mood: b = 0.038 [95% CI 0.016-0.060] (males), (b = 0.082 [95% CI 0.061-0.104] (females)); sleep: b = 0.029 [95% CI 0.008-0.050] (males), (b = 0.15 [95% CI 0.005-0.025] (females)); and pain (b = 0.032 [95% CI 0.004-0.059] (males)). CONCLUSIONS This study found that poor sleep, low mood (more strongly in females) and more severe pain (males only) are associated with poor appetite in older adults on a daily level both within and between persons. Sex differences in factors related to poor appetite should be considered in future research.
Collapse
Affiliation(s)
- Hanneke A H Wijnhoven
- Department of Health Sciences, Faculty of Science, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Almar A L Kok
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Methodology Programme, Amsterdam UMC, Location VU University Medical Center, Amsterdam, The Netherlands; Department of Psychiatry, Amsterdam Public Health Research Institute, Aging & Later Life Programme, Amsterdam UMC, Location VU University Medical Center, Amsterdam, The Netherlands
| | - Laura A Schaap
- Department of Health Sciences, Faculty of Science, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Trynke Hoekstra
- Department of Health Sciences, Faculty of Science, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Maartje M van Stralen
- Department of Health Sciences, Faculty of Science, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Methodology Programme, Amsterdam UMC, Location VU University Medical Center, Amsterdam, The Netherlands
| | - Marjolein Visser
- Department of Health Sciences, Faculty of Science, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Bao H, Peng Z, Cheng X, Jian C, Li X, Shi Y, Zhu W, Hu Y, Jiang M, Song J, Fang F, Chen J, Shu X. GABA induced by sleep deprivation promotes the proliferation and migration of colon tumors through miR-223-3p endogenous pathway and exosome pathway. J Exp Clin Cancer Res 2023; 42:344. [PMID: 38105184 PMCID: PMC10726571 DOI: 10.1186/s13046-023-02921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Research has indicated that long-term sleep deprivation can lead to immune dysfunction and participate in the occurance and progression of tumors. However, the relationship between sleep deprivation and colon cancer remains unclear. This study explored the specific mechanism through which sleep deprivation promotes the proliferation and migration of colon cancer, with a focus on the neurotransmitter GABA. METHODS Chronic sleep deprivation mice model were used to investigate the effect of sleep disorder on tumors. We detected neurotransmitter levels in the peripheral blood of mice using ELISA. CCK-8 assay, colony formation assay, wound healing assay, and transwell assay were performed to investigate the effect of GABA on colon cancer cells, while immunofluorescence showed the distribution of macrophages in lung metastatic tissues. We isolated exosomes from a GABA-induced culture medium to explore the effects of GABA-induced colon cancer cells on macrophages. Gain- and loss-of-function experiments, luciferase report analysis, immunohistochemistry, and cytokine detection were performed to reveal the crosstalk between colon cancer cells and macrophages. RESULTS Sleep deprivation promote peripheral blood GABA level and colon cancer cell proliferation and migration. Immunofluorescence analysis revealed that GABA-induced colon cancer metastasis is associated with enhanced recruitment of macrophages in the lungs. The co-culture results showed that GABA intensified M2 polarization of macrophage induced by colon cancer cells. This effect is due to the activation of the macrophage MAPK pathway by tumor-derived exosomal miR-223-3p. Furthermore, M2-like macrophages promote tumor proliferation and migration by secreting IL-17. We also identified an endogenous miR-223-3p downregulation of the E3 ligase CBLB, which enhances the stability of cMYC protein and augments colon cancer cells proliferation and migration ability. Notably, cMYC acts as a transcription factor and can also regulate the expression of miR-223-3p. CONCLUSION Our results suggest that sleep deprivation can promote the expression of miR-223-3p in colon cancer cells through GABA, leading to downregulation of the E3 ligase CBLB and inhibition of cMYC ubiquitination. Simultaneously, extracellular miR-223-3p promotes M2-like macrophage polarization, which leads to the secretion of IL-17, further enhancing the proliferation and migration of colon cancer cells.
Collapse
Affiliation(s)
- Haijun Bao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Zuojie Peng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Xukai Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Chenxing Jian
- Department of Colorectal Surgery, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
| | - Xianguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Yongping Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Wenzhong Zhu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Yuan Hu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Mi Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Jia Song
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Feifei Fang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Jinhuang Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No,1277, Hubei, 430022, Wuhan, China.
| | - Xiaogang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China.
| |
Collapse
|
8
|
Bonifazi A, Del Bello F, Giorgioni G, Piergentili A, Saab E, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Quaglia W. Targeting orexin receptors: Recent advances in the development of subtype selective or dual ligands for the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:1607-1667. [PMID: 37036052 DOI: 10.1002/med.21959] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Orexin-A and orexin-B, also named hypocretin-1 and hypocretin-2, are two hypothalamic neuropeptides highly conserved across mammalian species. Their effects are mediated by two distinct G protein-coupled receptors, namely orexin receptor type 1 (OX1-R) and type 2 (OX2-R), which share 64% amino acid identity. Given the wide expression of OX-Rs in different central nervous system and peripheral areas and the several pathophysiological functions in which they are involved, including sleep-wake cycle regulation (mainly mediated by OX2-R), emotion, panic-like behaviors, anxiety/stress, food intake, and energy homeostasis (mainly mediated by OX1-R), both subtypes represent targets of interest for many structure-activity relationship (SAR) campaigns carried out by pharmaceutical companies and academies. However, before 2017 the research was predominantly directed towards dual-orexin ligands, and limited chemotypes were investigated. Analytical characterizations, including resolved structures for both OX1-R and OX2-R in complex with agonists and antagonists, have improved the understanding of the molecular basis of receptor recognition and are assets for medicinal chemists in the design of subtype-selective ligands. This review is focused on the medicinal chemistry aspects of small molecules acting as dual or subtype selective OX1-R/OX2-R agonists and antagonists belonging to different chemotypes and developed in the last years, including radiolabeled OX-R ligands for molecular imaging. Moreover, the pharmacological effects of the most studied ligands in different neuropsychiatric diseases, such as sleep, mood, substance use, and eating disorders, as well as pain, have been discussed. Poly-pharmacology applications and multitarget ligands have also been considered.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | | | - Elizabeth Saab
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | | | | | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
9
|
Mazur F, Całka J. Hypothalamic orexins as possible therapeutic agents in threat and spatial memory disorders. Front Behav Neurosci 2023; 17:1228056. [PMID: 37576933 PMCID: PMC10412936 DOI: 10.3389/fnbeh.2023.1228056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Orexin-A and orexin-B, neuropeptides produced exclusively in the lateral hypothalamus, have been implicated in various functions, including memory. Their levels are elevated in certain pathological states, such as PTSD, and lowered in other states, e.g., memory deficits. Recent developments have shown the possibilities of using orexins to modulate memory. Their administration can improve the results of test animals in paradigms such as passive avoidance (PA), cued fear conditioning (CFC), and the Morris water maze (MWM), with differences between the orexin used and the route of drug administration. Blocking orexin receptors in different brain structures produces opposing effects of memory impairments in given paradigms. Therefore, influencing the orexinergic balance of the brain becomes a viable way to ameliorate memory deficits, shift PTSD-induced recall of stressful memories to an extinction path, or regulate other memory processes.
Collapse
Affiliation(s)
- Filip Mazur
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Masuria in Olsztyn, Olsztyn, Poland
| | | |
Collapse
|
10
|
Lee TY, Yi PL, Chang FC. Hypocretin role in posttraumatic stress disorder-like behaviors induced by a novel stress protocol in mice. Front Psychiatry 2023; 14:1196994. [PMID: 37457782 PMCID: PMC10343020 DOI: 10.3389/fpsyt.2023.1196994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Posttraumatic stress disorder (PTSD) is a psychiatric disorder developed in individuals who expose to traumatic events. These patients may experience symptoms, such as recurrent unwanted memory of the traumatic event, avoidance of reminders of the trauma, increased arousal, and cognitive difficulty. The hypocretinergic system originates from the lateral hypothalamic area (LHA) and projects diffusely to the whole brain, and hypocretin may be involved in the features of stress-related disorder, PTSD. Methods Our study aimed to investigate the role of basolateral amygdala (BLA) hypocretin signals in the pathophysiology of PTSD-like symptoms induced by the modified multiple-prolonged stress (MPS) protocol. The BLA, a brain region involved in fear-related behaviors, receives the hypocretin projections. In this study, TCS1102, a dual hypocretin receptor antagonist, was used to block the hypocretin signal in BLA. Results Our data indicated that the MPS protocol is a potential PTSD-like paradigm in mice. Meanwhile, the blockade of hypocretin signaling in the BLA relieved the MPS-induced fear response, and partially reduced PTSD-like anxiety behaviors performed by the open field test (OFT) and elevated plus maze (EPM) task. Discussion Our findings suggest that the hypocretinergic system is a potential therapeutic approach for PTSD treatment. With further research, the hypocretin-based medication can be a candidate for human PTSD treatment.
Collapse
Affiliation(s)
- Tung-Yen Lee
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Lu Yi
- Department of Sport Management, College of Tourism, Leisure and Sports, Aletheia University, Taipei, Taiwan
| | - Fang-Chia Chang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung City, Taiwan
- Department of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan
| |
Collapse
|
11
|
St-Onge MP, Cherta-Murillo A, Darimont C, Mantantzis K, Martin FP, Owen L. The interrelationship between sleep, diet, and glucose metabolism. Sleep Med Rev 2023; 69:101788. [PMID: 37156196 PMCID: PMC10247426 DOI: 10.1016/j.smrv.2023.101788] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Obesity and type 2 diabetes (T2D) are increasingly common worldwide. While these disorders have increased in prevalence over the past several decades, there has been a concomitant reduction in sleep duration. Short sleep duration has been associated with higher rates of obesity and T2D, and the causality of these associations and their directionality, continue to necessitate evaluation. In this review we consider the evidence that sleep is an intrinsic factor in the development of obesity and chronic metabolic disorders, such as insulin resistance and T2D, while evaluating a potential bi-directional association. We consider the evidence that diet and meal composition, which are known to impact glycemic control, may have both chronic and acute impact upon sleep. Moreover, we consider that postprandial nocturnal metabolism and peripheral glycemia may affect sleep quality. We propose putative mechanisms whereby acute effects of nighttime glucose excursions may lead to increased sleep fragmentation. We conclude that dietary manipulations, particularly with respect to carbohydrate quality, may confer sleep benefits. Future research may seek to evaluate the effectiveness of synergistic nutrient strategies to promote sleep quality, with particular attention to carbohydrate quality, quantity, and availability as well as carbohydrate to protein ratio.
Collapse
Affiliation(s)
- Marie-Pierre St-Onge
- Division of General Medicine and Center of Excellence for Sleep & Circadian Research, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | | | - Christian Darimont
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | | | | | - Lauren Owen
- Nestlé Research, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| |
Collapse
|
12
|
Sheibani M, Shayan M, Khalilzadeh M, Ghasemi M, Dehpour AR. Orexin receptor antagonists in the pathophysiology and treatment of sleep disorders and epilepsy. Neuropeptides 2023; 99:102335. [PMID: 37003137 DOI: 10.1016/j.npep.2023.102335] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
The correlation between sleep and epilepsy has been argued over the past decades among scientists. Although the similarities and contrasts between sleep and epilepsy had been considered, their intertwined nature was not revealed until the nineteenth century. Sleep is recognized as a recurring state of mind and body through alternating brain electrical activities. It is documented that sleep disorders are associated with epilepsy. The origin, suppression, and spread of seizures are affected by sleep. As such, in patients with epilepsy, sleep disorders are a frequent comorbidity. Meanwhile, orexin, a wake-promoting neuropeptide, provides a bidirectional effect on both sleep and epilepsy. Orexin and its cognate receptors, orexin receptor type 1 (OX1R) and type 2 (OX2R), orchestrate their effects by activating various downstream signaling pathways. Although orexin was considered a therapeutic target in insomnia shortly after its discovery, its potential usefulness for psychiatric disorders and epileptic seizures has been suggested in the pre-clinical studies. This review aimed to discuss whether the relationship between sleep, epilepsy, and orexin is clearly reciprocal.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Palagini L, Geoffroy PA, Balestrieri M, Miniati M, Biggio G, Liguori C, Menicucci D, Ferini-Strambi L, Nobili L, Riemann D, Gemignani A. Current models of insomnia disorder: a theoretical review on the potential role of the orexinergic pathway with implications for insomnia treatment. J Sleep Res 2023:e13825. [PMID: 36786121 DOI: 10.1111/jsr.13825] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 02/15/2023]
Abstract
Insomnia disorder is considered as a stress-related disorder associated with hyperarousal, stress and emotion dysregulation and the instability of the 'flip-flop' switch system. The orexinergic system is well known for its key role in sleep and arousal processes but also in the allostatic system regulating stress and emotions and may thus be of major interest for insomnia and its treatment. Accordingly, we discuss the potential role of orexins on sleep processes, brain systems modulating stress and emotions with potential implications for insomnia pathophysiology. We reviewed available data on the effect of dual orexin receptor antagonists (DORAs) on sleep and brain systems modulating stress/emotions with implications for insomnia treatment. We present our findings as a narrative review. Few data in animals and humans have reported that disrupted sleep and insomnia may be related to the overactivation of orexinergic system, while some more consistent data in humans and animals reported the overactivation of orexins in response to acute stress and in stress-related disorders. Taken together these findings may let us hypothesise that an orexins overactivation may be associated with stress-related hyperarousal and the hyperactivation of arousal-promoting systems in insomnia. On the other hand, it is possible that by rebalancing orexins with DORAs we may regulate both sleep and allostatic systems, in turn, contributing to a 'switch off' of hyperarousal in insomnia. Nevertheless, more studies are needed to clarify the role of the orexin system in insomnia and to evaluate the effects of DORAs on sleep, stress and emotions regulating systems.
Collapse
Affiliation(s)
- Laura Palagini
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy
| | - Pierre A Geoffroy
- Département de Psychiatrie et D'Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, Paris, France.,GHU Paris - Psychiatry and Neurosciences, Paris, France.,Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Mario Miniati
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy
| | - Giovanni Biggio
- Department of Life and Environmental Sciences, Institute of Neuroscience, University of Cagliari, National Research Council (C.N.R.), Cagliari, Italy
| | - Claudio Liguori
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Neurology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, Neurology Sleep Disorders Centre, RCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lino Nobili
- Sleep Medicine Center, Department of Neuroscience, Niguarda Hospital, Milan, Italy.,Department of Neuroscience (DINOGMI), University of Genoa, Child Neuropsychiatry Unit, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Mogavero MP, Silvani A, Lanza G, DelRosso LM, Ferini-Strambi L, Ferri R. Targeting Orexin Receptors for the Treatment of Insomnia: From Physiological Mechanisms to Current Clinical Evidence and Recommendations. Nat Sci Sleep 2023; 15:17-38. [PMID: 36713640 PMCID: PMC9879039 DOI: 10.2147/nss.s201994] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/08/2023] [Indexed: 01/23/2023] Open
Abstract
After a detailed description of orexins and their roles in sleep and other medical disorders, we discuss here the current clinical evidence on the effects of dual (DORAs) or selective (SORAs) orexin receptor antagonists on insomnia with the aim to provide recommendations for their further assessment in a context of personalized and precision medicine. In the last decade, many trials have been conducted with orexin receptor antagonists, which represent an innovative and valid therapeutic option based on the multiple mechanisms of action of orexins on different biological circuits, both centrally and peripherally, and their role in a wide range of medical conditions which are often associated with insomnia. A very interesting aspect of this new category of drugs is that they have limited abuse liability and their discontinuation does not seem associated with significant rebound effects. Further studies on the efficacy of DORAs are required, especially on children and adolescents and in particular conditions, such as menopause. Which DORA is most suitable for each patient, based on comorbidities and/or concomitant treatments, should be the focus of further careful research. On the contrary, studies on SORAs, some of which seem to be appropriate also in insomnia in patients with psychiatric diseases, are still at an early stage and, therefore, do not allow to draw definite conclusions.
Collapse
Affiliation(s)
- Maria P Mogavero
- Vita-Salute San Raffaele University, Milan, Italy
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Silvani
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Lanza
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Lourdes M DelRosso
- Pulmonary and Sleep Medicine, University of California San Francisco-Fresno, Fresno, CA, USA
| | - Luigi Ferini-Strambi
- Vita-Salute San Raffaele University, Milan, Italy
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|
15
|
Illenberger JM, Flores-Ramirez FJ, Matzeu A, Mason BJ, Martin-Fardon R. Suvorexant, an FDA-approved dual orexin receptor antagonist, reduces oxycodone self-administration and conditioned reinstatement in male and female rats. Front Pharmacol 2023; 14:1127735. [PMID: 37180716 PMCID: PMC10172671 DOI: 10.3389/fphar.2023.1127735] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Background: The Department of Health and Human Services reports that prescription pain reliever (e.g., oxycodone) misuse was initiated by 4,400 Americans each day in 2019. Amid the opioid crisis, effective strategies to prevent and treat prescription opioid use disorder (OUD) are pressing. In preclinical models, the orexin system is recruited by drugs of abuse, and blockade of orexin receptors (OX receptors) prevents drug-seeking behavior. The present study sought to determine whether repurposing suvorexant (SUV), a dual OX receptor antagonist marketed for the treatment of insomnia, can treat two features of prescription OUD: exaggerated consumption and relapse. Methods: Male and female Wistar rats were trained to self-administer oxycodone (0.15 mg/kg, i. v., 8 h/day) in the presence of a contextual/discriminative stimulus (SD) and the ability of SUV (0-20 mg/kg, p. o.) to decrease oxycodone self-administration was tested. After self-administration testing, the rats underwent extinction training, after which we tested the ability of SUV (0 and 20 mg/kg, p. o.) to prevent reinstatement of oxycodone seeking elicited by the SD. Results: The rats acquired oxycodone self-administration and intake was correlated with the signs of physical opioid withdrawal. Additionally, females self-administered approximately twice as much oxycodone as males. Although SUV had no overall effect on oxycodone self-administration, scrutiny of the 8-h time-course revealed that 20 mg/kg SUV decreased oxycodone self-administration during the first hour in males and females. The oxycodone SD elicited strong reinstatement of oxycodone-seeking behavior that was significantly more robust in females. Suvorexant blocked oxycodone seeking in males and reduced it in females. Conclusions: These results support the targeting of OX receptors for the treatment for prescription OUD and repurposing SUV as pharmacotherapy for OUD.
Collapse
|
16
|
Tsuneki H, Maeda T, Takata S, Sugiyama M, Otsuka K, Ishizuka H, Onogi Y, Tokai E, Koshida C, Kon K, Takasaki I, Hamashima T, Sasahara M, Rudich A, Koya D, Sakurai T, Yanagisawa M, Yamanaka A, Wada T, Sasaoka T. Hypothalamic orexin prevents non-alcoholic steatohepatitis and hepatocellular carcinoma in obesity. Cell Rep 2022; 41:111497. [DOI: 10.1016/j.celrep.2022.111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/22/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
|
17
|
López JM, Carballeira P, Pozo J, León-Espinosa G, Muñoz A. Hypothalamic orexinergic neuron changes during the hibernation of the Syrian hamster. Front Neuroanat 2022; 16:993421. [PMID: 36157325 PMCID: PMC9501701 DOI: 10.3389/fnana.2022.993421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Hibernation in small mammals is a highly regulated process with periods of torpor involving drops in body temperature and metabolic rate, as well as a general decrease in neural activity, all of which proceed alongside complex brain adaptive changes that appear to protect the brain from extreme hypoxia and low temperatures. All these changes are rapidly reversed, with no apparent brain damage occurring, during the short periods of arousal, interspersed during torpor—characterized by transitory and partial rewarming and activity, including sleep activation, and feeding in some species. The orexins are neuropeptides synthesized in hypothalamic neurons that project to multiple brain regions and are known to participate in the regulation of a variety of processes including feeding behavior, the sleep-wake cycle, and autonomic functions such as brown adipose tissue thermogenesis. Using multiple immunohistochemical techniques and quantitative analysis, we have characterized the orexinergic system in the brain of the Syrian hamster—a facultative hibernator. Our results revealed that orexinergic neurons in this species consisted of a neuronal population restricted to the lateral hypothalamic area, whereas orexinergic fibers distribute throughout the rostrocaudal extent of the brain, particularly innervating catecholaminergic and serotonergic neuronal populations. We characterized the changes of orexinergic cells in the different phases of hibernation based on the intensity of immunostaining for the neuronal activity marker C-Fos and orexin A (OXA). During torpor, we found an increase in C-Fos immunostaining intensity in orexinergic neurons, accompanied by a decrease in OXA immunostaining. These changes were accompanied by a volume reduction and a fragmentation of the Golgi apparatus (GA) as well as a decrease in the colocalization of OXA and the GA marker GM-130. Importantly, during arousal, C-Fos and OXA expression in orexinergic neurons was highest and the structural appearance and the volume of the GA along with the colocalization of OXA/GM-130 reverted to euthermic levels. We discuss the involvement of orexinergic cells in the regulation of mammalian hibernation and, in particular, the possibility that the high activation of orexinergic cells during the arousal stage guides the rewarming as well as the feeding and sleep behaviors characteristic of this phase.
Collapse
Affiliation(s)
- Jesús M. López
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Paula Carballeira
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Javier Pozo
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | - Gonzalo León-Espinosa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-Centro de Estudios Universitarios (CEU), Madrid, Spain
| | - Alberto Muñoz
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- *Correspondence: Alberto Muñoz,
| |
Collapse
|
18
|
Islam MT, Rumpf F, Tsuno Y, Kodani S, Sakurai T, Matsui A, Maejima T, Mieda M. Vasopressin neurons in the paraventricular hypothalamus promote wakefulness via lateral hypothalamic orexin neurons. Curr Biol 2022; 32:3871-3885.e4. [PMID: 35907397 DOI: 10.1016/j.cub.2022.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/11/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023]
Abstract
The sleep-wakefulness cycle is regulated by complicated neural networks that include many different populations of neurons throughout the brain. Arginine vasopressin neurons in the paraventricular nucleus of the hypothalamus (PVHAVP) regulate various physiological events and behaviors, such as body-fluid homeostasis, blood pressure, stress response, social interaction, and feeding. Changes in arousal level often accompany these PVHAVP-mediated adaptive responses. However, the contribution of PVHAVP neurons to sleep-wakefulness regulation has remained unknown. Here, we report the involvement of PVHAVP neurons in arousal promotion. Optogenetic stimulation of PVHAVP neurons rapidly induced transitions to wakefulness from both NREM and REM sleep. This arousal effect was dependent on AVP expression in these neurons. Similarly, chemogenetic activation of PVHAVP neurons increased wakefulness and reduced NREM and REM sleep, whereas chemogenetic inhibition of these neurons significantly reduced wakefulness and increased NREM sleep. We observed dense projections of PVHAVP neurons in the lateral hypothalamus with potential connections to orexin/hypocretin (LHOrx) neurons. Optogenetic stimulation of PVHAVP neuronal fibers in the LH immediately induced wakefulness, whereas blocking orexin receptors attenuated the arousal effect of PVHAVP neuronal activation drastically. Monosynaptic rabies-virus tracing revealed that PVHAVP neurons receive inputs from multiple brain regions involved in sleep-wakefulness regulation, as well as those involved in stress response and energy metabolism. Moreover, PVHAVP neurons mediated the arousal induced by novelty stress and a melanocortin receptor agonist melanotan-II. Thus, our data suggested that PVHAVP neurons promote wakefulness via LHOrx neurons in the basal sleep-wakefulness and some stressful conditions.
Collapse
Affiliation(s)
- Md Tarikul Islam
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Florian Rumpf
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan; Graduate School of Life Sciences, University of Würzburg, Beatrice-Edgell-Weg 21, 97074 Würzburg, Germany
| | - Yusuke Tsuno
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Shota Kodani
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takeshi Sakurai
- Faculty of Medicine/WPI-IIIS, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ayako Matsui
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takashi Maejima
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
19
|
Karami N, Azari H, Rahimi M, Aligholi H, Kalantari T. A study on the effect of JNJ-10397049 on proliferation and differentiation of neural precursor cells. Anat Cell Biol 2022; 55:179-189. [PMID: 35466086 PMCID: PMC9256489 DOI: 10.5115/acb.21.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 11/27/2022] Open
Abstract
The orexin 2 receptor plays a central role in maintaining sleep and wakefulness. Recently, it has been shown that sleep and wakefulness orchestrate the proliferation and differentiation of oligodendrocytes. Here, we explored the role of a selective orexin 2 receptor antagonist (JNJ-10397049) in proliferation and differentiation of neural progenitor cells (NPCs). We evaluated the proliferation potential of NPCs after exposure to different concentrations of JNJ-10397049 by using 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide and neurosphere assays. Moreover, the expression of differentiation markers was assessed by immunocytochemistry and real-time polymerase chain reaction. JNJ-10397049 significantly increased the proliferation of NPCs at lower concentrations. In addition, orexin 2 receptor antagonist facilitated progression of differentiation of NPCs towards oligodendroglial lineage by considerable expression of Olig2 and 2’,3’-cyclic-nucleotide 3’-phosphodiesterase as well as decreased expression of nestin marker. The results open a new avenue for future investigations in which the production of more oligodendrocytes from NPCs is needed.
Collapse
Affiliation(s)
- Neda Karami
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Azari
- Neural Stem Cell Laboratory, Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Moosa Rahimi
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, Iran.,Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Kalantari
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Pizza F, Barateau L, Dauvilliers Y, Plazzi G. The orexin story, sleep and sleep disturbances. J Sleep Res 2022; 31:e13665. [PMID: 35698789 DOI: 10.1111/jsr.13665] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/02/2023]
Abstract
The orexins, also known as hypocretins, are two neuropeptides (orexin A and B or hypocretin 1 and 2) produced by a few thousand neurons located in the lateral hypothalamus that were independently discovered by two research groups in 1998. Those two peptides bind two receptors (orexin/hypocretin receptor 1 and receptor 2) that are widely distributed in the brain and involved in the central physiological regulation of sleep and wakefulness, orexin receptor 2 having the major role in the maintenance of arousal. They are also implicated in a multiplicity of other functions, such as reward seeking, energy balance, autonomic regulation and emotional behaviours. The destruction of orexin neurons is responsible for the sleep disorder narcolepsy with cataplexy (type 1) in humans, and a defect of orexin signalling also causes a narcoleptic phenotype in several animal species. Orexin discovery is unprecedented in the history of sleep research, and pharmacological manipulations of orexin may have multiple therapeutic applications. Several orexin receptor antagonists were recently developed as new drugs for insomnia, and orexin agonists may be the next-generation drugs for narcolepsy. Given the broad range of functions of the orexin system, these drugs might also be beneficial for treating various conditions other than sleep disorders in the near future.
Collapse
Affiliation(s)
- Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
21
|
Zegarra-Valdivia JA, Fernandes J, Fernandez de Sevilla ME, Trueba-Saiz A, Pignatelli J, Suda K, Martinez-Rachadell L, Fernandez AM, Esparza J, Vega M, Nuñez A, Aleman IT. Insulin-like growth factor I sensitization rejuvenates sleep patterns in old mice. GeroScience 2022; 44:2243-2257. [PMID: 35604612 DOI: 10.1007/s11357-022-00589-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022] Open
Abstract
Sleep disturbances are common during aging. Compared to young animals, old mice show altered sleep structure, with changes in both slow and fast electrocorticographic (ECoG) activity and fewer transitions between sleep and wake stages. Insulin-like growth factor I (IGF-I), which is involved in adaptive changes during aging, was previously shown to increase ECoG activity in young mice and monkeys. Furthermore, IGF-I shapes sleep architecture by modulating the activity of mouse orexin neurons in the lateral hypothalamus (LH). We now report that both ECoG activation and excitation of orexin neurons by systemic IGF-I are abrogated in old mice. Moreover, orthodromical responses of LH neurons are facilitated by either systemic or local IGF-I in young mice, but not in old ones. As orexin neurons of old mice show dysregulated IGF-I receptor (IGF-IR) expression, suggesting disturbed IGF-I sensitivity, we treated old mice with AIK3a305, a novel IGF-IR sensitizer, and observed restored responses to IGF-I and rejuvenation of sleep patterns. Thus, disturbed sleep structure in aging mice may be related to impaired IGF-I signaling onto orexin neurons, reflecting a broader loss of IGF-I activity in the aged mouse brain.
Collapse
Affiliation(s)
- Jonathan A Zegarra-Valdivia
- Cajal Institute (CSIC), Madrid, Spain.,CIBERNED, Madrid, Spain.,Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Jansen Fernandes
- Cajal Institute (CSIC), Madrid, Spain.,Universidade Federal São Paulo, São Paulo, Brazil
| | | | | | | | - Kentaro Suda
- Cajal Institute (CSIC), Madrid, Spain.,Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | - Angel Nuñez
- Department of Neurosciences, School of Medicine, UAM, Madrid, Spain
| | - Ignacio Torres Aleman
- CIBERNED, Madrid, Spain. .,Achucarro Basque Center for Neuroscience, Leioa, Spain. .,IKERBASQUE Basque Science Foundation, Bilbao, Spain.
| |
Collapse
|
22
|
Dale NC, Hoyer D, Jacobson LH, Pfleger KDG, Johnstone EKM. Orexin Signaling: A Complex, Multifaceted Process. Front Cell Neurosci 2022; 16:812359. [PMID: 35496914 PMCID: PMC9044999 DOI: 10.3389/fncel.2022.812359] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/07/2022] [Indexed: 11/15/2022] Open
Abstract
The orexin system comprises two G protein-coupled receptors, OX1 and OX2 receptors (OX1R and OX2R, respectively), along with two endogenous agonists cleaved from a common precursor (prepro-orexin), orexin-A (OX-A) and orexin-B (OX-B). For the receptors, a complex array of signaling behaviors has been reported. In particular, it becomes obvious that orexin receptor coupling is very diverse and can be tissue-, cell- and context-dependent. Here, the early signal transduction interactions of the orexin receptors will be discussed in depth, with particular emphasis on the direct G protein interactions of each receptor. In doing so, it is evident that ligands, additional receptor-protein interactions and cellular environment all play important roles in the G protein coupling profiles of the orexin receptors. This has potential implications for our understanding of the orexin system's function in vivo in both central and peripheral environments, as well as the development of novel agonists, antagonists and possibly allosteric modulators targeting the orexin system.
Collapse
Affiliation(s)
- Natasha C. Dale
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Melbourne, VIC, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Daniel Hoyer
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Laura H. Jacobson
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kevin D. G. Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Melbourne, VIC, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- Dimerix Limited, Nedlands, WA, Australia
| | - Elizabeth K. M. Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Melbourne, VIC, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
23
|
Nonogaki K. The Regulatory Role of the Central and Peripheral Serotonin Network on Feeding Signals in Metabolic Diseases. Int J Mol Sci 2022; 23:ijms23031600. [PMID: 35163521 PMCID: PMC8836087 DOI: 10.3390/ijms23031600] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Central and peripheral serotonin (5-hydroxytryptamine, 5-HT) regulate feeding signals for energy metabolism. Disruption of central 5-HT signaling via 5-HT2C receptors (5-HT2CRs) induces leptin-independent hyperphagia in mice, leading to late-onset obesity, insulin resistance, and impaired glucose tolerance. 5-HT2CR mutant mice are more responsive than wild-type mice to a high-fat diet, exhibiting earlier-onset obesity and type 2 diabetes. High-fat and high-carbohydrate diets increase plasma 5-HT and fibroblast growth factor-21 (FGF21) levels. Plasma 5-HT and FGF21 levels are increased in rodents and humans with obesity, type 2 diabetes, and non-alcohol fatty liver diseases (NAFLD). The increases in plasma FGF21 and hepatic FGF21 expression precede hyperinsulinemia, insulin resistance, hyperglycemia, and weight gain in mice fed a high-fat diet. Nutritional, pharmacologic, or genetic inhibition of peripheral 5-HT synthesis via tryptophan hydroxylase 1 (Tph1) decreases hepatic FGF21 expression and plasma FGF21 levels in mice. Thus, perturbing central 5-HT signaling via 5-HT2CRs alters feeding behavior. Increased energy intake via a high-fat diet and/or high-carbohydrate diet can upregulate gut-derived 5-HT synthesis via Tph1. Peripheral 5-HT upregulates hepatic FGF21 expression and plasma FGF21 levels, leading to metabolic diseases such as obesity, insulin resistance, type 2 diabetes, and NAFLD. The 5-HT network in the brain–gut–liver axis regulates feeding signals and may be involved in the development and/or prevention of metabolic diseases.
Collapse
Affiliation(s)
- Katsunori Nonogaki
- Laboratory of Diabetes and Nutrition, New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
24
|
Abounoori M, Maddah MM, Ardeshiri MR. Orexin neuropeptides modulate the hippocampal-dependent memory through basolateral amygdala interconnections. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100035. [PMID: 36324409 PMCID: PMC9616276 DOI: 10.1016/j.cccb.2021.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022]
Abstract
Orexin neuropeptides roles in hippocampal-dependent memory formation. Orexin neuropeptides activate the neural circuits of the basolateral amygdala. The power of memorization is modulated by the level of orexin neuropeptides.
Orexin neuropeptides have functional roles in hippocampal-dependent memory formation via the consolidation and retrieval of passive avoidance and spatial memories. The effects of these neuropeptides have been confirmed on the induction of long-term potentiation (LTP). The orexinergic system seems to have modulatory effects by sending projection fibers to several brain parts, such as the hippocampus and amygdala. Orexin neuropeptides activate the neural circuits of the basolateral amygdala during different arousal events with various emotional loads. Therefore, this system plays a vital role in creating appropriate behavioral reactions and responses particular to the situation. This review aimed to report new progression and advances in the hippocampus function in memory by focusing on its relationship with the amygdala through the orexinergic system.
Collapse
|
25
|
Lessel U, Ferrara M, Heine N, Marelli C, Carrettoni L, Pfau R, Schmidt E, Riether D. Identification of Highly Selective Orexin 1 Receptor Antagonists Driven by Structure-Based Design. J Chem Inf Model 2021; 61:5893-5905. [PMID: 34817173 DOI: 10.1021/acs.jcim.1c01055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OX1 receptor antagonists are of interest to treat, for example, substance abuse disorders, personality disorders, eating disorders, or anxiety-related disorders. However, known dual OX1/OX2 receptor antagonists are not suitable due to their sleep-inducing effects; therefore, we were interested in identifying a highly OX1 selective antagonist with a sufficient window to OX2-mediated effects. Herein, we describe the design of highly selective OX1 receptor antagonists driven by the X-ray structure of OX1 with suvorexant, a dual OX1/OX2 receptor antagonist. Moderately selective OX1 antagonists comprising a [2.2.1]-bicyclic scaffold served as our starting point. Based on our binding mode hypothesis, we postulated which part of the scaffold points toward one of the regions where the two binding pockets differ. Structural changes in this part resulted in a modified core with higher inherent selectivity compared to the [2.2.1]-bicyclic template. The structure-based design, synthesis, and hit-to-lead evaluation of this novel OX1 receptor-selective scaffold are discussed herein.
Collapse
Affiliation(s)
- Uta Lessel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Marco Ferrara
- Boehringer Ingelheim Research Italia S.a.s. di BI IT S.r.l., Via Giovanni Lorenzini 8, 20139 Milano, MI, Italy
| | - Niklas Heine
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Chiara Marelli
- Boehringer Ingelheim Research Italia S.a.s. di BI IT S.r.l., Via Giovanni Lorenzini 8, 20139 Milano, MI, Italy
| | - Laura Carrettoni
- Boehringer Ingelheim Research Italia S.a.s. di BI IT S.r.l., Via Giovanni Lorenzini 8, 20139 Milano, MI, Italy
| | - Roland Pfau
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Esther Schmidt
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Doris Riether
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| |
Collapse
|
26
|
Gupta PR, Prabhavalkar K. Combination therapy with neuropeptides for the treatment of anxiety disorder. Neuropeptides 2021; 86:102127. [PMID: 33607407 DOI: 10.1016/j.npep.2021.102127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 11/29/2022]
Abstract
Anxiety is a neurological disorder that is characterized by excessive, persistent, and unreasonable worry about everyday things like family, work, money, and relationships. The current therapy used for the treatment has many disadvantages like higher cost, severe adverse reactions, and has suboptimal efficiency. There is a need to look for more innovative approaches for the treatment of anxiety disorder which overcomes the disadvantages of conventional treatment. Recent findings suggest a strong correlation of glutamate with anxiety. Some promising drugs which have a novel mechanism for anxiolytic action are currently under clinical development for generalized anxiety disorder, social anxiety disorder, panic disorder, obsessive-compulsive disorder, or post-traumatic stress disorder. Similarly, an interrelation of oxytocin with neuropeptide S or glutamate or vasopressin can also be considered for further evaluation for the development of new drugs for anxiety treatment. Anxiolytic drug development is a multi-target approach, with the idea of more efficiently equilibrating perturbed circuits. This review focuses on targeting unconventional targets like the glutamate system, voltage-gated ion channels, and neuropeptides system either alone or in combination for the treatment of anxiety disorder.
Collapse
Affiliation(s)
- Priti Ramakant Gupta
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Kedar Prabhavalkar
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India.
| |
Collapse
|
27
|
Luppi AI, Spindler LRB, Menon DK, Stamatakis EA. The Inert Brain: Explaining Neural Inertia as Post-anaesthetic Sleep Inertia. Front Neurosci 2021; 15:643871. [PMID: 33737863 PMCID: PMC7960927 DOI: 10.3389/fnins.2021.643871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
"Neural inertia" is the brain's tendency to resist changes in its arousal state: it is manifested as emergence from anaesthesia occurring at lower drug doses than those required for anaesthetic induction, a phenomenon observed across very different species, from invertebrates to mammals. However, the brain is also subject to another form of inertia, familiar to most people: sleep inertia, the feeling of grogginess, confusion and impaired performance that typically follows awakening. Here, we propose a novel account of neural inertia, as the result of sleep inertia taking place after the artificial sleep induced by anaesthetics. We argue that the orexinergic and noradrenergic systems may be key mechanisms for the control of these transition states, with the orexinergic system exerting a stabilising effect through the noradrenergic system. This effect may be reflected at the macroscale in terms of altered functional anticorrelations between default mode and executive control networks of the human brain. The hypothesised link between neural inertia and sleep inertia could explain why different anaesthetic drugs induce different levels of neural inertia, and why elderly individuals and narcoleptic patients are more susceptible to neural inertia. This novel hypothesis also enables us to generate several empirically testable predictions at both the behavioural and neural levels, with potential implications for clinical practice.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Lennart R. B. Spindler
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - David K. Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Emmanuel A. Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Matzeu A, Martin-Fardon R. Cocaine-Seeking Behavior Induced by Orexin A Administration in the Posterior Paraventricular Nucleus of the Thalamus Is Not Long-Lasting: Neuroadaptation of the Orexin System During Cocaine Abstinence. Front Behav Neurosci 2021; 15:620868. [PMID: 33708078 PMCID: PMC7940839 DOI: 10.3389/fnbeh.2021.620868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/02/2021] [Indexed: 01/23/2023] Open
Abstract
Hypothalamic orexin (Orx) projections to the paraventricular nucleus of the thalamus (PVT) have received growing interest because of their role in drug-seeking behavior. Using an established model of cocaine dependence (i.e., long access [LgA] to cocaine), we previously showed that OrxA injections in the posterior PVT (pPVT) reinstated extinguished cocaine-seeking behavior in rats after an intermediate period of abstinence (2-3 weeks). Considering the long-lasting nature of drug-seeking behavior, the present study examined whether the priming effect of intra-pPVT OrxA administration was preserved after a period of protracted abstinence (4-5 weeks) in rats that self-administered cocaine under LgA conditions. Furthermore, to better understand whether a history of cocaine dependence affects the Orx system-particularly the hypothalamic Orx↔pPVT connection-the number of Orx-expressing cells in the lateral hypothalamus (LH), dorsomedial hypothalamus (DMH), and perifornical area (PFA) and number of orexin receptor 1 (OrxR1)- and OrxR2-expressing cells in the pPVT were quantified. Orexin A administration in the pPVT induced cocaine-seeking behavior after intermediate abstinence, as reported previously. At protracted abstinence, however, the priming effect of OrxA was absent. A higher number of cells that expressed Orx was observed in the LH/DMH/PFA at both intermediate and protracted abstinence. In the pPVT, the number of OrxR2-expressing cells was significantly higher only at intermediate abstinence, with no changes in the number of OrxR1-expressing cells. These data build on our previous findings that the hypothalamic Orx↔pPVT connection is strongly recruited shortly after cocaine abstinence and demonstrate that the priming effect of OrxA is not long lasting. Furthermore, these findings suggest that throughout abstinence, the Orx↔pPVT connection undergoes neuroadaptive changes, reflected by alterations of the number of OrxR2-expressing cells in the pPVT.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
29
|
Izuhara M, Miura S, Otsuki K, Nagahama M, Hayashida M, Hashioka S, Asou H, Kitagaki H, Inagaki M. Magnetic Resonance Spectroscopy in the Ventral Tegmental Area Distinguishes Responders to Suvorexant Prior to Treatment: A 4-Week Prospective Cohort Study. Front Psychiatry 2021; 12:714376. [PMID: 34497544 PMCID: PMC8419448 DOI: 10.3389/fpsyt.2021.714376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The ventral tegmental area (VTA; a dopaminergic nucleus) plays an important role in the sleep-wake regulation system including orexin system. In addition to neuronal activity, there is increasing evidence for an important role of glial cells (i.e., astrocytes and microglia) in these systems. The present study examined the utility of magnetic resonance spectroscopy (MRS) for detecting neural and/or glial changes in the VTA to distinguish responders from non-responders before treatment with the orexin receptor antagonist suvorexant. Methods: A total of 50 patients were screened and 9 patients were excluded. The remaining 41 patients with insomnia who have or not a psychiatric disease who were expected to receive suvorexant treatment were included in this study. We compared MRS signals in the VTA between responders to suvorexant and non-responders before suvorexant use. Based on previous reports, suvorexant responders were defined as patients who improved ≥3 points on the Pittsburgh Sleep Quality Index after 4 weeks of suvorexant use. MRS data included choline (reflects non-specific cell membrane breakdown, including of glial cells) and N-acetylaspartate (a decrease reflects neuronal degeneration). Results: Among 41 examined patients, 20 patients responded to suvorexant and 21 patients did not. By MRS, the choline/creatine and phosphorylcreatine ratio in the VTA was significantly high in non-responders compared with responders (p = 0.039) before suvorexant treatment. There was no difference in the N-acetylaspartate/creatine and phosphorylcreatine ratio (p = 0.297) between the two groups. Conclusions: Changes in glial viability in the VTA might be used to distinguish responders to suvorexant from non-responders before starting treatment. These findings may help with more appropriate selection of patients for suvorexant treatment in clinical practice. Further, we provide novel possible evidence for a relationship between glial changes in the VTA and the orexin system, which may aid in the development of new hypnotics focusing on the VTA and/or glial cells.
Collapse
Affiliation(s)
- Muneto Izuhara
- Department of Clinical Laboratory, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Shoko Miura
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Koji Otsuki
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Michiharu Nagahama
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Maiko Hayashida
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Sadayuki Hashioka
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hiroya Asou
- Department of Radiology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hajime Kitagaki
- Department of Radiology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Masatoshi Inagaki
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
30
|
Luppi AI, Spindler LRB, Menon DK, Stamatakis EA. The Inert Brain: Explaining Neural Inertia as Post-anaesthetic Sleep Inertia. Front Neurosci 2021; 15:643871. [PMID: 33737863 DOI: 10.3389/fnins.2021.64387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/05/2021] [Indexed: 05/20/2023] Open
Abstract
"Neural inertia" is the brain's tendency to resist changes in its arousal state: it is manifested as emergence from anaesthesia occurring at lower drug doses than those required for anaesthetic induction, a phenomenon observed across very different species, from invertebrates to mammals. However, the brain is also subject to another form of inertia, familiar to most people: sleep inertia, the feeling of grogginess, confusion and impaired performance that typically follows awakening. Here, we propose a novel account of neural inertia, as the result of sleep inertia taking place after the artificial sleep induced by anaesthetics. We argue that the orexinergic and noradrenergic systems may be key mechanisms for the control of these transition states, with the orexinergic system exerting a stabilising effect through the noradrenergic system. This effect may be reflected at the macroscale in terms of altered functional anticorrelations between default mode and executive control networks of the human brain. The hypothesised link between neural inertia and sleep inertia could explain why different anaesthetic drugs induce different levels of neural inertia, and why elderly individuals and narcoleptic patients are more susceptible to neural inertia. This novel hypothesis also enables us to generate several empirically testable predictions at both the behavioural and neural levels, with potential implications for clinical practice.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Lennart R B Spindler
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Matzeu A, Martin-Fardon R. Blockade of Orexin Receptors in the Posterior Paraventricular Nucleus of the Thalamus Prevents Stress-Induced Reinstatement of Reward-Seeking Behavior in Rats With a History of Ethanol Dependence. Front Integr Neurosci 2020; 14:599710. [PMID: 33240054 PMCID: PMC7683390 DOI: 10.3389/fnint.2020.599710] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
Neural systems involved in processing natural rewards and drugs of abuse overlap and exposure to drugs of abuse induce neuroadaptations that can cause compulsive-like behavior. For example, the recruitment of the orexin (Orx) system by drugs of abuse has been proposed to induce neuroadaptations that in turn alter its function, reflected by maladaptive, compulsive, and addictive behavior. Orexin neurons project to the paraventricular nucleus of the thalamus (PVT)—particularly the posterior part (pPVT), a structure that plays a key role in stress regulation. This study investigated whether Orx transmission in the pPVT plays a role in stress-induced reinstatement of reward-seeking behavior toward ethanol (EtOH) and a highly palatable food reward [sweetened condensed milk (SCM)] in rats and whether this role changes with EtOH dependence. After being trained to orally self-administer EtOH or SCM, the rats were made dependent (EtOHD and SCMD) by chronic intermittent EtOH vapor exposure. The control nondependent groups (EtOHND and SCMND) were exposed to air. Following extinction, the rats were tested for stress-induced reinstatement of EtOH- and SCM-seeking behavior. Stress reinstated EtOH- and SCM-seeking behavior in all groups (EtOHD/ND and SCMD/ND). Administration of the dual Orx receptor (OrxR) antagonist TCS1102 (15 μg) in the pPVT prevented stress-induced reinstatement only in dependent rats (EtOHD and SCMD). In parallel, the qPCR analysis showed that Orx mRNA expression in the hypothalamus and OrxR1/R2 mRNA expression in the pPVT were increased at the time of testing in the EtOHD and SCMD groups. These results are the first to implicate Orx transmission in the pPVT in the stress-induced reinstatement of reward-seeking behavior in EtOH dependent rats and indicate the maladaptive recruitment of Orx transmission in the pPVT by EtOH dependence.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
32
|
James MH, Fragale JE, O'Connor SL, Zimmer BA, Aston-Jones G. The orexin (hypocretin) neuropeptide system is a target for novel therapeutics to treat cocaine use disorder with alcohol coabuse. Neuropharmacology 2020; 183:108359. [PMID: 33091458 DOI: 10.1016/j.neuropharm.2020.108359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
An estimated 50-90% of individuals with cocaine use disorder (CUD) also report using alcohol. Cocaine users report coabusing alcohol to 'self-medicate' against the negative emotional side effects of the cocaine 'crash', including the onset of anxiety. Thus, pharmaceutical strategies to treat CUD would ideally reduce the motivational properties of cocaine, alcohol, and their combination, as well as reduce the onset of anxiety during drug withdrawal. The hypothalamic orexin (hypocretin) neuropeptide system offers a promising target, as orexin neurons are critically involved in activating behavioral and physiological states to respond to both positive and negative motivators. Here, we seek to describe studies demonstrating efficacy of orexin receptor antagonists in reducing cocaine, alcohol- and stress-related behaviors, but note that these studies have largely focused on each of these phenomena in isolation. For orexin-based compounds to be viable in the clinical setting, we argue that it is imperative that their efficacy be tested in animal models that account for polysubstance use patterns. To begin to examine this, we present new data showing that rats' preferred level of cocaine intake is significantly increased following chronic homecage access to alcohol. We also report that cocaine intake and motivation are reduced by a selective orexin-1 receptor antagonist when rats have a history of cocaine + alcohol, but not a limited history of cocaine alone. In light of these proof-of-principle data, we outline what we believe to be the key priorities going forward with respect to further examining the orexin system in models of polysubstance use. This article is part of the special issue on Neurocircuitry Modulating Drug and Alcohol Abuse.
Collapse
Affiliation(s)
- Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA; Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA; Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Jennifer E Fragale
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Shayna L O'Connor
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA; Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Benjamin A Zimmer
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Gary Aston-Jones
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA; Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA.
| |
Collapse
|
33
|
Zegarra‐Valdivia JA, Pignatelli J, Fernandez de Sevilla ME, Fernandez AM, Munive V, Martinez‐Rachadell L, Nuñez A, Torres Aleman I. Insulin‐like growth factor I modulates sleep through hypothalamic orexin neurons. FASEB J 2020; 34:15975-15990. [DOI: 10.1096/fj.202001281rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/30/2020] [Accepted: 09/21/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jonathan A. Zegarra‐Valdivia
- Functional and Systems Neurobiology Department Cajal Institute (CSIC) Madrid Spain
- CIBERNED Madrid Spain
- Universidad Nacional de San Agustín de Arequipa Perú
| | - Jaime Pignatelli
- Functional and Systems Neurobiology Department Cajal Institute (CSIC) Madrid Spain
- CIBERNED Madrid Spain
| | | | - Ana M. Fernandez
- Functional and Systems Neurobiology Department Cajal Institute (CSIC) Madrid Spain
- CIBERNED Madrid Spain
| | - Victor Munive
- Functional and Systems Neurobiology Department Cajal Institute (CSIC) Madrid Spain
- CIBERNED Madrid Spain
| | - Laura Martinez‐Rachadell
- Functional and Systems Neurobiology Department Cajal Institute (CSIC) Madrid Spain
- CIBERNED Madrid Spain
| | - Angel Nuñez
- Department of Anatomy, Histology and Neuroscience School of Medicine UAM Madrid Spain
| | - Ignacio Torres Aleman
- Functional and Systems Neurobiology Department Cajal Institute (CSIC) Madrid Spain
- CIBERNED Madrid Spain
| |
Collapse
|
34
|
Han Y, Yuan K, Zheng Y, Lu L. Orexin Receptor Antagonists as Emerging Treatments for Psychiatric Disorders. Neurosci Bull 2020; 36:432-448. [PMID: 31782044 PMCID: PMC7142186 DOI: 10.1007/s12264-019-00447-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Orexins comprise two neuropeptides produced by orexin neurons in the lateral hypothalamus and are released by extensive projections of these neurons throughout the central nervous system. Orexins bind and activate their associated G protein-coupled orexin type 1 receptors (OX1Rs) and OX2Rs and act on numerous physiological processes, such as sleep-wake regulation, feeding, reward, emotion, and motivation. Research on the development of orexin receptor antagonists has dramatically increased with the approval of suvorexant for the treatment of primary insomnia. In the present review, we discuss recent findings on the involvement of the orexin system in the pathophysiology of psychiatric disorders, including sleep disorders, depression, anxiety, and drug addiction. We discuss the actions of orexin receptor antagonists, including selective OX1R antagonists (SORA1s), selective OX2R antagonists (SORA2s), and dual OX1/2R antagonists (DORAs), in the treatment of these disorders based on both preclinical and clinical evidence. SORA2s and DORAs have more pronounced efficacy in the treatment of sleep disorders, whereas SORA1s may be promising for the treatment of anxiety and drug addiction. We also discuss potential challenges and opportunities for the application of orexin receptor antagonists to clinical interventions.
Collapse
Affiliation(s)
- Ying Han
- National Institute of Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yongbo Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lin Lu
- National Institute of Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
35
|
Hou Y, Liu Y, Liu C, Yan Z, Ma Q, Chen J, Zhang M, Yan Q, Li X, Chen J. Xiaoyaosan regulates depression‐related behaviors with physical symptoms by modulating Orexin A/OxR1 in the hypothalamus. Anat Rec (Hoboken) 2020; 303:2144-2153. [DOI: 10.1002/ar.24386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Yajing Hou
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Yueyun Liu
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Chenyue Liu
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Zhiyi Yan
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Qingyu Ma
- Formula‐pattern Research Center, School of Traditional Chinese Medicine Jinan University Guangzhou Guangdong China
| | - Jianbei Chen
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Man Zhang
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Qiuying Yan
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
| | - Xiaojuan Li
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
- Formula‐pattern Research Center, School of Traditional Chinese Medicine Jinan University Guangzhou Guangdong China
| | - Jiaxu Chen
- School of Traditional Chinese Medicine Beijing University of Chinese Medicine Beijing China
- Formula‐pattern Research Center, School of Traditional Chinese Medicine Jinan University Guangzhou Guangdong China
| |
Collapse
|
36
|
Zarrabian S, Riahi E, Karimi S, Razavi Y, Haghparast A. The potential role of the orexin reward system in future treatments for opioid drug abuse. Brain Res 2020; 1731:146028. [DOI: 10.1016/j.brainres.2018.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022]
|
37
|
Han D, Han F, Shi Y, Zheng S, Wen L. Mechanisms of Memory Impairment Induced by Orexin-A via Orexin 1 and Orexin 2 Receptors in Post-traumatic Stress Disorder Rats. Neuroscience 2020; 432:126-136. [PMID: 32112915 DOI: 10.1016/j.neuroscience.2020.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Post-traumatic stress disorder (PTSD) patients exhibit abnormal learning and memory. Axons from orexin neurons in the lateral hypothalamus innervate the hippocampus, modulating learning and memory via the orexin 1 and 2 receptors (OX1R and OX2R). However, the role of the orexin system in the learning and memory dysfunction observed in PTSD is unknown. This was investigated in the present study using PTSD animal model-single prolonged stress (SPS) rats. Spatial learning and memory in the rats were evaluated with the Morris water maze (MWM) test; changes in body weight and food intake were recorded to assess changes in appetite; and the expression of orexin-A and its receptors in the hypothalamus and hippocampus was examined and quantified by immunohistochemistry, western blotting and real-time PCR. The results showed that spatial memory was impaired and food intake was decreased in SPS rats; this was accompanied by downregulation of orexin-A in the hypothalamus and upregulation of OX1R and OX2R in the hippocampus and of OX1R in the hypothalamus. Intracerebroventricular administration of orexin-A improved spatial memory and enhanced appetite in SPS rats and partly reversed the increases in OX1R and OX2R levels in the hippocampus and hypothalamus. These results suggest that the orexin system plays a critical role in the memory and appetite dysfunction observed in PTSD.
Collapse
Affiliation(s)
- Dan Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China; Department of Neonatology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping Area, Shenyang, PR China
| | - Fang Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| | - Shilei Zheng
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Lili Wen
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| |
Collapse
|
38
|
Riemann D, Krone LB, Wulff K, Nissen C. Sleep, insomnia, and depression. Neuropsychopharmacology 2020; 45:74-89. [PMID: 31071719 PMCID: PMC6879516 DOI: 10.1038/s41386-019-0411-y] [Citation(s) in RCA: 343] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/23/2022]
Abstract
Since ancient times it is known that melancholia and sleep disturbances co-occur. The introduction of polysomnography into psychiatric research confirmed a disturbance of sleep continuity in patients with depression, revealing not only a decrease in Slow Wave Sleep, but also a disinhibition of REM (rapid eye movement) sleep, demonstrated as a shortening of REM latency, an increase of REM density, as well as total REM sleep time. Initial hopes that these abnormalities of REM sleep may serve as differential-diagnostic markers for subtypes of depression were not fulfilled. Almost all antidepressant agents suppress REM sleep and a time-and-dose-response relationship between total REM sleep suppression and therapeutic response to treatment seemed apparent. The so-called Cholinergic REM Induction Test revealed that REM sleep abnormalities can be mimicked by administration of cholinomimetic agents. Another important research avenue is the study of chrono-medical timing of sleep deprivation and light exposure for their positive effects on mood in depression. Present day research takes the view on insomnia, i.e., prolonged sleep latency, problems to maintain sleep, and early morning awakening, as a transdiagnostic symptom for many mental disorders, being most closely related to depression. Studying insomnia from different angles as a transdiagnostic phenotype has opened many new perspectives for research into mechanisms but also for clinical practice. Thus, the question is: can the early and adequate treatment of insomnia prevent depression? This article will link current understanding about sleep regulatory mechanisms with knowledge about changes in physiology due to depression. The review aims to draw the attention to current and future strategies in research and clinical practice to the benefits of sleep and depression therapeutics.
Collapse
Affiliation(s)
- Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Lukas B Krone
- Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Katharina Wulff
- Departments of Radiation Sciences & Molecular Biology, Umea University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umea University, Umeå, Sweden
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| |
Collapse
|
39
|
Yamamoto K, Motokawa K, Yoshizaki T, Yano T, Hirano H, Ohara Y, Shirobe M, Inagaki H, Awata S, Shinkai S, Watanabe Y. Association of Dietary Variety and Appetite with Sleep Quality in Urban-Dwelling Older Japanese Adults. J Nutr Health Aging 2020; 24:152-159. [PMID: 32003404 DOI: 10.1007/s12603-019-1297-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Although it has been shown that specific foods and nutrients are associated with sleep quality, few studies have examined the association of dietary variety and appetite with sleep quality in older adults. DESIGN AND SETTING A cross-sectional study was conducted that examined the association of dietary variety and appetite with sleep quality in Japanese adults aged ≥70 years who resided in the metropolitan area of Tokyo, Japan. PARTICIPANTS Data were collected in two steps: a mailed interview survey and an on-site survey. Those who responded to the surveys and met the inclusion criteria were included. MEASUREMENTS Dietary variety, appetite, and sleep quality were assessed using a Dietary Variety Score (DVS), Council on Nutrition Appetite Questionnaire (CNAQ) score, and sleep efficiency, respectively. The sleep efficiency is the ratio of sleep duration to total time in bed (retiring time-awakening time). We defined the individuals with a sleep efficiency less than 75% as having poor sleep quality. RESULTS Mean DVS and CNAQ score were 3.8 and 29.6 points, respectively. The rate of individuals with poor sleep quality was 11.7%. In the fully adjusted model, the odds ratios (OR) for low sleep efficiency in the middle and highest group categories of the DVS were 0.83 (95% confidence interval [CI], 0.54-1.29) and 0.50 (95% CI, 0.28-0.90), respectively, in reference to the lowest group category (p for trend = 0.023). The OR for low sleep efficiency in the middle and highest group categories of the CNAQ score were 0.73 (95% CI, 0.47-1.14) and 0.54 (95% CI, 0.30-0.96), respectively, in reference to the lowest group category (p for trend = 0.031). CONCLUSIONS The higher DVS and CNAQ scores were significantly associated with higher sleep efficiency. Thus, dietary variety and good appetite might help maintain good sleep quality in urban-dwelling older Japanese adults.
Collapse
Affiliation(s)
- K Yamamoto
- Keiko Motokawa, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; Tel: +81-3-3964-1141 (ext. 4213); Fax: +81-3-3964-2316; E-mail:
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Liu M, Min T, Zhang H, Liu Y, Wang Z. Pharmacological Characteristics of Porcine Orexin 2 Receptor and Mutants. Front Endocrinol (Lausanne) 2020; 11:132. [PMID: 32296386 PMCID: PMC7136461 DOI: 10.3389/fendo.2020.00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/27/2020] [Indexed: 11/13/2022] Open
Abstract
Orexin receptors (OXRs) play a critical regulatory role in central control of food intake, maintenance of sleeping states, energy metabolism, and neuroendocrine homeostasis. However, most previous studies have focused on the sleep-promoting functions of OXRs in human beings, while their potential value in enhancing food intake for livestock breeding has not been fully exploited. In this study, we successfully cloned porcine orexin 2 receptor (pOX2R) complementary DNA and constructed four pOX2R mutants (P10S, P11T, V308I, and T401I) by site-directed mutagenesis, and their functional expressions were further confirmed through Western blotting analysis. Pharmacological characteristics of pOX2R and their mutants were further investigated. These results showed that the P10S, P11T, and T401I mutants had decreased cAMP signaling with orexin A, whereas only the P11T mutant decreased under the stimulation of orexin B. Besides, only P10S displayed a decreased calcium release in response to both orexin ligands. Importantly, these mutants exhibited decreased phosphorylation levels of ERK1/2, p38, and CREB to some degree compared with wild-type pOX2R. Collectively, these findings highlight the critical role of these mutations in pOX2R signaling and expand our understanding of molecular and pharmacological characterization of pOX2R.
Collapse
Affiliation(s)
- Min Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tianqi Min
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Haijie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- *Correspondence: Yuan Liu
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Zhiqiang Wang
| |
Collapse
|
41
|
Sani TP, Bond RL, Marshall CR, Hardy CJ, Russell LL, Moore KM, Slattery CF, Paterson RW, Woollacott IO, Wendi IP, Crutch SJ, Schott JM, Rohrer JD, Eriksson SH, Dijk DJ, Warren JD. Sleep symptoms in syndromes of frontotemporal dementia and Alzheimer's disease: A proof-of-principle behavioural study. eNeurologicalSci 2019; 17:100212. [PMID: 31828228 PMCID: PMC6889070 DOI: 10.1016/j.ensci.2019.100212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/04/2019] [Accepted: 10/28/2019] [Indexed: 11/17/2022] Open
Abstract
Sleep is a key concern in dementias but their sleep phenotypes are not well defined. We addressed this issue in major FTD and AD syndromes versus healthy older controls. We surveyed sleep duration, quality and disruptive events, and daytime somnolence. Sleep symptoms were frequent in FTD and AD and distinguished these diseases. Sleep disturbance is an important clinical issue across major FTD and AD syndromes.
Sleep disruption is a key clinical issue in the dementias but the sleep phenotypes of these diseases remain poorly characterised. Here we addressed this issue in a proof-of-principle study of 67 patients representing major syndromes of frontotemporal dementia (FTD) and Alzheimer’s disease (AD), in relation to 25 healthy older individuals. We collected reports on clinically-relevant sleep characteristics - time spent overnight in bed, sleep quality, excessive daytime somnolence and disruptive sleep events. Difficulty falling or staying asleep at night and excessive daytime somnolence were significantly more frequently reported for patients with both FTD and AD than healthy controls. On average, patients with FTD and AD retired earlier and patients with AD spent significantly longer in bed overnight than did healthy controls. Excessive daytime somnolence was significantly more frequent in the FTD group than the AD group; AD syndromic subgroups showed similar sleep symptom profiles while FTD subgroups showed more variable profiles. Sleep disturbance is a significant clinical issue in major FTD and AD variant syndromes and may be even more salient in FTD than AD. These preliminary findings warrant further systematic investigation with electrophysiological and neuroanatomical correlation in major proteinopathies.
Collapse
Affiliation(s)
- Tara P. Sani
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
- Neurology Department, Faculty of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Rebecca L. Bond
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Charles R. Marshall
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
- Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Chris J.D. Hardy
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Lucy L. Russell
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Katrina M. Moore
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Catherine F. Slattery
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Ross W. Paterson
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Ione O.C. Woollacott
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Indra Putra Wendi
- Department of Chemistry and Biochemistry, Faculty of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Sebastian J. Crutch
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Jonathan M. Schott
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Jonathan D. Rohrer
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Sofia H. Eriksson
- Department of Clinical and Experiential Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, UK
- Dementia Research Institute, UK
| | - Jason D. Warren
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
- Corresponding author at: Dementia Research Centre, UCL Institute of Neurology, University College London, London WC1N 3BG, UK.
| |
Collapse
|
42
|
Montagrin A, Martins-Klein B, Sander D, Mather M. Effects of hunger on emotional arousal responses and attention/memory biases. ACTA ACUST UNITED AC 2019; 21:148-158. [PMID: 31589063 DOI: 10.1037/emo0000680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this study, we examined how emotional arousal interacts with hunger states and the processing of food stimuli. In general, arousal enhances the processing of high-priority information at the expense of lower priority information (Mather & Sutherland, 2011). Because food has been a biologically relevant stimulus in primates throughout evolution, detecting it in the environment and remembering its location has high priority. In our study, inducing arousal enhanced attention to subsequent food stimuli. In addition, we manipulated whether participants were hungry or sated to examine how hunger states would influence emotional processing. Previous research reveals that being hungry is associated with increases in norepinephrine, a key neurotransmitter involved in the arousal response. We found that, when sated, participants showed greater pupil dilation to emotional than neutral stimuli. In contrast, when hungry, pupil dilation responses were as strong to neutral as to emotional stimuli. Thus, when hungry, participants were less effective at differentiating the intensity of arousal responses to emotional versus neutral stimuli because of high arousal responses to neutral stimuli. Memory for food stimuli was enhanced compared with memory for nonfood stimuli for all participants but especially for hungry participants. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Alison Montagrin
- Department of Psychology, Swiss Center for Affective Sciences, University of Geneva
| | - Bruna Martins-Klein
- Department of Psychological and Brain Sciences, University of Massachusetts-Amherst
| | | | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California
| |
Collapse
|
43
|
Ni P, Tian Y, Gu X, Yang L, Wei J, Wang Y, Zhao L, Zhang Y, Zhang C, Li L, Tang X, Ma X, Hu X, Li T. Plasma neuropeptides as circulating biomarkers of multifactorial schizophrenia. Compr Psychiatry 2019; 94:152114. [PMID: 31401216 DOI: 10.1016/j.comppsych.2019.152114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Promising biomarkers would be used to improve the determination of diagnosis and severity, as well as the prediction of symptomatic and functional outcomes of schizophrenia. BASIC PROCEDURES In this study, we used three different mouse models induced by a genetic factor (PV-Cre; ErbB4-/-, G group), an environmental stressor (adolescent social isolation, G group), and a combination of genetic factor and environmental stressor (PV-Cre; ErbB4-/- mice with isolation, G × E group). Attenuated PPI (%) confirmed the successful establishment of three schizophrenia-like mouse models. To evaluate whether neuropeptide levels in plasma would be potential biomarkers of different schizophrenia models in our work, we used MILLIPLEX® MAP method to simultaneously measure 6 critical neuropeptides in plasma. MAIN FINDINGS Among the evaluated neuropeptides, increased neurotensin tends to be associated with genetic factors of schizophrenia, increased orexin A seems to be a biomarker of an interplay between genetic and social isolation, while higher plasma oxytocin might be more apt to be responsive to social isolation. The potential biomarkers are mostly independent of sex. CONCLUSIONS This research would provide novel clues to develop circulating biomarkers of plasma neuropeptides for multifactorial schizophrenia.
Collapse
Affiliation(s)
- Peiyan Ni
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Yang Tian
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Xiaochu Gu
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Clinical Laboratory, Suzhou Psychiatric Hospital, Suzhou, PR China
| | - Linghui Yang
- The Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jinxue Wei
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Yingcheng Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Yamin Zhang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Chengcheng Zhang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Liping Li
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Xiangdong Tang
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China; Sleep Medicine Center, Mental Health Center, and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China
| | - Xun Hu
- Biobank, West China Hospital, Sichuan University, Chengdu, PR China
| | - Tao Li
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, PR China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, PR China.
| |
Collapse
|
44
|
Kakizaki M, Tsuneoka Y, Takase K, Kim SJ, Choi J, Ikkyu A, Abe M, Sakimura K, Yanagisawa M, Funato H. Differential Roles of Each Orexin Receptor Signaling in Obesity. iScience 2019; 20:1-13. [PMID: 31546102 PMCID: PMC6817686 DOI: 10.1016/j.isci.2019.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/04/2019] [Accepted: 09/03/2019] [Indexed: 02/04/2023] Open
Abstract
Orexins are hypothalamic neuropeptides that regulate feeding, energy expenditure, and sleep. Although orexin-deficient mice are susceptible to obesity, little is known about the roles of the orexin receptors in long-term energy metabolism. Here, we performed the metabolic characterization of orexin receptor-deficient mice. Ox1r-deficient mice were resistant to diet-induced obesity, and their food intake was similar between chow and high-fat food. Ox2r-deficient mice exhibited less energy expenditure than wild-type mice when fed a high-fat diet. Neither Ox1r-deficient nor Ox2r-deficient mice showed body weight gain similar to orexin-deficient mice. Although the presence of a running wheel suppressed diet-induced obesity in wild-type mice, the effect was weaker in orexin neuron-ablated mice. Finally, we did not detect abnormalities in brown adipose tissues of orexin-deficient mice. Thus, each orexin receptor signaling has a unique role in energy metabolism, and orexin neurons are involved in the interactive effect of diet and exercise on body weight gain. Food intakes of Ox1r-deficient mice are similar between chow and high-fat food Ox2r-deficient mice exhibit less energy expenditure when fed a high-fat diet Orexin neurons are involved in the interactive effect of diet and exercise Orexin-deficient mice have normal brown adipose tissue
Collapse
Affiliation(s)
- Miyo Kakizaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
| | - Kenkichi Takase
- Department of Anatomy, Faculty of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan; Laboratory of Psychology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Staci J Kim
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Jinhwan Choi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Aya Ikkyu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, 305-8575 Ibaraki, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Anatomy, Faculty of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan.
| |
Collapse
|
45
|
Cabanas M, Pistono C, Puygrenier L, Rakesh D, Jeantet Y, Garret M, Cho YH. Neurophysiological and Behavioral Effects of Anti-Orexinergic Treatments in a Mouse Model of Huntington's Disease. Neurotherapeutics 2019; 16:784-796. [PMID: 30915710 PMCID: PMC6694444 DOI: 10.1007/s13311-019-00726-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Huntington's disease (HD) is associated with sleep and circadian disturbances in addition to hallmark motor and cognitive impairments. Electrophysiological studies on HD mouse models have revealed an aberrant oscillatory activity at the beta frequency, during sleep, that is associated with HD pathology. Moreover, HD animal models display an abnormal sleep-wake cycle and sleep fragmentation. In this study, we investigated a potential involvement of the orexinergic system dysfunctioning in sleep-wake and circadian disturbances and abnormal network (i.e., beta) activity in the R6/1 mouse model. We found that the age at which orexin activity starts to deviate from normal activity pattern coincides with that of sleep disturbances as well as the beta activity. We also found that acute administration of Suvorexant, an orexin 1 and orexin 2 receptor antagonist, was sufficient to decrease the beta power significantly and to improve sleep in R6/1 mice. In addition, a 5-day treatment paradigm alleviated cognitive deficits and induced a gain of body weight in female HD mice. These results suggest that restoring normal activity of the orexinergic system could be an efficient therapeutic solution for sleep and behavioral disturbances in HD.
Collapse
Affiliation(s)
- Magali Cabanas
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, CNRS UMR 5287, Allee Geoffroy St Hilaire, CS 50023, 33615, Pessac Cedex, France
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, University of Bordeaux, Bordeaux, France
| | - Cristiana Pistono
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, CNRS UMR 5287, Allee Geoffroy St Hilaire, CS 50023, 33615, Pessac Cedex, France
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, University of Bordeaux, Bordeaux, France
| | - Laura Puygrenier
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, CNRS UMR 5287, Allee Geoffroy St Hilaire, CS 50023, 33615, Pessac Cedex, France
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, University of Bordeaux, Bordeaux, France
| | - Divyangana Rakesh
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, CNRS UMR 5287, Allee Geoffroy St Hilaire, CS 50023, 33615, Pessac Cedex, France
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, University of Bordeaux, Bordeaux, France
| | - Yannick Jeantet
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, CNRS UMR 5287, Allee Geoffroy St Hilaire, CS 50023, 33615, Pessac Cedex, France
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, University of Bordeaux, Bordeaux, France
| | - Maurice Garret
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, CNRS UMR 5287, Allee Geoffroy St Hilaire, CS 50023, 33615, Pessac Cedex, France
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, University of Bordeaux, Bordeaux, France
| | - Yoon H Cho
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, CNRS UMR 5287, Allee Geoffroy St Hilaire, CS 50023, 33615, Pessac Cedex, France.
- Institute of Cognitive and Integrative Neuroscience of Aquitaine, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
46
|
Walker WH, Borniger JC. Molecular Mechanisms of Cancer-Induced Sleep Disruption. Int J Mol Sci 2019; 20:E2780. [PMID: 31174326 PMCID: PMC6600154 DOI: 10.3390/ijms20112780] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Sleep is essential for health. Indeed, poor sleep is consistently linked to the development of systemic disease, including depression, metabolic syndrome, and cognitive impairments. Further evidence has accumulated suggesting the role of sleep in cancer initiation and progression (primarily breast cancer). Indeed, patients with cancer and cancer survivors frequently experience poor sleep, manifesting as insomnia, circadian misalignment, hypersomnia, somnolence syndrome, hot flushes, and nightmares. These problems are associated with a reduction in the patients' quality of life and increased mortality. Due to the heterogeneity among cancers, treatment regimens, patient populations and lifestyle factors, the etiology of cancer-induced sleep disruption is largely unknown. Here, we discuss recent advances in understanding the pathways linking cancer and the brain and how this leads to altered sleep patterns. We describe a conceptual framework where tumors disrupt normal homeostatic processes, resulting in aberrant changes in physiology and behavior that are detrimental to health. Finally, we discuss how this knowledge can be leveraged to develop novel therapeutic approaches for cancer-associated sleep disruption, with special emphasis on host-tumor interactions.
Collapse
Affiliation(s)
- William H Walker
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA.
| | - Jeremy C Borniger
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
47
|
Cengiz M, Karaj V, Kocabasoğlu N, Gozubatik-Celik G, Dirican A, Bayoglu B. Orexin/hypocretin receptor, Orx1, gene variants are associated with major depressive disorder. Int J Psychiatry Clin Pract 2019; 23:114-121. [PMID: 30596528 DOI: 10.1080/13651501.2018.1551549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective: Orexins (hypocretins) are neuropeptides expressed in hypothalamic neurons and have regulatory roles in feeding/drinking behaviours, endocrine functions and sleep/wakefulness state. Major depressive disorder (MDD) is a major mood disorder and neurotransmitter dysfunction in hypothalamic neurons may have roles in its formation. Hence, we conducted experiments to determine whether orexin receptor 1 and 2 (Orx1, Orx2) genes were associated with MDD development. Methods: Seventy-five MDD patients and 87 healthy controls were enrolled for the study. Genotyping was carried out with real-time polymerase chain reaction (RT-PCR). Hamilton Rating-Scale for Depression (HRSD) and Beck Depression Inventory (BDI) were utilized to evaluate depressive symptom severity. Results: A significant relation was found in genotype frequencies of Orx1 rs10914456 and rs2271933 variants between MDD patients and controls (p = .009, p = .006). Rs10914456 CC genotype increased MDD risk 3.57 times more than carrying other genotypes (p = .008, OR =3.57;95% CI: 1.39-9.14). However, no association was observed in Orx2 rs2653349 genotypes for MDD development (p > .05). Although statistically not significant, HRSD scores were diminished in MDD subjects carrying rs10914456 CC variants when compared with CT and TT variants (p = .069). Conclusion. This study suggests that, Orx1 rs10914456 and rs2271933 can be associated with MDD development. Hence, Orx1 rs10914456 variants may affect depressive symptom severity.
Collapse
Affiliation(s)
- Mujgan Cengiz
- a Department of Medical Biology, Cerrahpasa Medical Faculty , Istanbul University-Cerrahpasa , Istanbul , Turkey
| | - Vilson Karaj
- b Department of Science, Institute of Forensic Sciences , Istanbul University-Cerrahpasa , Istanbul , Turkey
| | - Nese Kocabasoğlu
- c Department of Psychiatry, Cerrahpasa Medical Faculty , Istanbul University-Cerrahpasa , Istanbul , Turkey
| | - Gokcen Gozubatik-Celik
- d Department of Neurology, Cerrahpasa Medical Faculty , Istanbul University-Cerrahpasa , Istanbul , Turkey
| | - Ahmet Dirican
- e Department of Biostatistics and Medical Informatics, Istanbul Medical Faculty , Istanbul University , Istanbul , Turkey
| | - Burcu Bayoglu
- a Department of Medical Biology, Cerrahpasa Medical Faculty , Istanbul University-Cerrahpasa , Istanbul , Turkey
| |
Collapse
|
48
|
Gołyszny M, Obuchowicz E. Are neuropeptides relevant for the mechanism of action of SSRIs? Neuropeptides 2019; 75:1-17. [PMID: 30824124 DOI: 10.1016/j.npep.2019.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/08/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are drugs of first choice in the therapy of moderate to severe depression and anxiety disorders. Their primary mechanism of action is via influence of the serotonergic (5-HT) system, but a growing amount of data provides evidence for other non-monoaminergic players in SSRI effects. It is assumed that neuropeptides, which play a role as neuromodulators in the CNS, are involved in their mechanism of action. In this review we focus on six neuropeptides: corticotropin-releasing factor - CRF, galanin - GAL, oxytocin - OT, vasopressin - AVP, neuropeptide Y - NPY, and orexins - OXs. First, information about their roles in depression and anxiety disorders are presented. Then, findings describing their interactions with the 5-HT system are summarized. These data provide background for analysis of the results of published preclinical and clinical studies related to SSRI effects on the neuropeptide systems. We also report findings showing how modulation of neuropeptide transmission influences behavioral and neurochemical effects of SSRIs. Finally, future research necessary for enriching our knowledge of SSRI mechanisms of action is proposed. Recognition of new molecular targets for antidepressants will have a significant effect on the development of novel therapeutic strategies for mood-related disorders.
Collapse
Affiliation(s)
- Miłosz Gołyszny
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland
| | - Ewa Obuchowicz
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland.
| |
Collapse
|
49
|
Ferrucci M, Limanaqi F, Ryskalin L, Biagioni F, Busceti CL, Fornai F. The Effects of Amphetamine and Methamphetamine on the Release of Norepinephrine, Dopamine and Acetylcholine From the Brainstem Reticular Formation. Front Neuroanat 2019; 13:48. [PMID: 31133823 PMCID: PMC6524618 DOI: 10.3389/fnana.2019.00048] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
Amphetamine (AMPH) and methamphetamine (METH) are widely abused psychostimulants, which produce a variety of psychomotor, autonomic and neurotoxic effects. The behavioral and neurotoxic effects of both compounds (from now on defined as AMPHs) stem from a fair molecular and anatomical specificity for catecholamine-containing neurons, which are placed in the brainstem reticular formation (RF). In fact, the structural cross-affinity joined with the presence of shared molecular targets between AMPHs and catecholamine provides the basis for a quite selective recruitment of brainstem catecholamine neurons following AMPHs administration. A great amount of investigations, commentary manuscripts and books reported a pivotal role of mesencephalic dopamine (DA)-containing neurons in producing behavioral and neurotoxic effects of AMPHs. Instead, the present review article focuses on catecholamine reticular neurons of the low brainstem. In fact, these nuclei add on DA mesencephalic cells to mediate the effects of AMPHs. Among these, we also include two pontine cholinergic nuclei. Finally, we discuss the conundrum of a mixed neuronal population, which extends from the pons to the periaqueductal gray (PAG). In this way, a number of reticular nuclei beyond classic DA mesencephalic cells are considered to extend the scenario underlying the neurobiology of AMPHs abuse. The mechanistic approach followed here to describe the action of AMPHs within the RF is rooted on the fine anatomy of this region of the brainstem. This is exemplified by a few medullary catecholamine neurons, which play a pivotal role compared with the bulk of peripheral sympathetic neurons in sustaining most of the cardiovascular effects induced by AMPHs.
Collapse
Affiliation(s)
- Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
50
|
The role of hormonal, metabolic and inflammatory biomarkers on sleep and appetite in drug free patients with major depression: A systematic review. J Affect Disord 2019; 250:249-259. [PMID: 30870775 DOI: 10.1016/j.jad.2019.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/30/2019] [Accepted: 03/03/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is a complex and heterogeneous disorder in which clinical symptoms can widely differ among patients. Neurovegetative symptoms, i.e. decreased or increased appetite, changes in body weight and sleep disturbances, described as 'melancholic' or 'atypical' features of a depressive episode, are the most variable symptoms among patients with MDD. We hypothesized biomarkers differences underlying this neurovegetative variability in major depression. METHODS We systematically reviewed, according to the PRISMA guidelines, the role of specific metabolic, hormonal and inflammatory biomarkers in drug-free MDD patients, that could have neurobiological effects on appetite, weight regulation and circadian rhythms, influencing eating behaviour and sleep patterns. All studies regarding the co-occurrence of disturbed sleep and appetite were examined. RESULTS Besides the well-known leptin and ghrelin, other biomarkers such as BDNF, VEGF, NPY, orexin, and the recent discovered nesfatin-1 seem to be involved in neurovegetative changes in depressive disorders playing a role in the regulation of affective states, stress reactions and sleep patterns. Interestingly, based on the existing evidence, ghrelin, orexin and nesfatin-1 could be linked both to sleep and appetite regulation in depressed patients. LIMITATIONS Heterogeneous studies with low sample size. CONCLUSIONS Despite the wide heterogeneity of results, studies on biomarkers of appetite and sleep in MDD are an interesting field of research to explain the neurobiological substrates of depressive symptoms that deserve further investigation.
Collapse
|