1
|
Li Y, Lv J, Liu S, Wang Z, Gao Y, Fan Z, Huang L, Cui J, Zhang B, Liu X, Zhang Z, Liu T, Li D, Yang M. Macrophage corpses for immunoregulation and targeted drug delivery in treatment of collagen-induced arthritis mice. Biomaterials 2025; 314:122867. [PMID: 39366181 DOI: 10.1016/j.biomaterials.2024.122867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/12/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
The role of pro-inflammatory macrophages (M1) in rheumatoid arthritis (RA) is significant, as they produce excessive cytokines. Targeting efferocytosis is a potential manner to repolarize M1 macrophages into pro-resolving M2 phenotype, which restores immune homeostasis by releasing anti-inflammatory mediators. In this study, liquid nitrogen-treated dead macrophages (DM) are employed to act as a dead cell-derived active targeted drug carrier for shikonin (SHK) and induce efferocytosis in M1 macrophages with the enhancement of SHK as an AMP-activated protein kinase (AMPK)-activator. The synergistic activation of AMPK leads to uncoupled protein 2 (UCP2) upregulation and reprograms M1 macrophages into M2 phenotypes by promoting oxidative phosphorylation. In the mouse model of collagen-induced arthritis, the intravenous administration of DM/SHK leads to a consistent transformation of M1 macrophages into the M2 phenotype within the infiltrative synovium. This transformation of macrophages results in the restoration of immune homeostasis in the synovium through an increase in the production of pro-resolving mediators. Additionally, it inhibits synovial proliferation and infiltration and provides protection against erosion of cartilage and bone. In summary, LNT-based DM serves as an active targeting drug carrier to M1 macrophages and also acts synergistically with SHK to target immunometabolism.
Collapse
Affiliation(s)
- Yuhuan Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiayin Lv
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Shuchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zhuoran Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yu Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zheyuan Fan
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lei Huang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Boya Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Xinchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zhuo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China; Yibin Jilin University Research Institute, Jilin University, Yibin, Sichuan, China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China.
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
2
|
Waqar MA. A comprehensive review on recent advancements in drug delivery via selenium nanoparticles. J Drug Target 2024:1-14. [PMID: 39392210 DOI: 10.1080/1061186x.2024.2412142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 10/12/2024]
Abstract
Nanotechnology has significantly impacted drug discovery and development over the past three decades, offering novel insights and expanded treatment options. Key to this field is nanoparticles, ranging from 1 to 100 nanometres, with unique properties distinct from larger materials. Selenium nanoparticles (SeNPs) are particularly promising due to their low toxicity and selective cytotoxicity against cancer cells. They have shown efficacy in reducing various cancers types and mitigating conditions like diabetic nephropathy and neurological disorders, such as Alzheimer's disease. This review highlights SeNPs' role in enhancing drug delivery systems, improving the absorption of water-soluble compounds, proteins, peptides, vaccines, and other biological therapies. By modifying nanoparticle surfaces with targeting ligands, drug delivery can achieve precise site-specific delivery, increasing effectiveness. SeNPs can be synthesised through physical, chemical, and biological methods, each offering advantages in stability, size, and application potential. Additionally, SeNPs enhance immune responses and reduce oxidative stress, validating their role in biotherapy and nanomedicine. Their ability to target macrophages and regulate polarisation underscores their potential in antimicrobial therapies. Recent advancements, such as mannosylated SeNPs for targeted delivery, exemplify innovative nanotechnology applications in medicine. Overall, SeNPs represent a promising frontier in nanomedicine, offering new avenues for treating and managing various diseases.
Collapse
Affiliation(s)
- Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| |
Collapse
|
3
|
Mohaghegh N, Ahari A, Buttles C, Davani S, Hoang H, Huang Q, Huang Y, Hosseinpour B, Abbasgholizadeh R, Cottingham AL, Farhadi N, Akbari M, Kang H, Khademhosseini A, Jucaud V, Pearson RM, Hassani Najafabadi A. Simvastatin-Loaded Polymeric Nanoparticles: Targeting Inflammatory Macrophages for Local Adipose Tissue Browning in Obesity Treatment. ACS NANO 2024; 18:27764-27781. [PMID: 39342648 DOI: 10.1021/acsnano.4c10742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Obesity is defined as chronic, low-grade inflammation within specific tissues. Given the escalating prevalence of obesity among individuals of all ages, obesity has reached epidemic proportions, posing an important public health challenge. Despite significant advancements in treating obesity, conventional approaches remain largely ineffective or involve severe side effects, thus underscoring the pressing need to explore and develop treatment approaches. Targeted and local immunomodulation using nanoparticles (NPs) can influence fat production and utilization processes. Statins, known for their anti-inflammatory properties, show the potential for mitigating obesity-related inflammation. A localized delivery option offers several advantages over oral and parenteral delivery methods. Here, we developed simvastatin (Sim) encapsulated within PLGA NPs (Sim-NP) for localized delivery of Sim to adipose tissues (ATs) for immunomodulation to treat obesity. In vitro experiments revealed the strong anti-inflammatory effects of Sim-NPs, which resulted in enhanced modulation of macrophage (MΦ) polarization and induction of AT browning. We then extended our investigation to an in vivo mouse model of high-fat-diet (HFD)-induced obesity. Sim-NP administration led to the controlled release of Sim within AT, directly impacting MΦ activity and inducing AT browning while inducing weight loss. Our findings demonstrated that Sim-NP administration effectively inhibited the progression of obesity-related inflammation, controlled white fat production, and enhanced AT modulation. These results highlight the potential of Sim-NP as a potent nanotherapy for treating obesity by modulating the immune system.
Collapse
Affiliation(s)
- Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Amir Ahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Surgery, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Claire Buttles
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Saya Davani
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Briggs Hall, Davis, California 95616, United States
| | - Hanna Hoang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90024, United States
| | - Qiang Huang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Yixuan Huang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Bahareh Hosseinpour
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Reza Abbasgholizadeh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Andrea L Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Neda Farhadi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Gliwice 44-100, Poland
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | | |
Collapse
|
4
|
Henni Mansour AS, Ragues M, Brevier J, Borowczyk C, Grevelinger J, Laroche-Traineau J, Garaude J, Marais S, Jacobin-Valat MJ, Gerbaud E, Clofent-Sanchez G, Ottones F. Phenotypic, Metabolic, and Functional Characterization of Experimental Models of Foamy Macrophages: Toward Therapeutic Research in Atherosclerosis. Int J Mol Sci 2024; 25:10146. [PMID: 39337629 PMCID: PMC11432604 DOI: 10.3390/ijms251810146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Different types of macrophages (Mφ) are involved in atherogenesis, including inflammatory Mφ and foamy Mφ (FM). Our previous study demonstrated that two-photon excited fluorescence (TPEF) imaging of NADH and FAD autofluorescence (AF) could distinguish experimental models that mimic the different atherosclerotic Mφ types. The present study assessed whether optical differences correlated with phenotypic and functional differences, potentially guiding diagnostic and therapeutic strategies. Phenotypic differences were investigated using three-dimensional principal component analysis and multi-color flow cytometry. Functional analyses focused on cytokine production, metabolic profiles, and cellular oxidative stress, in LDL dose-dependent assays, to understand the origin of AF in the FAD spectrum and assess FM ability to transition toward an immunoregulatory phenotype and function. Phenotypic studies revealed that FM models generated with acetylated LDL (Mac) were closer to immunoregulatory Mφ, while those generated with oxidized LDL (Mox) more closely resembled inflammatory Mφ. The metabolic analysis confirmed that inflammatory Mφ primarily used glycolysis, while immunoregulatory Mφ mainly depended on mitochondrial respiration. FM models employed both pathways; however, FM models generated with high doses of modified LDL showed reduced mitochondrial respiration, particularly Mox FM. Thus, the high AF in the FAD spectrum in Mox was not linked to increased mitochondrial respiration, but correlated with the dose of oxidized LDL, leading to increased production of reactive oxygen species (ROS) and lysosomal ceroid accumulation. High FAD-like AF, ROS, and ceroid accumulation were reduced by incubation with α-tocopherol. The cytokine profiles supported the phenotypic analysis, indicating that Mox FM exhibited greater inflammatory activity than Mac FM, although both could be redirected toward immunoregulatory functions, albeit to different degrees. In conclusion, in the context of immunoregulatory therapies for atherosclerosis, it is crucial to consider FM, given their prevalence in plaques and our results, as potential targets, regardless of their inflammatory status, alongside non-foamy inflammatory Mφ.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sébastien Marais
- Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33000 Bordeaux, France
| | | | - Edouard Gerbaud
- Centre de Recherche Cardio Thoracique, INSERM U 1045, 33000 Bordeaux, France
| | | | | |
Collapse
|
5
|
Romaní-Pérez M, López-Almela I, Bullich-Vilarrubias C, Evtoski Z, Benítez-Páez A, Sanz Y. Bacteroides uniformis CECT 7771 requires adaptive immunity to improve glucose tolerance but not to prevent body weight gain in diet-induced obese mice. MICROBIOME 2024; 12:103. [PMID: 38845049 PMCID: PMC11155119 DOI: 10.1186/s40168-024-01810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 04/05/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND The metabolic disturbances of obesity can be mitigated by strategies modulating the gut microbiota. In this study, we sought to identify whether innate or adaptive immunity mediates the beneficial metabolic effects of the human intestinal bacterium Bacteroides uniformis CECT 7771 in obesity. METHODS We evaluated the effects of orally administered B. uniformis on energy homeostasis, intestinal immunity, hormone levels, and gut microbiota in wild-type and Rag1-deficient mice with diet-induced obesity. We also assessed whether B. uniformis needed to be viable to exert its beneficial effects in obesity and to directly induce immunoregulatory effects. RESULTS The administration of B. uniformis to obese mice improved glucose tolerance and insulin secretion, restored the caloric intake suppression after an oral glucose challenge, and reduced hyperglycemia. The pre- and post-prandial glucose-related benefits were associated with restoration of the anti-inflammatory tone mediated by type 2 macrophages and regulatory T cells (Tregs) in the lamina propria of the small intestine. Contrastingly, B. uniformis administration failed to improve glucose tolerance in obese Rag1-/- mice, but prevented the increased body weight gain and adiposity. Overall, the beneficial effects seemed to be independent of enteroendocrine effects and of major changes in gut microbiota composition. B. uniformis directly induced Tregs generation from naïve CD4+ T cells in vitro and was not required to be viable to improve glucose homeostasis but its viability was necessary to prevent body weight gain in diet-induced obese wild-type mice. CONCLUSIONS Here we demonstrate that B. uniformis modulates the energy homeostasis in diet-induced obese mice through different mechanisms. The bacterium improves oral glucose tolerance by adaptive immunity-dependent mechanisms that do not require cell viability and prevents body weight gain by adaptive immunity-independent mechanisms which require cell viability. Video Abstract.
Collapse
Affiliation(s)
- Marina Romaní-Pérez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain.
| | - Inmaculada López-Almela
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain
- Present Address: Research Group Intracellular Pathogens: Biology and Infection, Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, Valencia, Spain
| | - Clara Bullich-Vilarrubias
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain
| | - Zoran Evtoski
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain
| | - Alfonso Benítez-Páez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Valencia, Spain.
| |
Collapse
|
6
|
Banerjee A, Singh P, Sheikh PA, Kumar A, Koul V, Bhattacharyya J. A multifunctional silk-hyaluronic acid self-healing hydrogel laden with alternatively activated macrophage-derived exosomes reshape microenvironment of diabetic wound and accelerate healing. Int J Biol Macromol 2024; 270:132384. [PMID: 38754682 DOI: 10.1016/j.ijbiomac.2024.132384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The impairment of phenotype switching of pro-inflammatory M1 to pro-healing M2 macrophage induced by hyperglycemic microenvironment often elevates oxidative stress, impairs angiogenesis, and leads to chronic non-healing wounds in diabetic patients. Administration of M2 macrophage-derived exosomes (M2Exo) at wound site is known to polarize M1 to M2 macrophage and can accelerate wound healing by enhancing collagen deposition, angiogenesis, and re-epithelialization. In the present study, M2Exo were conjugated with oxidized hyaluronic acid and mixed with PEGylated silk fibroin to develop self-healing Exo-gel to achieve an efficient therapy for diabetic wounds. Exo-gel depicted porous networked morphology with self-healing and excellent water retention behaviour. Fibroblast cells treated with Exo-gel showed significant uptake of M2Exo that increased their proliferation and migration in vitro. Interestingly, in a diabetic wound model of wistar rats, Exo-gel treatment induced 75 % wound closure within 7 days with complete epithelial layer regeneration by modulating cytokine levels, stimulating fibroblast-keratinocyte interaction and migration, angiogenesis, and organized collagen deposition. Taken together, this study suggests that Exo-gel depict properties of an excellent wound healing matrix and can be used as a therapeutic alternative to treat chronic non-healing diabetic wounds.
Collapse
Affiliation(s)
- Ahana Banerjee
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi-110029, India
| | - Prerna Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India
| | - Parvaiz A Sheikh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India; Centre of Excellence for Orthopedics and Prosthetics, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India; Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh-208016, India
| | - Veena Koul
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi-110029, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi-110029, India.
| |
Collapse
|
7
|
Peng C, Chen J, Wu R, Jiang H, Li J. Unraveling the complex roles of macrophages in obese adipose tissue: an overview. Front Med 2024; 18:205-236. [PMID: 38165533 DOI: 10.1007/s11684-023-1033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/15/2023] [Indexed: 01/03/2024]
Abstract
Macrophages, a heterogeneous population of innate immune cells, exhibit remarkable plasticity and play pivotal roles in coordinating immune responses and maintaining tissue homeostasis within the context of metabolic diseases. The activation of inflammatory macrophages in obese adipose tissue leads to detrimental effects, inducing insulin resistance through increased inflammation, impaired thermogenesis, and adipose tissue fibrosis. Meanwhile, adipose tissue macrophages also play a beneficial role in maintaining adipose tissue homeostasis by regulating angiogenesis, facilitating the clearance of dead adipocytes, and promoting mitochondrial transfer. Exploring the heterogeneity of macrophages in obese adipose tissue is crucial for unraveling the pathogenesis of obesity and holds significant potential for targeted therapeutic interventions. Recently, the dual effects and some potential regulatory mechanisms of macrophages in adipose tissue have been elucidated using single-cell technology. In this review, we present a comprehensive overview of the intricate activation mechanisms and diverse functions of macrophages in adipose tissue during obesity, as well as explore the potential of drug delivery systems targeting macrophages, aiming to enhance the understanding of current regulatory mechanisms that may be potentially targeted for treating obesity or metabolic diseases.
Collapse
Affiliation(s)
- Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rui Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
8
|
Zhu H, Shen F, Liao T, Qian H, Liu Y. Immunosenescence and macrophages: From basics to therapeutics. Int J Biochem Cell Biol 2023; 165:106479. [PMID: 37866656 DOI: 10.1016/j.biocel.2023.106479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Ageing decreases the function of the immune system and increases susceptibility to some chronic, infectious, and autoimmune diseases. Senescence cells, which produce senescence-associated secretory phenotypes (SASPs), can activate the innate and adaptive immune responses. Macrophages are among the most abundant innate immune cell types in senescent microenvironments. Senescence-associated macrophages, recruited by SASPs, play a vital role in establishing the essential microenvironments for maintaining tissue homeostasis. However, it's important to note that these senescence-associated macrophages can also influence senescent processes, either by enhancing or impeding the functions of tissue-resident senescent cells. In this discussion, we describe the potential targets of immunosenescence and shed light on the probable mechanisms by which macrophages influence cellular senescence. Furthermore, we analyze their dual function in both clearing senescent cells and modulating age-related diseases. This multifaceted influence operates through processes including heightened inflammation, phagocytosis, efferocytosis, and autophagy. Given the potential off-target effects and immune evasion mechanisms associated with traditional anti-ageing strategies (senolytics and senomorphics), 'resetting' immune system tolerance or targeting senescence-related macrophage functions (i.e., phagocytotic capacity and immunosurveillance) will inform treatment of age-related diseases. Therefore, we review recent advances in the use of macrophage therapeutics to treat ageing and age-associated disorders, and outline the key gaps in this field.
Collapse
Affiliation(s)
- Hongkang Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | | | - Tingting Liao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| | - Yu Liu
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi 214062, China.
| |
Collapse
|
9
|
Zhang H, Wang X, Zhang J, He Y, Yang X, Nie Y, Sun L. Crosstalk between gut microbiota and gut resident macrophages in inflammatory bowel disease. J Transl Int Med 2023; 11:382-392. [PMID: 38130639 PMCID: PMC10732497 DOI: 10.2478/jtim-2023-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Macrophages residing in the gut maintain gut homeostasis by orchestrating patho-gens and innocuous antigens. A disturbance in macrophages leads to gut inflamma-tion, causing conditions such as inflammatory bowel disease (IBD). Macrophages ex-hibit remarkable plasticity, as they are sensitive to various signals in the tissue micro-environment. During the recent decades, gut microbiota has been highlighted refer-ring to their critical roles in immunity response. Microbiome-derived metabolites and products can interact with macrophages to participate in the progression of IBD. In this review, we describe recent findings in this field and provide an overview of the current understanding of microbiota-macrophages interactions in IBD, which may lead to the development of new targets and treatment options for patients with IBD.
Collapse
Affiliation(s)
- Haohao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
- State Key Laboratory of Targeting Oncology, National Center for International Re-search of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xueying Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Yixuan He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Xiumin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaaxi Province, China
| | - Lijuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, Shaaxi Province, China
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaaxi Province, China
| |
Collapse
|
10
|
Savchenko IV, Zlotnikov ID, Kudryashova EV. Biomimetic Systems Involving Macrophages and Their Potential for Targeted Drug Delivery. Biomimetics (Basel) 2023; 8:543. [PMID: 37999184 PMCID: PMC10669405 DOI: 10.3390/biomimetics8070543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/10/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The concept of targeted drug delivery can be described in terms of the drug systems' ability to mimic the biological objects' property to localize to target cells or tissues. For example, drug delivery systems based on red blood cells or mimicking some of their useful features, such as long circulation in stealth mode, have been known for decades. On the contrary, therapeutic strategies based on macrophages have gained very limited attention until recently. Here, we review two biomimetic strategies associated with macrophages that can be used to develop new therapeutic modalities: first, the mimicry of certain types of macrophages (i.e., the use of macrophages, including tumor-associated or macrophage-derived particles as a carrier for the targeted delivery of therapeutic agents); second, the mimicry of ligands, naturally absorbed by macrophages (i.e., the use of therapeutic agents specifically targeted at macrophages). We discuss the potential applications of biomimetic systems involving macrophages for new advancements in the treatment of infections, inflammatory diseases, and cancer.
Collapse
Affiliation(s)
| | | | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia (I.D.Z.)
| |
Collapse
|
11
|
Jarajapu YPR, Hasty AH. Editorial: The role of macrophages in metabolic disorders. Front Physiol 2023; 14:1308625. [PMID: 37929216 PMCID: PMC10623416 DOI: 10.3389/fphys.2023.1308625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Affiliation(s)
- Yagna P. R. Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, United States
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN, United States
- Tennessee Valley Healthcare System, US Department of Veterans Affairs, Nashville, TN, United States
| |
Collapse
|
12
|
Zhang W, Lang R. Macrophage metabolism in nonalcoholic fatty liver disease. Front Immunol 2023; 14:1257596. [PMID: 37868954 PMCID: PMC10586316 DOI: 10.3389/fimmu.2023.1257596] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and its inflammatory and often progressive subtype nonalcoholic steatohepatitis (NASH), have emerged as significant contributors to hepatic morbidity worldwide. The pathophysiology of NAFLD/NASH is multifaceted, variable, and remains incompletely understood. The pivotal role of liver-resident and recruited macrophages in the pathogenesis of NAFLD and NASH is widely acknowledged as a crucial factor in innate immunity. The remarkable plasticity of macrophages enables them to assume diverse activation and polarization states, dictated by their immunometabolism microenvironment and functional requirements. Recent studies in the field of immunometabolism have elucidated that alterations in the metabolic profile of macrophages can profoundly influence their activation state and functionality, thereby influencing various pathological processes. This review primarily focuses on elucidating the polarization and activation states of macrophages, highlighting the correlation between their metabolic characteristics and the transition from pro-inflammatory to anti-inflammatory phenotypes. Additionally, we explore the potential of targeting macrophage metabolism as a promising therapeutic approach for the management of NAFLD/NASH.
Collapse
Affiliation(s)
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Fitzsimons S, Muñoz-San Martín M, Nally F, Dillon E, Fashina IA, Strowitzki MJ, Ramió-Torrentà L, Dowling JK, De Santi C, McCoy CE. Inhibition of pro-inflammatory signaling in human primary macrophages by enhancing arginase-2 via target site blockers. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:941-959. [PMID: 37701067 PMCID: PMC10494319 DOI: 10.1016/j.omtn.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
The modulation of macrophage phenotype from a pro-inflammatory to an anti-inflammatory state holds therapeutic potential in the treatment of inflammatory disease. We have previously shown that arginase-2 (Arg2), a mitochondrial enzyme, is a key regulator of the macrophage anti-inflammatory response. Here, we investigate the therapeutic potential of Arg2 enhancement via target site blockers (TSBs) in human macrophages. TSBs are locked nucleic acid antisense oligonucleotides that were specifically designed to protect specific microRNA recognition elements (MREs) in human ARG2 3' UTR mRNA. TSBs targeting miR-155 (TSB-155) and miR-3202 (TSB-3202) MREs increased ARG2 expression in human monocyte-derived macrophages. This resulted in decreased gene expression and cytokine production of TNF-α and CCL2 and, for TSB-3202, in an increase in the anti-inflammatory macrophage marker, CD206. Proteomic analysis demonstrated that a network of pro-inflammatory responsive proteins was modulated by TSBs. In silico bioinformatic analysis predicted that TSB-3202 suppressed upstream pro-inflammatory regulators including STAT-1 while enhancing anti-inflammatory associated proteins. Proteomic data were validated by confirming increased levels of sequestosome-1 and decreased levels of phosphorylated STAT-1 and STAT-1 upon TSB treatment. In conclusion, upregulation of Arg2 by TSBs inhibits pro-inflammatory signaling and is a promising novel therapeutic strategy to modulate inflammatory signaling in human macrophages.
Collapse
Affiliation(s)
- Stephen Fitzsimons
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
| | - María Muñoz-San Martín
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Frances Nally
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Eugene Dillon
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ifeolutembi A. Fashina
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Moritz J. Strowitzki
- Department of General, Visceral & Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Lluís Ramió-Torrentà
- Neuroinflammation and Neurodegeneration Group, Girona Biomedical Research Institute (IDIBGI), CERCA Programme/Generalitat de Catalunya, Salt, Girona, Spain
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
| | - Chiara De Santi
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
| |
Collapse
|
14
|
Chen G, Zhao X, Dankovskyy M, Ansah-Zame A, Alghamdi U, Liu D, Wei R, Zhao J, Zhou A. A novel role of RNase L in the development of nonalcoholic steatohepatitis. FASEB J 2023; 37:e23158. [PMID: 37615181 PMCID: PMC10715709 DOI: 10.1096/fj.202300621r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/29/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and affects about 25% of the population globally. NAFLD has the potential to cause significant liver damage in many patients because it can progress to nonalcoholic steatohepatitis (NASH) and cirrhosis, which substantially increases disease morbidity and mortality. Despite the key role of innate immunity in the disease progression, the underlying molecular and pathogenic mechanisms remain to be elucidated. RNase L is a key enzyme in interferon action against viral infection and displays pleiotropic biological functions such as control of cell proliferation, apoptosis, and autophagy. Recent studies have demonstrated that RNase L is involved in innate immunity. In this study, we revealed that RNase L contributed to the development of NAFLD, which further progressed to NASH in a time-dependent fashion after RNase L wild-type (WT) and knockout mice were fed with a high-fat and high-cholesterol diet. RNase L WT mice showed significantly more severe NASH, evidenced by widespread macro-vesicular steatosis, hepatocyte ballooning degeneration, inflammation, and fibrosis, although physiological and biochemical data indicated that both types of mice developed obesity, hyperglycemia, hypercholesterolemia, dysfunction of the liver, and systemic inflammation at different extents. Further investigation demonstrated that RNase L was responsible for the expression of some key genes in lipid metabolism, inflammation, and fibrosis signaling. Taken together, our results suggest that a novel therapeutic intervention for NAFLD may be developed based on regulating the expression and activity of RNase L.
Collapse
Affiliation(s)
- Guanmin Chen
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Xiaotong Zhao
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Maksym Dankovskyy
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Abigail Ansah-Zame
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Uthman Alghamdi
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Danting Liu
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Ruhan Wei
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Jianjun Zhao
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Aimin Zhou
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
- Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
15
|
Dai Z, Zhang Y, Meng Y, Li S, Suonan Z, Sun Y, Ji J, Shen Q, Zheng H, Xue Y. Targeted delivery of nutraceuticals derived from food for the treatment of obesity and its related complications. Food Chem 2023; 418:135980. [PMID: 36989644 DOI: 10.1016/j.foodchem.2023.135980] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Nutraceuticals which are abundant in foods have attracted much attention due to their bioactive activities of anti-obesity, anti-hyperlipidemia and anti-atherosclerosis. Unfortunately, the poor bioavailability severely undermines their envisioned benefits. Therefore, there is an urgent need to develop suitable delivery systems to promote the benefits of their biological activity. Targeted drug delivery system (TDDS) is a novel drug delivery system that can selectively concentrate drugs on targets in the body, improve the bioavailability of agents and reduce side effects. This emerging drug delivery system provides a new strategy for the treatment of obesity with nutraceuticals and would be a promising alternative to be widely used in the food field. This review summarizes the recent studies on the application in the targeted delivery of nutraceuticals for treating obesity and its related complications, especially the available receptors and their corresponding ligands for TDDS and the evaluation methods of the targeting ability.
Collapse
|
16
|
Liao J, Liu Y, Pei Z, Wang H, Zhu J, Zhao J, Lu W, Chen W. Clostridium butyricum Reduces Obesity in a Butyrate-Independent Way. Microorganisms 2023; 11:1292. [PMID: 37317266 DOI: 10.3390/microorganisms11051292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Accumulating evidence from recent studies links the gut microbiota to obesity, and microbiome therapy has been examined as a treatment. Clostridium butyricum (C. butyricum), an intestinal symbiont, protects the host from a range of diseases. Studies have shown a negative correlation between the relative abundance of C. butyricum and a predisposition for obesity. However, the physiological function and material basis of C. butyricum for obesity are unclear. Here, five C. butyricum isolates were administered to mice on a high-fat diet (HFD) to determine their anti-obesity effects. All isolates suppressed the formation and inflammation of subcutaneous fat, and the two effective strains considerably reduced weight gain and ameliorated dyslipidemia, hepatic steatosis, and inflammation. These positive effects were not achieved by increasing the concentration of intestinal butyrate, and the effective strains could not be replaced by sodium butyrate (NaB). We also discovered that oral supplementation with the two most effective strains changed the metabolism of tryptophan and purine and altered the composition of the gut microbiota. In summary, C. butyricum improved the metabolic phenotypes under the HFD by controlling the composition of the gut microbiota and modulating intestinal metabolites, thereby demonstrating its ability to fight obesity and providing a theoretical foundation for microbial preparations production.
Collapse
Affiliation(s)
- Jingyi Liao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yaoliang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Wei Y, Wang K, Zhang Y, Duan Y, Tian Y, Yin H, Fu X, Ma Z, Zhou J, Yu M, Ni Q, Tang W. Potent anti-inflammatory responses: Role of hydrogen in IL-1α dominated early phase systemic inflammation. Front Pharmacol 2023; 14:1138762. [PMID: 37007020 PMCID: PMC10063881 DOI: 10.3389/fphar.2023.1138762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction: It has been proven that hydrogen has obvious anti-inflammatory effects in animal experiments and clinical practice. However, the early dynamic process of the inflammatory response caused by lipopolysaccharide (LPS) and the anti-inflammatory effect of hydrogen has not been definitively reported. Methods: Inflammation in male C57/BL6J mice or RAW264.7 cells was induced with LPS, for which hydrogen was immediately administered until samples were taken. Pathological changes in lung tissue were assessed using hematoxylin and eosin (HE) staining. Levels of inflammatory factors in serum were determined using liquid protein chip. The mRNA levels of chemotactic factors in lung tissues, leukocytes, and peritoneal macrophages were measured by qRT-PCR. The expression levels of IL-1α and HIF-1α were measured by immunocytochemistry. Results: Hydrogen alleviated LPS-induced inflammatory infiltration in the lung tissues of mice. Among the 23 inflammatory factors screened, LPS-induced upregulation of IL-1α etc. was significantly inhibited by hydrogen within 1 hour. The mRNA expression of MCP-1, MIP-1α, G-CSF, and RANTES was inhibited obviously by hydrogen at 0.5 and 1 h in mouse peritoneal macrophages. In addition, hydrogen significantly blocked LPS or H2O2-induced upregulation of HIF-1α, and IL-1α in 0.5 h in RAW264.7 cells. Discussion: The results suggested that hydrogen is potentially inhibitive against inflammation by inhibiting HIF-1α and IL-1α release at early occurrence. The target of the inhibitive LPS-induced-inflammatory action of hydrogen is chemokines in macrophages in the peritoneal cavity. This study provides direct experimental evidence for quickly controlling inflammation with the translational application of a hydrogen-assisted protocol.
Collapse
Affiliation(s)
- Youzhen Wei
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
- Hydrogen Medicine Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
- Research Center for Translational Medicine, Jinan People’s Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Kun Wang
- Office of Academic Research, Taishan Vocational College of Nursing, Taian, Shandong, China
| | - Yafang Zhang
- Department of Neonatology and NICU, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Yi Duan
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Tian
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongling Yin
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuelian Fu
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zuan Ma
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Zhou
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Yu
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, Shanghai, China
| | - Qingbin Ni
- Hydrogen Medicine Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
- *Correspondence: Wenjie Tang, ; Qingbin Ni,
| | - Wenjie Tang
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
- Research Institute of Regenerative Medicine, East Hospital, Tongji University, Shanghai, China
- *Correspondence: Wenjie Tang, ; Qingbin Ni,
| |
Collapse
|
18
|
Guha Ray A, Odum OP, Wiseman D, Weinstock A. The diverse roles of macrophages in metabolic inflammation and its resolution. Front Cell Dev Biol 2023; 11:1147434. [PMID: 36994095 PMCID: PMC10041730 DOI: 10.3389/fcell.2023.1147434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are one of the most functionally diverse immune cells, indispensable to maintain tissue integrity and metabolic health. Macrophages perform a myriad of functions ranging from promoting inflammation, through inflammation resolution to restoring and maintaining tissue homeostasis. Metabolic diseases encompass a growing list of diseases which develop from a mix of genetics and environmental cues leading to metabolic dysregulation and subsequent inflammation. In this review, we summarize the contributions of macrophages to four metabolic conditions-insulin resistance and adipose tissue inflammation, atherosclerosis, non-alcoholic fatty liver disease and neurodegeneration. The role of macrophages is complex, yet they hold great promise as potential therapies to address these growing health concerns.
Collapse
Affiliation(s)
| | | | | | - Ada Weinstock
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
19
|
Zhang B, Pan H, Chen Z, Yin T, Zheng M, Cai L. Twin-bioengine self-adaptive micro/nanorobots using enzyme actuation and macrophage relay for gastrointestinal inflammation therapy. SCIENCE ADVANCES 2023; 9:eadc8978. [PMID: 36812317 PMCID: PMC9946363 DOI: 10.1126/sciadv.adc8978] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/26/2023] [Indexed: 05/28/2023]
Abstract
A wide array of biocompatible micro/nanorobots are designed for targeted drug delivery and precision therapy largely depending on their self-adaptive ability overcoming complex barriers in vivo. Here, we report a twin-bioengine yeast micro/nanorobot (TBY-robot) with self-propelling and self-adaptive capabilities that can autonomously navigate to inflamed sites for gastrointestinal inflammation therapy via enzyme-macrophage switching (EMS). Asymmetrical TBY-robots effectively penetrated the mucus barrier and notably enhanced their intestinal retention using a dual enzyme-driven engine toward enteral glucose gradient. Thereafter, the TBY-robot was transferred to Peyer's patch, where the enzyme-driven engine switched in situ to macrophage bioengine and was subsequently relayed to inflamed sites along a chemokine gradient. Encouragingly, EMS-based delivery increased drug accumulation at the diseased site by approximately 1000-fold, markedly attenuating inflammation and ameliorating disease pathology in mouse models of colitis and gastric ulcers. These self-adaptive TBY-robots represent a safe and promising strategy for the precision treatment of gastrointestinal inflammation and other inflammatory diseases.
Collapse
Affiliation(s)
- Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Ting Yin
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Banu S, Sur D. Role of Macrophage in Type 2 Diabetes Mellitus: Macrophage Polarization a New Paradigm for Treatment of Type 2 Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets 2023; 23:2-11. [PMID: 35786198 DOI: 10.2174/1871530322666220630093359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
Metabolic diseases such as type 2 diabetes mellitus are usually associated with meta-inflammation. β-cell failure is a marked feature observed in the pathogenesis of type 2 diabetes mellitus. Type 2 diabetes mellitus (T2DM) is a heterogeneous situation that is accompanied by not only defective insulin secretion but also peripheral insulin resistance. β-cells are the primary organ for insulin secretion; hence, it is crucial to maintain a significant β-cell mass in response to a variety of changes. Insulin resistance is a chief cause of T2DM, leading to increased free fatty acid (FFA) levels, which in turn elevates β-cell mass and insulin secretion as compensation for insulin insensitivity. It has recently been established that amplified numbers of innate immune cells, cytokines, and chemokines result in detrimental effects on islets in chronic conditions. Macrophage migration inhibitory factor (MIF) is the lymphokine that prevents arbitrary migration of macrophages and assembles macrophages at inflammatory loci. Inflammation is known to trigger monocytes to differentiate into macrophages. Progress of complications associated with type 2 diabetes mellitus, as indicated through recent findings, is also dependent on the buildup of macrophages in tissues vulnerable to diabetic injury. The present article scientifically evaluates the present knowledge concerning the mechanisms of monocyte and macrophage-mediated injury recruitment in complications associated with type 2 diabetes mellitus. It also describes some of the established and experimental therapies that might bring about a reduction in these inflammatory complications. Recent discoveries in the field of drug delivery have facilitated phenotype-specific targeting of macrophages. This review highlights the pathophysiology of type 2 diabetes mellitus, how macrophage induces type 2 diabetes mellitus and potential therapeutics for type 2 diabetes mellitus via macrophage-specific delivery.
Collapse
Affiliation(s)
- Sarmin Banu
- Division of Pharmacology, Guru Nanak College of Pharmaceutical Science and Technology, 157/F Nilgunaj Road, Panihati, Kolkata 700114, India
| | - Debjeet Sur
- Division of Pharmacology, Guru Nanak College of Pharmaceutical Science and Technology, 157/F Nilgunaj Road, Panihati, Kolkata 700114, India
| |
Collapse
|
21
|
Xie Y, Chen H, Qu P, Qiao X, Guo L, Liu L. Novel insight on the role of Macrophages in atherosclerosis: Focus on polarization, apoptosis and efferocytosis. Int Immunopharmacol 2022; 113:109260. [DOI: 10.1016/j.intimp.2022.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
|
22
|
Urbaniak T, Musiał W. Layer-by-Layer Surface Modification of Alendronate-Loaded Polyester Microparticles-Enabling Protein Immobilization. Polymers (Basel) 2022; 14:polym14224943. [PMID: 36433069 PMCID: PMC9697578 DOI: 10.3390/polym14224943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
The highly inert surface of polyester micro- and nano- drug carriers is a challenging substrate for further modification. The presence of surface moieties suitable for macromolecule coupling is crucial in the development of targeted drug delivery systems. Among available methods of surface activation, those based on adsorption of charged macromolecules may be carried out in mild conditions. In this work, alendronate-loaded microcores of three polyesters: poly-ε-caprolactone (PCL), poly(l-lactide-co-ε-caprolactone) (PLA-co-PCL) and poly(lactic-co-glycolic acid) (PLGA) were coated with three polyelectrolyte shells composed of chitosan/heparin (CHIT/HEP), polyallylamine/heparin (PAH/HEP), and polyethyleneimine/heparin (PEI/HEP) via the layer-by-layer method. Subsequently, the feasibility of model protein immobilization on obtained shells was assessed. Electrokinetic potential measurements confirmed the possibility of deposition of all investigated coating variants, and a positive correlation between initial core ζ potential and intensity of charge alterations after deposition of subsequent layers was identified. PEI/HEP assembly was stable in physiological-like conditions, while PAH/HEP multilayers disassembled in presence of phosphate ions, and CHIT/HEP shell showed limited stability in pH 7.4. Fluorescence assays of fluorescein tagged lysozyme surface coupled via ethylcarbodiimide hydrochloride/N-Hydroxysuccinimide (EDC/NHS) click reaction with all shell variants indicated satisfying reaction efficiency. Poly-ε-caprolactone cores coated with CHIT/HEP tetralayer were selected as suitable for model IgG surface immobilization. Antibodies immobilized on the shell surface exhibited a moderate degree of affinity to fluorescent IgG binding protein.
Collapse
|
23
|
Xiang H, Yu H, Zhou Q, Wu Y, Ren J, Zhao Z, Tao X, Dong D. Macrophages: A rising star in immunotherapy for chronic pancreatitis. Pharmacol Res 2022; 185:106508. [DOI: 10.1016/j.phrs.2022.106508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022]
|
24
|
Ahmar Rauf M, Nisar M, Abdelhady H, Gavande N, Iyer AK. Nanomedicine approaches to reduce cytokine storms in severe infections. Drug Discov Today 2022; 27:103355. [PMID: 36099962 PMCID: PMC9465473 DOI: 10.1016/j.drudis.2022.103355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 11/22/2022]
Abstract
During a cytokine storm, dysregulated proinflammatory cytokines are produced in excess. Cytokine storms occur in multiple infectious diseases, including Coronavirus 2019 (COVID-19). Thus, eliminating cytokine storms to enhance patient outcomes is crucial. Given the numerous cytokines involved, individual therapies might have little effect. Traditional cytokines might be less effective than medicines that target malfunctioning macrophages. Nanomedicine-based therapeutics reduce cytokine production in animal models of proinflammatory illnesses. The unique physicochemical features and controlled nano-bio interactions of nanotechnology show promise in healthcare and could be used to treat several stages of this virus-induced sickness, including cytokine storm mortality. Macrophage-oriented nanomedicines can minimize cytokine storms and associated harmful effects, enhancing patient outcomes. Here, we also discuss engineering possibilities for enhancing macrophage efficacy with nanodrug carriers.
Collapse
Affiliation(s)
- Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, Sylvester Comprehensive Cancer Centre, University of Miami, FL 33136, USA; Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Maryam Nisar
- Department of Biochemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Hosam Abdelhady
- Department of Physiology & Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77341, USA
| | - Navnath Gavande
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
25
|
Neto NGB, O'Rourke SA, Zhang M, Fitzgerald HK, Dunne A, Monaghan MG. Non-invasive classification of macrophage polarisation by 2P-FLIM and machine learning. eLife 2022; 11:77373. [PMID: 36254592 PMCID: PMC9578711 DOI: 10.7554/elife.77373] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we utilise fluorescence lifetime imaging of NAD(P)H-based cellular autofluorescence as a non-invasive modality to classify two contrasting states of human macrophages by proxy of their governing metabolic state. Macrophages derived from human blood-circulating monocytes were polarised using established protocols and metabolically challenged using small molecules to validate their responding metabolic actions in extracellular acidification and oxygen consumption. Large field-of-view images of individual polarised macrophages were obtained using fluorescence lifetime imaging microscopy (FLIM). These were challenged in real time with small-molecule perturbations of metabolism during imaging. We uncovered FLIM parameters that are pronounced under the action of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), which strongly stratifies the phenotype of polarised human macrophages; however, this performance is impacted by donor variability when analysing the data at a single-cell level. The stratification and parameters emanating from a full field-of-view and single-cell FLIM approach serve as the basis for machine learning models. Applying a random forests model, we identify three strongly governing FLIM parameters, achieving an area under the receiver operating characteristics curve (ROC-AUC) value of 0.944 and out-of-bag (OBB) error rate of 16.67% when classifying human macrophages in a full field-of-view image. To conclude, 2P-FLIM with the integration of machine learning models is showed to be a powerful technique for analysis of both human macrophage metabolism and polarisation at full FoV and single-cell level.
Collapse
Affiliation(s)
- Nuno G B Neto
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Sinead A O'Rourke
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.,School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Mimi Zhang
- School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland
| | - Hannah K Fitzgerald
- School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.,Advanced Materials for BioEngineering Research (AMBER) Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael G Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.,Advanced Materials for BioEngineering Research (AMBER) Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland.,CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| |
Collapse
|
26
|
Zhang X, Thompkins-Johns A, Ziober A, Zhang PJ, Furth EE. Hepatic Macrophage Types Cluster with Disease Etiology in Chronic Liver Disease and Differ Compared to Normal Liver: Implications for Their Biologic and Diagnostic Role. Int J Surg Pathol 2022; 31:268-279. [PMID: 35521912 DOI: 10.1177/10668969221099630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction. Macrophages are phenotypically heterogeneous cells that play a vital role in hepatic fibrogenesis. We aimed to compare the macrophage profiles between normal livers and those with various chronic liver diseases in the precirrhotic fibrosis stage. Methods. Immunohistochemistry was performed for three macrophage markers (CD163, CD68, and IBA1) on 48 liver biopsies. Digital image analysis and automated cell count were used to calculate the densities of immunostained cells in two selected regions of interest: the periportal region and the perivenous region. Results. The absolute and relative densities of the macrophage phenotypes in relationship with zones and etiologies showed four distinct patterns by hierarchical cluster analysis: (1) no significant increase in the macrophage densities in either periportal or perivenous regions - nonalcoholic steatohepatitis; (2) significant increase in the selected macrophage densities in both periportal and perivenous regions - Hepatitis C; (3) significant increase in the macrophage densities only in periportal region - alcoholic liver disease, primary sclerosing cholangitis, and primary biliary cholangitis; and (4) significant increase in the densities of all types of macrophages in both periportal and perivenous regions - autoimmune hepatitis. Conclusions. There are distinct macrophage phenotypic and zonal geographic signatures correlating to etiologies of chronic liver disease in the precirrhotic stage.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Pathology and Laboratory Medicine, 428224Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra Thompkins-Johns
- Department of Pathology and Laboratory Medicine, 428224Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Ziober
- Department of Pathology and Laboratory Medicine, 428224Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Paul J Zhang
- Department of Pathology and Laboratory Medicine, 428224Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Emma E Furth
- Department of Pathology and Laboratory Medicine, 428224Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Dai M, Yang X, Yu Y, Pan W. Helminth and Host Crosstalk: New Insight Into Treatment of Obesity and Its Associated Metabolic Syndromes. Front Immunol 2022; 13:827486. [PMID: 35281054 PMCID: PMC8913526 DOI: 10.3389/fimmu.2022.827486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Obesity and its associated Metabolic Syndromes (Mets) represent a global epidemic health problem. Metabolic inflammation, lipid accumulation and insulin resistance contribute to the progression of these diseases, thereby becoming targets for drug development. Epidemiological data have showed that the rate of helminth infection negatively correlates with the incidence of obesity and Mets. Correspondingly, numerous animal experiments and a few of clinic trials in human demonstrate that helminth infection or its derived molecules can mitigate obesity and Mets via induction of macrophage M2 polarization, inhibition of adipogenesis, promotion of fat browning, and improvement of glucose tolerance, insulin resistance and metabolic inflammation. Interestingly, sporadic studies also uncover that several helminth infections can reshape gut microbiota of hosts, which is intimately implicated in the pathogenesis of obesity and Mets. Overall, these findings indicate that the crosstalk between helminth and hosts may be a novel direction for obesity and Mets therapy. The present article reviews the molecular mechanism of how helminth masters immunity and metabolism in obesity.
Collapse
Affiliation(s)
- Mengyu Dai
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The Second Clinical Medicine, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wei Pan, ; Yinghua Yu,
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wei Pan, ; Yinghua Yu,
| |
Collapse
|
28
|
Huang X, Xu J, Hu Y, Huang K, Luo Y, He X. Broccoli ameliorate NAFLD by increasing lipolysis and promoting liver macrophages polarize toward M2-type. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
Choi KJ, Lee JH, Park SB, Na YJ, Jung WH, Lee H, Kim KY. Development of in vitro three-dimensional drug screening system for obesity-related metabolic syndrome. J Pharmacol Sci 2022; 148:377-386. [DOI: 10.1016/j.jphs.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022] Open
|
30
|
Song Y, Huang Y, Zhou F, Ding J, Zhou W. Macrophage-targeted nanomedicine for chronic diseases immunotherapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Li J, Li J, Ni J, Zhang C, Jia J, Wu G, Sun H, Wang S. Berberine Relieves Metabolic Syndrome in Mice by Inhibiting Liver Inflammation Caused by a High-Fat Diet and Potential Association With Gut Microbiota. Front Microbiol 2022; 12:752512. [PMID: 35095784 PMCID: PMC8790126 DOI: 10.3389/fmicb.2021.752512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Whether berberine mediates its anti-inflammatory and blood sugar and lipid-lowering effects solely by adjusting the structure of the gut microbiota or by first directly regulating the expression of host pro-inflammatory proteins and activation of macrophages and subsequently acting on gut microbiota, is currently unclear. To clarify the mechanism of berberine-mediated regulation of metabolism, we constructed an obese mouse model using SPF-grade C57BL/6J male mice and conducted a systematic study of liver tissue pathology, inflammatory factor expression, and gut microbiota structure. We screened the gut microbiota targets of berberine and showed that the molecular mechanism of berberine-mediated treatment of metabolic syndrome involves the regulation of gut microbiota structure and the expression of inflammatory factors. Our results revealed that a high-fat diet (HFD) significantly changed mice gut microbiota, thereby probably increasing the level of toxins in the intestine, and triggered the host inflammatory response. The HFD also reduced the proportion of short-chain fatty acid (SCFA)-producing genes, thereby hindering mucosal immunity and cell nutrition, and increased the host inflammatory response and liver fat metabolism disorders. Further, berberine could improve the chronic HFD-induced inflammatory metabolic syndrome to some extent and effectively improved the metabolism of high-fat foods in mice, which correlated with the gut microbiota composition. Taken together, our study may improve our understanding of host-microbe interactions during the treatment of metabolic diseases and provide useful insights into the action mechanism of berberine.
Collapse
Affiliation(s)
- Jinjin Li
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Jialin Li
- Jinan Zhangqiu District Hospital of Traditional Chinese Medicine, Jinan, China
| | - Jiajia Ni
- Research and Development Center, Guangdong Meilikang Bio-Science Ltd., Dongguan, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Caibo Zhang
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Jianlei Jia
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Guoying Wu
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Hongzhao Sun
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Shuzhen Wang
- School of Life Sciences, Qilu Normal University, Jinan, China
| |
Collapse
|
32
|
Xue C, Zhang L, Zhang Y, Yu Y, Xu C, Li Z. H 2O 2-responsive lovastatin nanohybrids based on auto-fluorescent perylene diimide reverse nonalcoholic fatty liver disease. NEW J CHEM 2022. [DOI: 10.1039/d2nj01518h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The application of a liver targeting nanometer prodrug system based on an oxalate ester bond for treating NAFLD.
Collapse
Affiliation(s)
- Changning Xue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lifen Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuman Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yao Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenlu Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhi Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, 450001, China
| |
Collapse
|
33
|
Strand K, Stiglund N, Haugstøyl ME, Kamyab Z, Langhelle V, Lawrence-Archer L, Busch C, Cornillet M, Hjellestad ID, Nielsen HJ, Njølstad PR, Mellgren G, Björkström NK, Fernø J. Subtype-Specific Surface Proteins on Adipose Tissue Macrophages and Their Association to Obesity-Induced Insulin Resistance. Front Endocrinol (Lausanne) 2022; 13:856530. [PMID: 35480482 PMCID: PMC9035670 DOI: 10.3389/fendo.2022.856530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
A chronic low-grade inflammation, originating in the adipose tissue, is considered a driver of obesity-associated insulin resistance. Macrophage composition in white adipose tissue is believed to contribute to the pathogenesis of metabolic diseases, but a detailed characterization of pro- and anti-inflammatory adipose tissue macrophages (ATMs) in human obesity and how they are distributed in visceral- and subcutaneous adipose depots is lacking. In this study, we performed a surface proteome screening of pro- and anti-inflammatory ATMs in both subcutaneous- (SAT) and visceral adipose tissue (VAT) and evaluated their relationship with systemic insulin resistance. From the proteomics screen we found novel surface proteins specific to M1-like- and M2-like macrophages, and we identified depot-specific immunophenotypes in SAT and VAT. Furthermore, we found that insulin resistance, assessed by HOMA-IR, was positively associated with a relative increase in pro-inflammatory M1-like macrophages in both SAT and VAT.
Collapse
Affiliation(s)
- Kristina Strand
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Natalie Stiglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Martha Eimstad Haugstøyl
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Zahra Kamyab
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Victoria Langhelle
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Laurence Lawrence-Archer
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Martin Cornillet
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Iren Drange Hjellestad
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Hans Jørgen Nielsen
- Department of Surgery, Voss Hospital, Haukeland University Hospital, Bergen, Norway
| | - Pål Rasmus Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics and Adolescents, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Fernø
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- *Correspondence: Johan Fernø,
| |
Collapse
|
34
|
Hayashi Y, Suzuki H, Nakajima W, Uehara I, Tanimura A, Himeda T, Koike S, Katsuno T, Kitajiri SI, Koyanagi N, Kawaguchi Y, Onomoto K, Kato H, Yoneyama M, Fujita T, Tanaka N. Virus-infection in cochlear supporting cells induces audiosensory receptor hair cell death by TRAIL-induced necroptosis. PLoS One 2021; 16:e0260443. [PMID: 34843580 PMCID: PMC8629241 DOI: 10.1371/journal.pone.0260443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022] Open
Abstract
Although sensorineural hearing loss (SHL) is relatively common, its cause has not been identified in most cases. Previous studies have suggested that viral infection is a major cause of SHL, especially sudden SHL, but the system that protects against pathogens in the inner ear, which is isolated by the blood-labyrinthine barrier, remains poorly understood. We recently showed that, as audiosensory receptor cells, cochlear hair cells (HCs) are protected by surrounding accessory supporting cells (SCs) and greater epithelial ridge (GER or Kölliker's organ) cells (GERCs) against viral infections. Here, we found that virus-infected SCs and GERCs induce HC death via production of the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Notably, the HCs expressed the TRAIL death receptors (DR) DR4 and DR5, and virus-induced HC death was suppressed by TRAIL-neutralizing antibodies. TRAIL-induced HC death was not caused by apoptosis, and was inhibited by necroptosis inhibitors. Moreover, corticosteroids, the only effective drug for SHL, inhibited the virus-induced transformation of SCs and GERCs into macrophage-like cells and HC death, while macrophage depletion also inhibited virus-induced HC death. These results reveal a novel mechanism underlying virus-induced HC death in the cochlear sensory epithelium and suggest a possible target for preventing virus-induced SHL.
Collapse
Affiliation(s)
- Yushi Hayashi
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Hidenori Suzuki
- Division of Morphological and Biomolecular Research, Nippon Medical School, Tokyo, Japan
| | - Wataru Nakajima
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Ikuno Uehara
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Atsuko Tanimura
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Toshiki Himeda
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Satoshi Koike
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tatsuya Katsuno
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University, Kyoto, Japan
| | - Shin-ichiro Kitajiri
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University, Kyoto, Japan
| | - Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
35
|
Maeda H, Ishima Y, Saruwatari J, Mizuta Y, Minayoshi Y, Ichimizu S, Yanagisawa H, Nagasaki T, Yasuda K, Oshiro S, Taura M, McConnell MJ, Oniki K, Sonoda K, Wakayama T, Kinoshita M, Shuto T, Kai H, Tanaka M, Sasaki Y, Iwakiri Y, Otagiri M, Watanabe H, Maruyama T. Nitric oxide facilitates the targeting Kupffer cells of a nano-antioxidant for the treatment of NASH. J Control Release 2021; 341:457-474. [PMID: 34856227 DOI: 10.1016/j.jconrel.2021.11.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
Kupffer cells are a key source of reactive oxygen species (ROS) and are implicated in the development of steatohepatitis and fibrosis in nonalcoholic steatohepatitis (NASH). We recently developed a polythiolated and mannosylated human serum albumin (SH-Man-HSA), a nano-antioxidant that targets Kupffer cells, in which the mannosyl units on albumin allows their specific uptake by Kupffer cells via the mannose receptor C type 1 (MRC1), and in which the polythiolation confers antioxidant activity. The aim of this study was to investigate the therapeutic potential of SH-Man-HSA in NASH model mice. In livers from mice and/or patients with NASH, we observed a reduced blood flow in the liver lobes and the down-regulation in MRC1 expression in Kupffer cells, and SH-Man-HSA alone failed to improve the pathological phenotype in NASH. However, the administration of a nitric oxide (NO) donor restored hepatic blood flow and increased the expression of the mannose receptor C type 2 (MRC2) instead of MRC1. Consequently, treatment with a combination of SH-Man-HSA and an NO donor improved oxidative stress-associated pathology. Finally, we developed a hybrid type of nano-antioxidant (SNO-Man-HSA) via the S-nitrosation of SH-Man-HSA. This nanomedicine efficiently delivered both NO and thiol groups to the liver, with a hepatoprotective effect that was comparable to the combination therapy of SH-Man-HSA and an NO donor. These findings suggest that SNO-Man-HSA has the potential for functioning as a novel nano-therapy for the treatment of NASH.
Collapse
Affiliation(s)
- Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Department of Internal Medicine, Sections of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Mizuta
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Minayoshi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shota Ichimizu
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroki Yanagisawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kengo Yasuda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shun Oshiro
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Manabu Taura
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Matthew J McConnell
- Department of Internal Medicine, Sections of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Kentaro Oniki
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kayoko Sonoda
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motohiko Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuko Iwakiri
- Department of Internal Medicine, Sections of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences and DDS Research Institute, Sojo University, Kumamoto, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
36
|
Poznyak AV, Nikiforov NG, Starodubova AV, Popkova TV, Orekhov AN. Macrophages and Foam Cells: Brief Overview of Their Role, Linkage, and Targeting Potential in Atherosclerosis. Biomedicines 2021; 9:biomedicines9091221. [PMID: 34572406 PMCID: PMC8468383 DOI: 10.3390/biomedicines9091221] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis is still one of the main causes of death around the globe. This condition leads to various life-threatening cardiovascular complications. However, no effective preventive measures are known apart from lifestyle corrections, and no cure has been developed. Despite numerous studies in the field of atherogenesis, there are still huge gaps in already poor understanding of mechanisms that underlie the disease. Inflammation and lipid metabolism violations are undoubtedly the key players, but many other factors, such as oxidative stress, endothelial dysfunction, contribute to the pathogenesis of atherosclerosis. This overview is focusing on the role of macrophages in atherogenesis, which are at the same time a part of the inflammatory response, and also tightly linked to the foam cell formation, thus taking part in both crucial for atherogenesis processes. Being essentially involved in atherosclerosis development, macrophages and foam cells have attracted attention as a promising target for therapeutic approaches.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Skolkovo Innovative Center, Institute for Atherosclerosis Research, 121609 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| | - Nikita G. Nikiforov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia;
- National Medical Research Center of Cardiology, Institute of Experimental Cardiology, 121552 Moscow, Russia
- Institute of Gene Biology, 119334 Moscow, Russia
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Medical Faculty, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Alexander N. Orekhov
- Skolkovo Innovative Center, Institute for Atherosclerosis Research, 121609 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia;
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
37
|
Anderson-Baucum E, Piñeros AR, Kulkarni A, Webb-Robertson BJ, Maier B, Anderson RM, Wu W, Tersey SA, Mastracci TL, Casimiro I, Scheuner D, Metz TO, Nakayasu ES, Evans-Molina C, Mirmira RG. Deoxyhypusine synthase promotes a pro-inflammatory macrophage phenotype. Cell Metab 2021; 33:1883-1893.e7. [PMID: 34496231 PMCID: PMC8432737 DOI: 10.1016/j.cmet.2021.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022]
Abstract
The metabolic inflammation (meta-inflammation) of obesity is characterized by proinflammatory macrophage infiltration into adipose tissue. Catalysis by deoxyhypusine synthase (DHPS) modifies the translation factor eIF5A to generate a hypusine (Hyp) residue. Hypusinated eIF5A (eIF5AHyp) controls the translation of mRNAs involved in inflammation, but its role in meta-inflammation has not been elucidated. Levels of eIF5AHyp were found to be increased in adipose tissue macrophages from obese mice and in murine macrophages activated to a proinflammatory M1-like state. Global proteomics and transcriptomics revealed that DHPS deficiency in macrophages altered the abundance of proteins involved in NF-κB signaling, likely through translational control of their respective mRNAs. DHPS deficiency in myeloid cells of obese mice suppressed M1 macrophage accumulation in adipose tissue and improved glucose tolerance. These findings indicate that DHPS promotes the post-transcriptional regulation of a subset of mRNAs governing inflammation and chemotaxis in macrophages and contributes to a proinflammatory M1-like phenotype.
Collapse
Affiliation(s)
- Emily Anderson-Baucum
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Annie R Piñeros
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Abhishek Kulkarni
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | - Bernhard Maier
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ryan M Anderson
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Wenting Wu
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah A Tersey
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Teresa L Mastracci
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Isabel Casimiro
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Donalyn Scheuner
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
38
|
Chua CLL, Ng IMJ, Yap BJM, Teo A. Factors influencing phagocytosis of malaria parasites: the story so far. Malar J 2021; 20:319. [PMID: 34271941 PMCID: PMC8284020 DOI: 10.1186/s12936-021-03849-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
There are seven known species of Plasmodium spp. that can infect humans. The human host can mount a complex network of immunological responses to fight infection and one of these immune functions is phagocytosis. Effective and timely phagocytosis of parasites, accompanied by the activation of a regulated inflammatory response, is beneficial for parasite clearance. Functional studies have identified specific opsonins, particularly antibodies and distinct phagocyte sub-populations that are associated with clinical protection against malaria. In addition, cellular and molecular studies have enhanced the understanding of the immunological pathways and outcomes following phagocytosis of malaria parasites. In this review, an integrated view of the factors that can affect phagocytosis of infected erythrocytes and parasite components, the immunological consequences and their association with clinical protection against Plasmodium spp. infection is provided. Several red blood cell disorders and co-infections, and drugs that can influence phagocytic capability during malaria are also discussed. It is hoped that an enhanced understanding of this immunological process can benefit the design of new therapeutics and vaccines to combat this infectious disease.
Collapse
Affiliation(s)
| | - Ida May Jen Ng
- School of Biosciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Bryan Ju Min Yap
- School of Biosciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore. .,Department of Medicine, The Doherty Institute, University of Melbourne, Victoria, Australia.
| |
Collapse
|
39
|
Lin P, Ji HH, Li YJ, Guo SD. Macrophage Plasticity and Atherosclerosis Therapy. Front Mol Biosci 2021; 8:679797. [PMID: 34026849 PMCID: PMC8138136 DOI: 10.3389/fmolb.2021.679797] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a chronic disease starting with the entry of monocytes into the subendothelium and the subsequent differentiation into macrophages. Macrophages are the major immune cells in atherosclerotic plaques and are involved in the dynamic progression of atherosclerotic plaques. The biological properties of atherosclerotic plaque macrophages determine lesion size, composition, and stability. The heterogenicity and plasticity of atherosclerotic macrophages have been a hotspot in recent years. Studies demonstrated that lipids, cytokines, chemokines, and other molecules in the atherosclerotic plaque microenvironment regulate macrophage phenotype, contributing to the switch of macrophages toward a pro- or anti-atherosclerosis state. Of note, M1/M2 classification is oversimplified and only represent two extreme states of macrophages. Moreover, M2 macrophages in atherosclerosis are not always protective. Understanding the phenotypic diversity and functions of macrophages can disclose their roles in atherosclerotic plaques. Given that lipid-lowering therapy cannot completely retard the progression of atherosclerosis, macrophages with high heterogeneity and plasticity raise the hope for atherosclerosis regression. This review will focus on the macrophage phenotypic diversity, its role in the progression of the dynamic atherosclerotic plaque, and finally discuss the possibility of treating atherosclerosis by targeting macrophage microenvironment.
Collapse
Affiliation(s)
- Ping Lin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Hong-Hai Ji
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
40
|
Driscoll K, Cruz AD, Butcher JT. Inflammatory and Biomechanical Drivers of Endothelial-Interstitial Interactions in Calcific Aortic Valve Disease. Circ Res 2021; 128:1344-1370. [PMID: 33914601 DOI: 10.1161/circresaha.121.318011] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Calcific aortic valve disease is dramatically increasing in global burden, yet no therapy exists outside of prosthetic replacement. The increasing proportion of younger and more active patients mandates alternative therapies. Studies suggest a window of opportunity for biologically based diagnostics and therapeutics to alleviate or delay calcific aortic valve disease progression. Advancement, however, has been hampered by limited understanding of the complex mechanisms driving calcific aortic valve disease initiation and progression towards clinically relevant interventions.
Collapse
Affiliation(s)
| | - Alexander D Cruz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca NY
| | | |
Collapse
|
41
|
The pathophysiological function of non-gastrointestinal farnesoid X receptor. Pharmacol Ther 2021; 226:107867. [PMID: 33895191 DOI: 10.1016/j.pharmthera.2021.107867] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Farnesoid X receptor (FXR) influences bile acid homeostasis and the progression of various diseases. While the roles of hepatic and intestinal FXR in enterohepatic transport of bile acids and metabolic diseases were reviewed previously, the pathophysiological functions of FXR in non-gastrointestinal cells and tissues have received little attention. Thus, the roles of FXR in the liver, immune system, nervous system, cardiovascular system, kidney, and pancreas beyond the gastrointestinal system are reviewed herein. Gain of FXR function studies in non-gastrointestinal tissues reveal that FXR signaling improves various experimentally-induced metabolic and immune diseases, including non-alcoholic fatty liver disease, type 2 diabetes, primary biliary cholangitis, sepsis, autoimmune diseases, multiple sclerosis, and diabetic nephropathy, while loss of FXR promotes regulatory T cells production, protects the brain against ischemic injury, atherosclerosis, and inhibits pancreatic tumor progression. The downstream pathways regulated by FXR are diverse and tissue/cell-specific, and FXR has both ligand-dependent and ligand-independent activities, all of which may explain why activation and inhibition of FXR signaling could produce paradoxical or even opposite effects in some experimental disease models. FXR signaling is frequently compromised by diseases, especially during the progressive stage, and rescuing FXR expression may provide a promising strategy for boosting the therapeutic effect of FXR agonists. Tissue/cell-specific modulation of non-gastrointestinal FXR could influence the treatment of various diseases. This review provides a guide for drug discovery and clinical use of FXR modulators.
Collapse
|
42
|
Park DD, Chen J, Kudelka MR, Jia N, Haller CA, Kosaraju R, Premji AM, Galizzi M, Nairn AV, Moremen KW, Cummings RD, Chaikof EL. Resident and elicited murine macrophages differ in expression of their glycomes and glycan-binding proteins. Cell Chem Biol 2021; 28:567-582.e4. [PMID: 33378651 PMCID: PMC8052306 DOI: 10.1016/j.chembiol.2020.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/17/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022]
Abstract
The pleiotropic functions of macrophages in immune defense, tissue repair, and maintenance of tissue homeostasis are supported by the heterogeneity in macrophage sub-populations that differ both in ontogeny and polarization. Although glycans and glycan-binding proteins (GBPs) are integral to macrophage function and may contribute to macrophage diversity, little is known about the factors governing their expression. Here, we provide a resource for characterizing the N-/O-glycomes of various murine peritoneal macrophage sub-populations, demonstrating that glycosylation primarily reflects developmental origin and, to a lesser degree, cellular polarization. Furthermore, comparative analysis of GBP-coding genes in resident and elicited macrophages indicated that GBP expression is consistent with specialized macrophage functions and correlates with specific types of displayed glycans. An integrated, semi-quantitative approach was used to confirm distinct expression patterns of glycans and their binding proteins across different macrophages. The data suggest that regulation of glycan-protein complexes may be central to macrophage residence and recruitment.
Collapse
Affiliation(s)
- Diane D Park
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Matthew R Kudelka
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Nan Jia
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Carolyn A Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Revanth Kosaraju
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alykhan M Premji
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Melina Galizzi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Alison V Nairn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Durairaj AS, Minhas PS. On the promise of glycogen phosphorylase inhibition in acute inflammation. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211001620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
How glycogen metabolism directly regulates macrophages in the acute inflammatory state is not well understood. In the recent issue of Nature Communications, Ma et al. provide new insight into this process, demonstrating that glycogenolysis-driven pentose phosphate pathway and UDP-glucose-driven P2Y14 receptor promote an inflammatory phenotype in macrophages. They show that in vivo blockade of glycogenolysis is sufficient to rescue survival in peritonitis, hepatitis, and sepsis. Their results hold implications for the treatment of acute inflammatory disorders at large.
Collapse
Affiliation(s)
| | - Paras Singh Minhas
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
44
|
Li Y, Wang F, Imani S, Tao L, Deng Y, Cai Y. Natural Killer Cells: Friend or Foe in Metabolic Diseases? Front Immunol 2021; 12:614429. [PMID: 33717101 PMCID: PMC7943437 DOI: 10.3389/fimmu.2021.614429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
The worldwide epidemic of metabolic diseases, especially obesity and other diseases caused by it, has shown a dramatic increase in incidence. A great deal of attention has been focused on the underlying mechanisms of these pathological processes and potential strategies to solve these problems. Chronic inflammation initiated by abdominal adipose tissues and immune cell activation in obesity is the major cause of the consequent development of complications. In addition to adipocytes, macrophages and monocytes, natural killer (NK) cells have been verified to be vital components involved in shaping the inflammatory microenvironment, thereby leading to various obesity-related metabolic diseases. Here, we provide an overview of the roles of NK cells and the interactions of these cells with other immune and nonimmune cells in the pathological processes of metabolic diseases. Finally, we also discuss potential therapeutic strategies targeting NK cells to treat metabolic diseases.
Collapse
Affiliation(s)
- Yi Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fangjie Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yue Cai
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
45
|
Hou J, Zhang J, Cui P, Zhou Y, Liu C, Wu X, Ji Y, Wang S, Cheng B, Ye H, Shu L, Zhang K, Wang D, Xu J, Shu Q, Colonna M, Fang X. TREM2 sustains macrophage-hepatocyte metabolic coordination in nonalcoholic fatty liver disease and sepsis. J Clin Invest 2021; 131:135197. [PMID: 33586673 DOI: 10.1172/jci135197] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Sepsis is a leading cause of death in critical illness, and its pathophysiology varies depending on preexisting medical conditions. Here we identified nonalcoholic fatty liver disease (NAFLD) as an independent risk factor for sepsis in a large clinical cohort and showed a link between mortality in NAFLD-associated sepsis and hepatic mitochondrial and energetic metabolism dysfunction. Using in vivo and in vitro models of liver lipid overload, we discovered a metabolic coordination between hepatocyte mitochondria and liver macrophages that express triggering receptor expressed on myeloid cells-2 (TREM2). Trem2-deficient macrophages released exosomes that impaired hepatocytic mitochondrial structure and energy supply because of their high content of miR-106b-5p, which blocks Mitofusin 2 (Mfn2). In a mouse model of NAFLD-associated sepsis, TREM2 deficiency accelerated the initial progression of NAFLD and subsequent susceptibility to sepsis. Conversely, overexpression of TREM2 in liver macrophages improved hepatic energy supply and sepsis outcome. This study demonstrates that NAFLD is a risk factor for sepsis, providing a basis for precision treatment, and identifies hepatocyte-macrophage metabolic coordination and TREM2 as potential targets for future clinical trials.
Collapse
Affiliation(s)
- Jinchao Hou
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jue Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ping Cui
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Translational Research Program, Department of Anesthesiology & Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yingyue Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Can Liu
- Department of Thoracic and Cardiovascular Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Anesthesiology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Xiaoliang Wu
- Department of Intensive Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun Ji
- Surgical Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sicong Wang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Baoli Cheng
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hui Ye
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liqi Shu
- Department of Neurology, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Kai Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Di Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jielin Xu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiangming Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
46
|
Yu YY, Cui SC, Zheng TN, Ma HJ, Xie ZF, Jiang HW, Li YF, Zhu KX, Huang CG, Li J, Li JY. Sarsasapogenin improves adipose tissue inflammation and ameliorates insulin resistance in high-fat diet-fed C57BL/6J mice. Acta Pharmacol Sin 2021; 42:272-281. [PMID: 32699264 DOI: 10.1038/s41401-020-0427-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance is a major cause of type 2 diabetes and metabolic syndrome. Macrophage infiltration into obese adipose tissue promotes inflammatory responses that contribute to the pathogenesis of insulin resistance. Suppression of adipose tissue inflammatory responses is postulated to increase insulin sensitivity in obese patients and animals. Sarsasapogenin (ZGY) is one of the metabolites of timosaponin AIII in the gut, which has been shown to exert anti-inflammatory action. In this study, we investigated the effects of ZGY treatment on obesity-induced insulin resistance in mice. We showed that pretreatment with ZGY (80 mg·kg-1·d-1, ig, for 18 days) significantly inhibited acute adipose tissue inflammatory responses in LPS-treated mice. In high-fat diet (HFD)-fed obese mice, oral administration of ZGY (80 mg·kg-1·d-1, for 6 weeks) ameliorated insulin resistance and alleviated inflammation in adipose tissues by reducing the infiltration of macrophages. Furthermore, we demonstrated that ZGY not only directly inhibited inflammatory responses in macrophages and adipocytes, but also interrupts the crosstalk between macrophages and adipocytes in vitro, improving adipocyte insulin resistance. The insulin-sensitizing and anti-inflammatory effects of ZGY may result from inactivation of the IKK /NF-κB and JNK inflammatory signaling pathways in adipocytes. Collectively, our findings suggest that ZGY ameliorates insulin resistance and alleviates the adipose inflammatory state in HFD mice, suggesting that ZGY may be a potential agent for the treatment of insulin resistance and obesity-related metabolic diseases.
Collapse
|
47
|
Wang Y, Tang B, Long L, Luo P, Xiang W, Li X, Wang H, Jiang Q, Tan X, Luo S, Li H, Wang Z, Chen Z, Leng Y, Jiang Z, Wang Y, Ma L, Wang R, Zeng C, Liu Z, Wang Y, Miao H, Shi C. Improvement of obesity-associated disorders by a small-molecule drug targeting mitochondria of adipose tissue macrophages. Nat Commun 2021; 12:102. [PMID: 33397994 PMCID: PMC7782823 DOI: 10.1038/s41467-020-20315-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
Pro-inflammatory activation of adipose tissue macrophages (ATMs) is causally linked to obesity and obesity-associated disorders. A number of studies have demonstrated the crucial role of mitochondrial metabolism in macrophage activation. However, there is a lack of pharmaceutical agents to target the mitochondrial metabolism of ATMs for the treatment of obesity-related diseases. Here, we characterize a near-infrared fluorophore (IR-61) that preferentially accumulates in the mitochondria of ATMs and has a therapeutic effect on diet-induced obesity as well as obesity-associated insulin resistance and fatty liver. IR-61 inhibits the classical activation of ATMs by increasing mitochondrial complex levels and oxidative phosphorylation via the ROS/Akt/Acly pathway. Taken together, our findings indicate that specific enhancement of ATMs oxidative phosphorylation improves chronic inflammation and obesity-related disorders. IR-61 might be an anti-inflammatory agent useful for the treatment of obesity-related diseases by targeting the mitochondria of ATMs. Adipose tissue macrophages are central to controlling inflammation in the context of obesity. Here the authors present a new infrared dye (IR-61) that accumulates in the mitochondria of these cells resulting in anti-inflammatory effects that counter obesity-associated pathology in mice.
Collapse
Affiliation(s)
- Yawei Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Binlin Tang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.,Oncology Department, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Lei Long
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Wei Xiang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xueru Li
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Huilan Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.,Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qingzhi Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.,Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xu Tan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Shenglin Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Huijuan Li
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Ziwen Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Zelin Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Yu Leng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Zhongyong Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Rui Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Zujuan Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| | - Hongming Miao
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
48
|
AlZaim I, Hammoud SH, Al-Koussa H, Ghazi A, Eid AH, El-Yazbi AF. Adipose Tissue Immunomodulation: A Novel Therapeutic Approach in Cardiovascular and Metabolic Diseases. Front Cardiovasc Med 2020; 7:602088. [PMID: 33282920 PMCID: PMC7705180 DOI: 10.3389/fcvm.2020.602088] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a critical regulator of systemic metabolism and bodily homeostasis as it secretes a myriad of adipokines, including inflammatory and anti-inflammatory cytokines. As the main storage pool of lipids, subcutaneous and visceral adipose tissues undergo marked hypertrophy and hyperplasia in response to nutritional excess leading to hypoxia, adipokine dysregulation, and subsequent low-grade inflammation that is characterized by increased infiltration and activation of innate and adaptive immune cells. The specific localization, physiology, susceptibility to inflammation and the heterogeneity of the inflammatory cell population of each adipose depot are unique and thus dictate the possible complications of adipose tissue chronic inflammation. Several lines of evidence link visceral and particularly perivascular, pericardial, and perirenal adipose tissue inflammation to the development of metabolic syndrome, insulin resistance, type 2 diabetes and cardiovascular diseases. In addition to the implication of the immune system in the regulation of adipose tissue function, adipose tissue immune components are pivotal in detrimental or otherwise favorable adipose tissue remodeling and thermogenesis. Adipose tissue resident and infiltrating immune cells undergo metabolic and morphological adaptation based on the systemic energy status and thus a better comprehension of the metabolic regulation of immune cells in adipose tissues is pivotal to address complications of chronic adipose tissue inflammation. In this review, we discuss the role of adipose innate and adaptive immune cells across various physiological and pathophysiological states that pertain to the development or progression of cardiovascular diseases associated with metabolic disorders. Understanding such mechanisms allows for the exploitation of the adipose tissue-immune system crosstalk, exploring how the adipose immune system might be targeted as a strategy to treat cardiovascular derangements associated with metabolic dysfunctions.
Collapse
Affiliation(s)
- Ibrahim AlZaim
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Safaa H. Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Houssam Al-Koussa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Alaa Ghazi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
49
|
Yuan Y, Long L, Liu J, Lin Y, Peng C, Tang Y, Zhou X, Li S, Zhang C, Li X, Zhou X. The double-edged sword effect of macrophage targeting delivery system in different macrophage subsets related diseases. J Nanobiotechnology 2020; 18:168. [PMID: 33198758 PMCID: PMC7667812 DOI: 10.1186/s12951-020-00721-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/24/2020] [Indexed: 01/01/2023] Open
Abstract
Background Monocyte/macrophage-targeting delivery systems (MTDSs) have been focused upon as an emerging routine for delivering drugs to treat various macrophage-related diseases. However, the ability of MTDSs to distinguish different macrophage-related diseases and their impact on macrophage function and disease progression have not been systematically revealed, which is important for actively targeted therapeutic or diagnostic strategies. Results Herein, we used dextran-modified polystyrene nanoparticles (DEX-PS) to demonstrate that modification of nanoparticles by dextran can specifically enhance their recognition by M2 macrophages in vitro, but it is obstructed by monocytes in peripheral blood according to in vivo assays. DEX-PS not only targeted and became distributed in tumors, an M2 macrophage-related disease, but was also highly distributed in an M1 macrophage-related disease, namely acute peritonitis. Thus, DEX-PS acts as a double-edged sword in these two different diseases by reeducating macrophages to a pro-inflammatory phenotype. Conclusions Our results suggest that MTDSs, even those designed based on differential expression of receptors on specific macrophage subtypes, lack the ability to distinguish different macrophage subtype-related diseases in vivo. In addition to the potential impact of these carrier materials on macrophage function, studies of MTDSs should pay greater attention to the distribution of nanoparticles in non-target macrophage-infiltrated disease sites and their impact on disease processes.![]()
Collapse
Affiliation(s)
- Yuchuan Yuan
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Ling Long
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400042, China
| | - Jiaxing Liu
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yongyao Lin
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Cuiping Peng
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yue Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xuemei Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Shuhui Li
- Department of Clinical Biochemistry, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Chengyuan Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Xiaohui Li
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China.
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
50
|
Borowczyk C, Laroche-Traineau J, Brevier J, Jacobin-Valat MJ, Marais S, Gerbaud E, Clofent-Sanchez G, Ottones F. Two-photon excited fluorescence (TPEF) may be useful to identify macrophage subsets based on their metabolic activity and cellular responses in atherosclerotic plaques. Atherosclerosis 2020; 309:47-55. [PMID: 32871394 DOI: 10.1016/j.atherosclerosis.2020.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is characterized by the formation of lipid plaques within the arterial wall. In such plaques, the massive and continuous recruitment of circulating monocyte-derived macrophages induces inflammation, leading to plaque destabilization and rupture. Plaque vulnerability is linked to the presence of (i) a large lipid core that contains necrotic, "foamy" macrophages (FMs), (ii) a thin fibrous cap that cannot limit the prothrombotic lipid core, and potentially (iii) an imbalance between inflammatory and immunoregulatory macrophages. These opposite macrophage functions rely on the use of different energy pathways (glycolysis and oxidative phosphorylation, respectively) that may lead to different levels of the auto-fluorescent cofactors nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD). We hypothesized that high-resolution two-photon excited autofluorescence (TPEF) imaging of these cofactors may be used to monitor the metabolic activity and cellular responses of macrophages in atherosclerotic plaques. METHODS Different models of human FMs were generated by exposure to acetylated or oxidized low-density lipoproteins (LDL), with/without human carotid extract (CE). Their phenotype and optical properties were compared with those of extremely polarized macrophages, inflammatory M1 (MLPS+IFNγ) and immunoregulatory M2 (MIL4+IL13). RESULTS These FM models displayed an intermediate phenotype with low levels of M1 and M2 "specific" markers. Moreover, the NADH and FAD autofluorescence profiles of FMoxLDL ± CE cells were significantly distinct from those of M1 and M2 macrophages. CONCLUSIONS TPEF imaging may be useful to follow the metabolic activity and cellular responses of the different macrophage subtypes present in atherosclerotic plaques in order to detect vulnerable areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Edouard Gerbaud
- Centre de Recherche Cardio Thoracique, INSERM U 1045, Bordeaux, France
| | | | | |
Collapse
|