1
|
Guo HT, Lee ZX, Magalingam KB, Radhakrishnan AK, Bhuvanendran S. Carotenoids modulate antioxidant pathways in In vitro models of Parkinson's disease: A comprehensive scoping review. Neurochem Int 2024; 180:105857. [PMID: 39293662 DOI: 10.1016/j.neuint.2024.105857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and it has affected the living quality of elderly people significantly. PD is characterised by the accumulation of α-Synuclein and progressive loss of dopaminergic neurons at the substantia nigra pars compacta. In the pathogenesis of Parkinson's disease, α-Synuclein, oxidative stress, and electron transport chain (ETC) are the three main factors that contribute to the production of reactive oxygen species (ROS). Currently, there is no commercial disease-modifying agent available for PD; the first-line treatment, Levodopa (l-DOPA), could only relieve the symptoms of PD, with many side effects. Carotenoids, which encompass red, orange, and yellow pigments found in nature and contribute to the colouration of plants, have been associated with various health benefits, including anti-cancer and neuroprotective effects due to their antioxidant properties. This scoping review delves into the impact and underlying mechanisms of carotenoids on cell-based models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Han Ting Guo
- School of Science, Monash University Malaysia, Sunway, Selangor, 475000, Malaysia
| | - Zi Xin Lee
- School of Science, Monash University Malaysia, Sunway, Selangor, 475000, Malaysia
| | - Kasthuri Bai Magalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway, Selangor, 475000, Malaysia.
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway, Selangor, 475000, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway, Selangor, 475000, Malaysia
| |
Collapse
|
2
|
Rani KGA, Al-Rawi AM, Al Qabbani A, AlKawas S, Mohammad MG, Samsudin AR. Response of human peripheral blood monocyte-derived macrophages (PBMM) to demineralized and decellularized bovine bone graft substitutes. PLoS One 2024; 19:e0300331. [PMID: 38635511 PMCID: PMC11025794 DOI: 10.1371/journal.pone.0300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/26/2024] [Indexed: 04/20/2024] Open
Abstract
The performance of apparently biocompatible implanted bovine bone grafts may be compromised by unresolved chronic inflammation, and poor graft incorporation leading to implant failure. Monitoring the intensity and duration of the inflammatory response caused by implanted bone grafts is crucial. In this study, the ability of demineralized (DMB) and decellularized (DCC) bovine bone substitutes in initiating inflammatory responses to peripheral blood monocyte-derived macrophages (PBMMs) was investigated. The response of PBMMs to bone substitutes was evaluated by using both direct and indirect cell culture, reactive oxygen species (ROS) generation, apoptosis, immunophenotyping, and cytokine production. Analysis of DMB and DCC substitutes using scanning electron microscope (SEM) showed a roughened surface with a size ranging between 500 and 750 μm. PBMMs treated with DMB demonstrated cell aggregation and clumping mimicking lipopolysaccharide (LPS) treated PBMMs and a higher proliferation ability (166.93%) compared to control (100%) and DCC treatments (115.64%; p<0.001) at 24h. This was associated with a significantly increased production of intracellular ROS in PBMMs exposed to DMB substitutes than control (3158.5 vs 1715.5; p<0.001) and DCC treatment (2117.5). The bone substitute exposure also caused an increase in percentage apoptosis which was significantly (p<0.0001) higher in both DMB (27.85) and DCC (29.2) treatment than control (19.383). A significant increase in proinflammatory cytokine expression (TNF-α: 3.4 folds; p<0.05) was observed in DMB substitute-treated PBMMs compared to control. Notably, IL-1β mRNA was significantly higher in DMB (21.75 folds; p<0.0001) than control and DCC (5.01 folds). In contrast, DCC substitutes exhibited immunoregulatory effects on PBMMs, as indicated by the expression for CD86, CD206, and HLDR surface markers mimicking IL-4 treatments. In conclusion, DMB excites a higher immunological response compared to DCC suggesting decellularization process of tissues dampen down inflammatory reactions when exposed to PBMM.
Collapse
Affiliation(s)
- K. G. Aghila Rani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed M. Al-Rawi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ali Al Qabbani
- Oral and Craniofacial Health Sciences Department, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Sausan AlKawas
- Oral and Craniofacial Health Sciences Department, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad G. Mohammad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - A. R. Samsudin
- Oral and Craniofacial Health Sciences Department, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Chen M, Wu T. Nanoparticles and neurodegeneration: Insights on multiple pathways of programmed cell death regulated by nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168739. [PMID: 38008311 DOI: 10.1016/j.scitotenv.2023.168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Currently, nanoparticles (NPs) are extensively applied in the diagnosis and treatment of neurodegenerative diseases (NDs). With the rapid development and increasing exposure to the public, the potential neurotoxicity associated with NDs caused by NPs has attracted the researchers' attentions but their biosafety assessments are still far behind relevant application studies. Based on recent research, this review aims to conduct a comprehensive and systematic analysis of neurotoxicity induced by NPs. The 191 studies selected according to inclusion and exclusion criteria were imported into the software, and the co-citations and keywords of the included literatures were analyzed to find the breakthrough point of previous studies. According to the available studies, the routes of NPs entering into the normal and injured brain were various, and then to be distributed and accumulated in living bodies. When analyzing the adverse effects induced by NPs, we focused on multiple programmed cell deaths (PCDs), especially ferroptosis triggered by NPs and their tight connection and crosstalk that have been found playing critical roles in the pathogenesis of NDs and their underlying toxic mechanisms. The activation of multiple PCD pathways by NPs provides a scientific basis for the occurrence and development of NDs. Furthermore, the adoption of new methodologies for evaluating the biosafety of NPs would benefit the next generation risk assessment (NGRA) of NPs and their toxic interventions. This would help ensure their safe application and sustainable development in the field of medical neurobiology.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
4
|
Chojnacka-Puchta L, Sawicka D, Zapor L, Miranowicz-Dzierzawska K. Assessing cytotoxicity and endoplasmic reticulum stress in human blood-brain barrier cells due to silver and copper oxide nanoparticles. J Appl Genet 2024:10.1007/s13353-024-00833-8. [PMID: 38332387 DOI: 10.1007/s13353-024-00833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
In recent years, it has been generally accepted that metal-based nanoparticles (NPs) may induce stress in the endoplasmic reticulum (ER), a key organelle where protein folding occurs. We examined ER stress in immortalized human cerebral microvascular cells (hCMEC/D3) after exposure to silver-NPs (Ag-NPs)- and copper oxide-NPs (CuO-NPs) induced toxicity at < 10 nm and < 40 nm or < 50 nm diameters, respectively. In cytotoxicity assessments, cells were exposed to different CuO-NPs (5-400 µg/mL) or Ag-NPs (1-10 µg/mL) concentration ranges for 24 h and 72 h, and tetrazole salt reduction assays (EZ4U) were performed. Also, Ag-NP or CuO-NP effects on cell proliferation, apoptosis (caspase 3/7 assays), and ER stress and cell morphology were evaluated. In ER stress assessments, RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1a), and others stress factor mRNA levels were determined after 24 h treatment using Real-Time PCR. Increased stress sensors (IRE1a, PERK, and ATF6) mRNA levels were observed after exposure to Ag-NPs (< 10 and < 40 nm) or CuO-NPs (< 50 nm). We investigated the expression of tight junction (TJ) proteins (barrier junctions) and showed that both types of NP reduced of OCLN gene expression. Morphological changes were observed after Ag-NP or CuO-NP exposure using holotomographic microscopy. Our data suggest that Ag- and CuO-NPs should undergo future in vitro and in vivo toxicology studies, especially for downstream biomedical application and occupational risk assessments.
Collapse
Affiliation(s)
- Luiza Chojnacka-Puchta
- Central Institute for Labour Protection - National Research Institute, Czerniakowska 16, 00-701, Warsaw, Poland.
| | - Dorota Sawicka
- Central Institute for Labour Protection - National Research Institute, Czerniakowska 16, 00-701, Warsaw, Poland
| | - Lidia Zapor
- Central Institute for Labour Protection - National Research Institute, Czerniakowska 16, 00-701, Warsaw, Poland
| | | |
Collapse
|
5
|
Sajjad H, Sajjad A, Haya RT, Khan MM, Zia M. Copper oxide nanoparticles: In vitro and in vivo toxicity, mechanisms of action and factors influencing their toxicology. Comp Biochem Physiol C Toxicol Pharmacol 2023; 271:109682. [PMID: 37328134 DOI: 10.1016/j.cbpc.2023.109682] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/21/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) have received increasing interest due to their distinctive properties, including small particle size, high surface area, and reactivity. Due to these properties, their applications have been expanded rapidly in various areas such as biomedical properties, industrial catalysts, gas sensors, electronic materials, and environmental remediation. However, because of these widespread uses, there is now an increased risk of human exposure, which could lead to short- and long-term toxicity. This review addresses the underlying toxicity mechanisms of CuO NPs in cells which include reactive oxygen species generation, leaching of Cu ion, coordination effects, non-homeostasis effect, autophagy, and inflammation. In addition, different key factors responsible for toxicity, characterization, surface modification, dissolution, NPs dose, exposure pathways and environment are discussed to understand the toxicological impact of CuO NPs. In vitro and in vivo studies have shown that CuO NPs cause oxidative stress, cytotoxicity, genotoxicity, immunotoxicity, neurotoxicity, and inflammation in bacterial, algal, fish, rodents, and human cell lines. Therefore, to make CuO NPs a more suitable candidate for various applications, it is essential to address their potential toxic effects, and hence, more studies should be done on the long-term and chronic impacts of CuO NPs at different concentrations to assure the safe usage of CuO NPs.
Collapse
Affiliation(s)
- Humna Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Anila Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rida Tul Haya
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
6
|
Guo H, Ruan C, Zhan X, Pan H, Luo Y, Gao K. Crocetin Protected Human Hepatocyte LO2 Cell From TGF-β-Induced Oxygen Stress and Apoptosis but Promoted Proliferation and Autophagy via AMPK/m-TOR Pathway. Front Public Health 2022; 10:909125. [PMID: 35836988 PMCID: PMC9273739 DOI: 10.3389/fpubh.2022.909125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To investigate the protective effects of crocetin against transforming growth factor-β (TGF-β)—induced injury in LO2 cells. Methods Human hepatocyte LO2 cells were pre-treated with crocetin (10 μM) for 6, 12, and 24 h, and then induced by TGF-β. Proliferation, oxidative stress, apoptosis, autophagy, and related proteins were assessed. Results Crocetin pre-treating promoted proliferation but suppressed apoptosis in TGF-β-induced LO2 cells. Crocetin protected LO2 cells from TGF-β-induced inflammation and oxygen stress by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) but enhancing superoxide dismutase (SOD) and glutathione (GSH). Autophagy was suppressed in TGF-β but crocetin promoted autophagy in LO2 cells by mediating Adenosine 5'-monophosphate—activated protein kinase (AMPK)/mammalian target of rapamycin (m-TOR) signaling pathway via upregulating p-AMPK and p-Beclin-1 but downregulating p-mTOR. Conclusions Crocetin protected LO2 cells from TGF-β-induced damage by promoting proliferation and autophagy, and suppressing apoptosis and anti-inflammation via regulation of AMPK/m-TOR signaling pathway.
Collapse
Affiliation(s)
- Hongxing Guo
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Chenyu Ruan
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiuhong Zhan
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hao Pan
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yumei Luo
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Ke Gao
- Department of Pathology, Foshan Fosun Chancheng Hospital, Foshan, China
- *Correspondence: Ke Gao
| |
Collapse
|
7
|
Mohammadipour A, Abudayyak M. Hippocampal toxicity of metal base nanoparticles. Is there a relationship between nanoparticles and psychiatric disorders? REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:35-44. [PMID: 33770832 DOI: 10.1515/reveh-2021-0006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Metal base nanoparticles are widely produced all over the world and used in many fields and products such as medicine, electronics, cosmetics, paints, ceramics, toys, kitchen utensils and toothpastes. They are able to enter the body through digestive, respiratory, and alimentary systems. These nanoparticles can also cross the blood brain barrier, enter the brain and aggregate in the hippocampus. After entering the hippocampus, they induce oxidative stress, neuro-inflammation, mitochondrial dysfunction, and gene expression alteration in hippocampal cells, which finally lead to neuronal apoptosis. Metal base nanoparticles can also affect hippocampal neurogenesis and synaptic plasticity that both of them play crucial role in memory and learning. On the one hand, hippocampal cells are severely vulnerable due to their high metabolic activity, and on the other hand, metal base nanoparticles have high potential to damage hippocampus through variety of mechanisms and affect its functions. This review discusses, in detail, nanoparticles' detrimental effects on the hippocampus in cellular, molecular and functional levels to reveal that according to the present information, which types of nanoparticles have more potential to induce hippocampal toxicity and psychiatric disorders and which types should be more evaluated in the future studies.
Collapse
Affiliation(s)
- Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Yang J, Qiu X, Zhou M, Wang D. Crocetin attenuating Urinary tract Infection and adherence of uropathogenic E. coli in NRK-52E cells via an inflammatory pathway. J Food Biochem 2021; 45:e13998. [PMID: 34792197 DOI: 10.1111/jfbc.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Urinary tract infections (UTI) are commonly treated with broad-spectrum antibiotics, but treatment has limitation due to causes of nephrotoxicity in uroepithelial cells. Recently, the researcher focuses their research on alternative therapy for the treatment of UTI. This study evaluated the anti-infectious effect of crocetin against adherence of pathogenic [2-14 C]-acetate labeled Escherichia coli (MTCC-729) to rat proximal renal tubular cells (NRK-52E cells) and explores the possible mechanism of action. MATERIALS AND METHODS In vitro cytotoxicity and radio acetate labeled tests were performed on NRK-52E cells. The rats were divided into five different groups as follows: normal control (NC), disease control (DC), and various doses of crocetin (1.25, 2.5, and 5 mg/kg) treated group rats. White blood cells in blood, urine, and bacterial colony counts were estimated at regular intervals. Pro-inflammatory cytokines, such as interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), interleukin-10 (IL-10), and interleukin-8 (IL-8), were also estimated. In the current study, we estimated the mRNA expression of toll-like receptor-4 (TLR-4) and toll-like receptor-2 (TLR-2) in the renal and bladder tissues. RESULTS Crocetin significantly (p < .05) inhibited the adherence of E. Coli in NRK-52E cells. Crocetin suppresses the lipid peroxidation (LPO) 42% in cells treated with H2 O2 cells without crocetin. The white blood cells (WBC) count in blood and urine were augmented and crocetin treatment significantly (p < .05) reduced the WBC in urine and blood. The pro-inflammatory cytokines, such as IL-6, MCP-1, IL-10, and IL-8, significantly (p < .05) increased in the DC group and crocetin significantly (p < .05) reduced the pro-inflammatory cytokines. Dose-dependent treatment of crocetin significantly reduced the mRNA expression of TLR2 and TLR4 in the renal and bladder tissues. CONCLUSION Crocetin considerably reduced the bacterial adherence to NRK-52E cells, attenuated the H2 O2 induced toxicity in NRK-52E cells and also improved the renal tubular function, and reduced the inflammatory response via altering the inflammatory and antioxidant markers. PRACTICAL APPLICATION As we all know that urinary tract infection is the most common disease worldwide. In this study, we scrutinized the protective effect of crocetin against urinary tract infection. Crocetin treatment considerably reduced the zone of inhibition and improved radioactivity. Crocetin significantly reduced the levels of cytokines and inflammatory mediators. Crocetin can be used as a protective drug in the treatment of urinary tract infections.
Collapse
Affiliation(s)
- Jian Yang
- Department of Nephrology, Baoji Hospital of traditional Chinese Medicine, Baoji, China
| | - Xin Qiu
- Department of Nephrology, Baoji Hospital of traditional Chinese Medicine, Baoji, China
| | - Meilan Zhou
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, China
| | - Di Wang
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Mihailovic V, Katanic Stankovic JS, Selakovic D, Rosic G. An Overview of the Beneficial Role of Antioxidants in the Treatment of Nanoparticle-Induced Toxicities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7244677. [PMID: 34820054 PMCID: PMC8608524 DOI: 10.1155/2021/7244677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
Nanoparticles (NPs) are used in many products and materials for humans such as electronics, in medicine for drug delivery, as biosensors, in biotechnology, and in agriculture, as ingredients in cosmetics and food supplements. Besides that, NPs may display potentially hazardous properties on human health and the environment as a consequence of their abundant use in life nowadays. Hence, there is increased interest of researchers to provide possible therapeutic agents or dietary supplements for the amelioration of NP-induced toxicity. This review summarizes the new findings in the research of the use of antioxidants as supplements for the prevention and alleviation of harmful effects caused by exposure of organisms to NPs. Also, mechanisms involved in the formation of NP-induced oxidative stress and protective mechanisms using different antioxidant substances have also been elaborated. This review also highlights the potential of naturally occurring antioxidants for the enhancement of the antioxidant defense systems in the prevention and mitigation of organism damage caused by NP-induced oxidative stress. Based on the presented results of the most recent studies, it may be concluded that the role of antioxidants in the prevention and treatment of nanoparticle-induced toxicity is unimpeachable. This is particularly important in terms of oxidative stress suppression.
Collapse
Affiliation(s)
- Vladimir Mihailovic
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Jelena S. Katanic Stankovic
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Dragica Selakovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| |
Collapse
|
10
|
Mihailovic V, Katanic Stankovic JS, Selakovic D, Rosic G. An Overview of the Beneficial Role of Antioxidants in the Treatment of Nanoparticle-Induced Toxicities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: https://doi.org/10.1155/2021/7244677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nanoparticles (NPs) are used in many products and materials for humans such as electronics, in medicine for drug delivery, as biosensors, in biotechnology, and in agriculture, as ingredients in cosmetics and food supplements. Besides that, NPs may display potentially hazardous properties on human health and the environment as a consequence of their abundant use in life nowadays. Hence, there is increased interest of researchers to provide possible therapeutic agents or dietary supplements for the amelioration of NP-induced toxicity. This review summarizes the new findings in the research of the use of antioxidants as supplements for the prevention and alleviation of harmful effects caused by exposure of organisms to NPs. Also, mechanisms involved in the formation of NP-induced oxidative stress and protective mechanisms using different antioxidant substances have also been elaborated. This review also highlights the potential of naturally occurring antioxidants for the enhancement of the antioxidant defense systems in the prevention and mitigation of organism damage caused by NP-induced oxidative stress. Based on the presented results of the most recent studies, it may be concluded that the role of antioxidants in the prevention and treatment of nanoparticle-induced toxicity is unimpeachable. This is particularly important in terms of oxidative stress suppression.
Collapse
Affiliation(s)
- Vladimir Mihailovic
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Jelena S. Katanic Stankovic
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Dragica Selakovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| |
Collapse
|
11
|
Alshammari GM, Al-Qahtani WH, Alshuniaber MA, Yagoub AEA, Al-Khalifah AS, Al-Harbi LN, Alhussain MH, AlSedairy SA, Yahya MA. Quercetin improves the impairment in memory function and attenuates hippocampal damage in cadmium chloride-intoxicated male rats by suppressing acetylcholinesterase and concomitant activation of SIRT1 signaling. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
12
|
Mohamed Mowafy S, Awad Hegazy A, A Mandour D, Salah Abd El-Fatah S. Impact of copper oxide nanoparticles on the cerebral cortex of adult male albino rats and the potential protective role of crocin. Ultrastruct Pathol 2021; 45:307-318. [PMID: 34459708 DOI: 10.1080/01913123.2021.1970660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of copper oxide nanoparticles (CUONPs) on a large-scale application is a reason for many health problems and morbidities involving most body tissues, particularly those of the nervous system. Crocin is the chemical ingredient primarily responsible for the color of saffron. It has different pharmacological effects, such as antioxidant, anticancer, and memory-improving activities. This study was conducted to elaborate the effects of CUONP exposureon the cerebellar cortical tissues of rats and explore the potential protecting role of crocin through biochemical, light microscopic, and ultrastructural examinations. Twenty four adult male albino rats were randomly divided into four equal groups: Group I (negative control); Group II (crocin-treated group; 30mg/kg body weight (BW) intraperitoneal (IP) crocin daily); Group III (CUONP-treatedgroup; 0.5-mg/kg BW IP CUONP daily); and Group IV (CUONP/crocin-treated group). After 14 days of the experiment, venous blood samples were collected to determine red blood cell (RBC), white blood cell (WBC), and hemoglobin (Hb) levels. Besides, serum malondialdehyde (MDA), glutathione peroxidase (GPx), and total antioxidant capacity (TAC) were measured. Cerebellar tissue samples were examined under light and electron microscopy along with a histomorphological analysis. CUONPs induced oxidative/antioxidative imbalance as evidenced by a significant increase in serum MDA levels and decreased GPx and TAC activities. CUONPs caused a significant decrease in RBC and Hb levels and an increase in WBC count. Histopathological alterations in the cerebellar cortex were observed. The administration of crocin showed some protection against the toxic effects of CUONPs. Crocin is suggested to have a mitigating role on oxidative stress and structure alterations in the cerebellar tissues induced by CUONPs.
Collapse
Affiliation(s)
- Sarah Mohamed Mowafy
- Department of Anatomy and Embryology, Faculty of Medicine, PortSaid University, Egypt
| | - Abdelmonem Awad Hegazy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia A Mandour
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samaa Salah Abd El-Fatah
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Gurunathan S, Kang MH, Jeyaraj M, Kim JH. Palladium Nanoparticle-Induced Oxidative Stress, Endoplasmic Reticulum Stress, Apoptosis, and Immunomodulation Enhance the Biogenesis and Release of Exosome in Human Leukemia Monocytic Cells (THP-1). Int J Nanomedicine 2021; 16:2849-2877. [PMID: 33883895 PMCID: PMC8055296 DOI: 10.2147/ijn.s305269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Background Exosomes are endosome-derived nano-sized vesicles that have emerged as important mediators of intercellular communication and play significant roles in various diseases. However, their applications are rigorously restricted by the limited secretion competence of cells. Therefore, strategies to enhance the production and functions of exosomes are warranted. Studies have shown that nanomaterials can significantly enhance the effects of cells and exosomes in intercellular communication; however, how palladium nanoparticles (PdNPs) enhance exosome release in human leukemia monocytic cells (THP-1) remains unclear. Therefore, this study aimed to address the effect of PdNPs on exosome biogenesis and release in THP-1 cells. Methods Exosomes were isolated by ultracentrifugation and ExoQuickTM and characterized by dynamic light scattering, nanoparticle tracking analysis system, scanning electron microscopy, transmission electron microscopy, EXOCETTM assay, and fluorescence polarization. The expression levels of exosome markers were analyzed via quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Results PdNP treatment enhanced the biogenesis and release of exosomes by inducing oxidative stress, endoplasmic reticulum stress, apoptosis, and immunomodulation. The exosomes were spherical in shape and had an average diameter of 50–80 nm. Exosome production was confirmed via total protein concentration, exosome counts, acetylcholinesterase activity, and neutral sphingomyelinase activity. The expression levels of TSG101, CD9, CD63, and CD81 were significantly higher in PdNP-treated cells than in control cells. Further, cytokine and chemokine levels were significantly higher in exosomes isolated from PdNP-treated THP-1 cells than in those isolated from control cells. THP-1 cells pre-treated with N-acetylcysteine or GW4869 showed significant decreases in PdNP-induced exosome biogenesis and release. Conclusion To our knowledge, this is the first study showing that PdNPs stimulate exosome biogenesis and release and simultaneously increase the levels of cytokines and chemokines by modulating various physiological processes. Our findings suggest a reasonable approach to improve the production of exosomes for various therapeutic applications.
Collapse
Affiliation(s)
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Korea
| | - Muniyandi Jeyaraj
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Korea
| |
Collapse
|
14
|
Arsenijevic N, Selakovic D, Katanic Stankovic JS, Mihailovic V, Mitrovic S, Milenkovic J, Milanovic P, Vasovic M, Markovic SD, Zivanovic M, Grujic J, Jovicic N, Rosic G. The Beneficial Role of Filipendula ulmaria Extract in Prevention of Prodepressant Effect and Cognitive Impairment Induced by Nanoparticles of Calcium Phosphates in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6670135. [PMID: 33628375 PMCID: PMC7895592 DOI: 10.1155/2021/6670135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Mineral components of dental composites are used in many medical and dental applications, including preventive, restorative, and regenerative dentistry. To evaluate the behavioural alterations induced by nanosized particles of novel dental composites, by means of depressive level and cognitive functions, experimental groups of rats were chronically administered with nanosized hydroxyapatite (HA), tricalcium phosphate (TCP), and amorphous calcium phosphate (ACP) with or without simultaneous application of Filipendula ulmaria L. (FU) methanolic extract. The significant prodepressant action was observed in groups solely treated with HA and ACP. Besides, prolonged treatment with ACP also resulted in a significant decline in cognitive functions estimated in the novel object recognition test. The adverse impact of calcium phosphates on estimated behavioural functions was accompanied by increased oxidative damage and apoptotic markers in the prefrontal cortex, as well as diminished specific neurotrophin (BDNF) and gabaergic expression. The results of our investigation showed that simultaneous antioxidant supplementation with FU extract prevented calcium phosphate-induced behavioural disturbances, as well as prooxidative and apoptotic actions, with the simultaneous restoration of BDNF and GABA-A receptors in the prefrontal cortex. These findings suggest that FU may be useful in the prevention of prodepressant impact and cognitive decline as early as the manifestation of calcium phosphate-induced neurotoxicity.
Collapse
Affiliation(s)
- Natalija Arsenijevic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena S. Katanic Stankovic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Vladimir Mihailovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jovana Milenkovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Pavle Milanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Miroslav Vasovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Snezana D. Markovic
- Department for Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marko Zivanovic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia
- BioIRC, Bioengineering R&D Center, 34000 Kragujevac, Serbia
| | - Jelena Grujic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
15
|
Qin L, Liu H, Wang J, Wang W, Zhang L. Crocetin Exerts a Cardio-protective Effect on Mice with Coxsackievirus B3-induced Acute Viral Myocarditis. J Oleo Sci 2021; 70:1115-1124. [PMID: 34349088 DOI: 10.5650/jos.ess21100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous research has proven that coxsackievirus B3 (CVB3) is broadly considered virus used in the experimental model of animals, which causes myocarditis in humans. To investigate whether there exists a cardio-protective effect of crocetin in an experimental murine model of acute viral myocarditis (AVM). Male BALB/c mice were randomly assigned to three groups: control, myocarditis treated with placebo and myocarditis treated with crocetin (n = 40 animals per group). Myocarditis was established by intraperitoneal injection with CVB3. Twenty-four hours after infection, crocetin was intraperitoneally administered for 14 consecutive days. Twenty mice were randomly selected from each group to monitor a 14-day survival rate. On day 7 and day 14, eight surviving mice from each group were sacrificed and their hearts and blood were obtained to perform serological and histological examinations. Expression of ROCKs, interleukin-17 (IL-17), interleukin-1β (IL-1β), tumor necrosis factor-α (TNFα), RORγt, and Foxp3 was quantified by RT-PCR. Plasma levels of TNFα, IL-1β and IL-17 were measured by ELISA. In addition, protein levels of IL-17 and ROCK2 in cardiac tissues were analyzed by Western blot. Crocetin treatment significantly increased survival, attenuated myocardial necrotic lesions, reduced CVB3 replication and expression of ROCK2 and IL-17 in the infected hearts. ROCK pathway inhibition was cardio-protective in viral myocarditis with increased survival, decreased viral replication, and inflammatory response. These findings suggest that crocetin is a potential therapeutic agent for patients with viral myocarditis.
Collapse
Affiliation(s)
- Li Qin
- Department of Pediatrics, Affiliated Hospital of North Sichuan Medical College
| | - Hui Liu
- Department of Neonatology, Shiyan Taihe Hospital, Hubei University of Medicine
| | - Jinghua Wang
- Division of Rheumatology, Immunology & Allergy in the Department of Pediatrics, the First hospital of Jilin University
| | - Wei Wang
- Pediatrics of Fifth Hospital of Shijiazhuang City
| | - Lei Zhang
- Department of Pediatrics, Heilongjiang Provincial Hospital
| |
Collapse
|
16
|
Protective Effects of Crocetin against Radiation-Induced Injury in Intestinal Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2906053. [PMID: 32964024 PMCID: PMC7499320 DOI: 10.1155/2020/2906053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Background and Aims Treatment options for radiation-induced intestinal injury (RIII) are limited. Crocetin has been demonstrated to exert antioxidant, antiapoptotic, and anti-inflammatory effects on various diseases. Here, we investigate the effects of crocetin on RIII in vitro. Materials and Method. IEC-6 cells exposed to 10 Gy of radiation were treated with different doses of crocetin (0, 0.1, 1, 10, and 100 μM), and cell viability was assessed by CCK-8. The levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), malondialdehyde (MDA), myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interferon-γ (IFN-γ) in culture supernatants were measured using colorimetric and ELISA kits, respectively. Cellular apoptosis was evaluated by Annexin V/PI double staining. Results Crocetin dose-dependently improved the survival of irradiated IEC-6 cells with the optimal dose of 10 μM, as indicated by the reduction of cellular apoptosis, decreased levels of MDA, MPO, and proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ), and increased activities of antioxidative enzymes (SOD, CAT, and GPx). Conclusion Our findings demonstrated that crocetin alleviated radiation-induced injury in intestinal epithelial cells, offering a promising agent for radioprotection.
Collapse
|
17
|
Zhao N, Francis NL, Calvelli HR, Moghe PV. Microglia-targeting nanotherapeutics for neurodegenerative diseases. APL Bioeng 2020; 4:030902. [PMID: 32923843 PMCID: PMC7481010 DOI: 10.1063/5.0013178] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Advances in nanotechnology have enabled the design of nanotherapeutic platforms that could address the challenges of targeted delivery of active therapeutic agents to the central nervous system (CNS). While the majority of previous research studies on CNS nanotherapeutics have focused on neurons and endothelial cells, the predominant resident immune cells of the CNS, microglia, are also emerging as a promising cellular target for neurodegeneration considering their prominent role in neuroinflammation. Under normal physiological conditions, microglia protect neurons by removing pathological agents. However, long-term exposure of microglia to stimulants will cause sustained activation and lead to neuronal damage due to the release of pro-inflammatory agents, resulting in neuroinflammation and neurodegeneration. This Perspective highlights criteria to be considered when designing microglia-targeting nanotherapeutics for the treatment of neurodegenerative disorders. These criteria include conjugating specific microglial receptor-targeting ligands or peptides to the nanoparticle surface to achieve targeted delivery, leveraging microglial phagocytic properties, and utilizing biocompatible and biodegradable nanomaterials with low immune reactivity and neurotoxicity. In addition, certain therapeutic agents for the controlled inhibition of toxic protein aggregation and for modulation of microglial activation pathways can also be incorporated within the nanoparticle structure without compromising stability. Overall, considering the multifaceted disease mechanisms of neurodegeneration, microglia-targeted nanodrugs and nanotherapeutic particles may have the potential to resolve multiple pathological determinants of the disease and to guide a shift in the microglial phenotype spectrum toward a more neuroprotective state.
Collapse
Affiliation(s)
- Nanxia Zhao
- Department of Chemical and Biochemical Engineering, 98 Brett Rd., Rutgers University, Piscataway, New Jersey 08854, USA
| | - Nicola L. Francis
- Department of Biomedical Engineering, 599 Taylor Rd., Rutgers University, Piscataway, New Jersey 08854, USA
| | - Hannah R. Calvelli
- Department of Molecular Biology and Biochemistry, 604 Allison Rd., Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
18
|
Gao S, Jing M, Xu M, Han D, Niu Q, Liu R. Cytotoxicity of perfluorodecanoic acid on mouse primary nephrocytes through oxidative stress: Combined analysis at cellular and molecular levels. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122444. [PMID: 32169814 DOI: 10.1016/j.jhazmat.2020.122444] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Long-chain perfluoroalkyl acids (PFAAs) such as perfluorodecanoic acid (PFDA) are toxic, persistent organic pollutants. This study investigated the harmful effect of PFDA on mouse primary nephrocytes and its mechanism at cellular and molecular levels. Cellular results showed that PFDA exhibited nephrotoxicity with decreased cell viability and increased apoptosis. The increase of intracellular reactive oxygen species (ROS) content and the decrease of intracellular superoxide dismutase (SOD) activity were significant (p < 0.01) when PFDA concentration exceeded 10 μM. Additionally, the molecular results indicated that PFDA bind with Val-A98 in the surface of Cu/Zn-SOD by a 3.11 Å hydrogen bond driven by Van der Waals' force and hydrogen bonding force, which triggered the structural changes and decreased activity of Cu/Zn-SOD. Altogether, the intracellular oxidative stress is the main driver of nephrocyte apoptosis; and the interaction of PFDA and Cu/Zn-SOD exacerbated the oxidative stress in nephrocytes, which is also a nonnegligible reason of cytotoxicity induced by PDFA. This study represented a meaningful method to explore the toxic effect and mechanism of xenobiotics at cellular and molecular levels. The findings have implications for revealing the clearance of long-chain PFAAs in vivo.
Collapse
Affiliation(s)
- Sichen Gao
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Mengchen Xu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Dengcheng Han
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Qigui Niu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
19
|
Ghadiri AM, Rabiee N, Bagherzadeh M, Kiani M, Fatahi Y, Di Bartolomeo A, Dinarvand R, Webster TJ. Green synthesis of CuO- and Cu 2O-NPs in assistance with high-gravity: The flowering of nanobiotechnology. NANOTECHNOLOGY 2020; 31:425101. [PMID: 32604076 DOI: 10.1088/1361-6528/aba142] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study, for the first time, reports the synthesis of CuO- and Cu2O nanoparticles (NPs) using the Salvia hispanica extract by a high-gravity technique. The original green synthesis procedure led to the formation of nanoparticles with promising catalytic and biological properties. The synthesized nanoparticles were fully characterized and their catalytic activity was evaluated through a typical Azide-Alkyne Cycloaddition (AAC) reaction. The potential antibacterial activity against gram positive (S. aureus) and gram negative (E. coli) bacteria were investigated. It was shown that the antibacterial properties were independent of the NP morphology as well as of the texture of the synthesis media. As a result, the presently synthesized nanoparticles showed very good photocatalytic and catalytic activities in comparison with the literature. From a biological perspective, they showed lower cytotoxicity in comparison with the literature, and also showed higher antioxidant and antibacterial activities. Thus, these present green CuO and Cu2O nanoparticles deserve further attention to improve numerous medical applications.
Collapse
|
20
|
Prüst M, Meijer J, Westerink RHS. The plastic brain: neurotoxicity of micro- and nanoplastics. Part Fibre Toxicol 2020; 17:24. [PMID: 32513186 PMCID: PMC7282048 DOI: 10.1186/s12989-020-00358-y] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Given the global abundance and environmental persistence, exposure of humans and (aquatic) animals to micro- and nanoplastics is unavoidable. Current evidence indicates that micro- and nanoplastics can be taken up by aquatic organism as well as by mammals. Upon uptake, micro- and nanoplastics can reach the brain, although there is limited information regarding the number of particles that reaches the brain and the potential neurotoxicity of these small plastic particles. Earlier studies indicated that metal and metal-oxide nanoparticles, such as gold (Au) and titanium dioxide (TiO2) nanoparticles, can also reach the brain to exert a range of neurotoxic effects. Given the similarities between these chemically inert metal(oxide) nanoparticles and plastic particles, this review aims to provide an overview of the reported neurotoxic effects of micro- and nanoplastics in different species and in vitro. The combined data, although fragmentary, indicate that exposure to micro- and nanoplastics can induce oxidative stress, potentially resulting in cellular damage and an increased vulnerability to develop neuronal disorders. Additionally, exposure to micro- and nanoplastics can result in inhibition of acetylcholinesterase activity and altered neurotransmitter levels, which both may contribute to the reported behavioral changes. Currently, a systematic comparison of the neurotoxic effects of different particle types, shapes, sizes at different exposure concentrations and durations is lacking, but urgently needed to further elucidate the neurotoxic hazard and risk of exposure to micro- and nanoplastics.
Collapse
Affiliation(s)
- Minne Prüst
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD, Utrecht, The Netherlands
| | - Jonelle Meijer
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD, Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Abstract
The remarkable advances coming about through nanotechnology promise to revolutionize many aspects of modern life; however, these advances come with a responsibility for due diligence to ensure that they are not accompanied by adverse consequences for human health or the environment. Many novel nanomaterials (having at least one dimension <100 nm) could be highly mobile if released into the environment and are also very reactive, which has raised concerns for potential adverse impacts including, among others, the potential for neurotoxicity. Several lines of evidence led to concerns for neurotoxicity, but perhaps none more than observations that inhaled nanoparticles impinging on the mucosal surface of the nasal epithelium could be internalized into olfactory receptor neurons and transported by axoplasmic transport into the olfactory bulbs without crossing the blood-brain barrier. From the olfactory bulb, there is concern that nanomaterials may be transported deeper into the brain and affect other brain structures. Of course, people will not be exposed to only engineered nanomaterials, but rather such exposures will occur in a complex mixture of environmental materials, some of which are incidentally generated particles of a similar inhalable size range to engineered nanomaterials. To date, most experimental studies of potential neurotoxicity of nanomaterials have not considered the potential exposure sources and pathways that could lead to exposure, and most studies of nanomaterial exposure have not considered potential neurotoxicity. Here, we present a review of potential sources of exposures to nanoparticles, along with a review of the literature on potential neurotoxicity of nanomaterials. We employ the linked concepts of an aggregate exposure pathway (AEP) and an adverse outcome pathway (AOP) to organize and present the material. The AEP includes a sequence of key events progressing from material sources, release to environmental media, external exposure, internal exposure, and distribution to the target site. The AOP begins with toxicant at the target site causing a molecular initiating event and, like the AEP, progress sequentially to actions at the level of the cell, organ, individual, and population. Reports of nanomaterial actions are described at every key event along the AEP and AOP, except for changes in exposed populations that have not yet been observed. At this last stage, however, there is ample evidence of population level effects from exposure to ambient air particles that may act similarly to engineered nanomaterials. The data give an overall impression that current exposure levels may be considerably lower than those reported experimentally to be neurotoxic. This impression, however, is tempered by the absence of long-term exposure studies with realistic routes and levels of exposure to address concerns for chronic accumulation of materials or damage. Further, missing across the board are "key event relationships", which are quantitative expressions linking the key events of either the AEP or the AOP, making it impossible to quantitatively project the likelihood of adverse neurotoxic effects from exposure to nanomaterials or to estimate margins of exposure for such relationships.
Collapse
Affiliation(s)
- William K. Boyes
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC USA 27711
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139 Dortmund, Germany
| |
Collapse
|
22
|
He H, Zou Z, Wang B, Xu G, Chen C, Qin X, Yu C, Zhang J. Copper Oxide Nanoparticles Induce Oxidative DNA Damage and Cell Death via Copper Ion-Mediated P38 MAPK Activation in Vascular Endothelial Cells. Int J Nanomedicine 2020; 15:3291-3302. [PMID: 32494130 PMCID: PMC7229313 DOI: 10.2147/ijn.s241157] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
Background Inhaled nanoparticles can cross pulmonary air–blood barrier into circulation and cause vascular endothelial injury and progression of cardiovascular disease. However, the molecular mechanism underlying the vascular toxicity of copper oxide nanoparticles (CuONPs) remains unclear. We have recently demonstrated that the release of copper ions and the accumulation of superoxide anions contributed to CuONPs-induced cell death in human umbilical vein endothelial cells (HUVECs). Herein, we further demonstrate the mechanism underlying copper ions-induced cell death in HUVECs. Methods and Results CuONPs were suspended in culture medium and vigorously vortexed for several seconds before exposure. After treatment with CuONPs, HUVECs were collected, and cell function assays were conducted to elucidate cellular processes including cell viability, oxidative stress, DNA damage and cell signaling pathways. We demonstrated that CuONPs uptake induced DNA damage in HUVECs as evidenced by γH2AX foci formation and increased phosphorylation levels of ATR, ATM, p53 and H2AX. Meanwhile, we showed that CuONPs exposure induced oxidative stress, indicated by the increase of cellular levels of superoxide anions, the upregulation of protein levels of heme oxygenase-1 (HO-1) and glutamate-cysteine ligase modifier subunit (GCLM), the elevation of the levels of malondialdehyde (MDA), but the reduction of glutathione to glutathione disulfide ratio. We also found that antioxidant N-acetyl-L-cysteine (NAC) could ameliorate CuONPs-induced oxidative stress and cell death. Interestingly, we demonstrated that p38 mitogen-activated protein kinase (MAPK) signaling pathway was activated in CuONPs-treated HUVECs, while p38α MAPK knockdown by siRNA significantly rescued HUVECs from CuONPs-induced DNA damage and cell death. Importantly, we showed that copper ions chelator tetrathiomolybdate (TTM) could alleviate CuONPs-induced oxidative stress, DNA damage, p38 MAPK pathway activation and cell death in HUVECs. Conclusion We demonstrated that CuONPs induced oxidative DNA damage and cell death via copper ions-mediated p38 MAPK activation in HUVECs, suggesting that the release of copper ions was the upstream activator for CuONPs-induced vascular endothelial toxicity, and the copper ions chelator TTM can alleviate CuONPs-associated cardiovascular disease.
Collapse
Affiliation(s)
- Hui He
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ge Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chengzhi Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xia Qin
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
23
|
Zhu Q, Li N, Wang C, Zhang Q, Sun H. Effect of interactions between various humic acid fractions and iron nanoparticles on the toxicity to white rot fungus. CHEMOSPHERE 2020; 247:125895. [PMID: 31958649 DOI: 10.1016/j.chemosphere.2020.125895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Humic acid plays an important role in controlling the toxicity of nanoparticles to organisms. However, little is known about the influence of different fractions of dissolved humic acid (DHA) from soil on the toxicity of nanoparticles to organisms. The concentration of γ-Fe2O3 and the exposure time affected the malondialdehyde (MDA) content, reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) activity in P. chrysosporium cells and were inversely proportional to the relative activities of the cells. P. chrysosporium was exposed to γ-Fe2O3 and DHA1 for 3 h, 6 h and 12 h. Catalase (CAT) and peroxidase (POD) activities were generally higher than control. Particularly, under the influence of 50 mg/L DHA1 and different concentrations of γ-Fe2O3 (10 and 50 mg/L), the CAT and POD activities were higher than those of cells exposed to γ-Fe2O3 alone. Conversely, both activities of P. chrysosporium exposed to DHA4 combined with γ-Fe2O3 for 12 h were lower than those of cells exposed to γ-Fe2O3 alone and gradually decreased with increasing DHA4 concentration (0, 10 and 50 mg/L). The μ-XAFS normalized spectrum indicated that Fe3+ entering the cells tended to transform into Fe2+ as the stress time prolonged. TEM analysis confirmed the toxicity of high concentrations of γ-Fe2O3 to P. chrysosporium. The comet assay showed that DHA4 in soil enhanced the toxicity of γ-Fe2O3 to P. chrysosporium more than DHA1 did. Namely, compared to DHA1, DHA4 made it easier for nano-Fe2O3 to enter P. chrysosporium cells, causing more toxicity of γ-Fe2O3 to P. chrysosporium.
Collapse
Affiliation(s)
- Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Nan Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Qi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
24
|
Hashemi SA, Karami M, Bathaie SZ. Saffron carotenoids change the superoxide dismutase activity in breast cancer: In vitro, in vivo and in silico studies. Int J Biol Macromol 2020; 158:845-853. [PMID: 32360463 DOI: 10.1016/j.ijbiomac.2020.04.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 01/26/2023]
Abstract
Superoxide dismutase (SOD) is an important member of the antioxidant defense system and is proposed as a therapeutic agent against the ROS-mediated diseases, and a therapeutic target for cancer treatment. Saffron carotenoids, crocin (Cro) and crocetin (Crt), are antioxidants with anticancer activity. In the present study, we investigated the effects of Cro/Crt on the SOD activity in both in vivo and in vitro models of breast cancer. Both Cro and Crt showed strong radical scavenging activity and SOD inhibition in the MCF-7 breast cancer cell line. The UVVis, circular dichroism and fluorometry studies proposed the binding of both Cro and Crt with SOD; the ΔG° of binding at 310 °K was -8.6 and -4.4 kcal/mol, respectively. The docking analysis predicted the Cro/Crt binding near the active site channel, but in different sites. According to the obtained data, Cro inhibits SOD activity by scavenging superoxide radical (O2), while Crt inhibits SOD by affecting the copper-binding site. In contrast to the in vitro data, both Cro and Crt effectively increased SOD activity in breast tumors of BALB/c mice, after one month of treatment. The mechanism that is important to compensate for the SOD decreased activity in cancer.
Collapse
Affiliation(s)
- S Ali Hashemi
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Masoumeh Karami
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - S Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
25
|
Keshavarzi M, Khodaei F, Siavashpour A, Saeedi A, Mohammadi-Bardbori A. Hormesis Effects of Nano- and Micro-sized Copper Oxide. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:2042-2054. [PMID: 32184868 PMCID: PMC7059066 DOI: 10.22037/ijpr.2019.13971.12030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The concerns about the possible risk of manufactured nanoparticles (NPs) have been raised recently. Nano- and micro-sized copper oxide (CO and CONP) are widely used in many industries. In this regard, in-vitro studies have demonstrated that CONP is a toxic compound in different cell lines. Despite their unique properties, NPs possess unexpected toxicity profiling relative to the bulk materials. This study was designed to examine and compare the toxic effects of CO and CONPs in-vivo and in isolated rat mitochondria. Male Wistar albino rats received 50 to 1000 mg/kg CO or CONP by gavage and several toxicological endpoints including biochemical indices and oxidative stress markers. Then, the pathological parameters in the multiple organs such as liver, brain, spleen, kidney, and intestine were assessed. Mitochondria were isolated from the rat liver and several mitochondrial indices were measured. The results of this study demonstrated that CO and CONP exhibited biphasic dose-response effects. CONPs showed higher toxicity compared with the bulk material. There were no significant changes in the results of CONP and CO in isolated rat liver mitochondria. The present studies provided more information regarding the hormetic effects of CO and CONPs in-vivo and in isolated rat mitochondria.
Collapse
Affiliation(s)
- Majid Keshavarzi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forouzan Khodaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Siavashpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arastoo Saeedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
26
|
Karri V, Schuhmacher M, Kumar V. A systems toxicology approach to compare the heavy metal mixtures (Pb, As, MeHg) impact in neurodegenerative diseases. Food Chem Toxicol 2020; 139:111257. [PMID: 32179164 DOI: 10.1016/j.fct.2020.111257] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Conventional toxicological risk assessment methods mainly working on single chemicals that fail to adequately address the simultaneous exposure and their potential toxicity in humans. We herein investigated the toxic heavy metals lead (Pb), arsenic (As), and methylmercury (MeHg) and their binary mixtures role in neurodegenerative diseases. To characterize the toxicity of metal mixtures at the molecular level, we established a non-animal omics-based organ relevant cell model system. The obtained experimental data was refined by using the statistical and downstream functional analysis. The protein expression information substantiates the previous findings of single metal (Pb, As, and MeHg) induced alterations to mitochondrial dysfunction, oxidative stress, mRNA splicing, and ubiquitin system dysfunction relation to neurodegenerative diseases. The functional downstream analysis of single and binary mixtures protein data is presented in a comparative manner. The heavy metals mixtures' outcome showed significant differences in the protein expression compared to single metals that indicate metal mixtures exposure is more hazardous than single metal exposure. These results suggest that more comprehensive strategies are needed to improve the mixtures risk assessment in the future.
Collapse
Affiliation(s)
- Venkatanaidu Karri
- Unit of Biochemical Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institute, SE-171 77 Stockholm, Sweden.
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain.
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain.
| |
Collapse
|
27
|
Du J, Fu L, Li H, Xu S, Zhou Q, Tang J. The potential hazards and ecotoxicity of CuO nanoparticles: an overview. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1670211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jia Du
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Li Fu
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Huanxuna Li
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Shaodan Xu
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Qingwei Zhou
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Junhong Tang
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
28
|
Hashemi M, Hosseinzadeh H. A comprehensive review on biological activities and toxicology of crocetin. Food Chem Toxicol 2019; 130:44-60. [PMID: 31100302 DOI: 10.1016/j.fct.2019.05.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Abstract
Natural products with high pharmacological potential and low toxicity have been considered as the novel therapeutic agents. Crocetin is an active constituent of saffron (Crocus sativus L.) stigma, which in its free-acid form is insoluble in water and most organic solvents. Crocetin exhibits various health-promoting properties including anti-tumor, neuroprotective effects, anti-diabetics, anti-inflammatory, anti-hyperlipidemia, etc. These therapeutic effects can be achieved with different mechanisms such as improvement of oxygenation in hypoxic tissues, antioxidant effects, inhibition of pro-inflammatory mediators, anti-proliferative activity and stimulation of apoptosis in cancer cells. It is also worth considering that crocetin could be tolerated without major toxicity at therapeutic dosage in experimental models. In the present review, we discuss the biosynthesis, pharmacokinetic properties of crocetin and provide a comprehensive study on the biological activities and toxicity along with the mechanism of actions and clinical trials data of crocetin.
Collapse
Affiliation(s)
- Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Mirhadi E, Nassirli H, Malaekeh-Nikouei B. An updated review on therapeutic effects of nanoparticle-based formulations of saffron components (safranal, crocin, and crocetin). JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00435-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Shedid SM, Abdel-Magied N, Saada HN. Role of betaine in liver injury induced by the exposure to ionizing radiation. ENVIRONMENTAL TOXICOLOGY 2019; 34:123-130. [PMID: 30311401 DOI: 10.1002/tox.22664] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
Oxidative stress, apoptosis, and fibrosis may play a major role in the development of radiation-induced liver damage. Betaine, a native compound widely present in beetroot, was reported to possess hepato-protective properties. The objective of this study was to investigate the influence of betaine on radiation-induced liver damage. Animals were exposed to 9 Gy applied in 3 doses of 3 Gy/wk. Betaine (400 mg/kg/d), was orally supplemented to rats after the first radiation dose, and daily during the irradiation period. Animals were sacrificed 1 day after the last dose of radiation. The results showed that irradiation has induced oxidative stress in the liver denoted by a significant elevation in malondialdehyde, protein carbonyl, and 8-hydroxy-2-deoxyguanosine with a significant reduction in catalase activity and glutathione (GSH) content. The activity of the detoxification enzyme cytochrome P450 (CYP450) increased while GSH transferase (GSH-T) decreased. The activity of the apoptotic marker caspase-3 increased concomitant with increased hyaluronic acid, hydroxyproline, laminin (LN), and collagen IV. These alterations were associated with a significant increase of gamma-glutamyl transferase, alkaline phosphatase and alanine and aspartate aminotransferase markers of liver dysfunction. Betaine treatment has significantly attenuated oxidative stress, decreased the activity of CYP450, enhanced GSH-T, reduced the activity of caspase-3, and the level of fibrotic markers concomitant with a significant improvement of liver function. In conclusion, betaine through its antioxidant activity and by enhancing liver detoxification and reducing apoptosis may alleviate the progression of liver fibrosis and exert a beneficial impact on radiation-induced liver damage.
Collapse
Affiliation(s)
- Shereen M Shedid
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| | - Nadia Abdel-Magied
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| | - Helen N Saada
- Radiation Biology Research Department, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| |
Collapse
|
31
|
Baeg E, Sooklert K, Sereemaspun A. Copper Oxide Nanoparticles Cause a Dose-Dependent Toxicity via Inducing Reactive Oxygen Species in Drosophila. NANOMATERIALS 2018; 8:nano8100824. [PMID: 30322073 PMCID: PMC6215282 DOI: 10.3390/nano8100824] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/06/2018] [Accepted: 10/07/2018] [Indexed: 12/12/2022]
Abstract
Copper oxide nanoparticles (CuONPs) have attracted considerable attention, because of their biocide potential and capability for optical imaging, however CuONPs were shown to be highly toxic in various experimental model systems. In this study, mechanism underlying CuONP-induced toxicity was investigated using Drosophila as an in vivo model. Upon oral route of administration, CuONPs accumulated in the body, and caused a dose-dependent decrease in egg-to-adult survivorship and a delay in development. In particular, transmission electron microscopy analysis revealed CuONPs were detected inside the intestinal epithelial cells and lumen. A drastic increase in apoptosis and reactive oxygen species was also observed in the gut exposed to CuONPs. Importantly, we found that inhibition of the transcription factor Nrf2 further enhances the toxicity caused by CuONPs. These observations suggest that CuONPs disrupt the gut homeostasis and that oxidative stress serves as one of the primary causes of CuONP-induced toxicity in Drosophila.
Collapse
Affiliation(s)
- Eugene Baeg
- Daegu International School, 22 Palgongro, 50-Gil, Donggu, Daegu 701-170, Korea.
| | - Kanidta Sooklert
- Nanomedicine Research Unit, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Amornpun Sereemaspun
- Nanomedicine Research Unit, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
32
|
Karri V, Ramos D, Martinez JB, Odena A, Oliveira E, Coort SL, Evelo CT, Mariman ECM, Schuhmacher M, Kumar V. Differential protein expression of hippocampal cells associated with heavy metals (Pb, As, and MeHg) neurotoxicity: Deepening into the molecular mechanism of neurodegenerative diseases. J Proteomics 2018; 187:106-125. [PMID: 30017948 DOI: 10.1016/j.jprot.2018.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/29/2022]
Abstract
Chronic exposure to heavy metals such as Pb, As, and MeHg can be associated with an increased risk of developing neurodegenerative diseases. Our in vitro bioassays results showed the potency of heavy metals in the order of Pb < As < MeHg on hippocampal cells. The main objective of this study was combining in vitro label free proteomics and systems biology approach for elucidating patterns of biological response, discovering underlying mechanisms of Pb, As, and MeHg toxicity in hippocampal cells. The omics data was refined by using different filters and normalization and multilevel analysis tools were employed to explore the data visualization. The functional and pathway visualization was performed by using Gene ontology and PathVisio tools. Using these all integrated approaches, we identified significant proteins across treatments within the mitochondrial dysfunction, oxidative stress, ubiquitin proteome dysfunction, and mRNA splicing related to neurodegenerative diseases. The systems biology analysis revealed significant alterations in proteins implicated in Parkinson's disease (PD) and Alzheimer's disease (AD). The current proteomics analysis of three metals support the insight into the proteins involved in neurodegeneration and the altered proteins can be useful for metal-specific biomarkers of exposure and its adverse effects. SIGNIFICANCE The proteomics techniques have been claimed to be more sensitive than the conventional toxicological assays, facilitating the measurement of responses to heavy metals (Pb, As, and MeHg) exposure before obvious harm has occurred demonstrating their predictive value. Also, proteomics allows for the comparison of responses between Pb, As, and MeHg metals, permitting the evaluation of potency differences hippocampal cells of the brain. Hereby, the molecular information provided by pathway and gene functional analysis can be used to develop a more thorough understanding of each metal mechanism at the protein level for different neurological adverse outcomes (e.g. Parkinson's disease, Alzheimer's diseases). Efforts are put into developing proteomics based toxicity testing methods using in vitro models for improving human risk assessment. Some of the key proteins identified can also potentially be used as biomarkers in epidemiologic studies. These heavy metal response patterns shed new light on the mechanisms of mRNA splicing, ubiquitin pathway role in neurodegeneration, and can be useful for the development of molecular biomarkers of heavy metals exposure.
Collapse
Affiliation(s)
- Venkatanaidu Karri
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - David Ramos
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Julia Bauzá Martinez
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Antonia Odena
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Eliandre Oliveira
- Unidad de Toxicologia, Parc Científic de Barcelona, C/Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Susan L Coort
- Department of Bioinformatics, BiGCaT, NUTRIM, Maastricht University, 6229, ER, Maastricht, the Netherlands
| | - Chris T Evelo
- Department of Bioinformatics, BiGCaT, NUTRIM, Maastricht University, 6229, ER, Maastricht, the Netherlands
| | - Edwin C M Mariman
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain.
| |
Collapse
|
33
|
Karri V, Kumar V, Ramos D, Oliveira E, Schuhmacher M. Comparative In Vitro Toxicity Evaluation of Heavy Metals (Lead, Cadmium, Arsenic, and Methylmercury) on HT-22 Hippocampal Cell Line. Biol Trace Elem Res 2018; 184:226-239. [PMID: 28994012 DOI: 10.1007/s12011-017-1177-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/28/2017] [Indexed: 01/06/2023]
Abstract
Heavy metals are considered some of the most toxic environmental pollutants. Exposure to heavy metals including lead (Pb), cadmium (Cd), arsenic (As), and methyl mercury (MeHg) has long been known to cause damage to human health. Many recent studies have supported the hippocampus as the major target for these four metals for inflicting cognitive dysfunction. In the present study, we proposed hippocampal relevant in vitro toxicity of Pb, Cd, As, and MeHg in HT-22 cell line. This study reports, initially, cytotoxic effects in acute, subchronic, chronic exposures. We further investigated the mechanistic potency of DNA damage and apoptosis damage with the observed cytotoxicity. The genotoxicity and apoptosis were measured by using the comet assay, annexin-V FTIC / propidium iodide (PI) assay, respectively. The results of cytotoxicity assay clearly demonstrated significant concentration and time-dependent effects on HT-22 cell line. The genotoxic and apoptosis effects also concentration-dependent fashion with respect to their potency in the range of IC10-IC30, maximal level of damage observed in MeHg. In conclusion, the obtained result suggests concentration and potency-dependent response; the maximal level of toxicity was observed in MeHg. These novel findings support that Pb, Cd, As, and MeHg induce cytotoxic, genotoxic, and apoptotic effects on HT-22 cells in potency-dependent manner; MeHg> As> Cd> Pb. Therefore, the toxicity of Pb, Cd, As, and MeHg could be useful for knowing the common underlying molecular mechanism, and also for estimating the mixture impacts on HT-22 cell line.
Collapse
Affiliation(s)
- Venkatanaidu Karri
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain.
| | - David Ramos
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/ Baldiri Reixac, 10-12, 08028, Barcelona, Spain
| | - Eliandre Oliveira
- Unidad de Toxicologia, Parc Científic de Barcelona, C/ Baldiri Reixac, 10-12, 08028, Barcelona, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| |
Collapse
|
34
|
Mohamed K, Zine K, Fahima K, Abdelfattah E, Sharifudin SM, Duduku K. NiO nanoparticles induce cytotoxicity mediated through ROS generation and impairing the antioxidant defense in the human lung epithelial cells (A549): Preventive effect of Pistacia lentiscus essential oil. Toxicol Rep 2018; 5:480-488. [PMID: 29854619 PMCID: PMC5977410 DOI: 10.1016/j.toxrep.2018.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/28/2018] [Accepted: 03/19/2018] [Indexed: 02/07/2023] Open
Abstract
Nickel oxide nanoparticles (NiO NPs) have attracted increasing attention owing to potential capacity to penetrate to several human cell systems and exert a toxic effect. Elsewhere, the use of medicinal plants today is the form of the most widespread medicine worldwide. Utilizing aromatic plants as interesting source of phytochemicals constitute one of the largest scientific concerns. Thus this study was focused to investigate antioxidant and cytoprotective effects of essential oil of a Mediterranean plant P. lentiscus (PLEO) on NiO NPs induced cytotoxicity and oxidative stress in human lung epithelial cells (A549). The obtained results showed that cell viability was reduced by NiO NPs, who's also found to induce oxidative stress in dose-dependent manner indicated by induction of reactive oxygen species and reduction of antioxidant enzymes activities. Our results also demonstrated that PLEO contains high amounts in terpinen-4-ol (11.49%), germacrene D (8.64%), α-pinene (5.97%), sabinene (5.19%), caryophyllene (5.10%) and δ-Cadinene (4.86%). PLEO exhibited a potent antioxidant capacity by cell viability improving, ROS scavenging and enhancing the endogenous antioxidant system against NiO NPs in this model of cells. The present work demonstrated, for the first time, the protective activity of PLEO against cell oxidative damage induced by NiO NPs. It was suggested that this plant essential oil could be use as a cells protector.
Collapse
Affiliation(s)
- Khiari Mohamed
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, University of Annaba, 23000 Annaba, Algeria.,Phytochemical Laboratory, Department of Chemical Engineering, Faculty of Engineering, University Malaysia Sabah, 88400 Kota Kinabalu, Malaysia
| | - Kechrid Zine
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, University of Annaba, 23000 Annaba, Algeria
| | - Klibet Fahima
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, University of Annaba, 23000 Annaba, Algeria
| | - Elfeki Abdelfattah
- Laboratory of Ecophysiology Animal, Faculty of Science, University of Sfax, 3038 Sfax, Tunisia
| | - Shaarani Md Sharifudin
- Faculty of Food Science and Nutrition, University Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Krishnaiah Duduku
- Phytochemical Laboratory, Department of Chemical Engineering, Faculty of Engineering, University Malaysia Sabah, 88400 Kota Kinabalu, Malaysia
| |
Collapse
|
35
|
Karri V, Kumar V, Ramos D, Oliveira E, Schuhmacher M. An in vitro cytotoxic approach to assess the toxicity of heavy metals and their binary mixtures on hippocampal HT-22 cell line. Toxicol Lett 2018; 282:25-36. [DOI: 10.1016/j.toxlet.2017.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022]
|
36
|
The Natural Carotenoid Crocetin and the Synthetic Tellurium Compound AS101 Protect the Ovary against Cyclophosphamide by Modulating SIRT1 and Mitochondrial Markers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8928604. [PMID: 29270246 PMCID: PMC5705900 DOI: 10.1155/2017/8928604] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/01/2017] [Indexed: 01/08/2023]
Abstract
Cancer therapies are associated with increased infertility risk due to accelerated reproductive aging. Oxidative stress (OS) is a potential mechanism behind ovarian toxicity by cyclophosphamide (CPM), the most ovotoxic anticancer drug. An important sensor of OS is SIRT1, a NAD+-dependent deacetylase which regulates cellular defence and cell fate. This study investigated whether the natural carotenoid crocetin and the synthetic compound AS101 protect the ovary against CPM by modulating SIRT1 and mitochondrial markers. We found that the number of primordial follicles of female CD1 mice receiving crocetin plus CPM increased when compared with CPM alone and similar to AS101, whose protective effects are known. SIRT1 increased in CPM mouse ovaries revealing the occurrence of OS. Similarly, mitochondrial SIRT3 rose, whilst SOD2 and the mitochondrial biogenesis activator PGC1-α decreased, suggesting the occurrence of mitochondrial damage. Crocetin and AS101 administration prevented SIRT1 burst suggesting that preservation of redox balance can help the ovary to counteract ovarian damage by CPM. Decreased SIRT3 and increased SOD2 and PGC1-α in mice receiving crocetin or AS101 prior to CPM provide evidence for mitochondrial protection. Present results improve the knowledge of ovarian damage by CPM and may help to develop interventions for preserving fertility in cancer patients.
Collapse
|
37
|
Song B, Zhang Y, Liu J, Feng X, Zhou T, Shao L. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress? NANOSCALE RESEARCH LETTERS 2016; 11:291. [PMID: 27295259 PMCID: PMC4905860 DOI: 10.1186/s11671-016-1508-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/30/2016] [Indexed: 05/31/2023]
Abstract
With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products.
Collapse
Affiliation(s)
- Bin Song
- />Guizhou Provincial People’s Hospital, Guiyang, 550002 China
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - YanLi Zhang
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jia Liu
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - XiaoLi Feng
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Ting Zhou
- />Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - LongQuan Shao
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
38
|
Song B, Zhou T, Liu J, Shao L. Involvement of Programmed Cell Death in Neurotoxicity of Metallic Nanoparticles: Recent Advances and Future Perspectives. NANOSCALE RESEARCH LETTERS 2016; 11:484. [PMID: 27813025 PMCID: PMC5095106 DOI: 10.1186/s11671-016-1704-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/24/2016] [Indexed: 05/31/2023]
Abstract
The widespread application of metallic nanoparticles (NPs) or NP-based products has increased the risk of exposure to NPs in humans. The brain is an important organ that is more susceptible to exogenous stimuli. Moreover, any impairment to the brain is irreversible. Recently, several in vivo studies have found that metallic NPs can be absorbed into the animal body and then translocated into the brain, mainly through the blood-brain barrier and olfactory pathway after systemic administration. Furthermore, metallic NPs can cross the placental barrier to accumulate in the fetal brain, causing developmental neurotoxicity on exposure during pregnancy. Therefore, metallic NPs become a big threat to the brain. However, the mechanisms underlying the neurotoxicity of metallic NPs remain unclear. Programmed cell death (PCD), which is different from necrosis, is defined as active cell death and is regulated by certain genes. PCD can be mainly classified into apoptosis, autophagy, necroptosis, and pyroptosis. It is involved in brain development, neurodegenerative disorders, psychiatric disorders, and brain injury. Given the pivotal role of PCD in neurological functions, we reviewed relevant articles and tried to summarize the recent advances and future perspectives of PCD involvement in the neurotoxicity of metallic NPs, with the purpose of comprehensively understanding the neurotoxic mechanisms of NPs.
Collapse
Affiliation(s)
- Bin Song
- Guizhou Provincial People’s Hospital, Guiyang, 550002 China
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Ting Zhou
- Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - LongQuan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
39
|
Zielinska E, Tukaj C, Radomski MW, Inkielewicz-Stepniak I. Molecular Mechanism of Silver Nanoparticles-Induced Human Osteoblast Cell Death: Protective Effect of Inducible Nitric Oxide Synthase Inhibitor. PLoS One 2016; 11:e0164137. [PMID: 27716791 PMCID: PMC5055295 DOI: 10.1371/journal.pone.0164137] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Silver nanoparticles (AgNPs) show strong antibacterial properties, making them excellent candidates to be used in orthopaedic repair and regeneration. However, there are concerns regarding the cytotoxicity of AgNPs and molecular mechanisms underlying AgNPs-induced bone cells toxicity have not been elucidated. Therefore, the aim of our study was to explore mechanisms of AgNPs-induced osteoblast cell death with particular emphasis on the role of nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS). METHODS AND RESULT Silver nanoparticles used in this study were 18.3±2.6 nm in size, uncoated, spherical, regular shape and their zeta potential was -29.1±2.4 mV as measured by transmission electron microscopy (TEM) and zetasizer. The release of silver (Ag) from AgNPs was measured in cell culture medium by atomic absorption spectroscopy (AAS). The exposure of human osteoblast cells (hFOB 1.19) to AgNPs at concentration of 30 or 60 μg/mL for 24 or 48 hours, respectively resulted in cellular uptake of AgNPs and changes in cell ultrastructure. These changes were associated with apoptosis and necrosis as shown by flow cytometry and lactate dehydrogenase (LDH) assay as well as increased levels of pro-apoptotic Bax and decreased levels of anti-apoptotic Bcl-2 mRNA and protein. Importantly, we have found that AgNPs elevated the levels of nitric oxide (NO) with concomitant upregulation of inducible nitric oxide synthase (iNOS) mRNA and protein. A significant positive correlation was observed between the concentration of AgNPs and iNOS at protein and mRNA level (r = 0.837, r = 0.721, respectively; p<0.001). Finally, preincubation of osteoblast cells with N-iminoethyl-l-lysine (L-NIL), a selective iNOS inhibitor, as well as treating cells with iNOS small interfering RNAs (siRNA) significantly attenuated AgNPs-induced apoptosis and necrosis. Moreover, we have found that AgNPs-induced cells death is not related to Ag dissolution is cell culture medium. CONCLUSION These results unambiguously demonstrate that increased expression of iNOS and generation of NO as well as NO-derived reactive species is involved in AgNPs-induced osteoblast cell death. Our findings may help in development of new strategies to protect bone from AgNPs-induced cytotoxicity and increase the safety of orthopaedic tissue repair.
Collapse
Affiliation(s)
- Ewelina Zielinska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Cecylia Tukaj
- Department of Electron Microscopy, Medical University of Gdansk, Gdansk, Poland
| | - Marek Witold Radomski
- College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Kardio-Med Silesia, Zabrze, Poland
| | | |
Collapse
|
40
|
Wang T, Chen X, Long X, Liu Z, Yan S. Copper Nanoparticles and Copper Sulphate Induced Cytotoxicity in Hepatocyte Primary Cultures of Epinephelus coioides. PLoS One 2016; 11:e0149484. [PMID: 26890000 PMCID: PMC4758645 DOI: 10.1371/journal.pone.0149484] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/02/2016] [Indexed: 01/23/2023] Open
Abstract
Copper nanoparticles (Cu-NPs) were widely used in various industrial and commercial applications. The aim of this study was to analyze the cytotoxicity of Cu-NPs on primary hepatocytes of E.coioides compared with copper sulphate (CuSO4). Cultured cells were exposed to 0 or 2.4 mg Cu L-1 as CuSO4or Cu-NPs for 24-h. Results showed either form of Cu caused a dramatic loss in cell viability, more so in the CuSO4 than Cu-NPs treatment. Compared to control, either CuSO4 or Cu-NPs significantly increased reactive oxygen species(ROS) and malondialdehyde(MDA) concentration in hepatocytes by overwhelming total superoxide dismutase (T-SOD) activity, catalase(CAT) activity and glutathione(GSH) concentration. In addition, the antioxidative-related genes [SOD (Cu/Zn), SOD (Mn), CAT, GPx4] were also down-regulated. The apoptosis and necrosis percentage was significantly higher after the CuSO4 or Cu-NPs treatment than the control. The apoptosis was induced by the increased cytochrome c concentration in the cytosol and elevated caspase-3, caspase-8 and caspase-9 activities. Additionally, the apoptosis-related genes (p53, p38β and TNF-α) and protein (p53 protein) were up-regulated after the CuSO4 or Cu-NPs treatment, with CuSO4 exposure having a greater effect than Cu-NPs. In conclusion, Cu-NPs had similar types of toxic effects as CuSO4 on primary hepatocytes of E.coioides, but toxicity of CuSO4 was more severe than that of Cu-NPs.
Collapse
Affiliation(s)
- Tao Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Xiaoyan Chen
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Xiaohua Long
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P.R. China
- * E-mail:
| | - Zhaopu Liu
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Shaohua Yan
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| |
Collapse
|
41
|
Wang S, Liu F, Zeng Z, Yang H, Jiang H. The Protective Effect of Bafilomycin A1 Against Cobalt Nanoparticle-Induced Cytotoxicity and Aseptic Inflammation in Macrophages In Vitro. Biol Trace Elem Res 2016; 169:94-105. [PMID: 26054709 DOI: 10.1007/s12011-015-0381-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/21/2015] [Indexed: 01/08/2023]
Abstract
Co ions released due to corrosion of Co nanoparticles (CoNPs) in the lysosomes of macrophages may be a factor in the particle-induced cytotoxicity and aseptic inflammation accompanying metal-on-metal (MOM) hip prosthesis failure. Here, we show that CoNPs are easily dissolved under a low pH, simulating the acidic lysosomal environment. We then used bafilomycin A1 to change the pH inside the lysosome to inhibit intracellular corrosion of CoNPs and then investigated its protective effects against CoNP-induced cytotoxicity and aseptic inflammation on murine macrophage RAW264.7 cells. XTT {2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide} assays revealed that bafilomycin A1 can significantly decrease CoNP-induced cytotoxicity in RAW264.7 cells. Enzyme-linked immunosorbent assays showed that bafilomycin A1 can significantly decrease the subtoxic concentration of CoNP-induced levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6), but has no effect on anti-inflammatory cytokines (transforming growth factor-β and interleukin-10) in RAW264.7 cells. We studied the protective mechanism of bafilomycin A1 against CoNP-induced effects in RAW264.7 cells by measuring glutathione/oxidized glutathione (GSH/GSSG), superoxide dismutase, catalase, and glutathione peroxidase levels and employed scanning electron microscopy, transmission electron microscopy, and energy dispersive spectrometer assays to observe the ultrastructural cellular changes. The changes associated with apoptosis were assessed by examining the pAKT and cleaved caspase-3 levels using Western blotting. These data strongly suggested that bafilomycin A1 can potentially suppress CoNP-induced cytotoxicity and aseptic inflammation by inhibiting intracellular corrosion of CoNPs and that the reduction in Co ions released from CoNPs may play an important role in downregulating oxidative stress in RAW264.7 cells.
Collapse
Affiliation(s)
- Songhua Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Fan Liu
- Department of Orthopedics, The Affiliated Hospital of Nantong University, 20 West Temple Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| | - Zhaoxun Zeng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Haitao Jiang
- Department of Orthopedics, The First People's Hospital of Taizhou City, Taizhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
42
|
Popescu RA, Magyari K, Vulpoi A, Trandafir DL, Licarete E, Todea M, Ştefan R, Voica C, Vodnar DC, Simon S, Papuc I, Baia L. Bioactive and biocompatible copper containing glass-ceramics with remarkable antibacterial properties and high cell viability designed for future in vivo trials. Biomater Sci 2016; 4:1252-65. [DOI: 10.1039/c6bm00270f] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficiency of 60SiO2·(32 − x) CaO·8P2O5·xCuO (mol%) glass-ceramics were proved, and was determined the most appropriate composition for further in vivo trials.
Collapse
|
43
|
Song B, Liu J, Feng X, Wei L, Shao L. A review on potential neurotoxicity of titanium dioxide nanoparticles. NANOSCALE RESEARCH LETTERS 2015; 10:1042. [PMID: 26306536 PMCID: PMC4549355 DOI: 10.1186/s11671-015-1042-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/27/2015] [Indexed: 05/24/2023]
Abstract
As the rapid development of nanotechnology in the past three decades, titanium dioxide nanoparticles (TiO2 NPs), for their peculiar physicochemical properties, are widely applied in consumer products, food additives, cosmetics, drug carriers, and so on. However, little is known about their potential exposure and neurotoxic effects. Once NPs are unintentionally exposed to human beings, they could be absorbed, and then accumulated in the brain regions by passing through the blood-brain barrier (BBB) or through the nose-to-brain pathway, potentially leading to dysfunctions of central nerve system (CNS). Besides, NPs may affect the brain development of embryo by crossing the placental barrier. A few in vivo and in vitro researches have demonstrated that the morphology and function of neuronal or glial cells could be impaired by TiO2 NPs which might induce cell necrosis. Cellular components, such as mitochondrial, lysosome, and cytoskeleton, could also be influenced as well. The recognition ability, spatial memory, and learning ability of TiO2 NPs-treated rodents were significantly impaired, which meant that accumulation of TiO2 NPs in the brain could lead to neurodegeneration. However, conclusions obtained from those studies were not consistent with each other as researchers may choose different experimental parameters, including administration ways, dosage, size, and crystal structure of TiO2 NPs. Therefore, in order to fully understand the potential risks of TiO2 NPs to brain health, figure out research areas where further studies are required, and improve its bio-safety for applications in the near future, how TiO2 NPs interact with the brain is investigated in this review by summarizing the current researches on neurotoxicity induced by TiO2 NPs.
Collapse
Affiliation(s)
- Bin Song
- />Guizhou Provincial People’s Hospital, Guiyang, 550002 China
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jia Liu
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Xiaoli Feng
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Limin Wei
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Longquan Shao
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|