1
|
Zhang W, Tang Y, Fan R, Zhang F, Li Y, Zang J, Yang W, Wang Z, Yuan X, Yang Y, Chen Y. Effects of the pesticide carbendazim on broiler chicken health and carbendazim residue levels in broiler tissues. Vet Res Commun 2024; 48:3131-3138. [PMID: 39093528 DOI: 10.1007/s11259-024-10484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Pesticide residues may enter the human body through the food chain when livestock and poultry consume pesticide-contaminated feed. Therefore, monitoring and limiting pesticide residues in animal feed and animal-origin foods is necessary. Carbendazim is one of the most frequently detected pesticides in food and feed and has various toxic effects on non-target animals. This study investigated the effects of varying concentrations of carbendazim contamination in feed on broiler chicken growth performance, serum biochemical indicators, histopathology, and carbendazim residues in broiler muscles and livers. The results demonstrated that contamination of 5-100 mg/kg carbendazim in feed did not affect broiler growth performance or health. Carbendazim contamination in feed at 200-800 mg/kg slightly reduced growth performance. Broiler kidneys showed minor histopathological alterations after 400 mg/kg carbendazim exposure. Furthermore, when the carbendazim content in feed was less than 25 mg/kg, the residual carbendazim in the muscles and livers of broilers did not exceed the maximum residue level set by the European Union and China. Based on the above findings, carbendazim residues in the feed of less than 25 mg/kg can be considered safe for chicken products.
Collapse
Affiliation(s)
- Wanjun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Yutong Tang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Ruiqi Fan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
- Chinese Academy of Fishery Sciences, Beijing, PR China
| | - Fude Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Yongchen Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Jianjun Zang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Wenjun Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Zongyi Wang
- Beijing Key Laboratory of Detection and Control of Spoilage Microorganisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing, PR China
| | - Xiaoyan Yuan
- Center of Disease Control and Prevention, PLA, Beijing, PR China
- School of Nursing and Health, Henan University, Kaifeng, PR China
| | - Yuan Yang
- PLA Strategic Support Force Characteristic Medical Center Special Medical Service Department, Beijing, PR China
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China.
| |
Collapse
|
2
|
Pamanji R, Ragothaman P, Koigoora S, Sivan G, Selvin J. Network analysis of toxic endpoints of fungicides in zebrafish. Toxicol Res (Camb) 2024; 13:tfae087. [PMID: 38845614 PMCID: PMC11150978 DOI: 10.1093/toxres/tfae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Zebrafish being the best animal model to study, every attempt has been made to decipher the toxic mechanism of every fungicide of usage and interest. It is important to understand the multiple targets of a toxicant to estimate the toxic potential in its totality. A total of 22 fungicides of different classes like amisulbrom, azoxystrobin, carbendazim, carboxin, chlorothalonil, difenoconazole, etridiazole, flusilazole, fluxapyroxad, hexaconazole, kresoxim methyl, mancozeb, myclobutanil, prochloraz, propiconazole, propineb, pyraclostrobin, tebuconazole, thiophanate-methyl, thiram, trifloxystrobin and ziram were reviewed and analyzed for their multiple explored targets in zebrafish. Toxic end points in zebrafish are highly informative when it comes to network analysis. They provide a window into the molecular and cellular pathways that are affected by a certain toxin. This can then be used to gain insights into the underlying mechanisms of toxicity and to draw conclusions on the potential of a particular compound to induce toxicity. This knowledge can then be used to inform decisions about drug development, environmental regulation, and other areas of research. In addition, the use of zebrafish toxic end points can also be used to better understand the effects of environmental pollutants on ecosystems. By understanding the pathways affected by a given toxin, researchers can determine how pollutants may interact with the environment and how this could lead to health or environmental impacts.
Collapse
Affiliation(s)
- Rajesh Pamanji
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| | - Prathiviraj Ragothaman
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| | - Srikanth Koigoora
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur -Tenali Rd, Vadlamudi 522213, AP, India
| | - Gisha Sivan
- Division of Medical Research, SRM SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Potheri, SRM Nagar, Kattankulathur, Chennai 603203, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| |
Collapse
|
3
|
Pitchika GK, Naik BK, Ramana GVV, Nirupama R, Ranjani TS, Venkaiah K, Reddy MH, Sainath SB, Pradeepkiran JA. Transcriptomic profile in carbendazim-induced developmental defects in zebrafish (Danio rerio) embryos/larvae. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109907. [PMID: 38522711 DOI: 10.1016/j.cbpc.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Carbendazim is a widely used fungicide to protect agricultural and horticultural crops against a wide array of fungal species. Published reports have shown that the wide usage of carbendazim resulted in reprotoxicity, carcinogenicity, immunotoxicity, and developmental toxicity in mammalian models. However, studies related to the developmental toxicity of carbendazim in aquatic organisms are not clear. To address this gap, an attempt was made by exposing zebrafish embryos to carbendazim (800 μg/L) and assessing the phenotypic and transcriptomic profile at different developmental stages [24 hour post fertilization (hpf), 48 hpf, 72 hpf and 96 hpf). At 48 hpf, phenotypic abnormalities such as delay in hatching rate, deformed spinal axial curvature, and pericardial edema were observed in zebrafish larvae over its respective controls. At 72 hpf, exposure of zebrafish embryos exposed to carbendazim resulted in scoliosis; however, unexposed larvae did not exhibit signs of scoliosis. Interestingly, the transcriptomic analysis revealed a total of 1253 DEGs were observed at selected time points, while unique genes at 24 hpf, 48 hpf, 72 hpf and 96 hpf was found to be 76.54 %, 61.14 %, 92.98 %, and 68.28 %, respectively. Functional profiling of downregulated genes revealed altered transcriptomic markers associated with phototransduction (24 hpf and 72 hpf), immune system (48 hpf), and SNARE interactions in the vesicular pathway (96 hpf). Whereas functional profiling of upregulated genes revealed altered transcriptomic markers associated with riboflavin metabolism (24 hpf), basal transcription factors (48 hpf), insulin signaling pathway (72 hpf), and primary bile acid biosynthesis (96 hpf). Taken together, carbendazim-induced developmental toxicity could be ascribed to pleiotropic responses at the molecular level, which in turn might reflect phenotypic abnormalities.
Collapse
Affiliation(s)
- Gopi Krishna Pitchika
- Department of Zoology, Vikrama Simhapuri University College, Kavali 524201, A.P., India.
| | - B Krishna Naik
- Department of Zoology, Vikrama Simhapuri University College, Kavali 524201, A.P., India
| | - G V V Ramana
- Department of Zoology, Vikrama Simhapuri University College, Kavali 524201, A.P., India
| | - R Nirupama
- Department of Zoology, Vikrama Simhapuri University College, Kavali 524201, A.P., India
| | - T Sri Ranjani
- Department of Zoology, D.K. Govt. College for Women (A), Dargamitta, Nellore 524003, A.P., India
| | - K Venkaiah
- Department of Biotechnology, Vikrama Simhapuri University, Nellore 524324, A.P., India
| | - M Hanuma Reddy
- Department of Marine Biology, Vikrama Simhapuri University, Nellore 524324, A.P., India
| | - S B Sainath
- Department of Biotechnology, Vikrama Simhapuri University, Nellore 524324, A.P., India.
| | | |
Collapse
|
4
|
Xue J, Jia Y, Qi L, Yang H, Wang Y, Guo L. Highly sensitive electrochemical quantification of carbendazim via synergistic enhancement of ring-opening metathesis polymerization and polyethyleneimine modified graphene oxide. Mikrochim Acta 2024; 191:348. [PMID: 38805077 DOI: 10.1007/s00604-024-06412-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
A novel aptamer-based sensor was developed using the signal amplification strategy of ring-opening metathesis polymerization (ROMP) and polyethyleneimine modified graphene oxide to achieve trace detection of carbendazim (CBZ). The dual identification of aptamer and antibody was used to avoid false positive results and improve the selectivity. Polyethyleneimine modified graphene oxide (GO-PEI), as a substrate material with excellent conductivity, was modified on the surface of a glassy carbon electrode (GCE) to increase the grafting amount of aptamer on the electrode surface. Moreover, a large number of cyclopentenyl ferrocene (CFc) was aggregated to form long polymer chains through ring-opening metathesis polymerization (ROMP), so as to significantly improve the detection sensitivity of the biosensor. The linear range of this sensor was 1 pg/mL-100 ng/mL with a detection limit as low as 7.80 fg/mL. The sensor exhibited excellent reproducibility and stability, and also achieved satisfactory results in actual sample detection. The design principle of such a sensor could provide innovative ideas for sensors in the detection of other types of targets.
Collapse
Affiliation(s)
- Jinyan Xue
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Yuzhen Jia
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Linying Qi
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Yanzhi Wang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Liang Guo
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
5
|
Dourdin TS, Berthelin C, Guyomard K, Morin A, Morandi N, Elie N, Villain-Naud N, Rivière G, Sussarellu R. The Pacific oyster reproduction is affected by early-life exposure to environmental pesticide mixture: A multigenerational study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173569. [PMID: 38810751 DOI: 10.1016/j.scitotenv.2024.173569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Pesticides threat marine organisms worldwide. Among them, the Pacific oyster is a bivalve mollusc model in marine ecotoxicology. A large body of literature already stated on the multiple-scale effects pesticides can trigger in the Pacific oyster, throughout its life cycle and in a delayed manner. In particular, reproductive toxicity is of major concern because of its influence on population dynamics. However, past studies mostly investigated pesticide reprotoxicity as a direct effect of exposure during gametogenesis or directly on gametes and little is known about the influence of an early embryo exposure on the breed capacity. Therefore, we studied delayed and multigenerational consequences through gametogenesis features (i.e. sex ratio, glycogen content, gene expression) and reproductive success in two consecutive oyster generations (F0 and F1) exposed to an environmentally-relevant pesticide mixture (sum nominal concentration: 2.85 μg.L-1) during embryo-larval development (0-48 h post fertilization, hpf). In the first generation, glycogen content increased in exposed individuals and the expression of some gametogenesis target genes was modified. The reproductive success measured 48 hpf was higher in exposed individuals. A multigenerational influence was observed in the second generation, with feminisation, acceleration of gametogenesis processes and the sex-specific modification of glycogen metabolism in individuals from exposed parents. This study is the first to highlight the delayed effects on reproduction induced by an early exposure to pesticides, and its multigenerational implications in the Pacific oyster. It suggests that environmental pesticide contamination can have impacts on the recruitment and the dynamics of natural oyster populations exposed during their embryo-larval phase.
Collapse
Affiliation(s)
- Thomas Sol Dourdin
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, F-44000, France
| | - Clothilde Berthelin
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR8067, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231 Paris CEDEX, France
| | - Killian Guyomard
- Ifremer, EMMA Plateforme Expérimentale Mollusques Marins Atlantique, F-85230, France
| | - Alicia Morin
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, F-44000, France
| | - Nathan Morandi
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR8067, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231 Paris CEDEX, France
| | - Nicolas Elie
- Université de Caen Normandie, Structure Federative 4207 'Normandie Oncologie', PLATON Services Unit, Virtual'His, F-14000 Caen, France
| | - Nadège Villain-Naud
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR8067, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231 Paris CEDEX, France
| | - Guillaume Rivière
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR8067, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231 Paris CEDEX, France
| | | |
Collapse
|
6
|
Mabrouk NEL, Mastouri M, Lizard G, Aouni M, Harizi H. In vitro immunotoxicity effects of carbendazim were inhibited by n-acetylcysteine in microglial BV-2 cells. Toxicol In Vitro 2024; 97:105812. [PMID: 38522494 DOI: 10.1016/j.tiv.2024.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Carbendazim (CBZ) is a benzimidazole fungicide widely used worldwide in industrial, agricultural, and veterinary practices. Although, CBZ was found in all brain tissues causing serious neurotoxicity, its impact on brain immune cells remain scarcely understood. Our study investigated the in vitro effects of CBZ on activated microglial BV-2 cells. Lipopolysaccharide (LPS)-stimulated BV-2 cells were exposed to increasing concentrations of CBZ and cytokine release was measured by ELISA, and Cytometric Bead Array (CBA) assays. Mitochondrial superoxide anion (O2·-) generation was evaluated by Dihydroethidium (DHE) and nitric oxide (NO) was assessed by Griess reagent. Lipid peroxidation was evaluated by measuring the malonaldehyde (MDA) levels. The transmembrane mitochondrial potential (ΔΨm) was detected by cytometry analysis with dihexyloxacarbocyanine iodide (DiOC6(3)) assay. CBZ concentration-dependently increased IL-1β, IL-6, TNF-α and MCP-1 by LPS-activated BV-2 cells. CBZ significantly promoted oxidative stress by increasing NO, O2·- generation, and MDA levels. In contrast, CBZ significantly decreased ΔΨm. Pre-treatment of BV-2 cells with N-acetylcysteine (NAC) reversed all the above mentioned immunotoxic parameters, suggesting a potential protective role of NAC against CBZ-induced immunotoxicity via its antioxidant and anti-inflammatory effects on activated BV-2 cells. Therefore, microglial proinflammatory over-activation by CBZ may be a potential mechanism by which CBZ could induce neurotoxicity and neurodegenerative disorders.
Collapse
Affiliation(s)
- Narjesse E L Mabrouk
- Laboratoy of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy Monastir University, Avenue Avicenne, 5019 Monastir, Tunisia
| | - Maha Mastouri
- Laboratoy of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy Monastir University, Avenue Avicenne, 5019 Monastir, Tunisia
| | - Gérard Lizard
- Laboratory Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism. EA7270, INSERM, Faculty of Sciences Gabriel, University of Bourgogne Franche Comté, Dijon, France
| | - Mahjoub Aouni
- Laboratoy of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy Monastir University, Avenue Avicenne, 5019 Monastir, Tunisia
| | - Hedi Harizi
- Laboratoy of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy Monastir University, Avenue Avicenne, 5019 Monastir, Tunisia.
| |
Collapse
|
7
|
Álvarez-Herrera C, Maisanaba S, Llana Ruíz-Cabello M, Rojas R, Repetto G. A strategy for the investigation of toxic mechanisms and protection by efflux pumps using Schizosaccharomyces pombe strains: Application to rotenone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171253. [PMID: 38408667 DOI: 10.1016/j.scitotenv.2024.171253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Effects not related with the inhibition of complex I of the mitochondrial electron transport chain are studied in S. pombe, which lacks it. This study aims: First, the use of a strategy with S. pombe strains to investigate the toxicity, mechanisms of action, interactions and detoxication by efflux pumps. Second, to investigate the mechanisms of toxic action of rotenone. In the dose-response assessment, the yeast presented a good correlation with the toxicity in Daphnia magna for 15 chemicals. In the mechanistic study, the mph1Δ strain presented marked specificity to the interaction with microtubules by carbendazim. DNA damage caused by hydroxyurea, an inhibitor of deoxynucleotide synthesis, was identified with marked specificity with the rad3Δ strain. The sty1Δ strain was very sensitive to the oxidative and osmotic stress induced by hydrogen peroxide and potassium chloride, respectively, being more sensitive to oxidative stress than the pap1Δ strain. The protection by exclusion pumps was also evaluated. Rotenone presented low toxicity in S. pombe due to the lack of its main target, and the marked protection by the exclusion transporters Bfr1, Pmd1, Caf5 and Mfs1. Marked cellular stress was detected. Finally, the toxicity of rotenone could be potentiated by the fungicide carbendazim and the antimetabolite hydroxyurea. In conclusion, the use of S. pombe strains is a valid strategy to: a) assess global toxicity; b) investigate the main mechanisms of toxic action, particularly spindle and DNA interferences, and osmotic and oxidative stress not related to complex I inhibition; c) explore the detoxication by efflux pumps; and d) evaluate possible chemical interactions. Therefore, it should be useful for the investigation of adverse outcome pathways.
Collapse
Affiliation(s)
| | - Sara Maisanaba
- Area of Toxicology, Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| | | | - Raquel Rojas
- Area of Toxicology, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Guillermo Repetto
- Area of Toxicology, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
8
|
D'Souza LC, Paithankar JG, Stopper H, Pandey A, Sharma A. Environmental Chemical-Induced Reactive Oxygen Species Generation and Immunotoxicity: A Comprehensive Review. Antioxid Redox Signal 2024; 40:691-714. [PMID: 37917110 DOI: 10.1089/ars.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Reactive oxygen species (ROS), the reactive oxygen-carrying chemicals moieties, act as pleiotropic signal transducers to maintain various biological processes/functions, including immune response. Increased ROS production leads to oxidative stress, which is implicated in xenobiotic-induced adverse effects. Understanding the immunoregulatory mechanisms and immunotoxicity is of interest to developing therapeutics against xenobiotic insults. Recent Advances: While developmental studies have established the essential roles of ROS in the establishment and proper functioning of the immune system, toxicological studies have demonstrated high ROS generation as one of the potential mechanisms of immunotoxicity induced by environmental chemicals, including heavy metals, pesticides, aromatic hydrocarbons (benzene and derivatives), plastics, and nanoparticles. Mitochondrial electron transport and various signaling components, including NADH oxidase, toll-like receptors (TLRs), NF-κB, JNK, NRF2, p53, and STAT3, are involved in xenobiotic-induced ROS generation and immunotoxicity. Critical Issues: With many studies demonstrating the role of ROS and oxidative stress in xenobiotic-induced immunotoxicity, rigorous and orthogonal approaches are needed to achieve in-depth and precise understanding. The association of xenobiotic-induced immunotoxicity with disease susceptibility and progression needs more data acquisition. Furthermore, the general methodology needs to be possibly replaced with high-throughput precise techniques. Future Directions: The progression of xenobiotic-induced immunotoxicity into disease manifestation is not well documented. Immunotoxicological studies about the combination of xenobiotics, age-related sensitivity, and their involvement in human disease incidence and pathogenesis are warranted. Antioxid. Redox Signal. 40, 691-714.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| | - Jagdish Gopal Paithankar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| |
Collapse
|
9
|
Hashim M, Al-Attar AM, Alomar MY, Shaikh Omar AM, Alkenani NA, Abu Zeid IM. Alleviation of carbendazim toxicity effect by Moringa oleifera oil and Linum usitatissimum L . oil on testes of male rats: Physiological, histological and in silico study. Saudi J Biol Sci 2024; 31:103921. [PMID: 38268782 PMCID: PMC10806130 DOI: 10.1016/j.sjbs.2023.103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024] Open
Abstract
Carbendazim (CBZ) is a widely used fungicide that is used to control the unwanted growth of fungi on fruits and vegetables. Sixty male rats were divided into six groups, each having ten. Group one served as control, animals belonging to group two were exposed to CBZ in the measure of 200 mg/kg body weight (BW). In the third and fourth groups, rats were administered 800 mg/kg BW of Moringa oleifera (moringa oil) and Linum usitatissimum L. (flaxseed oil), plus CBZ with the same dose given to group two. Groups five and six were administered with moringa and flaxseed oils respectively for six weeks. A marked decline was seen in oxidative stress markers, reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and a rise in malondialdehyde (MDA) level in group two with severe histological disruptions. Moringa oil and flaxseed oil were used to alleviate these changes. In addition, a biocomputational molecular docking analysis of three proteins found in male rats was performed. In relation to CBZ (CID:10584007) the screened proteins namely testis-expressed protein (TX101_RAT), EPPI_RAT, and glutathione peroxidase 5 (GPX5_RAT) were docked, and their docking score were obtained (-5.9 kcal/mol), (-5.8 kcal/mol) and (-5.6 kcal/mol) respectively. By examining these interactions in 2D and 3D structures, a detailed understanding of the unique and specific binding affinity, hydrogen bonds, hydrophobic interactions, ionic bonds, and water bonds were obtained. Structure-based virtual screening (SBVS) molecular docking analysis showed that protein interaction with CBZ causes reproductive complications in protein expression and functions by hampering their normal function and blocking active sites.
Collapse
Affiliation(s)
- Muhammad Hashim
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atef M. Al-Attar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Y. Alomar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulkader M. Shaikh Omar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Naser A. Alkenani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isam M. Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Marghany F, Ayobahan SU, Salinas G, Schäfers C, Hollert H, Eilebrecht S. Transcriptomic and proteomic fingerprints induced by the fungicides difenoconazole and metalaxyl in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104348. [PMID: 38135202 DOI: 10.1016/j.etap.2023.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
In this study, we applied OMICs analysis to identify substance-specific biomarker candidates, which may act as early indicators for specific ecotoxic modes of actions (MoA). Zebrafish embryos were exposed to two sublethal concentrations of difenoconazole and metalaxyl according to a modified protocol of the OECD test guideline No. 236. At the end of exposure, total RNA and protein were extracted, followed by transcriptomics and proteomics analysis. The analysis of significantly differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) revealed a positive exposure-response correlation in all test concentrations for both fungicides. Similarly, also a positive correlation between the obtained transcriptome and proteome data was observed, highlighting the robustness of our approach. From the detected DEGs, candidate biomarkers specific for difenoconazole (apoa1b, gatm, mylpfb and acta1b) and metalaxyl (lgals2b, abat, fabp1b.1 and myh9a) were selected, and their biological functions were discussed to assess the predictive potential.
Collapse
Affiliation(s)
- Fatma Marghany
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Steve U Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
11
|
Lu W, Yang F, Meng Y, An J, Hu B, Jian S, Yang G, Lu H, Wen C. Immunotoxicity and transcriptome analysis of zebrafish embryos exposure to Nitazoxanide. FISH & SHELLFISH IMMUNOLOGY 2023; 141:108977. [PMID: 37579811 DOI: 10.1016/j.fsi.2023.108977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Nitazoxanide (NTZ) is a broad-spectrum immunomodulatory drug, and little information is about the immunotoxicity of aquatic organisms induced by NTZ. In the present study, reduced body length and decreased yolk sac absorption in the NTZ-treated group were observed. Meanwhile, the number of innate immune cells and adaptive immune cells was substantially reduced upon NTZ exposure, and the migration and retention of macrophages and neutrophils in the injured area were inhibited. Following NTZ stimulation, oxidative stress levels in the zebrafish increased obviously. Mechanistically, RNA-seq, a high-throughput method, was performed to analyze the global expression of differentially expressed genes (DEGs) in zebrafish embryos treated with NTZ. 531 DEGs were identified by comparative transcriptome analysis, including 121 up-regulated and 420 down-regulated genes in zebrafish embryos after NTZ exposure. The transcriptome sequences were further subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) and analysis, showing phototransduction and metabolic pathway, respectively, and were most enriched. In addition, some immune-related genes were inhibited after NTZ exposure. RNA-seq results confirmed by qRT-PCR were used to verify the expression of the 6 selected genes. The other immune-related genes such as two pro-inflammatory cytokines (IL-1β, tnfα) and two chemokines (CXCL8b.3, CXCL-c1c) were further confirmed and were differentially regulated after NTZ exposure. In summary, NTZ exposure could lead to immunotoxicity and increased ROS in zebrafish embryos, this study provides valuable information for future elucidating the molecular mechanism of exogenous stimuli-induced immunotoxicity in aquatic ecosystems.
Collapse
Affiliation(s)
- Wuting Lu
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Fanhua Yang
- College of Food Science and Technology, Nanchang University, Nanchang, 330031, China
| | - Yunlong Meng
- Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jinhua An
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Baoqing Hu
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Shaoqing Jian
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Gang Yang
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China.
| | - Chungen Wen
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China.
| |
Collapse
|
12
|
Ma C, Yang Z, Zhang S, Zhang X, Wang S, Cheng H, Liu Y, Ruan H, Xu Z, Liang C, Liang D, Ding Z, Liu Y, Cao Y. Carbendazim exposure inhibits mouse oocytes meiotic maturation in vitro by destroying spindle assembly. Food Chem Toxicol 2023; 179:113966. [PMID: 37506866 DOI: 10.1016/j.fct.2023.113966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Successful fertilization and early embryonic development heavily depend on the quality of the oocytes. Carbendazim (CBZ), a broad-spectrum fungicide, is widely available in the environment and has adverse effects on organisms. The present study focused on exploring the potential reproductive toxicity of CBZ exposure by investigating its effects on the maturation of mouse oocytes. The results demonstrated that although no disruptions were observed in the G2/M stage transition for meiosis resumption, CBZ did hinder the polar body extrusion (PBE) occurring during oocyte maturation. Cell cycle distribution analysis revealed that CBZ exposure interfered with the meiotic process, causing oocytes to be arrested at the metaphase I (MI) stage. The subsequent investigation highlighted that CBZ exposure impeded the spindle assembly and chromosomal alignment, which was linked to a decline in the level of p-MAPK. Additionally, CBZ exposure adversely affected the kinetochore-microtubule (K-MT) attachment, leading to the persistent activation of the spindle-assembly checkpoint (SAC). The study further noticed a substantial rise in the acetylation of α-tubulin and a reduction in spindle microtubule stability in CBZ-treated oocytes. In addition, the distribution pattern of estrogen receptor alpha (ERα) was altered in oocytes treated with CBZ, with abnormal aggregation on the spindles. CBZ exposure also resulted in altered histone modifications. A notable finding from this research was that the meiotic maturation of some oocytes remained unaffected even after CBZ treatment. However, during the ensuing metaphase II (MII) stage, these oocytes displayed anomalies in their spindle morphology and chromosome arrangement and diminished ability to bind to the sperm. The observations made in this study underscore the potential for CBZ to disrupt the meiotic maturation of oocytes, leading to a decline in the overall quality of oocytes.
Collapse
Affiliation(s)
- Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Zhuonan Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Shouxin Zhang
- Biochip Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Xueke Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Siyuan Wang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China
| | - Huiru Cheng
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China
| | - Yang Liu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China
| | - Hongzhen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China
| | - Chunmei Liang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China
| | - Dan Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China
| | - Zhiming Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China.
| | - Yajing Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei, 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei, 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
13
|
Liu RP, Wang J, Wang XQ, Wang CR, He SY, Xu YN, Li YH, Kim NH. Xanthoangelol promotes early embryonic development of porcine embryos by relieving endoplasmic reticulum stress and enhancing mitochondrial function. Reprod Biomed Online 2023; 47:103211. [PMID: 37246104 DOI: 10.1016/j.rbmo.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/30/2023]
Abstract
RESEARCH QUESTION Does the addition of an antioxidant agent, xanthoangelol (XAG), to the culture medium improve in-vitro development of porcine embryos? DESIGN Early porcine embryos were incubated in the presence of 0.5 μmol/l XAG in in-vitro culture (IVC) media and analysed using various techniques, including immunofluorescence staining, reactive oxygen species (ROS) detection, TdT-mediated dUTP nick-end labelling (TUNEL), and reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR). RESULTS The addition of 0.5 μmol/l XAG to IVC media increased the rate of blastocyst formation, total cell number, glutathione concentrations and proliferative capacity, while reducing reactive oxygen species concentrations, apoptosis and autophagy. In addition, upon XAG treatment, the abundance of mitochondria and mitochondrial membrane potential significantly increased (both P < 0.001), and the genes related to mitochondrial biogenesis (TFAM, NRF1 and NRF2) were significantly up-regulated (all P < 0.001). XAG treatment also significantly increased the endoplasmic reticulum abundance (P < 0.001) and reduced the concentrations of endoplasmic reticulum stress (ERS) marker GRP78 (P = 0.003) and expression of the ERS-related genes EIF2α, GRP78, CHOP, ATF6, ATF4, uXBP1 and sXBP 1 (all P < 0.001). CONCLUSION XAG promotes early embryonic development in porcine embryos in vitro by reducing oxidative stress, enhancing mitochondrial function and relieving ERS.
Collapse
Affiliation(s)
- Rong-Ping Liu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China; College of Agriculture, Yanbian University, Yanji 133002, China
| | - Xin-Qin Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Chao-Rui Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Sheng-Yan He
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China.
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
14
|
Lai H, Ming P, Liu Y, Wang S, Zhou Q, Zhai H. MWCNTs and ZnO-based Ce-MOF nanocomposites as enhanced sensing platform for electrochemical detection of carbendazim in Chinese traditional herbs samples. Mikrochim Acta 2023; 190:281. [PMID: 37407849 DOI: 10.1007/s00604-023-05869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Abstract
A facile and novel Ce-MOF@MWCNTs@ZnO-modified glassy carbon electrode was prepared through drop coating and used for accurate and sensitive electrochemical detection of carbendazim. The modification of ZnO nanospheres and Ce-based metal-organic frameworks (Ce-MOFs), which possess vast surface/bulk ratio, large surface area, and excellent catalytic ability, provided more active sites for reaction. The combination of multi-walled carbon nanotubes endowed the modified electrode with excellent conductivity and greatly accelerated the electron transfer. The promotion of electrochemical response and the significant improvement of peak current indicated the outstanding electrocatalytic ability of the modified electrode. The oxidation peak current of carbendazim which was measured by DPV in a potential range from 0.5 to 1.0 V produced a good linear relationship in the concentration ranges 0.05-10.0 μM and 10.0-50.0 μM under optimized experimental conditions. The detection limit was 13.2 nM (S/N = 3). The constructed electrode was successfully applied to the detection of carbendazim in Lithospermum and Glycyrrhiza uralensis real samples and exhibited satisfactory RSD (2.7-3.6% and 1.6-4.8%, respectively) and recovery (102-106% and 97.7-107%, respectively).
Collapse
Affiliation(s)
- Haohong Lai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Pingtao Ming
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongxin Liu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shumei Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Qing Zhou
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Liao X, Luo X, Li Y, Zhou Y, Liang Q, Feng K, Camarada MB, Xiong J. An antifouling electrochemical sensor based on multiwalled carbon nanotubes functionalized black phosphorus for highly sensitive detection of carbendazim and corresponding response mechanisms analyses. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
16
|
Wang K, Che W, Duan M, Wang C, Li X, He L. Effects of Broflanilide on Oxidative Stress and Expression of Apoptotic Genes in Zebrafish (Danio rerio) Gill. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:91. [PMID: 37156957 DOI: 10.1007/s00128-023-03733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
Broflanilide exerted negative impacts on the gill of zebrafish. Thus, in this study, zebrafish gill was used to assess the apoptosis toxicity of broflanilide by determining the levels of reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) and apoptosis-related genes. The results found that the minimum threshold for the content and time of broflanilide affecting enzyme content and gene expression was 0.26 mg/L after 24 h exposure. After 96 h exposure, broflanilide could cause apoptosis and exerted significantly increased contents of ROS and MDA, while inhibiting the activities of SOD, CAT, and GPx at 0.26 and 0.57 mg/L. Broflanilide also had adverse effects on apoptosis-related genes, such as tumor protein p53 (p53), associated × (Bax), B-cell lymphama-2 (Bcl-2), caspase-3, caspase-9, and apoptotic protease activating factor-1(apaf-1), at 0.26 mg/L and 0.57 mg/L after 96 h exposure, respectively. These results provide new insight into the potential toxicity mechanisms of broflanilide in zebrafish gills.
Collapse
Affiliation(s)
- Kai Wang
- Plant Protection College, Shenyang Agricultural University, Shenyang, China.
| | - Wunan Che
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Manman Duan
- College of Science, China Agricultural University, Beijing, China
| | - Chengju Wang
- College of Science, China Agricultural University, Beijing, China
| | - Xiuwei Li
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Lu He
- Plant Protection College, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
17
|
Ma X, Chen X, Hou H, Liu D, Liu X, Wang P, Zhou Z. Low Dose of Carbendazim and Tebuconazole: Accumulation in Tissues and Effects on Hepatic Oxidative Stress in Mice. TOXICS 2023; 11:326. [PMID: 37112553 PMCID: PMC10142364 DOI: 10.3390/toxics11040326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
As two commonly used fungicides, carbendazim and tebuconazole are widely found in the environment and in foods. Studies have reported that these fungicides can induce hepatic oxidative stress and other health risks. Nevertheless, the influences of exposure to carbendazim and tebuconazole at their acceptable daily intake (ADI) doses on hepatic oxidative stress, and the residual distributions in mice remain unclear. To fill these gaps, ICR (CD-1) mice were exposed to carbendazim and tebuconazole at their ADI doses by oral administration for 4 weeks in this study. The results showed that tebuconazole accumulated primarily in the epididymal fat of mice (16.84 μg/kg), whereas no significant residues of carbendazim in the tissues were observed. In addition, exposure to ADI doses of tebuconazole significantly reduced liver coefficients and induced hepatic oxidative stress in mice, including elevating the levels of glutathione and malonaldehyde. However, no significant impacts were observed on the hepatic redox homeostasis in mice after exposure to carbendazim at its ADI dose. The results could be helpful for understanding the exposure risks of carbendazim and tebuconazole in terms of low doses and long term.
Collapse
|
18
|
Costa RM, Matos E Chaib VR, Domingues AG, Rubio KTS, Martucci MEP. Untargeted Metabolomics Reveals Lipid Impairment in the Liver of Adult Zebrafish (Danio rerio) Exposed to Carbendazim. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:437-448. [PMID: 36484755 DOI: 10.1002/etc.5534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Carbendazim is a systemic fungicide used in several countries, particularly in Brazil. However, studies suggest that it is related to the promotion of tumors, endocrine disruption, and toxicity to organisms, among other effects. As a result, carbendazim is not allowed in the United States, Australia, and some European Union countries. Therefore, further studies are necessary to evaluate its effects, and zebrafish is a model routinely used to provide relevant information regarding the acute and long-term effects of xenobiotics. In this way, zebrafish water tank samples (water samples from aquari containing zebrafish) and liver samples from animals exposed to carbendazim at a concentration of 120 μg/L were analyzed by liquid chromatography coupled to high-resolution mass spectrometry, followed by multivariate and univariate statistical analyses, using the metabolomics approach. Our results suggest impairment of lipid metabolism with a consequent increase in intrahepatic lipids and endocrine disruption. Furthermore, the results suggest two endogenous metabolites as potential biomarkers to determine carbendazim exposure. Finally, the present study showed that it is possible to use zebrafish water tank samples to assess the dysregulation of endogenous metabolites to understand biological effects. Environ Toxicol Chem 2023;42:437-448. © 2022 SETAC.
Collapse
Affiliation(s)
- Raíssa M Costa
- Postgraduate Program in Environmental Engineering-ProAmb, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Victória R Matos E Chaib
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Anderson G Domingues
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Karina T S Rubio
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Maria Elvira Poleti Martucci
- Postgraduate Program in Environmental Engineering-ProAmb, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
19
|
Cestonaro LV, Macedo SMD, Piton YV, Garcia SC, Arbo MD. Toxic effects of pesticides on cellular and humoral immunity: an overview. Immunopharmacol Immunotoxicol 2022; 44:816-831. [PMID: 35770924 DOI: 10.1080/08923973.2022.2096466] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
People are exposed to pesticides through food, drinking water, and the environment. These compounds are associated with several disorders, such as inflammatory diseases, rheumatoid arthritis, cancer, and a condition related to metabolic syndrome. The immunotoxicants or immunotoxic compounds can cause a wide variety of effects on immune function, altering humoral immunity and cell-mediated immunity, resulting in adverse effects to the body. Here, immune system disorders are highlighted because they are closely linked to multiple organs, including the nervous, endocrine, reproductive, cardiovascular, and respiratory systems, leading to transient or permanent changes. Therefore, this study reviewed the mechanisms involved in the immunotoxicity of fungicides, herbicides, and insecticides in cells, animals, and humans in the past 11 years. According to the studies analyzed, the pesticides interfere with innate and adaptive immune functions, but the effects observed mainly on cellular and humoral immunity were highlighted. These compounds affected specific immune cells, causing apoptosis, changes in factor nuclear kappa B (NF-κB) expression, pro-inflammatory factors interleukin 6 (IL-6), interleukin 8 (IL-8), interferon-gamma (IFN-γ), chemokines (CXCL-c1c), and anti-inflammatory factor, such as interleukin 10 (IL-10). To verify the threats of these compounds, new evaluations with immunotoxicological biomarkers are necessary. HighlightsPesticides interfere with the innate and adaptive immune response.Cells, animals and human studies demonstrate the immunotoxicity of pesticides in the cellular and humoral immune response.Fungicides, herbicides, and insecticides alter the immune system by various mechanisms, such as pro-inflammatory and anti-inflammatory factors.
Collapse
Affiliation(s)
- Larissa Vivan Cestonaro
- Departamento de Análises, Faculdade de Farmácia, Laboratório de Toxicologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.,Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Sandra Manoela Dias Macedo
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Yasmin Vendrusculo Piton
- Departamento de Análises, Faculdade de Farmácia, Laboratório de Toxicologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Solange Cristina Garcia
- Departamento de Análises, Faculdade de Farmácia, Laboratório de Toxicologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.,Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Marcelo Dutra Arbo
- Departamento de Análises, Faculdade de Farmácia, Laboratório de Toxicologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.,Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| |
Collapse
|
20
|
Tamagno WA, Alves C, Vanin AP, Bilibio D, Varela ACC, Mozzato MT, Barcellos LJG. Dietary transference of 17α-ethinylestradiol changes the biochemical and behavioral biomarkers in adult zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109472. [PMID: 36167257 DOI: 10.1016/j.cbpc.2022.109472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/18/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022]
Abstract
The endocrine disruptors (ED), even in low concentration, can change the homeostasis of an organism through the biochemical and physiological pathways; and are gaining more relevance due to their well-reported presence in the natural environment. EDs mainly affect non-target animals, which can bioaccumulate, leading to changes in metabolism. Another problem is due to several organisms that compose the aquatic biota serving as a basis of the food chain and transferring it to higher trophic levels. Here we evaluated the dietary transference of 17α-ethinylestradiol (EE2), in adult zebrafish chronically fed by EE2-bioaccumulated brine shrimp (BS). For this, we evaluated behavioral biomarkers such as the novel tank test (NTT), social preference test (SPT), mirror-induced aggressivity (MIA), and biochemical biomarkers such as acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CTL), and glutathione-S-transferase (GST) activity, cortisol, and lipid peroxidation levels in adult zebrafish. The behavioral effects can be explained by the changed effects on acetylcholinesterase activity as well as in the antioxidant system mainly affected by the high levels of EE2 identified by HPLC shown that had occurred during a dietary transfer for fish. EE2 has a potential pattern for bioaccumulation and dietary transfer in biological tissue and EE2 can affect the behavior of fish. The observed effects could be dangerous to the environment, affecting, other animals and even human health.
Collapse
Affiliation(s)
- Wagner Antonio Tamagno
- Biochemistry Laboratory Prof. Rosilene Rodrigues Kaizer Perin of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul, Sertão Campus, City of Sertão, State of Rio Grande do Sul, Brazil; Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil.
| | - Carla Alves
- Biochemistry Laboratory Prof. Rosilene Rodrigues Kaizer Perin of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul, Sertão Campus, City of Sertão, State of Rio Grande do Sul, Brazil; Graduate Program in Bioexperimentation and Graduate Program in Environmental Science, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil.
| | - Ana Paula Vanin
- Biochemistry Laboratory Prof. Rosilene Rodrigues Kaizer Perin of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul, Sertão Campus, City of Sertão, State of Rio Grande do Sul, Brazil
| | - Denise Bilibio
- Biochemistry Laboratory Prof. Rosilene Rodrigues Kaizer Perin of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul, Sertão Campus, City of Sertão, State of Rio Grande do Sul, Brazil.
| | - Amanda Carolina Cole Varela
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil
| | - Mateus Timbola Mozzato
- Veterinary Medicine Course, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil.
| | - Leonardo José Gil Barcellos
- Graduate Program in Bioexperimentation and Graduate Program in Environmental Science, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil; Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
21
|
Wang M, Wang H, Chen G, Liu J, Hu T. Spiromesifen conferred abnormal development in zebrafish embryos by inducing embryonic cytotoxicity via causing oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106324. [PMID: 36244087 DOI: 10.1016/j.aquatox.2022.106324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Spiromesifen (SPF) is widely used in agriculture to protect against herbivorous mites, whose residues may be harmful to the environment. However, the toxicity assessment of SPF is insufficient. Here, we investigated the toxicological effects of SPF using zebrafish embryos as an animal model. The results showed that SPF exposure solutions at 10, 20, 30, and 40 μM caused cytotoxicity in zebrafish embryos such as reactive oxygen species (ROS) accumulation, mitochondrial membrane potential decrease, cell division arrest, and apoptosis, which further led to developmental toxicity in zebrafish embryos including delayed hatching, decreased survival rate and spontaneous curling rate, and severe morphological deformities. SPF also induced apoptosis via changes in the expressions of apoptosis-related marker genes, caused immunotoxicity by reducing the number of macrophages and the activity of AKP/ALP and increasing inflammatory factors, and disturbed endogenous antioxidant systems via changes SOD, CAT, and GST activities as well as MDA and GSH contents. Therefore, the potential mechanism that caused embryonic developmental toxicity appeared to be related to the generation of oxidative stress by an elevation in ROS and changes in apoptosis-, immune-, antioxidant-related markers. The antioxidant system and inflammatory response simultaneously participated in and resisted the threat of SPF to prevent tissue damage. Taken together, spiromesifen induced oxidative stress to contribute to developmental toxicity in zebrafish embryos by inducing embryonic cytotoxicity. Our study provides new insight into the toxicity assessment of SPF to non-target organisms.
Collapse
Affiliation(s)
- Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, No. 174, Shazheng, Street, Shapingba District, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Huiyun Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, No. 174, Shazheng, Street, Shapingba District, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, No. 174, Shazheng, Street, Shapingba District, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, No. 174, Shazheng, Street, Shapingba District, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, No. 174, Shazheng, Street, Shapingba District, Bioengineering College of Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
22
|
Newly synthesized chitosan-nanoparticles attenuate carbendazim hepatorenal toxicity in rats via activation of Nrf2/HO1 signalling pathway. Sci Rep 2022; 12:9986. [PMID: 35705592 PMCID: PMC9200826 DOI: 10.1038/s41598-022-13960-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022] Open
Abstract
Widespread application of carbendazim (CBZ) is a major environmental impact because of its residues that caused multi-organ dysfunction. Recently, Chitosan nanoparticles (CS-NPs) are extensively used as nanocarriers due to their non-toxic and biodegradable nature. Therefore, the current study aimed to investigate the possible mechanistic pathway of modified CS-NPs to reduce the hepatic and nephrotoxicity of CBZ in rats. CS-NPs were synthesized by the ionic gelation method by using ascorbic acid instead of acetic acid to increase its antioxidant efficiency. Twenty-adult male Wistar rats were grouped (n = 5) as follows: Group (1) negative control, group (2) received CS-NPs, group (3) received CBZ, and group (4) co-administered CS-NPs with CBZ. Rats received the aforementioned materials daily by oral gavage for 28 days and weighed weekly. The results revealed that CBZ receiving group showed severe histopathological alterations in the liver and kidney sections including cellular necrosis and interstitial inflammation confirmed by immunostaining and showed marked immunopositivity of iNOS and caspase-3 protein. There were marked elevations in the serum levels of ALT, AST, urea, and creatinine with a significant increase in MDA levels and decrease in TAC levels. Upregulation of the Keap1 gene and down-regulation of Nrf2 and HO-1 genes were also observed. Co-treatment of rats by CS-NPs with CBZ markedly improved all the above-mentioned toxicological parameters and return liver and kidney tissues to normal histological architecture. We concluded that CBZ caused hepatorenal toxicity via oxidative stress and the Nrf2/HO-1 pathway and CS-NPs could reduce CBZ toxicity via their antioxidant, anti-apoptotic, and anti-inflammatory effects.
Collapse
|
23
|
A Novel Cu2O/ZnO@PET Composite Membrane for the Photocatalytic Degradation of Carbendazim. NANOMATERIALS 2022; 12:nano12101724. [PMID: 35630948 PMCID: PMC9144458 DOI: 10.3390/nano12101724] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023]
Abstract
The extremely high levels of water pollution caused by various industrial activities represent one of the most important environmental problems. Efficient techniques and advanced materials have been extensively developed for the removal of highly toxic organic pollutants, including pesticides. This study investigated the photocatalytic degradation of the fungicide carbendazim (Czm) using composite track-etched membranes (TeMs) in an aqueous solution. Copper(I) oxide (Cu2O) and zinc oxide (ZnO) microtubes (MTs) were prepared using an electroless template deposition technique in porous poly(ethylene terephthalate) (PET) TeMs with nanochannels with a density of 4 × 107 pores/cm−2 and diameter of 385 ± 9 nm to yield Cu2O@PET and ZnO@PET composite membranes, respectively. A mixed Cu2O/ZnO@PET composite was prepared via a two-step deposition process, containing ZnO (87%) and CuZ (13%) as crystalline phases. The structure and composition of all composite membranes were elucidated using scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) techniques. Under UV–visible light irradiation, the Cu2O/ZnO@PET composite displayed enhanced photocatalytic activity, reaching 98% Czm degradation, higher than Cu2O@PET and ZnO@PET composites. The maximum Czm degradation efficiency from aqueous solution was obtained at an optimal pH of 6 and contact time of 140 min. The effects of various parameters such as temperature, catalyst dosage and sample exposure time on the photocatalytic degradation process were studied. The degradation reaction of Czm was found to follow the Langmuir–Hinshelwood mechanism and a pseudo-first order kinetic model. The degradation kinetics of Czm accelerated with increasing temperature, and the activation energy (Ea) levels were calculated as 11.9 kJ/mol, 14.22 kJ/mol and 15.82 kJ/mol for Cu2O/ZnO@PET, ZnO@PET and Cu2O@PET composite membranes, respectively. The reusability of the Cu2O/ZnO@PET catalyst was also investigated at different temperatures for 10 consecutive runs, without any activation or regeneration processes. The Cu2O/ZnO@PET composite exhibited degradation efficiency levels of over 50% at 14 °C and over 30% at 52 °C after 5 consecutive uses.
Collapse
|
24
|
Suzuki N, Honda M, Sato M, Yoshitake S, Kawabe K, Tabuchi Y, Omote T, Sekiguchi T, Furusawa Y, Toriba A, Tang N, Shimasaki Y, Nagato EG, Zhang L, Srivastav AK, Amornsakun T, Kitani Y, Matsubara H, Yazawa T, Hirayama J, Hattori A, Oshima Y, Hayakawa K. Hydroxylated benzo[c]phenanthrene metabolites cause osteoblast apoptosis and skeletal abnormalities in fish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113401. [PMID: 35298967 DOI: 10.1016/j.ecoenv.2022.113401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/19/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
To study the toxicity of 3-hydroxybenzo[c]phenanthrene (3-OHBcP), a metabolite of benzo[c]phenanthrene (BcP), first we compared it with its parent compound, BcP, using an in ovo-nanoinjection method in Japanese medaka. Second, we examined the influence of 3-OHBcP on bone metabolism using goldfish. Third, the detailed mechanism of 3-OHBcP on bone metabolism was investigated using zebrafish and goldfish. The LC50s of BcP and 3-OHBcP in Japanese medaka were 5.7 nM and 0.003 nM, respectively, indicating that the metabolite was more than 1900 times as toxic as the parent compound. In addition, nanoinjected 3-OHBcP (0.001 nM) induced skeletal abnormalities. Therefore, fish scales with both osteoblasts and osteoclasts on the calcified bone matrix were examined to investigate the mechanisms of 3-OHBcP toxicity on bone metabolism. We found that scale regeneration in the BcP-injected goldfish was significantly inhibited as compared with that in control goldfish. Furthermore, 3-OHBcP was detected in the bile of BcP-injected goldfish, indicating that 3-OHBcP metabolized from BcP inhibited scale regeneration. Subsequently, the toxicity of BcP and 3-OHBcP to osteoblasts was examined using an in vitro assay with regenerating scales. The osteoblastic activity in the 3-OHBcP (10-10 to 10-7 M)-treated scales was significantly suppressed, while BcP (10-11 to 10-7 M)-treated scales did not affect osteoblastic activity. Osteoclastic activity was unchanged by either BcP or 3-OHBcP treatment at each concentration (10-11 to 10-7 M). The detailed toxicity of 3-OHBcP (10-9 M) in osteoblasts was then examined using gene expression analysis on a global scale with fish scales. Eight genes, including APAF1, CHEK2, and FOS, which are associated with apoptosis, were identified from the upregulated genes. This indicated that 3-OHBcP treatment induced apoptosis in fish scales. In situ detection of cell death by TUNEL methods was supported by gene expression analysis. This study is the first to demonstrate that 3-OHBcP, a metabolite of BcP, has greater toxicity than the parent compound, BcP.
Collapse
Affiliation(s)
- Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan.
| | - Masato Honda
- Botanical Garden, Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Ishikawa 920-1192, Japan
| | - Masayuki Sato
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Shuhei Yoshitake
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kimi Kawabe
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma, Ishikawa 920-1192, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Toshiki Omote
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama 939-0398, Japan
| | - Akira Toriba
- Graduate School of Biomedical Sciences, Nagasaki University, Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Ishikawa 920-1192, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Edward G Nagato
- Graduate School of Faculty of Life and Environmental Sciences, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Lulu Zhang
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Ishikawa 920-1192, Japan
| | - Ajai K Srivastav
- Department of Zoology, D.D.U. Gorakhpur University, Gorakhpur 273-009, India
| | - Thumronk Amornsakun
- Fisheries Technology Program, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Yoichiro Kitani
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University, Osaka, Noto-cho, Ishikawa 927-0552, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Hokkaido 078-8510, Japan
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa 923-0961, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kazuichi Hayakawa
- Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Nomi city, Ishikawa 923-1224, Japan
| |
Collapse
|
25
|
Particularities of Fungicides and Factors Affecting Their Fate and Removal Efficacy: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14074056] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic fungicide use has increased over the last decades, despite the susceptibility of resistance development and the side effects to human health and the environment. Although herbicides and insecticides are detected more frequently in environmental samples, there are many fungicides that have the ability to enter water bodies due to their physicochemical properties and their increasing use. Key factors affecting fungicide fate in the environment have been discussed, including the non-target effects of fungicides. For instance, fungicides are associated with the steep decline in bumblebee populations. Secondary actions of certain fungicides on plants have also been reported recently. In addition, the use of alternative eco-friendly disease management approaches has been described. Constructed Wetlands (CWs) comprise an environmentally friendly, low cost, and efficient fungicide remediation technique. Fungicide removal within CWs is dependent on plant uptake and metabolism, absorption in porous media and soil, hydrolysis, photodegradation, and biodegradation. Factors related to the efficacy of CWs on the removal of fungicides, such as the type of CW, plant species, and the physicochemical parameters of fungicides, are also discussed in this paper. There are low-environmental-risk fungicides, phytohormones and other compounds, which could improve the removal performance of CW vegetation. In addition, specific parameters such as the multiple modes of action of fungicides, side effects on substrate microbial communities and endophytes, and plant physiological response were also studied. Prospects and challenges for future research are suggested under the prism of reducing the risk related to fungicides and enhancing CW performance.
Collapse
|
26
|
Liu Y, Guo J, Yang F, Deng Y, Peng Y, Meng Y, Liu W, Cheng B, Fu J, Zhang J, Liao X, Lu H. Effects of chlorobromoisocyanuric acid on embryonic development and immunotoxicity of zebrafish. ENVIRONMENTAL TOXICOLOGY 2022; 37:468-477. [PMID: 34842326 DOI: 10.1002/tox.23413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/31/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Although chlorobromoisocyanuric acid has been widely used in agriculture, its deleterious toxicity on aquatic organisms remains rare. In this study, zebrafish were exposed to chlorobromoisocyanuric acid (0, 30, 40, and 50 mg/L) from 10 to 96 h post-fertilization (hpf). We found a significant reduction in immune cell numbers (neutrophils and macrophages) and the area of thymus at 96 hpf. The expression of immune-related genes and pro-inflammatory cytokines genes were upregulated. Besides, chlorobromoisocyanuric acid triggered neutrophils cell apoptosis. The mRNA and protein levels of pro-apoptotic p53 pathway and the Bax/Bcl-2 ratio further indicated the underlying mechanism. Furthermore, the oxidative stress was observed that the accumulation of reactive oxygen species and malondialdehyde significantly increased. Subsequently, the antioxidant agent astaxanthin significantly attenuated the level of oxidative stress and the dysregulation of inflammatory response. In summary, our results showed that chlorobromoisocyanuric acid induced developmental defects and immunotoxicity of zebrafish, partly owing to oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Yi Liu
- College of life sciences, Jiangxi Normal university, Nanchang, China
| | - Jing Guo
- College of life sciences, Jiangxi Normal university, Nanchang, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, China
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, China
| | - Fengjie Yang
- College of life sciences, Jiangxi Normal university, Nanchang, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, China
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, China
| | - Yunyun Deng
- College of life sciences, Jiangxi Normal university, Nanchang, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, China
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, China
| | - Yuyang Peng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, China
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, China
| | - Yunlong Meng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, China
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, China
| | - Wenjin Liu
- College of life sciences, Jiangxi Normal university, Nanchang, China
| | - Bo Cheng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, China
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, China
| | - Jianping Fu
- College of life sciences, Jiangxi Normal university, Nanchang, China
| | - June Zhang
- College of life sciences, Jiangxi Normal university, Nanchang, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, China
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, China
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, China
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| |
Collapse
|
27
|
Tao Y, Li Z, Yang Y, Jiao Y, Qu J, Wang Y, Zhang Y. Effects of common environmental endocrine-disrupting chemicals on zebrafish behavior. WATER RESEARCH 2022; 208:117826. [PMID: 34785404 DOI: 10.1016/j.watres.2021.117826] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Environmental endocrine-disrupting chemicals (EDCs), a type of exogenous organic pollutants, are ubiquitous in natural aquatic environments. Therefor, this review focused on the use of the zebrafish as a model to explore the effect of different EDCs on behavior, as well as the molecular mechanisms that drive these effects. Furthermore, our study summarizes the current knowledge on the neuromodulatory effects of different EDCs in zebrafish. This study also reviews the current state of zebrafish behavior research, in addition to the potential mechanisms of single and mixed pollutant-driven behavioral dysregulation at the molecular level, as well as the applications of zebrafish behavior experiments for neuroscience research. This review broadens our understanding of the influence of EDCs on zebrafish behavior and provides guidance for future research.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
28
|
Sornat R, Kalka J, Faron J, Napora-Rutkowska M, Krakowian D, Drzewiecka A. Developing a screening test for toxicity studies of prenatal development with the use of Hydra attenuata and embryos of zebrafish. Toxicol Rep 2021; 8:1742-1753. [PMID: 34660207 PMCID: PMC8503906 DOI: 10.1016/j.toxrep.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
A simple alternative method may replace the laboratory animals in teratogenic studies. A scoring system evaluates the changes of Hydra attenuata and zebrafish embryos. A potentially teratogenic substance can be easily classified.
11 active substances used in pesticides were selected. Substances were divided into three groups depending the effect on embryos or fetuses of laboratory animals: 1 – damaging effect on embryos or fetuses (embryotoxic, fetotoxic or teratogenic), 2 – damaging effect on embryos or fetuses, but only at dose toxic for mother (maternal toxicity), 3 – no damaging effect. Changes for hydra in acute toxicity tests and recovery tests were assessed on an change scale from 0 to 10. The index of the effect on development (TI) for hydras was calculated for every compound. Changes in zebrafish embryos were assessed using a descriptive method. Pearson correlation coefficient showed the correlation between the concentration and the toxic effect in the zebrafish embryos for the substances of the first group. The study showed that substances having a strong damaging effect on fetuses cause changes that are apparent and easy to evaluate both in hydras and zebrafish embryos. A scoring system was introduced to evaluate the changes of hydras and zebrafish embryos. The point system of evaluation of changes allows quick classification of a substance as potentially embryotoxic, fetotoxic or teratogenic. It allows developing a cheap and fast method alternative to prenatal developmental toxicity studies, a screening method that enables substances of great teratogenic potential to be excluded from studies on laboratory animals.
Collapse
Affiliation(s)
- Robert Sornat
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna 27, 43-200, Pszczyna, Poland.,Silesian University of Technology, The Faculty of Energy and Environmental Engineering, Konarskiego 18, 44-100, Gliwice, Poland
| | - Joanna Kalka
- Silesian University of Technology, The Faculty of Energy and Environmental Engineering, Konarskiego 18, 44-100, Gliwice, Poland
| | - Justyna Faron
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna 27, 43-200, Pszczyna, Poland
| | - Marta Napora-Rutkowska
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna 27, 43-200, Pszczyna, Poland.,Veterinary Clinic LUX-VET, Słoneczna 118, 43-384, Jaworze, Poland
| | - Daniel Krakowian
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna 27, 43-200, Pszczyna, Poland
| | - Agnieszka Drzewiecka
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna 27, 43-200, Pszczyna, Poland
| |
Collapse
|
29
|
Trivedi SP, Ratn A, Awasthi Y, Kumar M, Trivedi A. In vivo assessment of dichlorvos induced histological and biochemical impairments coupled with expression of p53 responsive apoptotic genes in the liver and kidney of fish, Channa punctatus (Bloch, 1793). Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109032. [PMID: 33722766 DOI: 10.1016/j.cbpc.2021.109032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/26/2022]
Abstract
Sub-lethal exposure of dichlorvos induces oxidative stress, consequent genetic instability and apoptosis coupled with impairments in biochemical, histopathological and transcription of genes in Channa punctatus. Exposure of 5% (0.041 mg/L; E2) and 10% (0.082 mg/L; E3) of 96 h-LC50 of dichlorvos significantly (p < 0.05) elevated the reactive oxygen species (ROS) generation and activities of SOD and CAT, as compared to control (E1) after 30 d. The maximum reduction in reduced glutathione (GSH) was recorded in the liver (18.53 ± 0.81 μg/mg of protein) and kidney (19.32 ± 0.97 μg/mg of protein); while the total protein contents were also found reduced, 278.38 ± 8.40 μg/mL (liver) and 248.44 ± 7.28 μg/mL (kidney), after 30 days in E3, in comparison to respective controls. Further, significant (p < 0.05) induction in micronuclei (MN) and apoptotic cells (AC), in a dose- and exposure-based manner were also recorded. Moreover, a significant (p < 0.05) up-regulation of p53 (2.51-fold in liver), bax (2.03-fold in liver; 1.99-fold in kidney) and casp3a (2.26-fold in liver; 2.10-fold in kidney) together with an elevated expression of cat (1.73-fold in liver; 1.12-fold in kidney), p53 (1.27-fold in kidney) and apaf-1 (1.72-fold in liver) in fish exposed to higher dose of dichlorvos for 30 d evidently reflects geno-toxicological potential of referenced pesticide. Disturbed biochemical and molecular parameters evince that the fish experienced oxidative stress as is further supported by prominent pathological observations in liver and kidney. Findings are, thus, helpful in organ-specific molecular scanning against aquatic toxicants like dichlorvos.
Collapse
Affiliation(s)
- Sunil P Trivedi
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Arun Ratn
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Yashika Awasthi
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Manoj Kumar
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Abha Trivedi
- Department of Animal Science, M.J.P. Rohilkhand University, Bareilly 243006, India
| |
Collapse
|
30
|
Colloidal gold-based lateral flow immunoassay with inline cleanup for rapid on-site screening of carbendazim in functional foods. Anal Bioanal Chem 2021; 413:3725-3735. [PMID: 33851226 DOI: 10.1007/s00216-021-03321-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
In this study, for the first time, we propose a sensitive colloidal gold-based lateral flow immunoassay (LFIA) that can be used to detect carbendazim residues in functional foods. The adoption of inline cleanup LFIA strips effectively improved background interference to reduce misjudgment of results. First, the hapten 2-(methylamino)-1H-benzo[d]imidazole-5-carboxylic acid was used to establish the carbendazim immunoassay method. Subsequently, colloidal gold-mAb preparation and LFIA detection conditions were systematically optimized. For root and fruit samples (ginseng, ginger, jujube, and Chinese wolfberry), the designed strips had a cutoff value of 8 ng/mL. For flower and seed samples (chrysanthemum, coix seed, and malt), the cutoff value was 12 ng/mL. Even in a complex matrix, the established LFIA method demonstrates satisfactory sensitivity and anti-interference ability. This method was successfully applied in detection of carbendazim residues in complex functional foods, and the assay results are consistent with those obtained via liquid chromatography-tandem mass spectrometry. In short, the proposed method is fast and sensitive and has strong anti-interference ability. Furthermore, it provides a new technical method highly relevant to the on-site rapid detection of carbendazim residues in complex sample matrix.
Collapse
|
31
|
Torquetti CG, Guimarães ATB, Soto-Blanco B. Exposure to pesticides in bats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142509. [PMID: 33032135 DOI: 10.1016/j.scitotenv.2020.142509] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Bats provide a variety of ecological services that are essential to the integrity of ecosystems. Indiscriminate use of pesticides has been a threat to biodiversity, and the exposure of bats to these xenobiotics is a threat to their populations. This study presents a review of articles regarding the exposure of bats to pesticides published in the period from January 1951 to July 2020, addressing the temporal and geographical distribution of research, the studied species, and the most studied classes of pesticides. The research was concentrated in the 1970s and 1980s, mostly in the Northern Hemisphere, mainly in the USA. Of the total species in the world, only 5% of them have been studied, evaluating predominantly insectivorous species of the Family Vespertilionidae. Insecticides, mainly organochlorines, were the most studied pesticides. Most research was observational, with little information available on the effects of pesticides on natural bat populations. Despite the advances in analytical techniques for detecting contaminants, the number of studies is still insufficient compared to the number of active ingredients used. The effects of pesticides on other guilds and tropical species remain poorly studied. Future research should investigate the effects of pesticides, especially in sublethal doses causing chronic exposure. It is crucial to assess the impact of these substances on other food guilds and investigate how natural populations respond to the exposure to mixtures of pesticides found in the environment.
Collapse
Affiliation(s)
- Camila Guimarães Torquetti
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG 30123-970, Brazil
| | - Ana Tereza Bittencourt Guimarães
- Laboratório de Investigações Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária 2069, Cascavel, PR 85819-110, Brazil
| | - Benito Soto-Blanco
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG 30123-970, Brazil.
| |
Collapse
|
32
|
Paganotto Leandro L, Siqueira de Mello R, da Costa-Silva DG, Medina Nunes ME, Rubin Lopes A, Kemmerich Martins I, Posser T, Franco JL. Behavioral changes occur earlier than redox alterations in developing zebrafish exposed to Mancozeb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115783. [PMID: 33065480 DOI: 10.1016/j.envpol.2020.115783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/14/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
As agriculture expands to provide food and wellbeing to the world's growing population, there is a simultaneous increasing concern about the use of agrochemicals, which can harm non-target organisms, mainly in the aquatic environment. The fungicide Mancozeb (MZ) has been used on a large-scale and is a potent inducer of oxidative stress. Therefore, there is an urgent need for the development of more sensitive biomarkers designed to earlier biomonitoring of this compound. Here we tested the hypothesis that behavioral changes induced by sublethal MZ concentrations would occur first as compared to biochemical oxidative stress markers. Embryos at 4 h post-fertilization (hpf) were exposed to Mancozeb at 5, 10 and 20 μg/L. Controls were kept in embryo water only. Behavioral and biochemical parameters were evaluated at 24, 28, 72, and 168 hpf after MZ exposure. The results showed that MZ significantly altered spontaneous movement, escape responses, swimming capacity, and exploratory behavior at all exposure times. However, changes in ROS steady-stead levels and the activity of antioxidant enzymes were observable only at 72 and 168 hpf. In conclusion, behavioral changes occurred earlier than biochemical alterations in zebrafish embryos exposed to MZ, highlighting the potential of behavioral biomarkers as sensitive tools for biomonitoring programs.
Collapse
Affiliation(s)
- Luana Paganotto Leandro
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Renata Siqueira de Mello
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Dennis Guilherme da Costa-Silva
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Mauro Eugênio Medina Nunes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Andressa Rubin Lopes
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Illana Kemmerich Martins
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Thaís Posser
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Interdisciplinary Center for Biotechnology Research - CIPBIOTEC, Campus São Gabriel, Federal University of Pampa, São Gabriel, RS, 97307-020, Brazil.
| |
Collapse
|
33
|
Götte JY, Carrizo JC, Panzeri AM, Amé MV, Menone ML. Sublethal effects of carbendazim in Jenynsia multidentata detected by a battery of molecular, biochemical and genetic biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111157. [PMID: 32829211 DOI: 10.1016/j.ecoenv.2020.111157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The fungicide carbendazim (CBM) has been applied all around the world but its potential adverse effects other than its recognized activity as endocrine disruptor in non target organisms have been scarcely studied. The aims of this work were (1) to use a battery of biomarkers that can reflect potential negative effects such as oxidative stress, genotoxicity, neurotoxicity or altered immune response; and (2) to examine biomarkers of detoxification by analyzing the gene expression of cytochrome P4501A1 (CYP1A1) and the multi-xenobiotic resistance protein P-glycoprotein (P-gp) in the freshwater fish Jenynsia multidentata exposed to environmentally relevant concentrations of CBM during 24 h. Fish exposed to 5 μg/L showed inhibition of GST activity and an increase of TBARs contents in gills, the organ of direct contact with waterborne contaminants. Genotoxicity - measured in peripheral blood-was evidenced by the increases of micronuclei frequency when fish were exposed to 5, 10 and 100 μg/L CBM and of nuclear abnormalities (NA) frequency at 0.05, 0.5, 5, 10 and 100 μg/L CBM. The expression inhibition of interleukin (IL-1β) and tumor necrosis factor a (TNF-α) at 10, and 5 and 10 μg/L CBM, respectively, indicated an altered immune response. The expression of CYP1A1 was down regulated in liver at 10 μg/L and of P-gp at 5 μg/L CBM, indicating a possible slow on CBM metabolization. On the other hand, in gills CYP1A1 decreased at 5 and 10 μg/L while P-gp was induced at 5 and 100 μg/L CBM. Overall, most of these significant effects were detected below 10 μg/L CBM, in a range of realistic concentrations in aquatic ecosystems worldwide.
Collapse
Affiliation(s)
- Jesica Y Götte
- Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Marinas, Mar Del Plata, Argentina
| | - Juan Cruz Carrizo
- Universidad Nacional de Córdoba - CONICET, Facultad de Ciencias Químicas, Dto. Bioquímica Clínica-CIBICI, Córdoba, Argentina
| | - Ana M Panzeri
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar Del Plata (CONICET- UNMdP), Dean Funes 3350, 7600, Mar Del Plata, Buenos Aires, Argentina
| | - M Valeria Amé
- Universidad Nacional de Córdoba - CONICET, Facultad de Ciencias Químicas, Dto. Bioquímica Clínica-CIBICI, Córdoba, Argentina
| | - Mirta L Menone
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar Del Plata (CONICET- UNMdP), Dean Funes 3350, 7600, Mar Del Plata, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Aksakal FI, Sisman T. Developmental toxicity induced by Cu(OH) 2 nanopesticide in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY 2020; 35:1289-1298. [PMID: 32649028 DOI: 10.1002/tox.22993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
The current study evaluates the adverse effects of Cu(OH)2 nanopesticide (CNPE) on the early life stages of zebrafish (Danio rerio). The developmental toxicity was determined using different parameters such as mortality (including LC50 ), hatching, heart rates, malformations, and alteration of the gene expressions. Zebrafish embryos (4 hpf-hours postfertilization) were exposed to 1.0, 2.0, 4.0, 8.0, and 16.0 mg/l CNPE doses until 96 hpf. The 96 hours LC50 was recorded at 6.258 mg/l. Seventy-two hpf total malformation index values for 2.0, 4.0, and 8.0 mg/l CNPE doses were 4.3, 7.2 and 7.9, respectively. 1.0 mg/l CNPE is not toxic for the zebrafish embryos/larvae. 2.0 to 8.0 CNPE doses caused some abnormalities in embryos/larvae morphology, including lack of body parts, tail deformities, chorda deformity, bubbled head, scoliosis, lordosis, weak or non-pigmentation, decreased heart rate and larva length. 16.0 mg/l CNPE caused mortality in 72 hpf. The expression levels of seven immune system-related genes (il-1β, il-8, cebp, tlr4, hsp70, NF-kB, and mtf-1) were examined. The transcription level of il-1β, il-8, tlr4, hsp70, and NF-kB genes significantly increased in the CNPE exposure groups. While the expression of the mtf-1 gene considerably decreased, the cebp gene expression level did not change in the 4.0 and 8.0 mg/l CNPE doses. In conclusion, CNPE could induce developmental toxicity with malformations in embryos/larvae and alter the gene expression.
Collapse
Affiliation(s)
- Feyza Icoglu Aksakal
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Turgay Sisman
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
35
|
Bao Z, Zhao Y, Wu A, Lou Z, Lu H, Yu Q, Fu Z, Jin Y. Sub-chronic carbendazim exposure induces hepatic glycolipid metabolism disorder accompanied by gut microbiota dysbiosis in adult zebrafish (Daino rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140081. [PMID: 32554111 DOI: 10.1016/j.scitotenv.2020.140081] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Carbendazim (CBZ) as a broad spectrum fungicide is widely used in the whole world to contorl plant diseases. With the application of CBZ in the agriculture, it has been detected in vegetables and fruits. Nowadays, it even has been detected in the watercourse and indoor dust. However, the toxic effects of CBZ on aquatic organisms have received limited attention. In this study, male adult zebrafish were exposed at 0, 30 and 100 μg/L CBZ for 21 days to assess its effects on hepatic glycolipid metabolism. After exposure, the body weight and length decreased, but the condition factor increased significantly. Some hepatic biochemical parameters including the levels of glucose, pyruvate, low density lipoprotein (LDL) and triglyceride (TG) decreased significantly in the liver of zebrafish after exposure with CBZ. Two transaminases alanine transaminase (ALT) and aspartate transaminase (AST) also increased significantly, indicating that subchronic CBZ exposure influenced the liver function. Moreover, the relative mRNA levels of some key genes related to the glycolysis and lipid metabolism in the liver also changed significantly. Furthermore, the transcriptome analysis showed that the carbon metabolism, lipid metabolism and detoxification metabolism were also affected in the liver of CBZ exposed zebrafish. Interestingly, we also found the amounts of the Firmicutes, Bacteroidetes, Actinobacteria, α-Proteobacteria, γ-Proteobacteria and Verrucomicrobia at phylum level significantly decreased in the gut. Sequencing V3-V4 region of 16S rRNA also demonstrated gut microbiota composition changed significantly according to weighted UniFrac distance analysis. Consequently, subchronic CBZ exposure induced hepatic metabolic disorder accompanied by gut microbiota dysbiosis in adult male zebrafish.
Collapse
Affiliation(s)
- Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yao Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Anyi Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ze Lou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Huahui Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qianxuan Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
36
|
Zhou W, Wang J, Zhang J, Peng C, Li G, Li D. Environmentally relevant concentrations of geosmin affect the development, oxidative stress, apoptosis and endocrine disruption of embryo-larval zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139373. [PMID: 32473435 DOI: 10.1016/j.scitotenv.2020.139373] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Geosmin (trans-1, 10-dimethyl-trans-9-decalol), a volatile organic compound, has been widely detected in aquatic ecosystems. However, the ecological effects of geosmin are not clear. Here, using zebrafish (Danio rerio) embryo as a model, we investigated biological activity effects of environmentally relevant concentrations (50, 500, 5000 ng/L) of geosmin on the developing zebrafish starting from 2 h post-fertilization (hpf) to 96 hpf. Results showed geosmin had no effect on hatchability, malformations and mortality. However, we observed that geosmin exposure significantly increased zebrafish body length in a concentration dependent manner. This effect was possibly due to up-regulation of expression of genes along the growth hormone/insulin-like growth factor (GH/IGF) axis and hypothalamic-pituitary-thyroid (HPT) axis. In addition, superoxide dismutase (SOD) activities and catalase (CAT) activities significantly increased at 96 hpf when the embryos were exposed to 500 and 5000 ng/L of geosmin. The malondialdehyde (MDA) contents and glutathione S-transferase (GST) activities decreased significantly after the exposure to 5000 ng/L geosmin. Simultaneously, exposure to geosmin resulted in significant increase in cell apoptosis, mainly in the heart area. The mRNA levels of the genes related to oxidative stress and apoptosis were also altered significantly after geosmin exposure. These findings indicated that geosmin can simultaneously induce multiple responses during zebrafish embryonic development, including oxidative stress, apoptosis, and endocrine disruption.
Collapse
Affiliation(s)
- Weicheng Zhou
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; College of Chemistry, Biology and Environmental Engineering, Xiangnan University, Chenzhou 423000, PR China
| | - Jinglong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinli Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Genbao Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
37
|
Zhang X, Zhang P, Perez-Rodriguez V, Souders CL, Martyniuk CJ. Assessing the toxicity of the benzamide fungicide zoxamide in zebrafish (Danio rerio): Towards an adverse outcome pathway for beta-tubulin inhibitors. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 78:103405. [PMID: 32446185 DOI: 10.1016/j.etap.2020.103405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Commercial benzamide fungicides are applied to crops to control damage caused by oomycete fungi and are used as veterinary pharmaceuticals in aquaculture. The mechanism of action of these fungicides is to induce mitotic arrest via binding to beta-tubulin, thus inhibiting tubulin polymerization. However, there are little toxicity data available for benzimidazole fungicides in fish. To address this knowledge gap, we conducted zebrafish embryo toxicity tests to assess deformities, survival, and sub-lethal responses following exposure to zoxamide (0, 0.5, 1.0, 2.5, 5.0 and 10 μM zoxamide). We hypothesized that skeletal deformities would be prevalent in zebrafish due to its mechanism of inhibiting beta-tubulin polymerization. Zoxamide was relatively toxic to zebrafish embryos and larvae, and survival was reduced ∼50 % at 2 days post fertilization (dpf) with 10 μM exposure and over time at 6 dpf, 2.5 μM exposure reduced survival by ∼20 %. Frequency of hatch was also reduced/delayed in zebrafish at 3 dpf with >2.5 μM zoxamide. Pericardial edema, body length shortening, and spine curvature were observed in larvae exposed to >5 μM. Mitochondrial bioenergetics were assessed in ∼30 hpf embryos (24-hour exposure) using an XFe24 Flux Analyzer and regression analysis revealed a negative relationship between basal respiration and zoxamide concentration. Superoxide dismutase 1 and caspase 3 mRNA levels were both decreased in 6 dpf larvae exposed to 2.5 μM zoxamide, but were not changed in expression at 0.5 nor 1 μM zoxamide. Continuous 6-day exposure to zoxamide reduced larval activity at 2.5 μM; conversely a 24-hour exposure (at 5-6 dpf) induced hyperactivity at 5 μM suggesting dose and time dependent effects on fish behavior. Based on sub-lethal endpoints, we conceptualize an adverse outcome pathway for chemicals that inhibit tubulin polymerization.
Collapse
Affiliation(s)
- Xujia Zhang
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Peng Zhang
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Veronica Perez-Rodriguez
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
38
|
Alghamdi SA. Effect of Nigella sativa and Foeniculum vulgare seeds extracts on male mice exposed to carbendazim. Saudi J Biol Sci 2020; 27:2521-2530. [PMID: 32994708 PMCID: PMC7499112 DOI: 10.1016/j.sjbs.2020.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 01/06/2023] Open
Abstract
The increasing prevalence of environmental pollutants such as pesticides is a major global problem that affects living organisms. Exposure to environmental pollutants remains a major source of health risk throughout the world. The potential health benefits of various medicinal plants and natural products in relation to protect various diseases are currently receiving considerable attention. A current approach is to develop a new biological compound from natural products that inhibits pain. Ethnopharmacological surveys have been found to be one of the most reliable tools for the discovery of the natural and semi-synthetic drug. The present study was performed to investigate the hematological and biochemical changes induced by carbendazim (CBZ) and the potential protective effect of seeds extracts of Nigella sativa (NSSE) and Foeniculum vulgare (FVSE) against CBZ toxicity in male mice. Mice were distributed into 6 groups. Mice of group 1 were served as control. Group 2 was exposed to CBZ. Group 3 was supplemented with NSSE and exposed to CBZ. Group 4 was treated with FVSE and CBZ. Normal mice of group 5 and 6 were subjected to NSSE and FVSE respectively. Body weight gain was significantly decreased in mice of group 2. In mice of group 2, significant declines of RBC, HB, Hct, WBC, total protein, FSH, LH, testosterone, T4, T3, CAT and SOD were observed. Moreover, the levels of ALT, AST, ALP, total bilirubin, creatinine, BUN, uric acid, glucose, cholesterol, CK, LDH, MDA and GSH were significantly enhanced. Treatment with NSSE and FVSE showed attenuation effects against CBZ induced hematological and biochemical changes. The results suggest that the attenuation effects of NSSE and FVSE attributed to their antioxidant properties.
Collapse
Affiliation(s)
- Sameera A Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
39
|
Viganò L, Casatta N, Farkas A, Mascolo G, Roscioli C, Stefani F, Vitelli M, Olivo F, Clerici L, Robles P, Dellavedova P. Embryo/larval toxicity and transcriptional effects in zebrafish (Danio rerio) exposed to endocrine active riverbed sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10729-10747. [PMID: 31942721 DOI: 10.1007/s11356-019-07417-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Sediment toxicity plays a fundamental role in the health of inland fish communities; however, the assessment of the hazard potential of contaminated sediments is not a common objective in environmental diagnostics or remediation. This study examined the potential of transcriptional endpoints investigated in zebrafish (Danio rerio) exposed to riverbed sediments in ecotoxicity testing. Embryo-larval 10-day tests were conducted on sediment samples collected from five sites (one upstream and four downstream of the city of Milan) along a polluted tributary of the Po River, the Lambro River. Sediment chemistry showed a progressive downstream deterioration in river quality, so that the final sampling site showed up to eight times higher concentrations of, for example, triclosan, galaxolide, PAH, PCB, BPA, Ni, and Pb, compared with the uppermost site. The embryo/larval tests showed widespread toxicity although the middle river sections evidenced worse effects, as evidenced by delayed embryo development, hatching rate, larval survival, and growth. At the mRNA transcript level, the genes encoding biotransformation enzymes (cyp1a, gst, ugt) showed increasing upregulations after exposure to sediment from further downstream sites. The genes involved in antioxidant responses (sod, gpx) suggested that more critical conditions may be present at downstream sites, but even upstream of Milan there seemed to be some level of oxidative stress. Indirect evidences of potential apoptotic activity (bcl2/bax < 1) in turn suggested the possibility of genotoxic effects. The genes encoding for estrogen receptors (erα, erβ1, erβ2) showed exposure to (xeno)estrogens with a progressive increase after exposure to sediments from downstream sites, paralleled by a corresponding downregulation of the ar gene, likely related to antiandrogenic compounds. Multiple levels of thyroid disruption were also evident particularly in downstream zebrafish, as for thyroid growth (nkx2.1), hormone synthesis and transport (tg, ttr, d2), and signal transduction (trα, trβ). The inhibition of the igf2 gene reasonably reflected larval growth inhibitions. Although none of the sediment chemicals could singly explain fish responses, principal component analysis suggested a good correlation between gene transcripts and the overall trend of contamination. Thus, the combined impacts from known and unknown covarying chemicals were proposed as the most probable explanation of fish responses. In summary, transcriptional endpoints applied to zebrafish embryo/larval test can provide sensitive, comprehensive, and timeliness information which may greatly enable the assessment of the hazard potential of sediments to fish, complementing morphological endpoints and being potentially predictive of longer studies.
Collapse
Affiliation(s)
- Luigi Viganò
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy.
| | - Nadia Casatta
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Anna Farkas
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3, P.O. Box 35, Tihany, H-8237, Hungary
| | - Giuseppe Mascolo
- CNR - National Research Council of Italy, IRSA - Water Research Institute, Via De Blasio 5, 70132, Bari, Italy
| | - Claudio Roscioli
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Fabrizio Stefani
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Matteo Vitelli
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Fabio Olivo
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Laura Clerici
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Pasquale Robles
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Pierluisa Dellavedova
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| |
Collapse
|
40
|
Gonçalves ÍFS, Souza TM, Vieira LR, Marchi FC, Nascimento AP, Farias DF. Toxicity testing of pesticides in zebrafish-a systematic review on chemicals and associated toxicological endpoints. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10185-10204. [PMID: 32062774 DOI: 10.1007/s11356-020-07902-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The use of zebrafish (Danio rerio) has arisen as a promising biological platform for toxicity testing of pesticides such as herbicides, insecticides, and fungicides. Therefore, it is relevant to assess the use of zebrafish in models of exposure to investigate the diversity of pesticide-associated toxicity endpoints which have been reported. Thus, this review aimed to assess the recent literature on the use of zebrafish in pesticide toxicity studies to capture data on the types of pesticide used, classes of pesticides, and zebrafish life stages associated with toxicity endpoints and phenotypic observations. A total of 352 articles published between September 2012 and May 2019 were curated. The results show an increased trend in the use of zebrafish for testing the toxicity of pesticides, with a great diversity of pesticides (203) and chemical classes (58) with different applications (41) being used. Furthermore, experimental outcomes could be clustered in 13 toxicity endpoints, mainly developmental toxicity, oxidative stress, and neurotoxicity. Organophosphorus, pyrethroid, azole, and triazine were the most studied classes of pesticides and associated with various toxicity endpoints. Studies frequently opted for early life stages (embryos and larvae). Although there is an evident lack of standardization of nomenclatures and phenotypic alterations, the information gathered here highlights associations between (classes of) pesticides and endpoints, which can be used to relate mechanisms of action specific to certain classes of chemicals.
Collapse
Affiliation(s)
- Íris Flávia Sousa Gonçalves
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil
| | - Terezinha Maria Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands.
| | - Leonardo Rogério Vieira
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil
| | - Filipi Calbaizer Marchi
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
| | - Adailton Pascoal Nascimento
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
| | - Davi Felipe Farias
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil.
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil.
| |
Collapse
|
41
|
López-Pacheco IY, Silva-Núñez A, Salinas-Salazar C, Arévalo-Gallegos A, Lizarazo-Holguin LA, Barceló D, Iqbal HMN, Parra-Saldívar R. Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1068-1088. [PMID: 31470472 DOI: 10.1016/j.scitotenv.2019.07.052] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023]
Abstract
Existence of anthropogenic contaminants (ACs) in different environmental matrices is a serious and unresolved concern. For instance, ACs from different sectors, such as industrial, agricultural, and pharmaceutical, are found in water bodies with considerable endocrine disruptors potency and can damage the biotic components of the environment. The continuous ACs exposure can cause cellular toxicity, apoptosis, genotoxicity, and alterations in sex ratios in human beings. Whereas, aquatic organisms show bioaccumulation, trophic chains, and biomagnification of ACs through different entry route. These problems have been found in many countries around the globe, making them a worldwide concern. ACs have been found in different environmental matrices, such as water reservoirs for human consumption, wastewater treatment plants (WWTPs), drinking water treatment plants (DWTPs), groundwaters, surface waters, rivers, and seas, which demonstrate their free movement within the environment in an uncontrolled manner. This work provides a detailed overview of ACs occurrence in water bodies along with their toxicological effect on living organisms. The literature data reported between 2017 and 2018 is compiled following inclusion-exclusion criteria, and the obtained information was mapped as per type and source of ACs. The most important ACs are pharmaceuticals (diclofenac, ibuprofen, naproxen, ofloxacin, acetaminophen, progesterone ranitidine, and testosterone), agricultural products or pesticides (atrazine, carbendazim, fipronil), narcotics and illegal drugs (amphetamines, cocaine, and benzoylecgonine), food industry derivatives (bisphenol A, and caffeine), and personal care products (triclosan, and other related surfactants). Considering this threatening issue, robust detection and removal strategies must be considered in the design of WWTPs and DWTPs.
Collapse
Affiliation(s)
- Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Arisbe Silva-Núñez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Carmen Salinas-Salazar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Alejandra Arévalo-Gallegos
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Laura A Lizarazo-Holguin
- Universidad de Antioquia, School of Microbiology, Cl. 67 #53 - 108, Medellín, Antioquia, Colombia
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico.
| |
Collapse
|
42
|
Masoner JR, Kolpin DW, Cozzarelli IM, Barber LB, Burden DS, Foreman WT, Forshay KJ, Furlong ET, Groves JF, Hladik ML, Hopton ME, Jaeschke JB, Keefe SH, Krabbenhoft DP, Lowrance R, Romanok KM, Rus DL, Selbig WR, Williams BH, Bradley PM. Urban Stormwater: An Overlooked Pathway of Extensive Mixed Contaminants to Surface and Groundwaters in the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10070-10081. [PMID: 31432661 PMCID: PMC7370854 DOI: 10.1021/acs.est.9b02867] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Increasing global reliance on stormwater control measures to reduce discharge to surface water, increase groundwater recharge, and minimize contaminant delivery to receiving waterbodies necessitates improved understanding of stormwater-contaminant profiles. A multiagency study of organic and inorganic chemicals in urban stormwater from 50 runoff events at 21 sites across the United States demonstrated that stormwater transports substantial mixtures of polycyclic aromatic hydrocarbons, bioactive contaminants (pesticides and pharmaceuticals), and other organic chemicals known or suspected to pose environmental health concern. Numerous organic-chemical detections per site (median number of chemicals detected = 73), individual concentrations exceeding 10 000 ng/L, and cumulative concentrations up to 263 000 ng/L suggested concern for potential environmental effects during runoff events. Organic concentrations, loads, and yields were positively correlated with impervious surfaces and highly developed urban catchments. Episodic storm-event organic concentrations and loads were comparable to and often exceeded those of daily wastewater plant discharges. Inorganic chemical concentrations were generally dilute in concentration and did not exceed chronic aquatic life criteria. Methylmercury was measured in 90% of samples with concentrations that ranged from 0.05 to 1.0 ng/L.
Collapse
Affiliation(s)
- Jason R. Masoner
- U.S. Geological Survey, Oklahoma City, Oklahoma 73116, United States
| | - Dana W. Kolpin
- U.S. Geological Survey, Iowa City, Iowa 52240, United States
| | | | - Larry B. Barber
- U.S. Geological Survey, Boulder, Colorado 80303, United States
| | - David S. Burden
- U.S. Environmental Protection Agency, Ada, Oklahoma 74820, United States
| | | | - Kenneth J. Forshay
- U.S. Environmental Protection Agency, Ada, Oklahoma 74820, United States
| | | | - Justin F. Groves
- U.S. Environmental Protection Agency, Ada, Oklahoma 74820, United States
| | | | - Matthew E. Hopton
- U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | | | | | | | - Richard Lowrance
- U.S. Environmental Protection Agency, Ada, Oklahoma 74820, United States
| | | | - David L. Rus
- U.S. Geological Survey, Lincoln, Nebraska 68512, United States
| | | | | | - Paul M. Bradley
- U.S. Geological Survey, Columbia, South Carolina 29210, United States
| |
Collapse
|
43
|
Gaaied S, Oliveira M, Le Bihanic F, Cachot J, Banni M. Gene expression patterns and related enzymatic activities of detoxification and oxidative stress systems in zebrafish larvae exposed to the 2,4-dichlorophenoxyacetic acid herbicide. CHEMOSPHERE 2019; 224:289-297. [PMID: 30825855 DOI: 10.1016/j.chemosphere.2019.02.125] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
The present study aims to assess the effects of 2,4-D herbicide on biotransformation and oxidative stress status of zebrafish larvae. Animals were exposed to a range of sublethal concentrations (0.02-0.8 mg/L) and biomarkers at transcriptomic level and biochemical level were assessed. Chemical analysis with showed that the bioaccumulation of 2,4-D in 96 hpf zebrafish larvae were increased in a concentration-dependent manner. This herbicide induced significant effects at both gene expression and enzymatic activities levels after at 96 hpf. Results of mRNA expression showed a differential transcription regulation with all target genes depending on the tested concentrations. The mRNA level of gsr and cyp1a were up regulated at the highest dose of herbicide (0.8 mg/L). The gene expression of gstp1 showed an up regulation at lower dose (0.02 mg/L) and a down regulation at the highest dose (0.8 mg/L) of 2,4-D. A significant induction of EROD activity and inhibition of GST activity were noted in groups exposed to 0.8 mg/L of 2,4-D. Considering the antioxidant defenses, the activity of CAT was increased in larvae exposed to 0.8 mg/L of herbicide and GPx activity was induced at lower doses of 2,4-D (0.02 and 0.051 mg/L). Moreover, peroxidative damage, assessed as MDA content, was markedly increased in larvae exposed to high 2,4-D concentration. Overall, the present study data indicate that bioaccumulation of 2,4-D in 96 hpf zebrafish larvae and alterations in detoxification and oxidative stress related parameters, likely associated with ROS production, which may endanger the embryo-larval stages development of fish.
Collapse
Affiliation(s)
- Sonia Gaaied
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, Sousse, Tunisia
| | - Miguel Oliveira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Florane Le Bihanic
- University Bordeaux, Laboratory of Oceanic and Continental Environments and Paleoenvironments, EPOC, UMR 5805, F-33600, Pessac, France
| | - Jérôme Cachot
- University Bordeaux, Laboratory of Oceanic and Continental Environments and Paleoenvironments, EPOC, UMR 5805, F-33600, Pessac, France
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, Sousse, Tunisia.
| |
Collapse
|
44
|
Owumi SE, Nwozo SO, Najophe ES. Quercetin abates induction of hepatic and renal oxidative damage, inflammation, and apoptosis in carbendazim-treated rats. TOXICOLOGY RESEARCH AND APPLICATION 2019. [DOI: 10.1177/2397847319849521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sarah O Nwozo
- Industrial and Nutritional Biochemistry Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Eseroghene S Najophe
- Industrial and Nutritional Biochemistry Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
45
|
Tollstadius BF, Silva ACGD, Pedralli BCO, Valadares MC. Carbendazim induces death in alveolar epithelial cells: A comparison between submerged and at the air-liquid interface cell culture. Toxicol In Vitro 2019; 58:78-85. [PMID: 30851412 DOI: 10.1016/j.tiv.2019.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 11/17/2022]
Abstract
The fungicide Carbendazim is widely used in agriculture and preservation of films and fibers. In mammals, it can promote germ cell mutagenicity, carcinogenicity, and reproductive toxicity. However, few data about the effects of this toxicant upon the respiratory system are available. In this work, we evaluated Carbendazim toxicity upon A549 alveolar cells both in monolayer and upon air-liquid interface cell system. Monolayer cell exposed to non-cytotoxic concentrations of this fungicide showed cell arrest at G2/M phase, and did not show additional alterations. On the other hand, alveolar 3D reconstructed epithelial model (air-liquid interface cell system) was characterized and exposed to IC25 of Carbendazim using the Vitrocell® Cloud 12 chamber. Expression of Active Caspase-3, α-tubulin and ROS was significantly increased after such exposure. Mitochondrial activity was also reduced after exposed to Carbendazim. The obtained results indicate that besides the environmental and reproductive toxicity concerns regarding Carbendazim exposure, pulmonary toxicity must be considered for this fungicide. In addition, we observed that the way of exposure impacts considerably on the cell response for in vitro assessment of chemicals inhalation toxicity profile.
Collapse
Affiliation(s)
- Bruna Ferreira Tollstadius
- Laboratory of Education and Research in In vitro Toxicology - ToxIn, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Artur Christian Garcia da Silva
- Laboratory of Education and Research in In vitro Toxicology - ToxIn, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Bruna Cristiane Oliveira Pedralli
- Laboratory of Education and Research in In vitro Toxicology - ToxIn, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marize Campos Valadares
- Laboratory of Education and Research in In vitro Toxicology - ToxIn, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
46
|
Huang L, Wu C, Xie L, Yuan X, Wei X, Huang Q, Chen Y, Lu Y. Silver-Nanocellulose Composite Used as SERS Substrate for Detecting Carbendazim. NANOMATERIALS 2019; 9:nano9030355. [PMID: 30836610 PMCID: PMC6474145 DOI: 10.3390/nano9030355] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/02/2019] [Accepted: 02/27/2019] [Indexed: 11/16/2022]
Abstract
Nanocellulose is an abundant green resource that, owing to the larger surface area, length, and diameter of the fibers, can be used as a framework for loading Ag nanoparticles and serve as substrate for surface enhancement Raman scattering (SERS). These properties would cause the hydroxyl groups on the surface to adsorb the Ag ions and reduce them to Ag seed to form a load fulcrum. This paper presents a convenient and environmentally friendly method for the fabrication of silver-nanocellulose composites (NCF-Ag). A commonly used pesticide, carbendazim (CBZ), was used as a SERS probe to evaluate the properties of NCF-Ag. The results showed that NCF-Ag possesses good homogeneity, reproducibility, and stability. Additionally, CBZ was found to have a low limit of detection (LOD), i.e., 1.0 × 10−8 M, which indicates the possibility for trace analysis. Furthermore, it presents good linearity with R2 = 0.98 at 1007 and 1270 cm−1 in the range from 10−4~10−7 M CBZ.
Collapse
Affiliation(s)
- Luqiang Huang
- College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, Fujian Normal University, Fuzhou 350117, China.
| | - Changji Wu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
| | - Lijuan Xie
- College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, Fujian Normal University, Fuzhou 350117, China.
| | - Xue Yuan
- College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, Fujian Normal University, Fuzhou 350117, China.
| | - Xinyu Wei
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
| | - Qun Huang
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou 350002, China.
| | - Youqiang Chen
- College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, Fujian Normal University, Fuzhou 350117, China.
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
47
|
Jiao W, Han Q, Xu Y, Jiang H, Xing H, Teng X. Impaired immune function and structural integrity in the gills of common carp (Cyprinus carpio L.) caused by chlorpyrifos exposure: Through oxidative stress and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:239-245. [PMID: 30176333 DOI: 10.1016/j.fsi.2018.08.060] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
As one of the mucosal lymphatic tissues, the gill is an important immune organ in fish. Water environmental pollutants enter fish body through the gill. Therefore, the gill is the initial site where pollutants produce toxic effects in water. Chlorpyrifos (CPF), a broad-spectrum organophosphate insecticide, is widely used for agricultural pests and causes river pollution. In the present study, we investigated histopathological effect, oxidative stress indexes (SOD, GSH, T-AOC, and MDA), and apoptosis-related genes (P53, PUMA, Bax, Bcl-2, Apaf-1, Caspase-9, and Caspase-3) in the gills of common carp exposed to CPF. The results indicated that CPF exposure decreased SOD, T-AOC, and GSH; increased MDA; decreased Bcl-2 mRNA expression; and increased P53, PUMA, Bax, Apaf-1, Caspase-9, and Caspase-3 mRNA expressions in common carp gills. Our results proved that CPF exposure caused oxidative stress and apoptosis in common carp gills; CPF exposure destroyed the structural integrity and affected the immune function through oxidative stress and apoptosis in common carp gills. These will provide evidence for the toxic effects of water environmental pollutants on immune function and structural integrity in fish gills.
Collapse
Affiliation(s)
- Wanying Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yanmin Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huijie Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
48
|
Sposito JCV, Montagner CC, Casado M, Navarro-Martín L, Jut Solórzano JC, Piña B, Grisolia AB. Emerging contaminants in Brazilian rivers: Occurrence and effects on gene expression in zebrafish (Danio rerio) embryos. CHEMOSPHERE 2018; 209:696-704. [PMID: 29960196 DOI: 10.1016/j.chemosphere.2018.06.046] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 05/24/2023]
Abstract
Emerging contaminants (ECs) are synthetic or naturally occurring chemicals that are not commonly monitored despite having the potential of entering the environment and causing adverse ecological and/or human health effects. This study aimed to determine whether ECs are present in the surface waters of two rivers in Mato Grosso do Sul State, Brazil, and evaluate the effects of ECs mixtures at environmentally relevant concentrations on zebrafish (Danio rerio) gene expression. ECs concentrations were determined using solid-phase extraction and liquid chromatography-mass spectrometry. The ECs most frequently detected were caffeine, imidacloprid, 2-hydroxy atrazine, tebuthiuron, atrazine, and bisphenol A. We used these data to reconstruct ECs mixtures reflecting environmental concentrations, codenamed T1, T2, and T3. No effects were observed, so the concentrations were increased. After a preliminary evaluation of the No Observed Effect Concentration for each mixture, we analyzed changes in the expression of zebrafish target genes (cyp1a, hsp70, cat, sod1, tsh, cyp19a1a, cyp19a1b, cyp26b1, casp8, sox2, cyb561d2, and thrb). cat was overrepresented in T1 and underrepresented in the other treatments. All of the mixtures induced the expression of cyp19a1b, which is a marker for (xeno-)estrogen exposure, and two of them increased the expression of cyp1a, which is used to indicate the presence of dioxin-like compounds. The rivers studied had low EC concentrations, and there was no indication of any harmful effects on the zebrafish. However, intensive agricultural activity may result in unsuspected peaks of EC pollution, and subsequent negative effects on living organisms.
Collapse
Affiliation(s)
- Juliana C V Sposito
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados/UFGD, Dourados, MS, Brazil
| | - Cassiana C Montagner
- Environmental Chemistry Laboratory, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Marta Casado
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Laia Navarro-Martín
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | - Benjamin Piña
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Alexeia B Grisolia
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados/UFGD, Dourados, MS, Brazil.
| |
Collapse
|
49
|
Li H, Cao F, Zhao F, Yang Y, Teng M, Wang C, Qiu L. Developmental toxicity, oxidative stress and immunotoxicity induced by three strobilurins (pyraclostrobin, trifloxystrobin and picoxystrobin) in zebrafish embryos. CHEMOSPHERE 2018; 207:781-790. [PMID: 29859490 DOI: 10.1016/j.chemosphere.2018.05.146] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Strobilurins is the most widely used class of fungicides, but is reported highly toxic to some aquatic organisms. In this study, zebrafish embryos were exposed to a range concentrations of three strobilurins (pyraclostrobin, trifloxystrobin and picoxystrobin) for 96 h post-fertilization (hpf) to assess their aquatic toxicity. The 96-h LC50 values of pyraclostrobin, trifloxystrobin and picoxystrobin to embryos were 61, 55, 86 μg/L, respectively. A series of symptoms were observed in developmental embryos during acute exposure, including decreased heartbeat, hatching inhibition, growth regression, and morphological deformities. Moreover, the three fungicides induced oxidative stress in embryos through increasing reactive oxygen species (ROS) and malonaldehyde (MDA) contents, inhibiting superoxide dismutase (SOD) activity and glutathione (GSH) content as well as differently changing catalase (CAT) activity and mRNA levels of genes related to antioxidant system (Mn-sod, Cu/Zn-sod, Cat, Nrf2, Ucp2 and Bcl2). In addition, exposure to the three strobilurins resulted in significant upregulation of IFN and CC-chem as well as differently changed expressions of TNFa, IL-1b, C1C and IL-8, which related to the innate immune system, suggesting that these fungicides caused immunotoxicity during zebrafish embryo development. The different response of enzymes and genes in embryos exposed to the three fungicides might be the cause that leads to the difference of their toxicity. This work made a comparison of the toxicity of three strobilurins to zebrafish embryos on multi-levels and would provide a better understanding of the toxic effects of strobilurins on aquatic organisms.
Collapse
Affiliation(s)
- Hui Li
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Fangjie Cao
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Feng Zhao
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yang Yang
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- College of Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
50
|
Yang Y, Zhang S, Yang J, Bai C, Tang S, Ye Q, Wang H. Superabsorbent hydrogels coating increased degradation and decreased bound residues formation of carbendazim in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:1133-1142. [PMID: 29554735 DOI: 10.1016/j.scitotenv.2018.02.178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
The intensive use of pesticides has caused serious environmental pollution and ecological issues. Thus, it is imperative to explore an efficient way to minimize the pesticide residues and pollution. In the present study, we employed the superabsorbent hydrogels (SHs)-coated pesticide 14C-carbendazim (H-14C-MBC) to investigate the fate of MBC in aerobic soils and to assess the soil microbial state during incubation. The results showed that after coating with SHs, MBC dissipation was improved significantly by 34.2-54.1% compared with that in the control (p<0.05), reducing the persistence of MBC in soil matrix. At 100d, the release of 14C-CO2 was enhanced by 68.0% and 46.6% in neutral loamy soil and basic saline soil, respectively, with respect to the control, resulting in more complete degradation and detoxification of MBC. Additionally, the bound residue in soils, which was associated with potential environmental risk and pollution, was reduced by 15.2% and 14.2%, respectively, compared with that in control soils. The microbial diversity of post-H-14C-MBC soil varied, and microbial composition and abundance remained different from the control, even with the refreshment of soil stability and fertility compared with the blank soil. These results demonstrate the environmental behavior of SHs-coated MBC in soils, and illustrate that SHs-encapsulated formulations would be a promising measure for reducing the soil-residue pollution and environmental risk of pesticides.
Collapse
Affiliation(s)
- Yatian Yang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310029, China.
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310029, China.
| | - Jingying Yang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310029, China.
| | - Chan Bai
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310029, China
| | - Shenghua Tang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310029, China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310029, China.
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|