1
|
Kreutz A, Chang X, Hogberg HT, Wetmore BA. Advancing understanding of human variability through toxicokinetic modeling, in vitro-in vivo extrapolation, and new approach methodologies. Hum Genomics 2024; 18:129. [PMID: 39574200 PMCID: PMC11580331 DOI: 10.1186/s40246-024-00691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/01/2024] [Indexed: 11/25/2024] Open
Abstract
The merging of physiology and toxicokinetics, or pharmacokinetics, with computational modeling to characterize dosimetry has led to major advances for both the chemical and pharmaceutical research arenas. Driven by the mutual need to estimate internal exposures where in vivo data generation was simply not possible, the application of toxicokinetic modeling has grown exponentially in the past 30 years. In toxicology the need has been the derivation of quantitative estimates of toxicokinetic and toxicodynamic variability to evaluate the suitability of the tenfold uncertainty factor employed in risk assessment decision-making. Consideration of a host of physiologic, ontogenetic, genetic, and exposure factors are all required for comprehensive characterization. Fortunately, the underlying framework of physiologically based toxicokinetic models can accommodate these inputs, in addition to being amenable to capturing time-varying dynamics. Meanwhile, international interest in advancing new approach methodologies has fueled the generation of in vitro toxicity and toxicokinetic data that can be applied in in vitro-in vivo extrapolation approaches to provide human-specific risk-based information for historically data-poor chemicals. This review will provide a brief introduction to the structure and evolution of toxicokinetic and physiologically based toxicokinetic models as they advanced to incorporate variability and a wide range of complex exposure scenarios. This will be followed by a state of the science update describing current and emerging experimental and modeling strategies for population and life-stage variability, including the increasing application of in vitro-in vivo extrapolation with physiologically based toxicokinetic models in pharmaceutical and chemical safety research. The review will conclude with case study examples demonstrating novel applications of physiologically based toxicokinetic modeling and an update on its applications for regulatory decision-making. Physiologically based toxicokinetic modeling provides a sound framework for variability evaluation in chemical risk assessment.
Collapse
Affiliation(s)
- Anna Kreutz
- Inotiv, 601 Keystone Park Drive, Suite 200, Morrisville, NC, 27560, USA.
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA.
| | - Xiaoqing Chang
- Inotiv, 601 Keystone Park Drive, Suite 200, Morrisville, NC, 27560, USA
| | | | - Barbara A Wetmore
- Office of Research and Development, Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
2
|
Mhaouty-Kodja S, Zalko D, Tait S, Testai E, Viguié C, Corsini E, Grova N, Buratti FM, Cabaton NJ, Coppola L, De la Vieja A, Dusinska M, El Yamani N, Galbiati V, Iglesias-Hernández P, Kohl Y, Maddalon A, Marcon F, Naulé L, Rundén-Pran E, Salani F, Santori N, Torres-Ruiz M, Turner JD, Adamovsky O, Aiello-Holden K, Dirven H, Louro H, Silva MJ. A critical review to identify data gaps and improve risk assessment of bisphenol A alternatives for human health. Crit Rev Toxicol 2024; 54:696-753. [PMID: 39436315 DOI: 10.1080/10408444.2024.2388712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 10/23/2024]
Abstract
Bisphenol A (BPA), a synthetic chemical widely used in the production of polycarbonate plastic and epoxy resins, has been associated with a variety of adverse effects in humans including metabolic, immunological, reproductive, and neurodevelopmental effects, raising concern about its health impact. In the EU, it has been classified as toxic to reproduction and as an endocrine disruptor and was thus included in the candidate list of substances of very high concern (SVHC). On this basis, its use has been banned or restricted in some products. As a consequence, industries turned to bisphenol alternatives, such as bisphenol S (BPS) and bisphenol F (BPF), which are now found in various consumer products, as well as in human matrices at a global scale. However, due to their toxicity, these two bisphenols are in the process of being regulated. Other BPA alternatives, whose potential toxicity remains largely unknown due to a knowledge gap, have also started to be used in manufacturing processes. The gradual restriction of the use of BPA underscores the importance of understanding the potential risks associated with its alternatives to avoid regrettable substitutions. This review aims to summarize the current knowledge on the potential hazards related to BPA alternatives prioritized by European Regulatory Agencies based on their regulatory relevance and selected to be studied under the European Partnership for the Assessment of Risks from Chemicals (PARC): BPE, BPAP, BPP, BPZ, BPS-MAE, and TCBPA. The focus is on data related to toxicokinetic, endocrine disruption, immunotoxicity, developmental neurotoxicity, and genotoxicity/carcinogenicity, which were considered the most relevant endpoints to assess the hazard related to those substances. The goal here is to identify the data gaps in BPA alternatives toxicology and hence formulate the future directions that will be taken in the frame of the PARC project, which seeks also to enhance chemical risk assessment methodologies using new approach methodologies (NAMs).
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Daniel Zalko
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Testai
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Catherine Viguié
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Nathalie Grova
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Franca Maria Buratti
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nicolas J Cabaton
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Lucia Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio De la Vieja
- Endocrine Tumor Unit from Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Maria Dusinska
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Naouale El Yamani
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Valentina Galbiati
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Patricia Iglesias-Hernández
- Endocrine Tumor Unit from Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Francesca Marcon
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Lydie Naulé
- CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Elise Rundén-Pran
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Francesca Salani
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nicoletta Santori
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Mónica Torres-Ruiz
- National Center for Environmental Health (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Jonathan D Turner
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Ondrej Adamovsky
- Faculty of Science, Masaryk University, RECETOX, Brno, Czech Republic
| | | | - Hubert Dirven
- Department of Chemical Toxicology - Division of Climate and the Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Arafa SS, Badr El-Din S, Hewedy OA, Abdelsattar S, Hamam SS, Sharif AF, Elkholy RM, Shebl GZ, Al-Zahrani M, Salama RAA, Abdelkader A. Flubendiamide provokes oxidative stress, inflammation, miRNAs alteration, and cell cycle deregulation in human prostate epithelial cells: The attenuation impact of synthesized nano-selenium using Trichodermaaureoviride. CHEMOSPHERE 2024; 365:143305. [PMID: 39260595 DOI: 10.1016/j.chemosphere.2024.143305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Flubendiamide (FBD) is a novel diamide insecticide extensively used with potential human health hazards. This research aimed to examine the effects of FBD on PrEC prostate epithelial cells, including Oxidative stress, pro-inflammatory responses, modifications in the expression of oncogenic and suppressor miRNAs and their target proteins, disruption of the cell cycle, and apoptosis. Additionally, the research investigated the potential alleviative effect of T-SeNPs, which are selenium nanoparticles biosynthesized by Trichoderma aureoviride, against the toxicity induced by FBD. Selenium nanoparticles were herein synthesized by Trichoderma aureoviride. The major capping metabolites in synthesized T-SeNPs were Isochiapin B and Quercetin 7,3',4'-trimethyl ether. T-SeNPs showed a spherical shape and an average size between 57 and 96.6 nm. FBD exposure (12 μM) for 14 days induced oxidative stress and inflammatory responses via overexpression of NF-κB family members. It also distinctly caused upregulation of miR-221, miR-222, and E2F2, escorted by downregulation of miR-17, miR-20a, and P27kip1. FBD encouraged PrEC cells to halt at the G1/S checkpoint. Apoptotic cells were drastically increased in FBD-treated sets. Treatment of T-SeNPs simultaneously with FBD revealed its antioxidant, anti-inflammatory, and antitumor activities in counteracting FBD-induced toxicity. Our findings shed light on the potential FBD toxicity that may account for the neoplastic transformation of epithelial cells in the prostate and the mitigating activity of eco-friendly synthesized T-SeNPs.
Collapse
Affiliation(s)
- Samah S Arafa
- Department of Pesticides, Faculty of Agriculture, Menoufia University, Egypt.
| | - Sahar Badr El-Din
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Egypt
| | - Omar A Hewedy
- Department of Genetics, Faculty of Agriculture, Menoufia University, Egypt
| | - Shimaa Abdelsattar
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Egypt
| | - Sanaa S Hamam
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Egypt
| | - Asmaa F Sharif
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Egypt; Department of Clinical Medical Sciences, College of Medicine, Dar Al-Uloom University, Riyadh, Saudi Arabia
| | - Reem Mohsen Elkholy
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Egypt
| | - Ghada Zaghloul Shebl
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Menoufia University, Egypt
| | - Majid Al-Zahrani
- Department of Biological Sciences, College of Sciences and Art, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Rasha Aziz Attia Salama
- Department of Community and Public Health, Kasr El Aini Faculty of Medicine, Cairo University, Egypt; Department of Community Medicine, Ras Al Khaimah Medical and Health Science University, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Egypt
| |
Collapse
|
4
|
Martin MM, Carpenter AF, Shafer TJ, Paul Friedman K, Carstens KE. Chemical effects on neural network activity: Comparison of acute versus network formation exposure in microelectrode array assays. Toxicology 2024; 505:153842. [PMID: 38788893 DOI: 10.1016/j.tox.2024.153842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
New approach methodologies (NAMs) can address information gaps on potential neurotoxicity or developmental neurotoxicity hazard for data-poor chemicals. Two assays have been previously developed using microelectrode arrays (MEA), a technology which measures neural activity. The MEA acute network function assay (AcN) uses dissociated rat cortical cells cultured at postnatal day 0 and evaluates network activity during a 40-minute chemical exposure on day in vitro (DIV)13 or 15. In contrast, the MEA network formation assay (NFA) uses a developmental exposure paradigm spanning DIV0 through DIV12. Measures of network activity over time at DIV5, 7, 9, and 12 in the NFA are reduced to an estimated area under the curve to facilitate concentration-response evaluation. Here, we evaluated the hypothesis that chemicals with effects in the AcN also perturb the NFA by examining quantitative and qualitative concordance between assays. Out of 243 chemicals screened in both assays, we observed 70.3% concordance between the AcN and NFA after eliminating activity inferred to be cytotoxic (selective activity), with the majority of discordance explained by chemicals that altered selective activity in the AcN but not NFA. The NFA detected more active chemicals when evaluating activity associated with cytotoxicity. Median potency values were lower in the NFA compared to the AcN, but within-chemical potency values were not uniformly lower in the NFA than the AcN. Lastly, the AcN and NFA captured unique bioactivity fingerprints; the AcN was more informative for identifying chemicals with a shared mode of action, while the NFA provided information relevant to developmental exposure. Taken together, this analysis provides a rationale for using both approaches for chemical evaluation with consideration of the context of use, such as screening/ prioritization, hazard identification, or to address questions regarding biological mechanism or function.
Collapse
Affiliation(s)
- Melissa M Martin
- Computational Toxicology & Bioinformatics Branch, Biomolecular and Computational Toxicology Division, CCTE/ORD, US. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Amy F Carpenter
- Computational Toxicology & Bioinformatics Branch, Biomolecular and Computational Toxicology Division, CCTE/ORD, US. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Timothy J Shafer
- Computational Toxicology & Bioinformatics Branch, Biomolecular and Computational Toxicology Division, CCTE/ORD, US. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Katie Paul Friedman
- Computational Toxicology & Bioinformatics Branch, Biomolecular and Computational Toxicology Division, CCTE/ORD, US. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Kelly E Carstens
- Computational Toxicology & Bioinformatics Branch, Biomolecular and Computational Toxicology Division, CCTE/ORD, US. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
5
|
Wang T, Desmet J, Porte C. Protective role of fetal bovine serum on PLHC-1 spheroids exposed to a mixture of plastic additives: A lipidomic perspective. Toxicol In Vitro 2024; 96:105771. [PMID: 38182034 DOI: 10.1016/j.tiv.2024.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
The use of fetal bovine serum (FBS) in cell culture is being questioned for scientific and ethical reasons, prompting the exploration of alternative approaches. Nevertheless, the influence of FBS on cell functioning, especially in fish cells, has not been comprehensively examined. This study aims to evaluate the impact of FBS on the lipidome of PLHC-1 spheroids and investigate cellular and molecular responses to plastic additives in the presence/absence of FBS. Lipidomic analyses were conducted on PLHC-1 cell spheroids using liquid chromatography coupled with a high-resolution quadrupole time-of-flight mass spectrometer (HRMS-QToF). The removal of FBS from the culture medium for 24 h significantly changed the lipid profile of spheroids, resulting in a depletion of cholesterol esters (CEs), phosphatidylcholines (PCs) and lyso-phosphatidylcholines (LPCs), while ceramides and certain glycerophospholipids slightly increased. Additionally, the exclusion of FBS from the medium led to increased cytotoxicity caused by a mixture of plastic additives and increased lipidomic alterations, including an elevation of ceramides. This study emphasizes the protective role of serum components in fish liver spheroids against a mixture of plastic additives and underscores the importance of considering exposure conditions when studying metabolomic and lipidomic responses to toxicants.
Collapse
Affiliation(s)
- Tiantian Wang
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain; PhD student at the University of Barcelona, Barcelona. Spain.
| | - Judith Desmet
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
6
|
Silva AC, Loizou GD, McNally K, Osborne O, Potter C, Gott D, Colbourne JK, Viant MR. A novel method to derive a human safety limit for PFOA by gene expression profiling and modelling. FRONTIERS IN TOXICOLOGY 2024; 6:1368320. [PMID: 38577564 PMCID: PMC10991825 DOI: 10.3389/ftox.2024.1368320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Perfluorooctanoic acid (PFOA) is a persistent environmental contaminant that can accumulate in the human body due to its long half-life. This substance has been associated with liver, pancreatic, testicular and breast cancers, liver steatosis and endocrine disruption. PFOA is a member of a large group of substances also known as "forever chemicals" and the vast majority of substances of this group lack toxicological data that would enable their effective risk assessment in terms of human health hazards. This study aimed to derive a health-based guidance value for PFOA intake (ng/kg BW/day) from in vitro transcriptomics data. To this end, we developed an in silico workflow comprising five components: (i) sourcing in vitro hepatic transcriptomics concentration-response data; (ii) deriving molecular points of departure using BMDExpress3 and performing pathway analysis using gene set enrichment analysis (GSEA) to identify the most sensitive molecular pathways to PFOA exposure; (iii) estimating freely-dissolved PFOA concentrations in vitro using a mass balance model; (iv) estimating in vivo doses by reverse dosimetry using a PBK model for PFOA as part of a quantitative in vitro to in vivo extrapolation (QIVIVE) algorithm; and (v) calculating a tolerable daily intake (TDI) for PFOA. Fourteen percent of interrogated genes exhibited in vitro concentration-response relationships. GSEA pathway enrichment analysis revealed that "fatty acid metabolism" was the most sensitive pathway to PFOA exposure. In vitro free PFOA concentrations were calculated to be 2.9% of the nominal applied concentrations, and these free concentrations were input into the QIVIVE workflow. Exposure doses for a virtual population of 3,000 individuals were estimated, from which a TDI of 0.15 ng/kg BW/day for PFOA was calculated using the benchmark dose modelling software, PROAST. This TDI is comparable to previously published values of 1.16, 0.69, and 0.86 ng/kg BW/day by the European Food Safety Authority. In conclusion, this study demonstrates the combined utility of an "omics"-derived molecular point of departure and in silico QIVIVE workflow for setting health-based guidance values in anticipation of the acceptance of in vitro concentration-response molecular measurements in chemical risk assessment.
Collapse
Affiliation(s)
- Arthur de Carvalho e Silva
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Environmental Research and Justice (CERJ), University of Birmingham, Birmingham, United Kingdom
| | | | | | - Olivia Osborne
- Science Evidence and Research Division, Food Standards Agency, London, United Kingdom
| | - Claire Potter
- Science Evidence and Research Division, Food Standards Agency, London, United Kingdom
| | - David Gott
- Science Evidence and Research Division, Food Standards Agency, London, United Kingdom
| | - John K. Colbourne
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Environmental Research and Justice (CERJ), University of Birmingham, Birmingham, United Kingdom
| | - Mark R. Viant
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Environmental Research and Justice (CERJ), University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
Pelkonen O, Abass K, Parra Morte JM, Panzarea M, Testai E, Rudaz S, Louisse J, Gundert-Remy U, Wolterink G, Jean-Lou CM D, Coecke S, Bernasconi C. Metabolites in the regulatory risk assessment of pesticides in the EU. FRONTIERS IN TOXICOLOGY 2023; 5:1304885. [PMID: 38188093 PMCID: PMC10770266 DOI: 10.3389/ftox.2023.1304885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
A large majority of chemicals is converted into metabolites through xenobiotic-metabolising enzymes. Metabolites may present a spectrum of characteristics varying from similar to vastly different compared with the parent compound in terms of both toxicokinetics and toxicodynamics. In the pesticide arena, the role of metabolism and metabolites is increasingly recognised as a significant factor particularly for the design and interpretation of mammalian toxicological studies and in the toxicity assessment of pesticide/metabolite-associated issues for hazard characterization and risk assessment purposes, including the role of metabolites as parts in various residues in ecotoxicological adversities. This is of particular relevance to pesticide metabolites that are unique to humans in comparison with metabolites found in in vitro or in vivo animal studies, but also to disproportionate metabolites (quantitative differences) between humans and mammalian species. Presence of unique or disproportionate metabolites may underlie potential toxicological concerns. This review aims to present the current state-of-the-art of comparative metabolism and metabolites in pesticide research for hazard and risk assessment, including One Health perspectives, and future research needs based on the experiences gained at the European Food Safety Authority.
Collapse
Affiliation(s)
- Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Khaled Abass
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | | | - Emanuela Testai
- Mechanisms, Biomarkers and Models Unit, Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
| | - Jochem Louisse
- EFSA, European Food Safety Authority, Parma, Italy
- Wageningen Food Safety Research (WFSR), Wageningen, Netherlands
| | - Ursula Gundert-Remy
- Institute of Clinical Pharmacology and Toxicology, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerrit Wolterink
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | |
Collapse
|
8
|
Nunes C, Proença S, Ambrosini G, Pamies D, Thomas A, Kramer NI, Zurich MG. Integrating distribution kinetics and toxicodynamics to assess repeat dose neurotoxicity in vitro using human BrainSpheres: a case study on amiodarone. Front Pharmacol 2023; 14:1248882. [PMID: 37745076 PMCID: PMC10512064 DOI: 10.3389/fphar.2023.1248882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 09/26/2023] Open
Abstract
For ethical, economical, and scientific reasons, animal experimentation, used to evaluate the potential neurotoxicity of chemicals before their release in the market, needs to be replaced by new approach methodologies. To illustrate the use of new approach methodologies, the human induced pluripotent stem cell-derived 3D model BrainSpheres was acutely (48 h) or repeatedly (7 days) exposed to amiodarone (0.625-15 µM), a lipophilic antiarrhythmic drug reported to have deleterious effects on the nervous system. Neurotoxicity was assessed using transcriptomics, the immunohistochemistry of cell type-specific markers, and real-time reverse transcription-polymerase chain reaction for various genes involved in the lipid metabolism. By integrating distribution kinetics modeling with neurotoxicity readouts, we show that the observed time- and concentration-dependent increase in the neurotoxic effects of amiodarone is driven by the cellular accumulation of amiodarone after repeated dosing. The development of a compartmental in vitro distribution kinetics model allowed us to predict the change in cell-associated concentrations in BrainSpheres with time and for different exposure scenarios. The results suggest that human cells are intrinsically more sensitive to amiodarone than rodent cells. Amiodarone-induced regulation of lipid metabolism genes was observed in brain cells for the first time. Astrocytes appeared to be the most sensitive human brain cell type in vitro. In conclusion, assessing readouts at different molecular levels after the repeat dosing of human induced pluripotent stem cell-derived BrainSpheres in combination with the compartmental modeling of in vitro kinetics provides a mechanistic means to assess neurotoxicity pathways and refine chemical safety assessment for humans.
Collapse
Affiliation(s)
- Carolina Nunes
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Susana Proença
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- Toxicology Division, Wageningen University, Wageningen, Netherlands
| | - Giovanna Ambrosini
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - David Pamies
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Aurélien Thomas
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Geneva, Switzerland
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nynke I. Kramer
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- Toxicology Division, Wageningen University, Wageningen, Netherlands
| | - Marie-Gabrielle Zurich
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| |
Collapse
|
9
|
Manganelli M, Testai E, Tazart Z, Scardala S, Codd GA. Co-Occurrence of Taste and Odor Compounds and Cyanotoxins in Cyanobacterial Blooms: Emerging Risks to Human Health? Microorganisms 2023; 11:microorganisms11040872. [PMID: 37110295 PMCID: PMC10146173 DOI: 10.3390/microorganisms11040872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Cyanobacteria commonly form large blooms in waterbodies; they can produce cyanotoxins, with toxic effects on humans and animals, and volatile compounds, causing bad tastes and odors (T&O) at naturally occurring low concentrations. Notwithstanding the large amount of literature on either cyanotoxins or T&O, no review has focused on them at the same time. The present review critically evaluates the recent literature on cyanotoxins and T&O compounds (geosmin, 2-methylisoborneol, β-ionone and β-cyclocitral) to identify research gaps on harmful exposure of humans and animals to both metabolite classes. T&O and cyanotoxins production can be due to the same or common to different cyanobacterial species/strains, with the additional possibility of T&O production by non-cyanobacterial species. The few environmental studies on the co-occurrence of these two groups of metabolites are not sufficient to understand if and how they can co-vary, or influence each other, perhaps stimulating cyanotoxin production. Therefore, T&Os cannot reliably serve as early warning surrogates for cyanotoxins. The scarce data on T&O toxicity seem to indicate a low health risk (but the inhalation of β-cyclocitral deserves more study). However, no data are available on the effects of combined exposure to mixtures of cyanotoxins and T&O compounds and to combinations of T&O compounds; therefore, whether the co-occurrence of cyanotoxins and T&O compounds is a health issue remains an open question.
Collapse
Affiliation(s)
- Maura Manganelli
- Istituto Superiore di Sanità, Department of Environment and Health, viale Regina Elena, 299, 00162 Rome, Italy; (E.T.); (S.S.)
- Correspondence:
| | - Emanuela Testai
- Istituto Superiore di Sanità, Department of Environment and Health, viale Regina Elena, 299, 00162 Rome, Italy; (E.T.); (S.S.)
| | - Zakaria Tazart
- Department of Food Sciences and Nutrition, University of Malta, 2080 Msida, Malta;
| | - Simona Scardala
- Istituto Superiore di Sanità, Department of Environment and Health, viale Regina Elena, 299, 00162 Rome, Italy; (E.T.); (S.S.)
| | - Geoffrey A. Codd
- School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK;
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
10
|
Proença S, van Sabben N, Legler J, Kamstra JH, Kramer NI. The effects of hexabromocyclododecane on the transcriptome and hepatic enzyme activity in three human HepaRG-based models. Toxicology 2023; 485:153411. [PMID: 36572169 DOI: 10.1016/j.tox.2022.153411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The disruption of thyroid hormone homeostasis by hexabromocyclododecane (HBCD) in rodents is hypothesized to be due to HBCD increasing the hepatic clearance of thyroxine (T4). The extent to which these effects are relevant to humans is unclear. To evaluate HBCD effects on humans, the activation of key hepatic nuclear receptors and the consequent disruption of thyroid hormone homeostasis were studied in different human hepatic cell models. The hepatoma cell line, HepaRG, cultured as two-dimensional (2D), sandwich (SW) and spheroid (3D) cultures, and primary human hepatocytes (PHH) cultured as sandwich were exposed to 1 and 10 µM HBCD and characterized for their transcriptome changes. Pathway enrichment analysis showed that 3D models, followed by SW, had a stronger transcriptome response to HBCD, which is explained by the higher expression of hepatic nuclear receptors but also greater accumulation of HBCD measured inside cells in these models. The Pregnane X receptor pathway is one of the pathways most upregulated across the three hepatic models, followed by the constitutive androstane receptor and general hepatic nuclear receptors pathways. Lipid metabolism pathways had a downregulation tendency in all exposures and in both PHH and the three cultivation modes of HepaRG. The activity of enzymes related to PXR/CAR induction and T4 metabolism were evaluated in the three different types of HepaRG cultures exposed to HBCD for 48 h. Reference inducers, rifampicin and PCB-153 did affect 2D and SW HepaRG cultures' enzymatic activity but not 3D. HBCD did not induce the activity of any of the studied enzymes in any of the cell models and culture methods. This study illustrates that for nuclear receptor-mediated T4 disruption, transcriptome changes might not be indicative of an actual adverse effect. Clarification of the reasons for the lack of translation is essential to evaluate new chemicals' potential to be thyroid hormone disruptors by altering thyroid hormone metabolism.
Collapse
Affiliation(s)
- Susana Proença
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Toxicology Division, Wageningen University, Wageningen, the Netherlands.
| | - Nick van Sabben
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Juliette Legler
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jorke H Kamstra
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Nynke I Kramer
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Toxicology Division, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
11
|
Algharably EA, Di Consiglio E, Testai E, Pistollato F, Bal-Price A, Najjar A, Kreutz R, Gundert-Remy U. Prediction of in vivo prenatal chlorpyrifos exposure leading to developmental neurotoxicity in humans based on in vitro toxicity data by quantitative in vitro-in vivo extrapolation. Front Pharmacol 2023; 14:1136174. [PMID: 36959852 PMCID: PMC10027916 DOI: 10.3389/fphar.2023.1136174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction: Epidemiological studies in children suggested that in utero exposure to chlorpyrifos (CPF), an organophosphate insecticide, may cause developmental neurotoxicity (DNT). We applied quantitative in vitro-in vivo extrapolation (QIVIVE) based on in vitro concentration and non-choline esterase-dependent effects data combined with Benchmark dose (BMD) modelling to predict oral maternal CPF exposure during pregnancy leading to fetal brain effect concentration. By comparing the results with data from epidemiological studies, we evaluated the contribution of the in vitro endpoints to the mode of action (MoA) for CPF-induced DNT. Methods: A maternal-fetal PBK model built in PK-Sim® was used to perform QIVIVE predicting CPF concentrations in a pregnant women population at 15 weeks of gestation from cell lysate concentrations obtained in human induced pluripotent stem cell-derived neural stem cells undergoing differentiation towards neurons and glia exposed to CPF for 14 days. The in vitro concentration and effect data were used to perform BMD modelling. Results: The upper BMD was converted into maternal doses which ranged from 3.21 to 271 mg/kg bw/day. Maternal CPF blood levels from epidemiological studies reporting DNT findings in their children were used to estimate oral CPF exposure during pregnancy using the PBK model. It ranged from 0.11 to 140 μg/kg bw/day. Discussion: The effective daily intake doses predicted from the in vitro model were several orders of magnitude higher than exposures estimated from epidemiological studies to induce developmental non-cholinergic neurotoxic responses, which were captured by the analyzed in vitro test battery. These were also higher than the in vivo LOEC for cholinergic effects. Therefore, the quantitative predictive value of the investigated non-choline esterase-dependent effects, although possibly relevant for other chemicals, may not adequately represent potential key events in the MoA for CPF-associated DNT.
Collapse
Affiliation(s)
- Engi Abdelhady Algharably
- Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- *Correspondence: Engi Abdelhady Algharably,
| | - Emma Di Consiglio
- Mechanisms, Biomarkers and Models Unit, Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Testai
- Mechanisms, Biomarkers and Models Unit, Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | | | - Anna Bal-Price
- European Commission, Joint Research Center (JRC), Ispra, Italy
| | | | - Reinhold Kreutz
- Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ursula Gundert-Remy
- Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
12
|
Wilkinson JM. A review of complex in vitro cell culture stressing the importance of fluid flow and illustrated by organ on a chip liver models. FRONTIERS IN TOXICOLOGY 2023; 5:1170193. [PMID: 37168660 PMCID: PMC10165094 DOI: 10.3389/ftox.2023.1170193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
The translation of new technology from development into widespread commercial use is a complex and time-consuming process that requires significant investment. This review looks at some important market needs for more complex in vitro models, the technical difficulties that must be overcome, particularly those connected with introducing fluid flow using microfluidics, and also illustrates the economic benefits of more accurate models for drug toxicity. Beyond the strong ethical arguments for replacing the use of animals in drug safety testing and medical research, the author believes that financial benefits of adopting the new in vitro technology are becoming clear and will drive the adoption by industry.
Collapse
|
13
|
Fragki S, Piersma AH, Westerhout J, Kienhuis A, Kramer NI, Zeilmaker MJ. Applicability of generic PBK modelling in chemical hazard assessment: A case study with IndusChemFate. Regul Toxicol Pharmacol 2022; 136:105267. [DOI: 10.1016/j.yrtph.2022.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/20/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
|
14
|
In Vitro Models for Studying Chronic Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms231911428. [PMID: 36232728 PMCID: PMC9569683 DOI: 10.3390/ijms231911428] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major clinical problem in terms of patient morbidity and mortality, cost to healthcare systems and failure of the development of new drugs. The need for consistent safety strategies capable of identifying a potential toxicity risk early in the drug discovery pipeline is key. Human DILI is poorly predicted in animals, probably due to the well-known interspecies differences in drug metabolism, pharmacokinetics, and toxicity targets. For this reason, distinct cellular models from primary human hepatocytes or hepatoma cell lines cultured as 2D monolayers to emerging 3D culture systems or the use of multi-cellular systems have been proposed for hepatotoxicity studies. In order to mimic long-term hepatotoxicity in vitro, cell models, which maintain hepatic phenotype for a suitably long period, should be used. On the other hand, repeated-dose administration is a more relevant scenario for therapeutics, providing information not only about toxicity, but also about cumulative effects and/or delayed responses. In this review, we evaluate the existing cell models for DILI prediction focusing on chronic hepatotoxicity, highlighting how better characterization and mechanistic studies could lead to advance DILI prediction.
Collapse
|
15
|
El-Masri H, Paul Friedman K, Isaacs K, Wetmore BA. Advances in computational methods along the exposure to toxicological response paradigm. Toxicol Appl Pharmacol 2022; 450:116141. [PMID: 35777528 PMCID: PMC9619339 DOI: 10.1016/j.taap.2022.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Human health risk assessment is a function of chemical toxicity, bioavailability to reach target biological tissues, and potential environmental exposure. These factors are complicated by many physiological, biochemical, physical and lifestyle factors. Furthermore, chemical health risk assessment is challenging in view of the large, and continually increasing, number of chemicals found in the environment. These challenges highlight the need to prioritize resources for the efficient and timely assessment of those environmental chemicals that pose greatest health risks. Computational methods, either predictive or investigative, are designed to assist in this prioritization in view of the lack of cost prohibitive in vivo experimental data. Computational methods provide specific and focused toxicity information using in vitro high throughput screening (HTS) assays. Information from the HTS assays can be converted to in vivo estimates of chemical levels in blood or target tissue, which in turn are converted to in vivo dose estimates that can be compared to exposure levels of the screened chemicals. This manuscript provides a review for the landscape of computational methods developed and used at the U.S. Environmental Protection Agency (EPA) highlighting their potentials and challenges.
Collapse
Affiliation(s)
- Hisham El-Masri
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Katie Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kristin Isaacs
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Barbara A Wetmore
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
16
|
Algharably EA, Di Consiglio E, Testai E, Pistollato F, Mielke H, Gundert-Remy U. In Vitro- In Vivo Extrapolation by Physiologically Based Kinetic Modeling: Experience With Three Case Studies and Lessons Learned. FRONTIERS IN TOXICOLOGY 2022; 4:885843. [PMID: 35924078 PMCID: PMC9340473 DOI: 10.3389/ftox.2022.885843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022] Open
Abstract
Physiologically based kinetic (PBK) modeling has been increasingly used since the beginning of the 21st century to support dose selection to be used in preclinical and clinical safety studies in the pharmaceutical sector. For chemical safety assessment, the use of PBK has also found interest, however, to a smaller extent, although an internationally agreed document was published already in 2010 (IPCS/WHO), but at that time, PBK modeling was based mostly on in vivo data as the example in the IPCS/WHO document indicates. Recently, the OECD has published a guidance document which set standards on how to characterize, validate, and report PBK models for regulatory purposes. In the past few years, we gained experience on using in vitro data for performing quantitative in vitro–in vivo extrapolation (QIVIVE), in which biokinetic data play a crucial role to obtain a realistic estimation of human exposure. In addition, pharmaco-/toxicodynamic aspects have been introduced into the approach. Here, three examples with different drugs/chemicals are described, in which different approaches have been applied. The lessons we learned from the exercise are as follows: 1) in vitro conditions should be considered and compared to the in vivo situation, particularly for protein binding; 2) in vitro inhibition of metabolizing enzymes by the formed metabolites should be taken into consideration; and 3) it is important to extrapolate from the in vitro measured intracellular concentration and not from the nominal concentration to the tissue/organ concentration to come up with an appropriate QIVIVE for the relevant adverse effects.
Collapse
Affiliation(s)
- Engi Abdelhady Algharably
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Berlin, Germany
| | - Emma Di Consiglio
- Mechanisms, Biomarkers and Models Unit, Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Testai
- Mechanisms, Biomarkers and Models Unit, Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | | | - Hans Mielke
- Federal Institute for Risk Assessment, Berlin, Germany
| | - Ursula Gundert-Remy
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Berlin, Germany.,Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
17
|
Crofton KM, Bassan A, Behl M, Chushak YG, Fritsche E, Gearhart JM, Marty MS, Mumtaz M, Pavan M, Ruiz P, Sachana M, Selvam R, Shafer TJ, Stavitskaya L, Szabo DT, Szabo ST, Tice RR, Wilson D, Woolley D, Myatt GJ. Current status and future directions for a neurotoxicity hazard assessment framework that integrates in silico approaches. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 22:100223. [PMID: 35844258 PMCID: PMC9281386 DOI: 10.1016/j.comtox.2022.100223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Neurotoxicology is the study of adverse effects on the structure or function of the developing or mature adult nervous system following exposure to chemical, biological, or physical agents. The development of more informative alternative methods to assess developmental (DNT) and adult (NT) neurotoxicity induced by xenobiotics is critically needed. The use of such alternative methods including in silico approaches that predict DNT or NT from chemical structure (e.g., statistical-based and expert rule-based systems) is ideally based on a comprehensive understanding of the relevant biological mechanisms. This paper discusses known mechanisms alongside the current state of the art in DNT/NT testing. In silico approaches available today that support the assessment of neurotoxicity based on knowledge of chemical structure are reviewed, and a conceptual framework for the integration of in silico methods with experimental information is presented. Establishing this framework is essential for the development of protocols, namely standardized approaches, to ensure that assessments of NT and DNT based on chemical structures are generated in a transparent, consistent, and defendable manner.
Collapse
Affiliation(s)
| | - Arianna Bassan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova,
Italy
| | - Mamta Behl
- Division of the National Toxicology Program, National
Institutes of Environmental Health Sciences, Durham, NC 27709, USA
| | - Yaroslav G. Chushak
- Henry M Jackson Foundation for the Advancement of Military
Medicine, Wright-Patterson AFB, OH 45433, USA
| | - Ellen Fritsche
- IUF – Leibniz Research Institute for Environmental
Medicine & Medical Faculty Heinrich-Heine-University, Düsseldorf,
Germany
| | - Jeffery M. Gearhart
- Henry M Jackson Foundation for the Advancement of Military
Medicine, Wright-Patterson AFB, OH 45433, USA
| | | | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, US
Department of Health and Human Services, Atlanta, GA, USA
| | - Manuela Pavan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova,
Italy
| | - Patricia Ruiz
- Agency for Toxic Substances and Disease Registry, US
Department of Health and Human Services, Atlanta, GA, USA
| | - Magdalini Sachana
- Environment Health and Safety Division, Environment
Directorate, Organisation for Economic Co-Operation and Development (OECD), 75775
Paris Cedex 16, France
| | - Rajamani Selvam
- Office of Clinical Pharmacology, Office of Translational
Sciences, Center for Drug Evaluation and Research (CDER), U.S. Food and Drug
Administration (FDA), Silver Spring, MD 20993, USA
| | - Timothy J. Shafer
- Biomolecular and Computational Toxicology Division, Center
for Computational Toxicology and Exposure, US EPA, Research Triangle Park, NC,
USA
| | - Lidiya Stavitskaya
- Office of Clinical Pharmacology, Office of Translational
Sciences, Center for Drug Evaluation and Research (CDER), U.S. Food and Drug
Administration (FDA), Silver Spring, MD 20993, USA
| | | | | | | | - Dan Wilson
- The Dow Chemical Company, Midland, MI 48667, USA
| | | | - Glenn J. Myatt
- Instem, Columbus, OH 43215, USA
- Corresponding author.
(G.J. Myatt)
| |
Collapse
|
18
|
Batista D, Romáryo Duarte da Luz J, Evellyn Silva Do Nascimento T, Felipe de Senes-Lopes T, Araújo Galdino O, Victor E Silva S, Pinheiro Ferreira M, Arrison Dos Santos Azevedo M, Brandão-Neto J, Araujo-Silva G, López JA, das Graças Almeida M. Licania rigida leaf extract: Protective effect on oxidative stress, associated with cytotoxic, mutagenic and preclinical aspects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:276-290. [PMID: 34789080 DOI: 10.1080/15287394.2021.2002744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brazilian plant biodiversity is a rich alternative source of bioactive compounds since plant-derived extracts and/or their secondary metabolites exhibit potential properties to treat several diseases. In this context, Licania rigida Benth (Chrysobalanaceae Family), a large evergreen tree distributed in Brazilian semi-arid regions, deserves attention for its widespread use in popular medicine, although its biological properties are still poorly studied. The aim of this study was to examine (1) acute and sub-chronic oral toxicity at 2000 mg/kg dose; (2) in vitro cytotoxicity at 0.1; 1; 10; 100 or 1000 µg/ml; (3) in vivo mutagenicity at 5, 10 or 20 mg/ml, and (4) potential antioxidant protective effect of L. rigida aqueous leaf extract of (AELr). No marked apparent toxic and genotoxic effects were observed using in vitro and in vivo assays after in vitro treatment of Chinese hamster ovary cell line (CHO-K1) with AELr or in vivo exposure of Wistar rats and Drosophila melanogaster to different extract concentrations. Concerning the antioxidant effect, the extract exhibited a protective effect by decreasing lipid peroxidation as determined by malondialdehyde levels. No significant changes were observed for glutathione (GSH) levels and activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Data demonstrate the beneficial potential of AELr to be employed for therapeutic purposes. However, further studies are required to validate the pharmacological application of this plant extract to develop as a phytotherapeutic formulation.
Collapse
Affiliation(s)
- Débora Batista
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Jefferson Romáryo Duarte da Luz
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Thayse Evellyn Silva Do Nascimento
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Tiago Felipe de Senes-Lopes
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Ony Araújo Galdino
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Saulo Victor E Silva
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Macelia Pinheiro Ferreira
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Marcelo Arrison Dos Santos Azevedo
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - José Brandão-Neto
- Department of Clinical Medicine, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| | - Gabriel Araujo-Silva
- Organic Chemistry and Biochemistry Laboratory, Faculty of Degree in Chemistry, Amapá State University (Ueap), Macapá/AP, Brazil
| | - Jorge A López
- Graduate Program in Industrial Biotechnology, Tiradentes University/Research and Technology Institute, Aracaj u/SE, Brazil
| | - Maria das Graças Almeida
- Post-graduation Program in Health Sciences, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal/RN, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Multidisciplinary Research Laboratory, Department of Clinical and Toxicological Analysis, Health Sciences Center Federal University of Rio Grande Do Norte, Natal/RN, Brazil
| |
Collapse
|
19
|
Bednarczyk E, Lu Y, Paini A, Batista Leite S, van Grunsven LA, Worth A, Whelan M. Extension of the Virtual Cell Based Assay from a 2-D to a 3-D Cell Culture Model. Altern Lab Anim 2022; 50:45-56. [PMID: 35238679 DOI: 10.1177/02611929221082200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prediction of chemical toxicity is very useful in risk assessment. With the current paradigm shift towards the use of in vitro and in silico systems, we present herein a theoretical mathematical description of a quasi-diffusion process to predict chemical concentrations in 3-D spheroid cell cultures. By extending a 2-D Virtual Cell Based Assay (VCBA) model into a 3-D spheroid cell model, we assume that cells are arranged in a series of concentric layers within the sphere. We formulate the chemical quasi-diffusion process by simplifying the spheroid with respect to the number of cells in each layer. The system was calibrated and tested with acetaminophen (APAP). Simulated predictions of APAP toxicity were compared with empirical data from in vitro measurements by using a 3-D spheroid model. The results of this first attempt to extend the VCBA model are promising - they show that the VCBA model simulates close correlation between the influence of compound concentration and the viability of the HepaRG 3-D cell culture. The 3-D VCBA model provides a complement to current in vitro procedures to refine experimental setups, to fill data gaps and help in the interpretation of in vitro data for the purposes of risk assessment.
Collapse
Affiliation(s)
- Ewa Bednarczyk
- European Commission, 49566Joint Research Centre (JRC), Ispra, Italy
| | - Yanfei Lu
- European Commission, 49566Joint Research Centre (JRC), Ispra, Italy
| | - Alicia Paini
- European Commission, 49566Joint Research Centre (JRC), Ispra, Italy
| | | | - Leo A van Grunsven
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussel, Belgium
| | - Andrew Worth
- European Commission, 49566Joint Research Centre (JRC), Ispra, Italy
| | - Maurice Whelan
- European Commission, 49566Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
20
|
Nitsche KS, Müller I, Malcomber S, Carmichael PL, Bouwmeester H. Implementing organ-on-chip in a next-generation risk assessment of chemicals: a review. Arch Toxicol 2022; 96:711-741. [PMID: 35103818 PMCID: PMC8850248 DOI: 10.1007/s00204-022-03234-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
Abstract
Organ-on-chip (OoC) technology is full of engineering and biological challenges, but it has the potential to revolutionize the Next-Generation Risk Assessment of novel ingredients for consumer products and chemicals. A successful incorporation of OoC technology into the Next-Generation Risk Assessment toolbox depends on the robustness of the microfluidic devices and the organ tissue models used. Recent advances in standardized device manufacturing, organ tissue cultivation and growth protocols offer the ability to bridge the gaps towards the implementation of organ-on-chip technology. Next-Generation Risk Assessment is an exposure-led and hypothesis-driven tiered approach to risk assessment using detailed human exposure information and the application of appropriate new (non-animal) toxicological testing approaches. Organ-on-chip presents a promising in vitro approach by combining human cell culturing with dynamic microfluidics to improve physiological emulation. Here, we critically review commercial organ-on-chip devices, as well as recent tissue culture model studies of the skin, intestinal barrier and liver as the main metabolic organ to be used on-chip for Next-Generation Risk Assessment. Finally, microfluidically linked tissue combinations such as skin-liver and intestine-liver in organ-on-chip devices are reviewed as they form a relevant aspect for advancing toxicokinetic and toxicodynamic studies. We point to recent achievements and challenges to overcome, to advance non-animal, human-relevant safety studies.
Collapse
Affiliation(s)
- Katharina S Nitsche
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands.
| | - Iris Müller
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Sophie Malcomber
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Paul L Carmichael
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands
| |
Collapse
|
21
|
Hewitt NJ, Troutman J, Przibilla J, Schepky A, Ouédraogo G, Mahony C, Kenna G, Varçin M, Dent MP. Use of in vitro metabolism and biokinetics assays to refine predicted in vivo and in vitro internal exposure to the cosmetic ingredient, phenoxyethanol, for use in risk assessment. Regul Toxicol Pharmacol 2022; 131:105132. [PMID: 35217105 DOI: 10.1016/j.yrtph.2022.105132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 01/04/2023]
Abstract
A novel approach was developed to help characterize the biokinetics of the cosmetic ingredient, phenoxyethanol, to help assess the safety of the parent and its major stable metabolite. In the first step of this non-animal tiered approach, primary human hepatocytes were used to confirm or refute in silico predicted metabolites, and elucidate the intrinsic clearance of phenoxyethanol. A key result was the identification of the major metabolite, phenoxyacetic acid (PAA), the exposure to which in the kidney was subsequently predicted to far exceed that of phenoxyethanol in blood or other tissues. Therefore, a novel aspect of this approach was to measure in the subsequent step the formation of PAA in the cells dosed with phenoxyethanol that were used to provide points of departure (PoDs) and express the intracellular exposure as the Cmax and AUC24. This enabled the calculation of the intracellular concentrations of parent and metabolite at the PoD in the cells used to derive this value. These concentrations can be compared with in vivo tissue levels to conclude on the safety margin. The lessons from this case study will help to inform the design of other non-animal safety assessments.
Collapse
Affiliation(s)
- Nicola J Hewitt
- Cosmetics Europe, Avenue Herrmann-Debroux 40, 1160, Auderghem, Belgium
| | | | - Julia Przibilla
- Pharmacelsus GmbH, Science Park 2, D-66123, Saarbrücken, Germany
| | | | - Gladys Ouédraogo
- L'Oréal, Research & Innovation, 9 rue Pierre Dreyfus, 92110, Clichy, France
| | | | - Gerry Kenna
- Drug Safety Consultant, 2 Farmfield Drive, Macclesfield, Cheshire, SK10 2TJ, UK
| | - Mustafa Varçin
- Cosmetics Europe, Avenue Herrmann-Debroux 40, 1160, Auderghem, Belgium
| | - Mathew P Dent
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| |
Collapse
|
22
|
Oxidative-stress and long-term hepatotoxicity: comparative study in Upcyte human hepatocytes and hepaRG cells. Arch Toxicol 2022; 96:1021-1037. [PMID: 35156134 DOI: 10.1007/s00204-022-03236-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
Drug-induced liver injury (DILI) is one of the most common and serious adverse drug reactions and a major cause of drug development failure and withdrawal. Although different molecular mechanisms are implicated in DILI, enhanced ROS levels have been described as a major mechanism. Human-derived cell models are increasingly used in preclinical safety assessment because they provide quick and relatively inexpensive information in early stages of drug development. We have analyzed and compared the phenotype and functionality of two liver cell models (Upcyte human hepatocytes and HepaRG cells) to demonstrate their suitability for long-term hepatotoxicity assessments and mechanistic studies. The transcriptomic and functional analysis revealed the maintenance of phase I and phase II enzymes, and antioxidant enzymes along time in culture, although the differences found between both test systems underlie the differential sensitivity to hepatotoxins. The evaluation of several mechanisms of cell toxicity, including oxidative stress, by high-content screening, demonstrated that, by combining the stable phenotype of liver cells and repeated-dose exposure regimes to 12 test compounds at clinically relevant concentrations, both Upcyte hepatocytes and HepaRG offer suitable properties to be used in routine screening assays for toxicological assessments during drug preclinical testing.
Collapse
|
23
|
Loizou G, McNally K, Paini A, Hogg A. Derivation of a Human In Vivo Benchmark Dose for Bisphenol A from ToxCast In Vitro Concentration Response Data Using a Computational Workflow for Probabilistic Quantitative In Vitro to In Vivo Extrapolation. Front Pharmacol 2022; 12:754408. [PMID: 35222005 PMCID: PMC8874249 DOI: 10.3389/fphar.2021.754408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
A computational workflow which integrates physiologically based kinetic (PBK) modelling; global sensitivity analysis (GSA), Approximate Bayesian Computation (ABC), Markov Chain Monte Carlo (MCMC) simulation and the Virtual Cell Based Assay (VCBA) for the estimation of the active, free in vitro concentration of chemical in the reaction medium was developed to facilitate quantitative in vitro to in vivo extrapolation (QIVIVE). The workflow was designed to estimate parameter and model uncertainty within a computationally efficient framework. The workflow was tested using a human PBK model for bisphenol A (BPA) and high throughput screening (HTS) in vitro concentration-response data, for estrogen and pregnane X receptor activation determined in human liver and kidney cell lines, from the ToxCast/Tox21 database. In vivo benchmark dose 10% lower confidence limits (BMDL10) for oral uptake of BPA (ng/kg BW/day) were calculated from the in vivo dose-responses and compared to the human equivalent dose (HED) BMDL10 for relative kidney weight change in the mouse derived by European Food Safety Authority (EFSA). Three from four in vivo BMDL10 values calculated in this study were similar to the EFSA values whereas the fourth was much smaller. The derivation of an uncertainty factor (UF) to accommodate the uncertainties associated with measurements using human cell lines in vitro, extrapolated to in vivo, could be useful for the derivation of Health Based Guidance Values (HBGV).
Collapse
Affiliation(s)
- George Loizou
- Health and Safety Executive, Harpur Hill, Buxton, United Kingdom
| | - Kevin McNally
- Health and Safety Executive, Harpur Hill, Buxton, United Kingdom
| | - Alicia Paini
- European Commission Joint Research Centre, Ispra, Italy
| | - Alex Hogg
- Health and Safety Executive, Harpur Hill, Buxton, United Kingdom
| |
Collapse
|
24
|
Hernandez‐Jerez AF, Adriaanse P, Aldrich A, Berny P, Coja T, Duquesne S, Focks A, Marinovich M, Millet M, Pelkonen O, Pieper S, Tiktak A, Topping CJ, Widenfalk A, Wilks M, Wolterink G, Gundert‐Remy U, Louisse J, Rudaz S, Testai E, Lostia A, Dorne J, Parra Morte JM. Scientific Opinion of the Scientific Panel on Plant Protection Products and their Residues (PPR Panel) on testing and interpretation of comparative in vitro metabolism studies. EFSA J 2021; 19:e06970. [PMID: 34987623 PMCID: PMC8696562 DOI: 10.2903/j.efsa.2021.6970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
EFSA asked the Panel on Plant Protection Products and their residues to deliver a Scientific Opinion on testing and interpretation of comparative in vitro metabolism studies for both new active substances and existing ones. The main aim of comparative in vitro metabolism studies of pesticide active substances is to evaluate whether all significant metabolites formed in the human in vitro test system, as a surrogate of the in vivo situation, are also present at comparable level in animal species tested in toxicological studies and, therefore, if their potential toxicity has been appropriately covered by animal studies. The studies may also help to decide which animal model, with regard to a particular compound, is the most relevant for humans. In the experimental strategy, primary hepatocytes in suspension or culture are recommended since hepatocytes are considered the most representative in vitro system for prediction of in vivo metabolites. The experimental design of 3 × 3 × 3 (concentrations, time points, technical replicates, on pooled hepatocytes) will maximise the chance to identify unique (UHM) and disproportionate (DHM) human metabolites. When DHM and UHM are being assessed, test item-related radioactivity recovery and metabolite profile are the most important parameters. Subsequently, structural characterisation of the assigned metabolites is performed with appropriate analytical techniques. In toxicological assessment of metabolites, the uncertainty factor approach is the first alternative to testing option, followed by new approach methodologies (QSAR, read-across, in vitro methods), and only if these fail, in vivo animal toxicity studies may be performed. Knowledge of in vitro metabolites in human and animal hepatocytes would enable toxicological evaluation of all metabolites of concern, and, furthermore, add useful pieces of information for detection and evaluation of metabolites in different matrices (crops, livestock, environment), improve biomonitoring efforts via better toxicokinetic understanding, and ultimately, develop regulatory schemes employing physiologically based or physiology-mimicking in silico and/or in vitro test systems to anticipate the exposure of humans to potentially hazardous substances in plant protection products.
Collapse
|
25
|
Zhu Q, Jia Y, Guo J, Meng X, Chong L, Xu L, Zhou L, Sun Z. Establishment of an in vitro method of rabbit embryo toxicity with toxicokinetics study. J Appl Toxicol 2021; 42:380-391. [PMID: 34322893 DOI: 10.1002/jat.4223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 11/09/2022]
Abstract
This report introduces a novel method, rabbit whole embryo culture (WEC) combined with toxicokinetics (TK), for toxicity testing. Rodent WEC has been extensively used for in vitro screening of developmental toxicity. To improve the reliability of in vitro data, it is important to consider TK and species specificity. To test the utility and effectiveness of this method, we investigated the toxic effect of thalidomide on rabbit embryos and its behavior in test systems both in vitro and in vivo under the same experimental condition. The data showed that thalidomide induced embryo malformations such as embryonic brain hypoplasia, short limb buds, and declined embryonic growth both in vitro and in vivo. The toxic effect increased with the increasing exposure of the embryo to thalidomide. In addition, we observed similar toxic effects and exposure-effect relationships in vivo and in vitro. Therefore, we preliminarily conclude that this new method can effectively predict and explain thalidomide toxicity. Furthermore, we investigated the behavior of test compounds in the WEC system for the first time, and this method is expected to be an important technique for in vitro toxicity study after extensive verification.
Collapse
Affiliation(s)
- Qiuyang Zhu
- School of Pharmacy, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Yuling Jia
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Jun Guo
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Xiang Meng
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Liming Chong
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Li Xu
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Li Zhou
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Zuyue Sun
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Shah I, Antonijevic T, Chambers B, Harrill J, Thomas R. Estimating Hepatotoxic Doses Using High-Content Imaging in Primary Hepatocytes. Toxicol Sci 2021; 183:285-301. [PMID: 34289070 DOI: 10.1093/toxsci/kfab091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Using in vitro data to estimate point of departure (POD) values is an essential component of new approach methodologies (NAM)-based chemical risk assessments. In this case study, we evaluated a NAM for hepatotoxicity based on rat primary hepatocytes, high-content imaging (HCI), and toxicokinetic modeling. First, we treated rat primary hepatocytes with 10 concentrations (0.2 to 100 µM) of 51 chemicals that produced hepatotoxicity in repeat-dose subchronic and chronic exposures. Second, we used HCI to measure endoplasmic reticulum stress, mitochondrial function, lysosomal mass, steatosis, apoptosis, DNA texture, nuclear size, and cell number at 24, 48, and 72 h and calculated concentrations at 50% maximal activity (AC50). Third, we estimated administered equivalent doses (AEDs) from AC50 values using toxicokinetic modeling. AEDs using physiologically-based toxicokinetic models were 4.1-fold (SD 6.3) and 8.1-fold (SD 15.5) lower than subchronic and chronic lowest observed adverse effect levels (LOAELs), respectively. In contrast, AEDs from ToxCast and Tox21 assays were 89.8-fold (SD 149.5) and 168-fold (SD 323.7) lower than subchronic and chronic LOAELs. Individual HCI end-points also estimated AEDs for specific hepatic lesions that were lower than in vivo PODs. Lastly, AEDs were similar for different in vitro exposure durations, but steady-state toxicokinetic models produced 7.6-fold lower estimates than dynamic physiologically-based ones. Our findings suggest that NAMs from diverse cell types provide conservative estimates of PODs. In contrast, NAMs based on the same species and cell type as the adverse outcome may produce estimates closer to the traditional in vivo PODs.
Collapse
Affiliation(s)
- Imran Shah
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Todor Antonijevic
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA.,Oak Ridge Institute for Science and Education (ORISE), USA
| | - Bryant Chambers
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Joshua Harrill
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Russell Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
27
|
Effective exposure of chemicals in in vitro cell systems: A review of chemical distribution models. Toxicol In Vitro 2021; 73:105133. [DOI: 10.1016/j.tiv.2021.105133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022]
|
28
|
Tabernilla A, dos Santos Rodrigues B, Pieters A, Caufriez A, Leroy K, Van Campenhout R, Cooreman A, Gomes AR, Arnesdotter E, Gijbels E, Vinken M. In Vitro Liver Toxicity Testing of Chemicals: A Pragmatic Approach. Int J Mol Sci 2021; 22:5038. [PMID: 34068678 PMCID: PMC8126138 DOI: 10.3390/ijms22095038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
The liver is among the most frequently targeted organs by noxious chemicals of diverse nature. Liver toxicity testing using laboratory animals not only raises serious ethical questions, but is also rather poorly predictive of human safety towards chemicals. Increasing attention is, therefore, being paid to the development of non-animal and human-based testing schemes, which rely to a great extent on in vitro methodology. The present paper proposes a rationalized tiered in vitro testing strategy to detect liver toxicity triggered by chemicals, in which the first tier is focused on assessing general cytotoxicity, while the second tier is aimed at identifying liver-specific toxicity as such. A state-of-the-art overview is provided of the most commonly used in vitro assays that can be used in both tiers. Advantages and disadvantages of each assay as well as overall practical considerations are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.T.); (B.d.S.R.); (A.P.); (A.C.); (K.L.); (R.V.C.); (A.C.); (A.R.G.); (E.A.); (E.G.)
| |
Collapse
|
29
|
Algharably EAEH, Di Consiglio E, Testai E, Kreutz R, Gundert-Remy U. Prediction of the dose range for adverse neurological effects of amiodarone in patients from an in vitro toxicity test by in vitro-in vivo extrapolation. Arch Toxicol 2021; 95:1433-1442. [PMID: 33606068 PMCID: PMC8032623 DOI: 10.1007/s00204-021-02989-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/21/2021] [Indexed: 11/29/2022]
Abstract
Amiodarone is an antiarrhythmic agent inducing adverse effects on the nervous system, among others. We applied physiologically based pharmacokinetic (PBPK) modeling combined with benchmark dose modeling to predict, based on published in vitro data, the in vivo dose of amiodarone which may lead to adverse neurological effects in patients. We performed in vitro–in vivo extrapolation (IVIVE) from concentrations measured in the cell lysate of a rat brain 3D cell model using a validated human PBPK model. Among the observed in vitro effects, inhibition of choline acetyl transferase (ChAT) was selected as a marker for neurotoxicity. By reverse dosimetry, we transformed the in vitro concentration–effect relationship into in vivo effective human doses, using the calculated in vitro area under the curve (AUC) of amiodarone as the pharmacokinetic metric. The upper benchmark dose (BMDU) was calculated and compared with clinical doses eliciting neurological adverse effects in patients. The AUCs in the in vitro brain cell culture after 14-day repeated dosing of nominal concentration equal to 1.25 and 2.5 µM amiodarone were 1.00 and 1.99 µg*h/mL, respectively. The BMDU was 385.4 mg for intravenous converted to 593 mg for oral application using the bioavailability factor of 0.65 as reported in the literature. The predicted dose compares well with neurotoxic doses in patients supporting the hypothesis that impaired ChAT activity may be related to the molecular/cellular mechanisms of amiodarone neurotoxicity. Our study shows that predicting effects from in vitro data together with IVIVE can be used at the initial stage for the evaluation of potential adverse drug reactions and safety assessment in humans.
Collapse
Affiliation(s)
- Engi Abd El-Hady Algharably
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.
| | - Emma Di Consiglio
- Istituto Superiore Di Sanità, Environment and Health Department, Mechanisms, Biomarkers and Models Unit, Rome, Italy
| | - Emanuela Testai
- Istituto Superiore Di Sanità, Environment and Health Department, Mechanisms, Biomarkers and Models Unit, Rome, Italy
| | - Reinhold Kreutz
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10115, Berlin, Germany
| | - Ursula Gundert-Remy
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
30
|
Buratti FM, Darney K, Vichi S, Turco L, Di Consiglio E, Lautz LS, Béchaux C, Dorne JLCM, Testai E. Human variability in glutathione-S-transferase activities, tissue distribution and major polymorphic variants: Meta-analysis and implication for chemical risk assessment. Toxicol Lett 2020; 337:78-90. [PMID: 33189831 DOI: 10.1016/j.toxlet.2020.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
The input into the QIVIVE and Physiologically-Based kinetic and dynamic models of drug metabolising enzymes performance and their inter-individual differences significantly improve the modelling performance, supporting the development and integration of alternative approaches to animal testing. Bayesian meta-analyses allow generating and integrating statistical distributions with human in vitro metabolism data for quantitative in vitro-in vivo extrapolation. Such data are lacking on glutathione-S-transferases (GSTs). This paper reports for the first time results on the human variability of GST activities in healthy individuals, their tissue localisation and the frequencies of their major polymorphic variants by means of extensive literature search, data collection, data base creation and meta-analysis. A limited number of papers focussed on in vivo GST inter-individual differences in humans. Ex-vivo total GST activity without discriminating amongst isozymes is generally reported, resulting in a high inter-individual variability. The highest levels of cytosolic GSTs in humans are measured in the kidney, liver, adrenal glands and blood. The frequencies of GST polymorphisms for cytosolic isozymes in populations of different geographical ancestry were also presented. Bayesian meta-analyses to derive GST-related uncertainty factors provided uncertain estimates, due to the limited database. Considering the relevance of GST activities and their pivotal role in cellular adaptive response mechanisms to chemical stressors, further studies are needed to identify GST probe substrates for specific isozymes and quantify inter-individual differences.
Collapse
Affiliation(s)
- Franca Maria Buratti
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Keyvin Darney
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, Maisons-Alfort, F-94700, France
| | - Susanna Vichi
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Laura Turco
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Emma Di Consiglio
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Leonie S Lautz
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, Maisons-Alfort, F-94700, France
| | - Camille Béchaux
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, Maisons-Alfort, F-94700, France
| | | | - Emanuela Testai
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
31
|
Di Consiglio E, Pistollato F, Mendoza-De Gyves E, Bal-Price A, Testai E. Integrating biokinetics and in vitro studies to evaluate developmental neurotoxicity induced by chlorpyrifos in human iPSC-derived neural stem cells undergoing differentiation towards neuronal and glial cells. Reprod Toxicol 2020; 98:174-188. [PMID: 33011216 PMCID: PMC7772889 DOI: 10.1016/j.reprotox.2020.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Human iPSC-derived NSCs undergoing differentiation possess some metabolic competence. CPF entered the cells and was biotrasformed into its two main metabolites (CPFO and TCP). After repeated exposure, very limited bioaccumulation of CPF was observed. Treatment with CPF decreased neurite outgrowth, synapse number and electrical activity. Treatment with CPF increased BDNF levels and the percentage of astrocytes.
For some complex toxicological endpoints, chemical safety assessment has conventionally relied on animal testing. Apart from the ethical issues, also scientific considerations have been raised concerning the traditional approach, highlighting the importance for considering real life exposure scenario. Implementation of flexible testing strategies, integrating multiple sources of information, including in vitro reliable test methods and in vitro biokinetics, would enhance the relevance of the obtained results. Such an approach could be pivotal in the evaluation of developmental neurotoxicity (DNT), especially when applied to human cell-based models, mimicking key neurodevelopmental processes, relevant to human brain development. Here, we integrated the kinetic behaviour with the toxicodynamic alterations of chlorpyrifos (CPF), such as in vitro endpoints specific for DNT evaluation, after repeated exposure during differentiation of human neural stem cells into a mixed culture of neurons and astrocytes. The upregulation of some cytochrome P450 and glutathione S-transferase genes during neuronal differentiation and the formation of the two major CPF metabolites (due to bioactivation and detoxification) supported the metabolic competence of the used in vitro model. The alterations in the number of synapses, neurite outgrowth, brain derived neurotrophic factor, the proportion of neurons and astrocytes, as well as spontaneous electrical activity correlated well with the CPF ability to enter the cells and be bioactivated to CPF-oxon. Overall, our results confirm that combining in vitro biokinetics and assays to evaluate effects on neurodevelopmental endpoints in human cells should be regarded as a key strategy for a quantitative characterization of DNT effects.
Collapse
Affiliation(s)
- Emma Di Consiglio
- Istituto Superiore di Sanità, Environment and Health Department, Mechanisms, Biomarkers and Models Unit, Rome, Italy
| | | | | | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Emanuela Testai
- Istituto Superiore di Sanità, Environment and Health Department, Mechanisms, Biomarkers and Models Unit, Rome, Italy
| |
Collapse
|
32
|
Reiter EB, Jahnke A, König M, Siebert U, Escher BI. Influence of Co-Dosed Lipids from Biota Extracts on the Availability of Chemicals in In Vitro Cell-Based Bioassays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4240-4247. [PMID: 32118404 PMCID: PMC7144218 DOI: 10.1021/acs.est.9b07850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 05/21/2023]
Abstract
Extraction of chemicals from biota leads to co-extraction of lipids. When dosing such extracts into in vitro bioassays, co-dosed lipids act as an additional phase that can reduce the bioavailability of the chemicals and the apparent sensitivity of the assay. Equilibrium partitioning between medium, cells, and co-dosed lipids was described with an existing equilibrium partitioning model for cell-based bioassays extended by an additional lipid phase. We experimentally investigated the influence of co-dosed lipids on the effects elicited by four test chemicals of different hydrophobicity in two bioassays, indicative of the aryl hydrocarbon receptor and oxidative stress response (AREc32). The partitioning model explained the effect of the test chemicals in the presence of spiked triolein within a factor of 0.33-5.83 between the measured and predicted effect concentration (EC). We applied the model to marine mammal blubber extracted with silicone. Extracts dosed in the AREc32 bioassay showed a linear increase of apparent EC with increasing lipid fraction. The partitioning model was used to interpret the role of the co-extracted lipid. A quantitative lipid correction of bioassay results in the presence of co-dosed lipids was possible for known compounds and defined mixtures, while we could only estimate a range for mixtures of unknown chemicals.
Collapse
Affiliation(s)
- Eva B. Reiter
- Department
Cell Toxicology, Helmholtz Centre for Environmental
Research—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- E-mail: . Phone: +49 341 235 1823. Fax: +49 341 235 1787
| | - Annika Jahnke
- Department
Cell Toxicology, Helmholtz Centre for Environmental
Research—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Maria König
- Department
Cell Toxicology, Helmholtz Centre for Environmental
Research—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ursula Siebert
- Institute
for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761 Büsum, Germany
| | - Beate I. Escher
- Department
Cell Toxicology, Helmholtz Centre for Environmental
Research—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Environmental
Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| |
Collapse
|
33
|
Hoffman E, Murnane D, Hutter V. Investigating the Suitability of High Content Image Analysis as a Tool to Assess the Reversibility of Foamy Alveolar Macrophage Phenotypes In Vitro. Pharmaceutics 2020; 12:pharmaceutics12030262. [PMID: 32183061 PMCID: PMC7150967 DOI: 10.3390/pharmaceutics12030262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 01/19/2023] Open
Abstract
Many potential inhaled medicines fail during development due to the induction of a highly vacuolated or “foamy” alveolar macrophage phenotype response in pre-clinical studies. There is limited understanding if this response to an inhaled stimulus is adverse or adaptive, and additionally if it is a transient or irreversible process. The aim of this study was to evaluate whether high content image analysis could distinguish between different drug-induced foamy macrophage phenotypes and to determine the extent of the reversibility of the foamy phenotypes by assessing morphological changes over time. Alveolar-like macrophages derived from the human monocyte cell line U937 were exposed for 24 h to compounds known to induce a foamy macrophage phenotype (amiodarone, staurosporine) and control compounds that are not known to cause a foamy macrophage phenotype in vitro (fluticasone and salbutamol). Following drug stimulation, the cells were rested in drug-free media for the subsequent 24 or 48 h. Cell morphometric parameters (cellular and nuclear area, vacuoles numbers and size) and phospholipid content were determined using high content image analysis. The foamy macrophage recovery was dependent on the mechanism of action of the inducer compound. Amiodarone toxicity was associated with phospholipid accumulation and morphometric changes were reversed when the stimulus was removed from culture environment. Conversely cells were unable to recover from exposure to staurosporine which initiates the apoptosis pathway. This study shows that high content analysis can discriminate between different phenotypes of foamy macrophages and may contribute to better decision making in the process of new drug development.
Collapse
|
34
|
Kopp B, Le Hégarat L, Audebert M. Differential toxic effects of food contaminant mixtures in HepaRG cells after single or repeated treatments. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 850-851:503161. [DOI: 10.1016/j.mrgentox.2020.503161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
|
35
|
Liu Y, Jing R, Wen Z, Li M. Narrowing the Gap Between In Vitro and In Vivo Genetic Profiles by Deconvoluting Toxicogenomic Data In Silico. Front Pharmacol 2020; 10:1489. [PMID: 31992983 PMCID: PMC6964707 DOI: 10.3389/fphar.2019.01489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
Toxicogenomics (TGx) is a powerful method to evaluate toxicity and is widely used in both in vivo and in vitro assays. For in vivo TGx, reduction, refinement, and replacement represent the unremitting pursuit of live-animal tests, but in vitro assays, as alternatives, usually demonstrate poor correlation with real in vivo assays. In living subjects, in addition to drug effects, inner-environmental reactions also affect genetic variation, and these two factors are further jointly reflected in gene abundance. Thus, finding a strategy to factorize inner-environmental factor from in vivo assays based on gene expression levels and to further utilize in vitro data to better simulate in vivo data is needed. We proposed a strategy based on post-modified non-negative matrix factorization, which can estimate the gene expression profiles and contents of major factors in samples. The applicability of the strategy was first verified, and the strategy was then utilized to simulate in vivo data by correcting in vitro data. The similarities between real in vivo data and simulated data (single-dose 0.72, repeat-doses 0.75) were higher than those observed when directly comparing real in vivo data with in vitro data (single-dose 0.56, repeat-doses 0.70). Moreover, by keeping environment-related factor, a simulation can always be generated by using in vitro data to provide potential substitutions for in vivo TGx and to reduce the launch of live-animal tests.
Collapse
Affiliation(s)
- Yuan Liu
- College of Chemistry, Sichuan University, Chengdu, China
| | - Runyu Jing
- College of Cybersecurity, Sichuan University, Chengdu, China
| | - Zhining Wen
- College of Chemistry, Sichuan University, Chengdu, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Eilstein J, Grégoire S, Fabre A, Arbey E, Géniès C, Duplan H, Rothe H, Ellison C, Cubberley R, Schepky A, Lange D, Klaric M, Hewitt NJ, Jacques‐Jamin C. Use of human liver and EpiSkin™ S9 subcellular fractions as a screening assays to compare the in vitro hepatic and dermal metabolism of 47 cosmetics‐relevant chemicals. J Appl Toxicol 2020; 40:416-433. [DOI: 10.1002/jat.3914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 11/09/2022]
|
37
|
Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, Wambaugh JF, Jones D, Whelan M, Thomas R, Yauk C, Barton-Maclaren T, Cote I. Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol 2019; 94:1-58. [DOI: 10.1007/s00204-019-02613-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
|
38
|
Holzwarth U, Cossío U, Llop J, Kreyling WG. Unpredictable Nanoparticle Retention in Commonly Used Plastic Syringes Introduces Dosage Uncertainties That May Compromise the Accuracy of Nanomedicine and Nanotoxicology Studies. Front Pharmacol 2019; 10:1293. [PMID: 31780932 PMCID: PMC6851237 DOI: 10.3389/fphar.2019.01293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022] Open
Abstract
In recent animal experiments with suspensions of radiolabeled TiO2 nanoparticles large and highly variable radioactivity fractions were retained in disposable plastic syringes. After unloading between 10% and up to 70% of the loaded dose were still present in the syringes. As a consequence the effectively delivered nanoparticle dose to the animals was frequently much smaller than the nominal dose of the nanoparticles loaded into the syringe. The high variability of this nanoparticle retention challenges the application of a precise, predefined dose and creates a major error source when normalizing organ and tissue contents to the dose loaded into the syringe, which is usually set as the applied dose. A control study was performed employing six commonly used syringe types with seven types of radiolabeled oxide and metallic nanoparticles. For this purpose the syringes were loaded with a given volume of nanoparticle suspension, the radioactivity was measured, the syringe was unloaded and the activity measurement was repeated with the empty syringe. The highest retention values were found when using TiO2 nanoparticle suspensions with Tuberkulin type syringes. In the worst case between 6.6% and 79.1% of the nanoparticles were retained in the syringe. When using the same nanoparticle suspension with an insulin-type syringe the retention was reduced to 1.4% to 20.6%. For amorphous silica nanoparticles the maximum observed retention was 8% and for Au nanoparticles it was 5.1%. Further data gathered from in vivo animal imaging studies show that nanoparticle retention in syringes also affects experiments with nanoparticles such as exosomes, polymersomes, and protein-based nanoparticles investigated for possible applications in nanomedicine. Since the retention is highly variable the effectively applied dose cannot be determined by applying a simple syringe retention factor. The present work shall alert to the problem and illustrate its possible magnitude and unpredictable variability. As mitigation strategy adequate checks with different syringe types are proposed in order to find out whether a given combination of syringe type and nanoparticle suspension is affected by nanoparticle retention and, if necessary, to select a different syringe type that minimizes retention.
Collapse
Affiliation(s)
- Uwe Holzwarth
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | - Unai Cossío
- Radiochemistry and Nuclear Imaging, CIC biomaGUNE, San Sebastian, Spain
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging, CIC biomaGUNE, San Sebastian, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Respiratorias-CIBERES Parque Tecnológico de San Sebastián, San Sebastián, Spain
| | - Wolfgang G Kreyling
- Institute of Epidemiology, and Institute of Lung Biology and Disease, Helmholtz Zentrum München-German Research Center for Environmental Health, Munich, Germany
| |
Collapse
|
39
|
Abud APR, Kuligovski C, Corrêa NCR, de Moraes ECP, Caruso RRB, Schuck DC, Brohem CA, Dallagiovanna B, de Aguiar AM. The inhibition of adipogenesis via an in vitro assay can reduce animal use by more precisely estimating the starting dose for the acute toxic class method. Toxicol Lett 2019; 311:80-90. [PMID: 31029752 DOI: 10.1016/j.toxlet.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
In the present work, we established an adipogenesis inhibition assay as an adequate and sensitive in vitro model for reducing animal use by estimating the starting dose for the acute toxic class (ATC) method. First, human adipose-derived stem cells (ADSCs) underwent adipogenic differentiation induction for 14 days. Then, by high-content imaging analysis, we determined the percentage and area of cell differentiation that we considered suitable for negative and positive internal control according to the quality control criteria strictly standardized mean difference (SSMD) and robust SSMD. Moreover, we established sodium dodecyl sulfate (SDS) as an external positive control in this assay. To measure reduction in animal use to estimate the starting dose for the ATC method, we evaluated 10 chemicals representing Globally Harmonized System of Classification and Labeling of Chemicals (GHS) toxicity categories 1-5 and unclassified toxicity and determined the dose-response curves for percentage and area of cell differentiation by using the Hill function with an R2 ≥ 0.85. The resulting IC50 values were used for LD50 prediction and for estimating the starting dose for the ATC method. Our results indicated that use of the inhibition of adipogenesis assay to estimate the starting dose for the ATC method would decrease animal use for 7 out of 10 tested substances, possibly all substances if we consider the more toxic test substances in GHS categories 1, 2, and 3. We can conclude that the present assay is a suitable alternative to reduce animal testing in the first steps of predicting highly toxic substances. Moreover, this method also presents internal and external controls as differentials, which guarantee the quality of the assay as well as the results. These features are important for suggesting a methodology for regulatory purposes.
Collapse
Affiliation(s)
- Ana Paula Ressett Abud
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz, Curitiba, PR, Brazil
| | - Crisciele Kuligovski
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz, Curitiba, PR, Brazil
| | | | - Elizabeth Cunha Penna de Moraes
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz, Curitiba, PR, Brazil; Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Rêgo Barros Caruso
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz, Curitiba, PR, Brazil; Instituto Carlos Chagas, Fiocruz, Curitiba, PR, Brazil
| | | | - Carla Abdo Brohem
- Núcleo de Avaliação de Segurança (Grupo Boticário), Curitiba, PR, Brazil
| | - Bruno Dallagiovanna
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz, Curitiba, PR, Brazil.
| | - Alessandra Melo de Aguiar
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, Fiocruz, Curitiba, PR, Brazil.
| |
Collapse
|
40
|
Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations. Arch Toxicol 2019; 93:1609-1637. [PMID: 31250071 DOI: 10.1007/s00204-019-02492-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
Abstract
Drug-induced liver injury (DILI) cannot be accurately predicted by animal models. In addition, currently available in vitro methods do not allow for the estimation of hepatotoxic doses or the determination of an acceptable daily intake (ADI). To overcome this limitation, an in vitro/in silico method was established that predicts the risk of human DILI in relation to oral doses and blood concentrations. This method can be used to estimate DILI risk if the maximal blood concentration (Cmax) of the test compound is known. Moreover, an ADI can be estimated even for compounds without information on blood concentrations. To systematically optimize the in vitro system, two novel test performance metrics were introduced, the toxicity separation index (TSI) which quantifies how well a test differentiates between hepatotoxic and non-hepatotoxic compounds, and the toxicity estimation index (TEI) which measures how well hepatotoxic blood concentrations in vivo can be estimated. In vitro test performance was optimized for a training set of 28 compounds, based on TSI and TEI, demonstrating that (1) concentrations where cytotoxicity first becomes evident in vitro (EC10) yielded better metrics than higher toxicity thresholds (EC50); (2) compound incubation for 48 h was better than 24 h, with no further improvement of TSI after 7 days incubation; (3) metrics were moderately improved by adding gene expression to the test battery; (4) evaluation of pharmacokinetic parameters demonstrated that total blood compound concentrations and the 95%-population-based percentile of Cmax were best suited to estimate human toxicity. With a support vector machine-based classifier, using EC10 and Cmax as variables, the cross-validated sensitivity, specificity and accuracy for hepatotoxicity prediction were 100, 88 and 93%, respectively. Concentrations in the culture medium allowed extrapolation to blood concentrations in vivo that are associated with a specific probability of hepatotoxicity and the corresponding oral doses were obtained by reverse modeling. Application of this in vitro/in silico method to the rat hepatotoxicant pulegone resulted in an ADI that was similar to values previously established based on animal experiments. In conclusion, the proposed method links oral doses and blood concentrations of test compounds to the probability of hepatotoxicity.
Collapse
|
41
|
Thomas RS, Bahadori T, Buckley TJ, Cowden J, Deisenroth C, Dionisio KL, Frithsen JB, Grulke CM, Gwinn MR, Harrill JA, Higuchi M, Houck KA, Hughes MF, Hunter ES, Isaacs KK, Judson RS, Knudsen TB, Lambert JC, Linnenbrink M, Martin TM, Newton SR, Padilla S, Patlewicz G, Paul-Friedman K, Phillips KA, Richard AM, Sams R, Shafer TJ, Setzer RW, Shah I, Simmons JE, Simmons SO, Singh A, Sobus JR, Strynar M, Swank A, Tornero-Valez R, Ulrich EM, Villeneuve DL, Wambaugh JF, Wetmore BA, Williams AJ. The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency. Toxicol Sci 2019; 169:317-332. [PMID: 30835285 PMCID: PMC6542711 DOI: 10.1093/toxsci/kfz058] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The U.S. Environmental Protection Agency (EPA) is faced with the challenge of efficiently and credibly evaluating chemical safety often with limited or no available toxicity data. The expanding number of chemicals found in commerce and the environment, coupled with time and resource requirements for traditional toxicity testing and exposure characterization, continue to underscore the need for new approaches. In 2005, EPA charted a new course to address this challenge by embracing computational toxicology (CompTox) and investing in the technologies and capabilities to push the field forward. The return on this investment has been demonstrated through results and applications across a range of human and environmental health problems, as well as initial application to regulatory decision-making within programs such as the EPA's Endocrine Disruptor Screening Program. The CompTox initiative at EPA is more than a decade old. This manuscript presents a blueprint to guide the strategic and operational direction over the next 5 years. The primary goal is to obtain broader acceptance of the CompTox approaches for application to higher tier regulatory decisions, such as chemical assessments. To achieve this goal, the blueprint expands and refines the use of high-throughput and computational modeling approaches to transform the components in chemical risk assessment, while systematically addressing key challenges that have hindered progress. In addition, the blueprint outlines additional investments in cross-cutting efforts to characterize uncertainty and variability, develop software and information technology tools, provide outreach and training, and establish scientific confidence for application to different public health and environmental regulatory decisions.
Collapse
Affiliation(s)
- Russell S. Thomas
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Tina Bahadori
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency
| | - Timothy J. Buckley
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - John Cowden
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Chad Deisenroth
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Kathie L. Dionisio
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Jeffrey B. Frithsen
- Chemical Safety for Sustainability National Research Program, Office of Research and Development, US Environmental Protection Agency
| | - Christopher M. Grulke
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Maureen R. Gwinn
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Joshua A. Harrill
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Mark Higuchi
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Keith A. Houck
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Michael F. Hughes
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - E. Sidney Hunter
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Kristin K. Isaacs
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Richard S. Judson
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Thomas B. Knudsen
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Jason C. Lambert
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency
| | - Monica Linnenbrink
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Todd M. Martin
- National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Seth R. Newton
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Stephanie Padilla
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Grace Patlewicz
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Katie Paul-Friedman
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Katherine A. Phillips
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Ann M. Richard
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Reeder Sams
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Timothy J. Shafer
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - R. Woodrow Setzer
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Imran Shah
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Jane E. Simmons
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Steven O. Simmons
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Amar Singh
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Jon R. Sobus
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Mark Strynar
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Adam Swank
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Rogelio Tornero-Valez
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Elin M. Ulrich
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Daniel L Villeneuve
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - John F. Wambaugh
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| | - Barbara A. Wetmore
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency
| | - Antony J. Williams
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency
| |
Collapse
|
42
|
Estimating uncertainty in the context of new approach methodologies for potential use in chemical safety evaluation. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Groothuis FA, Timmer N, Opsahl E, Nicol B, Droge STJ, Blaauboer BJ, Kramer NI. Influence of in Vitro Assay Setup on the Apparent Cytotoxic Potency of Benzalkonium Chlorides. Chem Res Toxicol 2019; 32:1103-1114. [PMID: 31012305 PMCID: PMC6584903 DOI: 10.1021/acs.chemrestox.8b00412] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The nominal concentration
is generally used to express concentration–effect
relationships in in vitro toxicity assays. However, the nominal concentration
does not necessarily represent the exposure concentration responsible
for the observed effect. Surfactants accumulate at interphases and
likely sorb to in vitro system components such as serum protein and
well plate plastic. The extent of sorption and the consequences of
this sorption on in vitro readouts is largely unknown for these chemicals.
The aim of this study was to demonstrate the effect of sorption to
in vitro components on the observed cytotoxic potency of benzalkonium
chlorides (BAC) varying in alkyl chain length (6–18 carbon
atoms, C6–18) in a basal cytotoxicity assay with
the rainbow trout gill cell line (RTgill-W1). Cells were exposed for
48 h in 96-well plates to increasing concentration of BACs in exposure
medium containing 0, 60 μM bovine serum albumin (BSA) or 10%
fetal bovine serum (FBS). Before and after exposure, BAC concentrations
in exposure medium were analytically determined. Based on freely dissolved
concentrations at the end of the exposure, median effect concentrations
(EC50) decreased with increasing alkyl chain length up
to 14 carbons. For BAC with alkyl chains of 12 or more carbons, EC50’s based on measured concentrations after exposure
in supplement-free medium were up to 25-times lower than EC50’s calculated using nominal concentrations. When BSA or FBS
was added to the medium, a decrease in cytotoxic potency of up to
22 times was observed for BAC with alkyl chains of eight or more carbons.
The results of this study emphasize the importance of expressing the
in vitro readouts as a function of a dose metric that is least influenced
by assay setup to compare assay sensitivities and chemical potencies.
Collapse
Affiliation(s)
- Floris A Groothuis
- Institute for Risk Assessment Sciences , Utrecht University , PO Box 80177, 3508 TD Utrecht , The Netherlands
| | - Niels Timmer
- Institute for Risk Assessment Sciences , Utrecht University , PO Box 80177, 3508 TD Utrecht , The Netherlands
| | - Eystein Opsahl
- Institute for Risk Assessment Sciences , Utrecht University , PO Box 80177, 3508 TD Utrecht , The Netherlands
| | - Beate Nicol
- Safety & Environmental Assurance Centre , Unilever U.K. , Colworth Science Park, Sharnbrook, Bedford MK44 1LQ , United Kingdom
| | - Steven T J Droge
- Institute for Risk Assessment Sciences , Utrecht University , PO Box 80177, 3508 TD Utrecht , The Netherlands
| | - Bas J Blaauboer
- Institute for Risk Assessment Sciences , Utrecht University , PO Box 80177, 3508 TD Utrecht , The Netherlands
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences , Utrecht University , PO Box 80177, 3508 TD Utrecht , The Netherlands
| |
Collapse
|
44
|
|
45
|
Algharably EAH, Kreutz R, Gundert-Remy U. Importance of in vitro conditions for modeling the in vivo dose in humans by in vitro-in vivo extrapolation (IVIVE). Arch Toxicol 2019; 93:615-621. [PMID: 30604139 DOI: 10.1007/s00204-018-2382-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/13/2018] [Indexed: 01/08/2023]
Abstract
In vitro studies are increasingly proposed to replace in vivo toxicity testing of substances. We set out to apply physiologically based pharmacokinetic (PBPK) modeling to predict the in vivo dose of amiodarone that leads to the same concentration-time profile in the supernatant and the cell lysate of cultured primary human hepatic cells (PHH). A PBPK human model was constructed based on the structure and tissue distribution of amiodarone in a rat model and using physiological human parameters. The predicted concentration-time profile in plasma was in agreement with human experimental data with the unbound fraction of amiodarone in plasma crucially affecting the goodness-of-fit. Using the validated kinetic model, we subsequently described the in vitro concentration-time data of amiodarone in PHH culture. However, this could be only appropriately modeled under conditions of zero protein binding and the very low clearance of the in vitro system in PHH culture. However, these represent unphysiological conditions and, thus, the main difference between the in vivo and the in vitro systems. Our results reveal that, for meaningful quantitative extrapolation from in vitro to in vivo conditions in PBPK studies, it is essential to avoid non-intended differences between these conditions. Specifically, clearance and protein binding, as demonstrated in our analysis of amiodarone modeling, are important parameters to consider.
Collapse
Affiliation(s)
- Engi Abdel Hady Algharably
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Reinhold Kreutz
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ursula Gundert-Remy
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
46
|
Gouliarmou V, Lostia AM, Coecke S, Bernasconi C, Bessems J, Dorne JL, Ferguson S, Testai E, Remy UG, Brian Houston J, Monshouwer M, Nong A, Pelkonen O, Morath S, Wetmore BA, Worth A, Zanelli U, Zorzoli MC, Whelan M. Establishing a systematic framework to characterise in vitro methods for human hepatic metabolic clearance. Toxicol In Vitro 2018; 53:233-244. [DOI: 10.1016/j.tiv.2018.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/17/2018] [Accepted: 08/08/2018] [Indexed: 12/26/2022]
|
47
|
Tolosa L, Jiménez N, Pelechá M, Castell JV, Gómez-Lechón MJ, Donato MT. Long-term and mechanistic evaluation of drug-induced liver injury in Upcyte human hepatocytes. Arch Toxicol 2018; 93:519-532. [PMID: 30426164 DOI: 10.1007/s00204-018-2349-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022]
Abstract
Drug-induced liver injury (DILI) constitutes one of the most frequent reasons of restricted-use warnings as well as withdrawals of drugs in postmarketing and poses an important concern for the pharmaceutical industry. The current hepatic in vivo and in vitro models for DILI detection have shown clear limitations, mainly for studies of long-term hepatotoxicity. For this reason, we here evaluated the potential of using Upcytes human hepatocytes (UHH) for repeated-dose long-term exposure to drugs. The UHH were incubated with 15 toxic and non-toxic compounds for up to 21 days using a repeated-dose approach, and, in addition to conventional examination of effects on viability, the mechanisms implicated in cell toxicity were also assessed by means of high-content screening. The UHH maintained the expression and activity levels of drug-metabolizing enzymes for up to 21 days of culture and became more sensitive to the toxic compounds after extended exposures, showing inter-donor differences which would reflect variability among the population. The assay also allowed to detect the main mechanisms implicated in the toxicity of each drug as well as identifying special susceptibilities depending on the donor. UHH can be used for a long-term repeated detection of DILI at clinically relevant concentrations and also offers key mechanistic features of drug-induced hepatotoxicity. This system is therefore a promising tool in preclinical testing of human relevance that could help to reduce and/or replace animal testing for drug adverse effects.
Collapse
Affiliation(s)
- Laia Tolosa
- Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Nuria Jiménez
- Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - María Pelechá
- Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - José V Castell
- Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain
| | - Mª José Gómez-Lechón
- Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - M Teresa Donato
- Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain. .,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain.
| |
Collapse
|
48
|
Affiliation(s)
- Bas J Blaauboer
- Emeritus from the Institute for Risk Assessment Sciences, Division of Toxicology, Utrecht University, PO Box 80.177, 3508 TD Utrecht, the Netherlands.
| |
Collapse
|
49
|
Zhang Q, Li J, Middleton A, Bhattacharya S, Conolly RB. Bridging the Data Gap From in vitro Toxicity Testing to Chemical Safety Assessment Through Computational Modeling. Front Public Health 2018; 6:261. [PMID: 30255008 PMCID: PMC6141783 DOI: 10.3389/fpubh.2018.00261] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022] Open
Abstract
Chemical toxicity testing is moving steadily toward a human cell and organoid-based in vitro approach for reasons including scientific relevancy, efficiency, cost, and ethical rightfulness. Inferring human health risk from chemical exposure based on in vitro testing data is a challenging task, facing various data gaps along the way. This review identifies these gaps and makes a case for the in silico approach of computational dose-response and extrapolation modeling to address many of the challenges. Mathematical models that can mechanistically describe chemical toxicokinetics (TK) and toxicodynamics (TD), for both in vitro and in vivo conditions, are the founding pieces in this regard. Identifying toxicity pathways and in vitro point of departure (PoD) associated with adverse health outcomes requires an understanding of the molecular key events in the interacting transcriptome, proteome, and metabolome. Such an understanding will in turn help determine the sets of sensitive biomarkers to be measured in vitro and the scope of toxicity pathways to be modeled in silico. In vitro data reporting both pathway perturbation and chemical biokinetics in the culture medium serve to calibrate the toxicity pathway and virtual tissue models, which can then help predict PoDs in response to chemical dosimetry experienced by cells in vivo. Two types of in vitro to in vivo extrapolation (IVIVE) are needed. (1) For toxic effects involving systemic regulations, such as endocrine disruption, organism-level adverse outcome pathway (AOP) models are needed to extrapolate in vitro toxicity pathway perturbation to in vivo PoD. (2) Physiologically-based toxicokinetic (PBTK) modeling is needed to extrapolate in vitro PoD dose metrics into external doses for expected exposure scenarios. Linked PBTK and TD models can explore the parameter space to recapitulate human population variability in response to chemical insults. While challenges remain for applying these modeling tools to support in vitro toxicity testing, they open the door toward population-stratified and personalized risk assessment.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Jin Li
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | - Alistair Middleton
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | - Sudin Bhattacharya
- Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Rory B Conolly
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Durham, NC, United States
| |
Collapse
|
50
|
Nikolic M, Sustersic T, Filipovic N. In vitro Models and On-Chip Systems: Biomaterial Interaction Studies With Tissues Generated Using Lung Epithelial and Liver Metabolic Cell Lines. Front Bioeng Biotechnol 2018; 6:120. [PMID: 30234106 PMCID: PMC6129577 DOI: 10.3389/fbioe.2018.00120] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022] Open
Abstract
In vitro models are very important in medicine and biology, because they provide an insight into cells' and microorganisms' behavior. Since these cells and microorganisms are isolated from their natural environment, these models may not completely or precisely predict the effects on the entire organism. Improvement in this area is secured by organ-on-a-chip development. The organ-on-a-chip assumes cells cultured in a microfluidic chip. The chip simulates bioactivities, mechanics and physiological behavior of organs or organ systems, generating artificial organs in that way. There are several cell lines used so far for each tested artificial organ. For lungs, mostly used cell lines are 16HBE, A549, Calu-3, NHBE, while mostly used cell lines for liver are HepG2, Hep 3B, TPH1, etc. In this paper, state of the art for lung and liver organ-on-a-chip is presented, together with the established in vitro testing on lung and liver cell lines, with the emphasis on Calu-3 (for lung cell lines) and Hep-G2 (for liver cell lines). Primary focus in this review is to discuss different researches on the topics of lung and liver cell line models, approaches in determining fate and transport, cell partitioning, cell growth and division, as well as cell dynamics, meaning toxicity and effects. The review is finalized with current research gaps and problems, stating potential future developments in the field.
Collapse
Affiliation(s)
- Milica Nikolic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
- Steinbeis Advanced Risk Technologies Institute doo Kragujevac, Kragujevac, Serbia
| | - Tijana Sustersic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
- Steinbeis Advanced Risk Technologies Institute doo Kragujevac, Kragujevac, Serbia
- Bioengineering Research and Development Center, Kragujevac, Serbia
| | - Nenad Filipovic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
- Steinbeis Advanced Risk Technologies Institute doo Kragujevac, Kragujevac, Serbia
- Bioengineering Research and Development Center, Kragujevac, Serbia
| |
Collapse
|