1
|
Mohammadkhani MA, Shahrzad S, Haghighi M, Ghanbari R, Mohamadkhani A. Insights into Organochlorine Pesticides Exposure in the Development of Cardiovascular Diseases: A Systematic Review. ARCHIVES OF IRANIAN MEDICINE 2023; 26:592-599. [PMID: 38310416 PMCID: PMC10862093 DOI: 10.34172/aim.2023.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/22/2023] [Indexed: 02/05/2024]
Abstract
Many human diseases such as cancer, neurological diseases, autism and diabetes are associated with exposure to pesticides, especially organochlorine pesticides. However, pesticide exposure is also associated with cardiovascular disease (CVD) as the leading cause of death worldwide. In this systematic review, results on the link between organochlorine pesticide pollution and CVD were collected from databases (Medline (PubMed), Scopus and Science Direct) in May 2022 from studies published between 2010 and 2022. A total of 24 articles were selected for this systematic review. Sixteen articles were extracted by reviewers using a standardized form that included cross-sectional, cohort, and ecological studies that reported exposure to organochlorine pesticides in association with increased CVD risk. In addition, eight articles covering molecular mechanisms organochlorine pesticides and polychlorinated biphenyls (PCBs) on cardiovascular effects were retrieved for detailed evaluation. Based on the findings of the study, it seems elevated circulating levels of organochlorine pesticides and PCBs increase the risk of coronary heart disease, especially in early life exposure to these pesticides and especially in men. Changes in the regulatory function of peroxisome proliferator-activated γ receptor (PPARγ), reduction of paroxonase activity (PON1), epigenetic changes of histone through induction of reactive oxygen species, vascular endothelial inflammation with miR-expression 126 and miR-31, increased collagen synthesis enzymes in the extracellular matrix and left ventricular hypertrophy (LVH) and fibrosis are mechanisms by which PCBs increase the risk of CVD. According to this systematic review, organochlorine pesticide exposure is associated with increased risk of CVD and CVD mortality through the atherogenic and inflammatory molecular mechanism involving fatty acid and glucose metabolism.
Collapse
Affiliation(s)
| | - Soraya Shahrzad
- Department of Cardiology, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Haghighi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Ghanbari
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Donat-Vargas C, Schillemans T, Kiviranta H, Rantakokko P, de Faire U, Arrebola JP, Wolk A, Leander K, Åkesson A. Blood Levels of Organochlorine Contaminants Mixtures and Cardiovascular Disease. JAMA Netw Open 2023; 6:e2333347. [PMID: 37698859 PMCID: PMC10498337 DOI: 10.1001/jamanetworkopen.2023.33347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/27/2023] [Indexed: 09/13/2023] Open
Abstract
Importance Cardiovascular toxic effects derived from high exposures to individual organochlorine compounds are well documented. However, there is no evidence on low but continuous exposure to combined organochlorine compounds in the general population. Objective To evaluate the association of combined exposure to several organochlorine compounds, including organochlorine pesticides and polychlorinated biphenyls, with incident cardiovascular disease (CVD) in the general population. Design, Setting, and Participants This prospective nested case-control study included data from 2 cohorts: the Swedish Mammography Cohort-Clinical (SMC-C) and the Cohort of 60-Year-Olds (60YO), with matched case-control pairs based on age, sex, and sample date. Baseline blood sampling occurred from November 2003 to September 2009 (SMC-C) and from August 1997 to March 1999 (60YO), with follow-up through December 2017 (SMC-C) and December 2014 (60YO). Participants with myocardial infarction or ischemic stroke were matched with controls for composite CVD evaluation. Data were analyzed from September 2020 to May 2023. Exposures A total of 25 organochlorine compounds were measured in blood at baseline by gas chromatography-triple quadrupole mass spectrometry. For 7 compounds, more than 75% of the samples were lower than the limit of detection and not included. Main Outcomes and Measures Incident cases of primary myocardial infarction and ischemic stroke were ascertained via linkage to the National Patient Register (International Statistical Classification of Diseases and Related Health Problems, Tenth Revision codes I21 and I63). The quantile-based g-computation method was used to estimate the association between the combined exposure to several organochlorine compounds and composite CVD. Results Of 1528 included participants, 1024 (67.0%) were female, and the mean (SD) age was 72 (7.0) years in the SMC-C and 61 (0.1) years in the 60YO. The odds ratio of composite CVD was 1.71 (95% CI, 1.11-2.64) per 1-quartile increment of total organochlorine compounds mixture. Organochlorinated pesticides were the largest contributors, and β-hexachlorocyclohexane and transnonachlor had the highest impact. Most of the outcome was not explained by disturbances in the main cardiometabolic risk factors, ie, high body mass index, hypertension, lipid alteration, or diabetes. Conclusions and Relevance In this prospective nested case-control study, participants with higher exposures to organochlorines had an increased probability of experiencing a cardiovascular event, the major cause of death worldwide. Measures may be required to reduce these exposures.
Collapse
Affiliation(s)
- Carolina Donat-Vargas
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- ISGlobal, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Tessa Schillemans
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hannu Kiviranta
- Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | - Panu Rantakokko
- Department of Health Security, National Institute for Health and Welfare, Kuopio, Finland
| | - Ulf de Faire
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Juan Pedro Arrebola
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Universidad de Granada, Department of Preventive Medicine and Public Health, Granada, Spain
- Instituto de Investigación Biosanitaria, Granada, Spain
| | - Alicja Wolk
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Åkesson
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Ni W, Xue Q, Zhang S, Yang X, Wu S, He X, Xiao Y, Chang W, Wen Y, Huang Y, Wang YX, Chen D, Yang CX, Pan XF. High quality diet attenuated the positive association between polychlorinated biphenyls and premature mortality among middle-aged and older adults. ENVIRONMENTAL RESEARCH 2023; 231:116031. [PMID: 37156355 DOI: 10.1016/j.envres.2023.116031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVE Polychlorinated biphenyls (PCBs) have been reported to be a risk factor for premature death, while a high diet quality is thought to lower mortality risk. We aimed to examine whether PCBs were associated with higher all-cause and cause-specific mortality risk and whether such associations could be modified by the diet quality among US middle-aged and older adults. METHODS Included were 1259 participants aged 40 years or older from the 1999-2004 National Health and Nutrition Examination surveys. Exposure to PCBs was assessed in non-fasting serum samples, and mortality status was ascertained through December 31, 2019 using the public-use, linked mortality files. Diet quality was assessed using the Healthy Eating Index-2015 based on 24-h dietary recalls. Cox proportional hazard regression was applied to assess the associations of different PCB congener groups with mortality and the modifying effect by the diet quality. RESULTS During a median follow-up of 17.75 years, 419 deaths occurred, including 131 from cardiovascular disease (CVD) and 102 from cancer. Serum concentrations of dioxin-like PCBs and non-dioxin-like PCBs were significantly associated with all-cause mortality, with hazard ratios (HRs) of 1.84 (95% confidence interval [CI], 1.10, 2.99) and 1.82 (1.09, 3.03) for extreme-tertile comparisons. A significant interaction was noted between dioxin-like PCBs and diet quality (P for interaction: 0.012), with a substantially more pronounced association among participants with a low diet quality (HR, 3.47; 95% CI: 1.29, 9.32), compared to those with a high diet quality (HR, 0.98; 95% CI: 0.40, 2.43). A similar weaker association was observed for total PCBs in participants with a high diet quality (P for interaction: 0.032). However, effect modifications by diet quality were not noted for the associations between different PCB groups and CVD mortality. CONCLUSIONS While our findings need to be validated in other populations and mechanistic studies, they may suggest that a high quality diet could potentially attenuate the harmful effects of chronic PCB exposure.
Collapse
Affiliation(s)
- Weigui Ni
- Section of Epidemiology and Population Health, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University; Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China; Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingping Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Shanshan Zhang
- Section of Epidemiology and Population Health, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University; Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China; Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xue Yang
- Section of Epidemiology and Population Health, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University; Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China; Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shiyi Wu
- Section of Epidemiology and Population Health, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University; Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China; Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingcheng He
- Section of Epidemiology and Population Health, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University; Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Yan Xiao
- Section of Epidemiology and Population Health, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University; Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China; Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenling Chang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Wen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Chun-Xia Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xiong-Fei Pan
- Section of Epidemiology and Population Health, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University; Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Yao W, Kulyar MFEA, Ding Y, Du H, Hong J, Loon KS, Nawaz S, Li J. The Effect of miR-140-5p with HDAC4 towards Growth and Differentiation Signaling of Chondrocytes in Thiram-Induced Tibial Dyschondroplasia. Int J Mol Sci 2023; 24:10975. [PMID: 37446153 DOI: 10.3390/ijms241310975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
There is evidence to suggest that microRNA-140-5p (miR-140), which acts as a suppressor, is often elevated and has a role in various malignancies. Nevertheless, neither the function nor the mechanisms in chondrocytes linked with bone disorders, e.g., tibial dyschondroplasia (TD), have been satisfactorily established. The purpose of this study was to look into the role of microRNA-140-5p (miR-140) and its interaction with HDAC4 in chondrocytes, as well as the implications for tibial dyschondroplasia (TD), with a particular focus on the relationship between low miR-140 expression and poor pathologic characteristics, as well as its physiological effects on chondrocyte growth, differentiation, and chondrodysplasia. In this investigation, we discovered that TD had a reduced expression level of the miR-140. There was a correlation between low miR-140 expression, poor pathologic characteristics, and the short overall survival of chondrocytes. Our findings show an aberrant reduction in miR-140 expression, and HDAC4 overexpression caused disengagement in resting and proliferation zones. This further resulted in uncontrolled cell proliferation, differentiation, and chondrodysplasia. Mechanistically, HDAC4 inhibited the downstream transcription factors MEF2C and Runx2 and interacted with Col-Ⅱ, Col-X, and COMP. However, miR-140 binding to the 3'-UTR of HDAC4 resulted in the growth and differentiation of chondrocytes. Moreover, the expression of HDAC4 through LMK-235 was significantly decreased, and the expression was significantly increased under ITSA-1, referring to a positive feedback circuit of miR-140 and HDAC4 for endochondral bone ossification. Furthermore, as a prospective treatment, the flavonoids of Rhizoma drynariae (TFRD) therapy increased the expression of miR-140. Compared to the TD group, TFRD treatment increased the expression of growth-promoting and chondrocyte differentiation markers, implying that TFRD can promote chondrocyte proliferation and differentiation in the tibial growth plate. Hence, directing this circuit may represent a promising target for chondrocyte-related bone disorders and all associated pathological bone conditions.
Collapse
Affiliation(s)
- Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Muhammad Fakhar-E-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Haitao Du
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajia Hong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kyein San Loon
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Role of c-Src and reactive oxygen species in cardiovascular diseases. Mol Genet Genomics 2023; 298:315-328. [PMID: 36700976 DOI: 10.1007/s00438-023-01992-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
Oxidative stress, caused by the over production of oxidants or inactivity of antioxidants, can modulate the redox state of several target proteins such as tyrosine kinases, mitogen-activated protein kinases and tyrosine phosphatases. c-Src is one such non-receptor tyrosine kinase which activates NADPH oxidases (Noxs) in response to various growth factors and shear stress. Interaction between c-Src and Noxs is influenced by cell type and primary messengers such as angiotensin II, which binds to G-protein coupled receptor and activates the intracellular signaling cascade. c-Src stimulated activation of Noxs results in elevated release of intracellular and extracellular reactive oxygen species (ROS). These ROS species disturb vascular homeostasis and cause cardiac hypertrophy, coronary artery disease, atherosclerosis and hypertension. Interaction between c-Src and ROS in the pathobiology of cardiac fibrosis is hypothesized to be influenced by cell type and stimuli. c-Src and ROS have a bidirectional relationship, thus increased ROS levels due to c-Src mediated activation of Noxs can further activate c-Src by promoting the oxidation and sulfenylation of critical cysteine residues. This review highlights the role of c-Src and ROS in mediating downstream signaling pathways underlying cardiovascular diseases. Furthermore, due to the central role of c-Src in activation of various signaling proteins involved in differentiation, migration, proliferation, and cytoskeletal reorganization of vascular cells, it is presented as therapeutic target for treating cardiovascular diseases except cardiac fibrosis.
Collapse
|
6
|
Liu Z, Huang Y, Jin X, Liu L, Gu H. PCB153 suppressed autophagy via PI3K/Akt/mTOR and RICTOR/Akt/mTOR signaling by the upregulation of microRNA-155 in rat primary chondrocytes. Toxicol Appl Pharmacol 2022; 449:116135. [PMID: 35732230 DOI: 10.1016/j.taap.2022.116135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a typical type of persistent organic pollutant. PCB exposure is associated to the occurrence and development of osteoarthritis (OA); however, the involved mechanisms have yet to be elucidated. Here, we investigated the pro-osteoarthritic effect of 2, 2', 4, 4', 5, 5'-hexachlorobiphenyl (PCB153), and the involvement of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/ mammalian target of rapamycin (mTOR) and the RICTOR/Akt/mTOR signaling pathways. PCB153 of 20 and 30 μM increased the expression of MMP13 and decreased the expression of type II collagen, in a concentration-dependent manner. PCB153 treatment reduced the expression of Beclin 1 and LC3B, but increased the expression of p62 by upregulating miR-155 levels. PCB153 treatment activated the PI3K/Akt/mTOR signaling pathway by upregulating miR-155 levels. RICTOR was involved in activating the Akt/mTOR signaling pathway, and was also regulated by miR-155. In conclusion, PCB153 could promote the degradation of the extracellular matrix of chondrocytes by upregulating miR-155 via a mechanism related to the activation of the PI3K/Akt/mTOR and RICTOR/Akt/mTOR signaling pathway, which suppressed autophagy and facilitated the development of OA. MiR-155 may represent potential therapeutic targets to alleviate the development of OA.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 110122, China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 110122, China
| | - Xin Jin
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 110122, China
| | - Li Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, 110122, China
| | - Hailun Gu
- Department of Orthopedics, Shengjing Hospital, China Medical University, 110004, China.
| |
Collapse
|
7
|
Ge C, Geng T, Cheng L, Zhang Y. Gestational exposure to PCB-118 impairs placental angiogenesis and fetal growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49126-49135. [PMID: 35217957 DOI: 10.1007/s11356-022-19240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Maternal exposure to polychlorinated biphenyls (PCBs) results in adverse effects on fetal development. However, the underlying mechanism has not been sufficiently explored in respect to particular PCBs. Placental angiogenesis plays a crucial role in feto-maternal substances transportation and fetal development. The present study was conducted to investigate the effects of prenatal PCB118 exposure on placental angiogenesis and fetal growth. The pregnant dam received PCB118 at environmentally relevant doses (0, 20, or 100 μg/kg/day) intragastrically from gestational day (GD) 7.5-18.5 to establish an in vivo model. Compared with the control group, the fetal body and placental weights of the PCB118 (100 μg/kg/day) group were significantly decreased and the intrauterine growth retardation (IUGR) rates were increased both in the female and male fetus. Furthermore, we found that placental histology was significantly impaired and the number of blood vessels was decreased in the PCB118 group. Additionally, gestational exposure to PCB118 caused anomalous mRNA expression of the genes in the placenta regarding angiogenesis. These findings indicate that PCB118 may contribute to the occurrence of IUGR by provoking placental angiogenesis dysfunction. This study clarified the adverse effects and potential mechanism of prenatal PCBs exposure on fetal growth, providing a new theoretical and experimental basis for future treatment and prevention.
Collapse
Affiliation(s)
- Caiyun Ge
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Ting Geng
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Lin Cheng
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China.
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, Hubei, People's Republic of China.
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China.
| |
Collapse
|
8
|
Olmedo-Suárez MÁ, Ramírez-Díaz I, Pérez-González A, Molina-Herrera A, Coral-García MÁ, Lobato S, Sarvari P, Barreto G, Rubio K. Epigenetic Regulation in Exposome-Induced Tumorigenesis: Emerging Roles of ncRNAs. Biomolecules 2022; 12:513. [PMID: 35454102 PMCID: PMC9032613 DOI: 10.3390/biom12040513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, including pollutants and lifestyle, constitute a significant role in severe, chronic pathologies with an essential societal, economic burden. The measurement of all environmental exposures and assessing their correlation with effects on individual health is defined as the exposome, which interacts with our unique characteristics such as genetics, physiology, and epigenetics. Epigenetics investigates modifications in the expression of genes that do not depend on the underlying DNA sequence. Some studies have confirmed that environmental factors may promote disease in individuals or subsequent progeny through epigenetic alterations. Variations in the epigenetic machinery cause a spectrum of different disorders since these mechanisms are more sensitive to the environment than the genome, due to the inherent reversible nature of the epigenetic landscape. Several epigenetic mechanisms, including modifications in DNA (e.g., methylation), histones, and noncoding RNAs can change genome expression under the exogenous influence. Notably, the role of long noncoding RNAs in epigenetic processes has not been well explored in the context of exposome-induced tumorigenesis. In the present review, our scope is to provide relevant evidence indicating that epigenetic alterations mediate those detrimental effects caused by exposure to environmental toxicants, focusing mainly on a multi-step regulation by diverse noncoding RNAs subtypes.
Collapse
Affiliation(s)
- Miguel Ángel Olmedo-Suárez
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Decanato de Ciencias de la Salud, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Sagrario Lobato
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
9
|
Di Martino MT, Arbitrio M, Caracciolo D, Cordua A, Cuomo O, Grillone K, Riillo C, Caridà G, Scionti F, Labanca C, Romeo C, Siciliano MA, D'Apolito M, Napoli C, Montesano M, Farenza V, Uppolo V, Tafuni M, Falcone F, D'Aquino G, Calandruccio ND, Luciano F, Pensabene L, Tagliaferri P, Tassone P. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1191-1224. [PMID: 35282417 PMCID: PMC8891816 DOI: 10.1016/j.omtn.2022.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among deregulated microRNAs (miRs) in human malignancies, miR-221 has been widely investigated for its oncogenic role and as a promising biomarker. Moreover, recent evidence suggests miR-221 as a fine-tuner of chronic liver injury and inflammation-related events. Available information also supports the potential of miR-221 silencing as promising therapeutic intervention. In this systematic review, we selected papers from the principal databases (PubMed, MedLine, Medscape, ASCO, ESMO) between January 2012 and December 2020, using the keywords "miR-221" and the specific keywords related to the most important hematologic and solid malignancies, and some non-malignant diseases, to define and characterize deregulated miR-221 as a valuable therapeutic target in the modern vision of molecular medicine. We found a major role of miR-221 in this view.
Collapse
Affiliation(s)
| | - Mariamena Arbitrio
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Alessia Cordua
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Onofrio Cuomo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giulio Caridà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Francesca Scionti
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Messina, Italy
| | - Caterina Labanca
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Romeo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria Anna Siciliano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria D'Apolito
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Cristina Napoli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Martina Montesano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Farenza
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Uppolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Michele Tafuni
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Federica Falcone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe D'Aquino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Francesco Luciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Licia Pensabene
- Department of Surgical and Medical Sciences, Magna Græcia University, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
10
|
Yang B, Ye Z, Wang Y, Guo H, Lehmler HJ, Huang R, Song E, Song Y. Evaluation of Early Biomarkers of Atherosclerosis Associated with Polychlorinated Biphenyl Exposure: An in Vitro and in Vivo Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:37011. [PMID: 35349355 PMCID: PMC8963524 DOI: 10.1289/ehp9833] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Miscellaneous cardiovascular risk factors have been defined, but the contribution of environmental pollutants exposure on cardiovascular disease (CVD) remains underappreciated. OBJECTIVE We investigated the potential impact of typical environmental pollutant exposure on atherogenesis and its underlying mechanisms. METHODS We used human umbilical vein endothelial cells (HUVECs) and apolipoprotein E knockout (ApoE-/-) mice to investigate how 2,3,5-trichloro-6-phenyl-[1,4]-benzoquinone (PCB29-pQ, a toxic polychlorinated biphenyl metabolite) affects atherogenesis and identified early biomarkers of CVD associated with PCB29-pQ exposures. Then, we used long noncoding RNAs (lncRNAs) HDAC7-AS1-overexpressing ApoE-/- mice and apolipoprotein E/caveolin 1 double-knockout (ApoE-/-/CAV1-/-) mice to address the role of these early biomarkers in PCB29-pQ-induced atherogenesis. Plasma samples from patients with coronary heart disease (CHD) were also used to confirm our findings. RESULTS Our data indicate that lncRNA HDAC7-AS1 bound to MIR-7-5p via argonaute 2 in PCB29-pQ-challenged HUVECs. Our mRNA sequencing assay identified transforming growth factor-β2 (TGF-β2) as a possible target gene of MIR-7-5p; HDAC7-AS1 sponged MIR-7-5p and inhibited the binding of TGF-β2 to MIR-7-5p. The effect of PCB29-pQ-induced endothelial injury, vascular inflammation, development of plaques, and atherogenesis in ApoE-/- mice was greater with MIR-7-5p-mediated TGF-β2 inhibition, whereas HDAC7-AS1-overexpressing ApoE-/- mice and ApoE-/-/CAV1-/- mice showed the opposite effect. Consistently, plasma levels of HDAC7-AS1 and MIR-7-5p were found to be significantly associated individuals diagnosed with CHD. DISCUSSIONS These findings demonstrated that a mechanism-based, integrated-omics approach enabled the identification of potentially clinically relevant diagnostic indicators and therapeutic targets of CHD mediated by environmental contaminants using in vitro and in vivo models of HUVECs and ApoE-/- and ApoE-/-/CAV1-/- mice. https://doi.org/10.1289/EHP9833.
Collapse
Affiliation(s)
- Bingwei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhishuai Ye
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yawen Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Hongzhou Guo
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Goodman S, Chappell G, Guyton KZ, Pogribny IP, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108408. [PMID: 35690411 PMCID: PMC9188653 DOI: 10.1016/j.mrrev.2021.108408] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
Epigenetic alterations, such as changes in DNA methylation, histones/chromatin structure, nucleosome positioning, and expression of non-coding RNAs, are recognized among key characteristics of carcinogens; they may occur independently or concomitantly with genotoxic effects. While data on genotoxicity are collected through standardized guideline tests, data collected on epigenetic effects is far less uniform. In 2016, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints to better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints. Since then, the number of studies of epigenetic effects of chemicals has nearly doubled. This review stands as an update on epigenetic alterations induced by occupational and environmental human carcinogens that were previously and recently classified as Group 1 by the International Agency for Research on Cancer. We found that the evidence of epigenetic effects remains uneven across agents. Studies of DNA methylation are most abundant, while reports concerning effects on non-coding RNA have increased over the past 5 years. By contrast, mechanistic toxicology studies of histone modifications and chromatin state alterations remain few. We found that most publications of epigenetic effects of carcinogens were studies in exposed humans or human cells. Studies in rodents represent the second most common species used for epigenetic studies in toxicology, in vivo exposures being the most predominant. Future studies should incorporate dose- and time-dependent study designs and also investigate the persistence of effects following cessation of exposure, considering the dynamic nature of most epigenetic alterations.
Collapse
Affiliation(s)
- Samantha Goodman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | | | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
12
|
Cave MC, Pinkston CM, Rai SN, Wahlang B, Pavuk M, Head KZ, Carswell GK, Nelson GM, Klinge CM, Bell DA, Birnbaum LS, Chorley BN. Circulating MicroRNAs, Polychlorinated Biphenyls, and Environmental Liver Disease in the Anniston Community Health Survey. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:17003. [PMID: 34989596 PMCID: PMC8734566 DOI: 10.1289/ehp9467] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Polychlorinated biphenyl (PCB) exposures have been associated with liver injury in human cohorts, and steatohepatitis with liver necrosis in model systems. MicroRNAs (miRs) maintain cellular homeostasis and may regulate the response to environmental stress. OBJECTIVES We tested the hypothesis that specific miRs are associated with liver disease and PCB exposures in a residential cohort. METHODS Sixty-eight targeted hepatotoxicity miRs were measured in archived serum from 734 PCB-exposed participants in the cross-sectional Anniston Community Health Survey. Necrotic and other liver disease categories were defined by serum keratin 18 (K18) biomarkers. Associations were determined between exposure biomarkers (35 ortho-substituted PCB congeners) and disease biomarkers (highly expressed miRs or previously measured cytokines), and Ingenuity Pathway Analysis was performed. RESULTS The necrotic liver disease category was associated with four up-regulated miRs (miR-99a-5p, miR-122-5p, miR-192-5p, and miR-320a) and five down-regulated miRs (let-7d-5p, miR-17-5p, miR-24-3p, miR-197-3p, and miR-221-3p). Twenty-two miRs were associated with the other liver disease category or with K18 measurements. Eleven miRs were associated with 24 PCBs, most commonly congeners with anti-estrogenic activities. Most of the exposure-associated miRs were associated with at least one serum hepatocyte death, pro-inflammatory cytokine or insulin resistance bioarker, or with both. Within each biomarker category, associations were strongest for the liver-specific miR-122-5p. Pathways of liver toxicity that were identified included inflammation/hepatitis, hyperplasia/hyperproliferation, cirrhosis, and hepatocellular carcinoma. Tumor protein p53 and tumor necrosis factor α were well integrated within the top identified networks. DISCUSSION These results support the human hepatotoxicity of environmental PCB exposures while elucidating potential modes of PCB action. The MiR-derived liquid liver biopsy represents a promising new technique for environmental hepatology cohort studies. https://doi.org/10.1289/EHP9467.
Collapse
Affiliation(s)
- Matthew C. Cave
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
- Superfund Research Center, University of Louisville, Louisville, Kentucky, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
- Liver Transplant Program at UofL Health–Jewish Hospital Trager Transplant Center, Louisville, Kentucky, USA
- University of Louisville Alcohol Research Center, Louisville, Kentucky, USA
| | - Christina M. Pinkston
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, Kentucky, USA
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Shesh N. Rai
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
- Superfund Research Center, University of Louisville, Louisville, Kentucky, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
- University of Louisville Alcohol Research Center, Louisville, Kentucky, USA
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, Kentucky, USA
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Banrida Wahlang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Superfund Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Marian Pavuk
- Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kimberly Z. Head
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
| | - Gleta K. Carswell
- United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Gail M. Nelson
- United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Carolyn M. Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Douglas A. Bell
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Linda S. Birnbaum
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Brian N. Chorley
- United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
13
|
Mustieles V, Pérez-Carrascosa FM, León J, Lange T, Bonde JP, Gómez-Peña C, Artacho-Cordón F, Barrios-Rodríguez R, Olmedo-Requena R, Expósito J, Jiménez-Moleón JJ, Arrebola JP. Adipose Tissue Redox Microenvironment as a Potential Link between Persistent Organic Pollutants and the 16-Year Incidence of Non-hormone-Dependent Cancer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9926-9937. [PMID: 34180659 PMCID: PMC8474112 DOI: 10.1021/acs.est.0c08180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We aimed to assess the relationships among the adipose tissue's (AT) oxidative microenvironment, in situ accumulated persistent organic pollutant (POP) concentrations, and cancer development. POP and oxidative stress levels were quantified in AT samples from 382 adults recruited within the GraMo cohort (2003-2004) in Granada (Spain). The 16-year cancer incidence was ascertained by reviewing health/administrative databases. Cox-regression models and mediation analyses were performed. The enzymes superoxide dismutase (SOD) and glutathione reductase (GRd) were positively associated with the risk of non-hormone-dependent (NHD) cancer [adjusted hazard ratio (HR) 1.76; 95% confidence interval (CI): 1.17, 2.64 and HR 2.35; 95% CI: 1.41, 3.94, respectively]. After adjustment for covariates, polychlorinated biphenyl-138 (PCB-138) (HR 1.78; 95% CI: 1.03, 3.09), β-hexachlorocyclohexane (β-HCH) (HR 1.70; 95% CI: 1.09, 2.64), and hexachlorobenzene (HR 1.54; 95% CI: 1.02, 2.33) were also positively associated with the risk of NHD cancer. Although confidence intervals included the null value, probably because of the modest number of cancer cases, we observed a potential mediation effect of SOD and GRd on the associations between β-HCH and the risk of NHD tumors (percent mediated = 33 and 47%, respectively). Our results highlight the relevance of human AT's oxidative microenvironment as a predictor of future cancer risk as well as its potential mediating role on POP-related carcinogenesis. Given their novelty, these findings should be interpreted with caution and confirmed in future studies.
Collapse
Affiliation(s)
- Vicente Mustieles
- Center
for Biomedical Research (CIBM), University
of Granada, Instituto de Investigación Biosanitaria Ibs GRANADA, 18016 Granada, Spain
- Consortium
for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología
y Salud Pública, CIBERESP), 28029 Madrid, Spain
- Department
of Radiology and Physical Medicine, University
of Granada, 18016 Granada, Spain
| | - Francisco M. Pérez-Carrascosa
- Instituto
de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Radiotherapy
and Oncology Department, University Hospital
Virgen de las Nieves Granada, 18014 Granada, Spain
| | - Josefa León
- Instituto
de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Unidad
de
Gestión Clínica de Aparato Digestivo, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
| | - Theis Lange
- Section
of Biostatistics, Department of Public Health, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Jens-Peter Bonde
- Department
of Occupational and Environmental Medicine, Bispebjerg University Hospital, Bispebjerg Bakke 23F, 2400 Copenhagen NV, Denmark
| | - Celia Gómez-Peña
- Instituto
de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Unidad
de
Gestión Clínica de Aparato Digestivo, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
| | - Francisco Artacho-Cordón
- Consortium
for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología
y Salud Pública, CIBERESP), 28029 Madrid, Spain
- Department
of Radiology and Physical Medicine, University
of Granada, 18016 Granada, Spain
- Instituto
de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
| | - Rocío Barrios-Rodríguez
- Consortium
for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología
y Salud Pública, CIBERESP), 28029 Madrid, Spain
- Instituto
de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Universidad
de Granada, Departamento de Medicina Preventiva
y Salud Pública, 18016 Granada, Spain
| | - Rocío Olmedo-Requena
- Consortium
for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología
y Salud Pública, CIBERESP), 28029 Madrid, Spain
- Instituto
de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Universidad
de Granada, Departamento de Medicina Preventiva
y Salud Pública, 18016 Granada, Spain
| | - José Expósito
- Instituto
de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Radiotherapy
and Oncology Department, University Hospital
Virgen de las Nieves Granada, 18014 Granada, Spain
| | - José J. Jiménez-Moleón
- Consortium
for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología
y Salud Pública, CIBERESP), 28029 Madrid, Spain
- Instituto
de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Universidad
de Granada, Departamento de Medicina Preventiva
y Salud Pública, 18016 Granada, Spain
| | - Juan P. Arrebola
- Consortium
for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología
y Salud Pública, CIBERESP), 28029 Madrid, Spain
- Instituto
de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Universidad
de Granada, Departamento de Medicina Preventiva
y Salud Pública, 18016 Granada, Spain
| |
Collapse
|
14
|
MicroRNA-21-Enriched Exosomes as Epigenetic Regulators in Melanomagenesis and Melanoma Progression: The Impact of Western Lifestyle Factors. Cancers (Basel) 2020; 12:cancers12082111. [PMID: 32751207 PMCID: PMC7464294 DOI: 10.3390/cancers12082111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
DNA mutation-induced activation of RAS-BRAF-MEK-ERK signaling associated with intermittent or chronic ultraviolet (UV) irradiation cannot exclusively explain the excessive increase of malignant melanoma (MM) incidence since the 1950s. Malignant conversion of a melanocyte to an MM cell and metastatic MM is associated with a steady increase in microRNA-21 (miR-21). At the epigenetic level, miR-21 inhibits key tumor suppressors of the RAS-BRAF signaling pathway enhancing proliferation and MM progression. Increased MM cell levels of miR-21 either result from endogenous upregulation of melanocytic miR-21 expression or by uptake of miR-21-enriched exogenous exosomes. Based on epidemiological data and translational evidence, this review provides deeper insights into environmentally and metabolically induced exosomal miR-21 trafficking beyond UV-irradiation in melanomagenesis and MM progression. Sources of miR-21-enriched exosomes include UV-irradiated keratinocytes, adipocyte-derived exosomes in obesity, airway epithelium-derived exosomes generated by smoking and pollution, diet-related exosomes and inflammation-induced exosomes, which may synergistically increase the exosomal miR-21 burden of the melanocyte, the transformed MM cell and its tumor environment. Several therapeutic agents that suppress MM cell growth and proliferation attenuate miR-21 expression. These include miR-21 antagonists, metformin, kinase inhibitors, beta-blockers, vitamin D, and plant-derived bioactive compounds, which may represent new options for the prevention and treatment of MM.
Collapse
|
15
|
Miguel V, Lamas S, Espinosa-Diez C. Role of non-coding-RNAs in response to environmental stressors and consequences on human health. Redox Biol 2020; 37:101580. [PMID: 32723695 PMCID: PMC7767735 DOI: 10.1016/j.redox.2020.101580] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Environmental risk factors, including physicochemical agents, noise and mental stress, have a considerable impact on human health. This environmental exposure may lead to epigenetic reprogramming, including changes in non-coding RNAs (ncRNAs) signatures, which can contribute to the pathophysiology state. Oxidative stress is one of the results of this environmental disturbance by modifying cellular processes such as apoptosis, signal transduction cascades, and DNA repair mechanisms. In this review, we delineate environmental risk factors and their influence on (ncRNAs) in connection to disease. We focus on well-studied miRNAs and analyze the novel roles of long-non-coding-RNAs (lncRNAs). We discuss commonly regulated lncRNAs after exposure to different stressors, such as UV, heavy metals and pesticides among others, and the potential role of these lncRNA as exposure biomarkers, epigenetic regulators and potential therapeutic targets to diminish the deleterious secondary response to environmental agents. Environmental stressors induce epigenetic changes that lead to long-lasting gene expression changes and pathology development. NcRNAs, miRNAs and lncRNAs, are epigenetic modifiers susceptible to changes in expression after environmental insults . LncRNAs influence cell function partnering with other biomolecules such as proteins, DNA, RNA or other ncRNAs. LncRNA dysregulation affects cell development, carcinogenesis, vascular disease and neurodegenerative disorders. ncRNA signatures can be potentially used as biomarkers to identify exposure to specific environmental stressors.
Collapse
Affiliation(s)
- Verónica Miguel
- Programme of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Programme of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Cristina Espinosa-Diez
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Grimm FA, Klaren WD, Li X, Lehmler HJ, Karmakar M, Robertson LW, Chiu WA, Rusyn I. Cardiovascular Effects of Polychlorinated Biphenyls and Their Major Metabolites. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:77008. [PMID: 32701041 PMCID: PMC7377239 DOI: 10.1289/ehp7030] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Xenobiotic metabolism is complex, and accounting for bioactivation and detoxification processes of chemicals remains among the most challenging aspects for decision making with in vitro new approach methods data. OBJECTIVES Considering the physiological relevance of human organotypic culture models and their utility for high-throughput screening, we hypothesized that multidimensional chemical-biological profiling of chemicals and their major metabolites is a sensible alternative for the toxicological characterization of parent molecules vs. metabolites in vitro. METHODS In this study, we tested 25 polychlorinated biphenyls (PCBs) [PCB 3, 11, 52, 126, 136, and 153 and their relevant metabolites (hydroxylated, methoxylated, sulfated, and quinone)] in concentration-response (10 nM-100μM) for effects in human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) and endothelial cells (ECs) (iPSC-derived and HUVECs). Functional phenotypic end points included effects on beating parameters and intracellular Ca2+ flux in CMs and inhibition of tubulogenesis in ECs. High-content imaging was used to evaluate cytotoxicity, mitochondrial integrity, and oxidative stress. RESULTS Data integration of a total of 19 physicochemical descriptors and 36 in vitro phenotypes revealed that chlorination status and metabolite class are strong predictors of the in vitro cardiovascular effects of PCBs. Oxidation of PCBs, especially to di-hydroxylated and quinone metabolites, was associated with the most pronounced effects, whereas sulfation and methoxylation of PCBs resulted in diminished bioactivity. DISCUSSION Risk characterization analysis showed that although in vitro derived effective concentrations exceeded the levels measured in the general population, risks cannot be ruled out due to the potential for population variability in susceptibility and the need to fill data gaps using read-across approaches. This study demonstrated a strategy for how in vitro data can be used to characterize human health risks from PCBs and their metabolites. https://doi.org/10.1289/EHP7030.
Collapse
Affiliation(s)
- Fabian A. Grimm
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - William D. Klaren
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Moumita Karmakar
- Department of Statistics, College of Science, Texas A&M University, College Station, Texas, USA
| | - Larry W. Robertson
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
17
|
Xu L, Guo X, Li N, Pan Q, Ma YZ. Effects of quercetin on Aroclor 1254-induced expression of CYP 450 and cytokines in pregnant rats. J Immunotoxicol 2020; 16:140-148. [PMID: 31290710 DOI: 10.1080/1547691x.2019.1604585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to investigate the protective effect of quercetin on polychlorinated biphenyls (PCB)-induced liver and embryo damage in pregnant Sprague-Dawley rats. Pregnant rats were divided into five groups, and then were orally gavaged daily with peanut oil (vehicle) or a commercial PCB mixture (Aroclor 1254) - with or without co-treatment with 75, 150, or 300 mg/kg quercetin - on gestation days (GD) 4-7. At GD 9, all rats were euthanized, and their blood, liver, and uterus were collected. Expressions of CYP450 mRNA and protein in liver, cytokines (IFNγ, IL-2, IL-4, and IL-6) and IFNγ/IL-4 ratios in liver and sera, liver morphology, and the status of implanted embryos were analyzed. The results showed Aroclor 1254 treatment alone caused hepatic cord damage (i.e. cell disorganization, swelling, decreased cytoplasm, vacuolization), and that quercetin co-treatment appeared to mitigate this damage. Similarly, levels of CYP1A1 and CYP2B1 mRNA in livers of Aroclor 1254-only-treated rats were significantly higher than those in rats co-treated with quercetin. Hepatic and sera levels of IFNγ, IL-2, IL-6, and IFNγ/IL-4 ratios, and the ratio of delayed-development embryos, all increased in Aroclor 1254-treated rats, but were relatively decreased as a result of quercetin co-treatments. IL-4 levels were decreased by Aroclor 1254 and tended to increase back to normal when quercetin was used. The results indicated that quercetin imparted a protective effect against Aroclor 1254-induced toxicity in pregnant rats, in part, by modulating levels of important pro-inflammatory cytokines and reducing induced CYP1A1 and CYP2B1 expression.
Collapse
Affiliation(s)
- Lina Xu
- a College of Life Science and Food Engineering , Hebei University of Engineering , Handan , China
| | - Xiaojun Guo
- b College of Life Sciences , Hebei Agricultural University , Baoding , China
| | - Nan Li
- c College of Animal Science and Technology , Hebei Agricultural University , Baoding , China
| | - Qing Pan
- d Langfang Polytechnic Institute , Langfang , China
| | - Yu Zhong Ma
- e College of Veterinary Medicine , Hebei Agricultural University , Baoding , China
| |
Collapse
|
18
|
Donat‐Vargas C, Bellavia A, Berglund M, Glynn A, Wolk A, Åkesson A. Cardiovascular and cancer mortality in relation to dietary polychlorinated biphenyls and marine polyunsaturated fatty acids: a nutritional-toxicological aspect of fish consumption. J Intern Med 2020; 287:197-209. [PMID: 31628875 PMCID: PMC7003855 DOI: 10.1111/joim.12995] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Co-exposure to environmental contaminants present in fish could mitigate the beneficial effects of fish consumption and possibly explain the lack of association observed for mortality in some geographical regions. OBJECTIVE To assess the independent associations of dietary exposure to polychlorinated biphenyls (PCBs) and long-chain omega-3 fish fatty acids intake with cardiovascular and cancer mortality. METHODS We used the prospective population-based Swedish Mammography Cohort and the Cohort of Swedish Men comprising 32 952 women and 36 545 men, free from cancer, cardiovascular disease and diabetes at baseline in 1998. Validated estimates of dietary PCBs and long-chain omega-3 fish fatty acids [i.e. eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] intake were obtained via a food frequency questionnaire at baseline. Information on death was ascertained through register linkage. RESULTS During a mean follow-up of 15.5 years, we ascertained 16 776 deaths. We observed for cardiovascular mortality, comparing extreme quintiles in multivariable models mutually adjusted for PCBs and EPA-DHA, dose-dependent associations for dietary PCB exposure, hazard ratio (HR) 1.31 (CI 95%: 1.08 to 1.57; P-trend 0.005) and for dietary EPA-DHA intake, HR 0.79 (CI 95%: 0.66 to 0.95; P-trend 0.041). For cancer mortality, no clear associations were discerned. CONCLUSION The beneficial effect of fish consumption on the cardiovascular system seems compromised by co-exposure to PCBs - one likely explanation for the inconsistent associations observed between fish consumption and mortality.
Collapse
Affiliation(s)
- C. Donat‐Vargas
- Unit of Cardiovascular and Nutritional EpidemiologyInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Department of Preventive Medicine and Public HealthSchool of MedicineUniversidad Autónoma de Madrid, CEI UAM+CSICMadridSpain
| | - A. Bellavia
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - M. Berglund
- Unit of Cardiovascular and Nutritional EpidemiologyInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - A. Glynn
- Department of Biomedical Sciences and Veterinary Public HealthSwedish University of Agricultural Sciences (SLU)UppsalaSweden
| | - A. Wolk
- Unit of Cardiovascular and Nutritional EpidemiologyInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - A. Åkesson
- Unit of Cardiovascular and Nutritional EpidemiologyInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
19
|
Yang B, Wang Y, Qin Q, Xia X, Liu Z, Song E, Song Y. Polychlorinated Biphenyl Quinone Promotes Macrophage-Derived Foam Cell Formation. Chem Res Toxicol 2019; 32:2422-2432. [PMID: 31680514 DOI: 10.1021/acs.chemrestox.9b00184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polychlorinated biphenyls (PCBs) are organic environmental pollutants that are accused of various toxic effects. PCB exposure is widely believed to be associated with atherosclerosis, but the underlying mechanisms are unclear. Although PCBs are easily metabolized, there is rarely information on the effects of their metabolites on atherosclerosis. Currently, we evaluate the effect of 2,3,5-trichloro-6-phenyl-[1,4]-benzoquinone (PCB29-pQ) on the critical phase of atherosclerosis development, that is, the formation of macrophage-derived foam cells. We exposed Ox-LDL-induced RAW264.7 cells to 2.5 μM and 5 μM PCB29-pQ. Varieties of evidence have demonstrated that PCB29-pQ promotes foam cell formation and develops proinflammatory cascade and cell necroptosis. In detail, we observed that PCB29-pQ increased levels of total cholesterol (TC), free cholesterol (FC), triglyceride (TG), and cholesteryl ester (CE) by increasing the cholesterol influx and reducing the cholesterol efflux. Moreover, we found that PCB29-pQ induced inflammatory cytokines, such as tumor necrosis factor (TNF-α), interleukin 6 (IL-6), and IL-1β, released by activating the mitogen-activated protein kinase (MAPK)-nuclear factor kappa B (NF-κB) inflammatory pathway. In addition, we demonstrated that PCB29-pQ induced cell necroptosis via receptor interacting protein kinases 1 and 3 (RIPK1/3) and a mixed-lineage kinase domain-like (MLKL) pathway. Finally, the overproduction of reactive oxygen species (ROS) by PCB29-pQ played significant roles in these processes, which could be reversed with an antioxidant. Overall, our results indicated that PCB29-pQ promoted the macrophage formation of foam cells, inflammation, and cell necroptosis.
Collapse
Affiliation(s)
- Bingwei Yang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| | - Yawen Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| | - Qi Qin
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| | - Xiaomin Xia
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| | - Zixuan Liu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| |
Collapse
|
20
|
Humphrey KM, Pandey S, Martin J, Hagoel T, Grand'Maison A, Ohm JE. Establishing a role for environmental toxicant exposure induced epigenetic remodeling in malignant transformation. Semin Cancer Biol 2019; 57:86-94. [PMID: 30453042 PMCID: PMC6522338 DOI: 10.1016/j.semcancer.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 01/01/2023]
Abstract
Humans are exposed to a wide variety of environmental exposures throughout their lifespan. These include both naturally occurring toxins and chemical toxicants like pesticides, herbicides, and industrial chemicals, many of which have been implicated as possible contributors to human disease susceptibility [1-3]. We, and others, have hypothesized that environmental exposures may cause adaptive epigenetic changes in regenerative cell populations and developing organisms, leading to abnormal gene expression and increased disease susceptibility later in life [3]. Common epigenetic changes include changes in miRNA expression, covalent histone modifications, and methylation of DNA. Importantly, due to their heritable nature, abnormal epigenetic modifications which occur within stem cells may be particularly deleterious. Abnormal epigenetic changes in regenerative cell linages can be passed onto a large population of daughter cells and can persist for long periods of time. It is well established that an accumulation of epigenetic changes can lead to many human diseases including cancer [4-6]. Subsequently, it is imperative that we increase our understanding of how common environmental toxins and toxicants can induce epigenetic changes, particularly in stem cell populations. In this review, we will discuss how common environmental exposures in the United States and around the world may lead to epigenetic changes and discuss potential links to human disease, including cancer.
Collapse
Affiliation(s)
- Kristen M Humphrey
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Sumali Pandey
- Minnesota State University Moorhead, Moorhead, MN, United States
| | - Jeffery Martin
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Tamara Hagoel
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Anne Grand'Maison
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Joyce E Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, United States.
| |
Collapse
|
21
|
Zhang H, Mehmood K, Jiang X, Li Z, Yao W, Zhang J, Tong X, Wang Y, Li A, Waqas M, Iqbal M, Li J. Identification of differentially expressed MiRNAs profile in a thiram-induced tibial dyschondroplasia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:83-89. [PMID: 30889403 DOI: 10.1016/j.ecoenv.2019.03.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Tetramethyl thiuram disulfide (thiram) is a dithiocarbamate, which is widely used on seeds and storing food grains. The incorporation of thiram into the food chain could be a risk for both human beings and animals. Thiram-contaminated feed has been considered a common cause of tibial dyschondrolplasia (TD) in many avian species. The molecular mechanism of action of thiram on TD involving microRNA (miRNA) is not fully understood. For this purpose, the morbidity and pathologic changes were evaluated to understand the TD, and high-throughput RNA sequencing (RNA-Seq) was performed to explore the differentially expressed miRNAs (DEGs). RT-qPCR was used to confirm the validity as compared with sequencing data. The results showed that the marked alterations in the growth plate of the TD chickens were noticeable, with shrinking cells and irregular chondrocyte columns as compared with control group. In this study, we identified total 375 (p < 0.1), 340 (p < 0.05) and 266 (p < 0.01) significant DEGs between the TD and control groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs showed that the target miRNAs were significantly enriched in different treatment groups, such as apoptosis, mRNA surveillance pathway, mitophagy-animal, etc. This study provides theoretical basis for in-depth understanding the pathogenesis of thiram-induced TD and explore the new insights towards the proposed molecular mechanism of specific miRNA as biomarkers for effective gene diagnosis and treatment of TD in broilers.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, PR China; College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Xiong Jiang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhixing Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jialu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiaole Tong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mujahid Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; Department of Pathology, Cholistan University of Veterinary & Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, PR China.
| |
Collapse
|
22
|
Åkesson A, Donat-Vargas C, Berglund M, Glynn A, Wolk A, Kippler M. Dietary exposure to polychlorinated biphenyls and risk of heart failure - A population-based prospective cohort study. ENVIRONMENT INTERNATIONAL 2019; 126:1-6. [PMID: 30776745 DOI: 10.1016/j.envint.2019.01.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Beneficial effects of fish consumption on heart failure (HF) may be modified by contaminants in fish. Polychlorinated biphenyls (PCBs) are of particular concern as they have been associated with well-established risk factors of HF, but current data are limited. OBJECTIVES We aimed to assess the association between dietary PCB exposure and risk of HF, accounting for dietary intake of long-chain omega-3 fish fatty acids. DESIGN We used the prospective population-based research structure SIMPLER (previously the Swedish Mammography Cohort and Cohort of Swedish Men) comprising 32,952 women and 36,546 men, free from cancer, cardiovascular disease and diabetes at baseline in 1997. Validated estimates of dietary PCBs and long-chain omega-3 fish fatty acids [eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA)] were obtained via a food frequency questionnaire at baseline. Incident cases of HF were ascertained through register linkage. RESULTS During an average of 12 years of follow-up, we ascertained 2736 and 3128 incident cases of HF in women and men, respectively. In multivariable-adjusted models, mutually adjusted for PCBs and EPA-DHA, the relative risk (RR) for dietary PCB exposure was 1.48 (95% CI 1.12-1.96) in women and 1.42 (95% CI 1.08-1.86) in men, comparing extreme quintiles. Corresponding RRs for EPA-DHA intake were 0.71 (95% CI 0.54-0.93) and 0.82 (95% CI 0.63-1.07), respectively. CONCLUSIONS Dietary exposure to PCBs was associated with an increased risk of HF in both women and men. EPA-DHA intake was associated with a lower risk of HF in women, with a similar tendency in men.
Collapse
Affiliation(s)
- Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | - Carolina Donat-Vargas
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | - Anders Glynn
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden.
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
23
|
Zhi H, Wu JP, Lu LM, Zhang XM, Chen XY, Wu SK, Tao J, Mai BX. Decarbromodiphenyl ether (BDE-209) promotes monocyte-endothelial adhesion in cultured human aortic endothelial cells through upregulating intercellular adhesion molecule-1. ENVIRONMENTAL RESEARCH 2019; 169:62-71. [PMID: 30419430 DOI: 10.1016/j.envres.2018.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/27/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
There is growing evidence that exposure to persistent organic pollutants (POPs) is statistically associated with incidence of cardiovascular disease (CVD) or its risk factors. Decarbromodiphenyl ether (BDE-209) is a new POP which exists extensively in human tissues, but its potential effects on CVD have so far received less focus. The adhesion of circulating monocytes to endothelial cells is one of the critical underlying steps in the initiation and development of CVD. In the present study, we investigated the effect of BDE-209 on the adhesion of THP-1 monocytes to human aortic endothelial cells (HAECs) and identified the molecular mechanisms involved. Our results showed that 6.25, 12.5 and 25 µM of BDE-209 exposures caused significant increases in monocyte-endothelial cell adhesion, in a dose-dependent manner. Mechanistically, BDE-209 exposure increased the expression of intercellular adhesion molecule-1 (ICAM-1). Moreover, the up-regulation of ICAM-1 was accompanied by a decrease in the expression of microRNA-141 (miR-141). Furthermore, the up-regulation of ICAM-1 and the increased adhesion induced by BDE-209 could be reversed by miR-141 supplement. Taken together, our results show that BDE-209 potentiates monocyte-endothelial cell interaction via miR-141/ICAM-1 pathway in HAECs.
Collapse
Affiliation(s)
- Hui Zhi
- School of Basic Medical Sciences, Wannan Medical College, Wuhu 241003, China; Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiang-Ping Wu
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China.
| | - Lin-Ming Lu
- School of Basic Medical Sciences, Wannan Medical College, Wuhu 241003, China
| | - Xue-Mei Zhang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Yun Chen
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China
| | - Si-Kang Wu
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
24
|
Wahlang B. Exposure to persistent organic pollutants: impact on women's health. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:331-348. [PMID: 30110273 DOI: 10.1515/reveh-2018-0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/18/2018] [Indexed: 05/23/2023]
Abstract
This literature review focuses on the causal relationship between persistent organic pollutants (POPs) exposure and women's health disorders, particularly cancer, cardio-metabolic events and reproductive health. Progressive industrialization has resulted in the production of a multitude of chemicals that are released into the environment on a daily basis. Environmental chemicals or pollutants are not only hazardous to our ecosystem but also lead to various health problems that affect the human population worldwide irrespective of gender, race or age. However, most environmental health studies that have been conducted, until recently, were exclusively biased with regard to sex and gender, beginning with exposure studies that were reported mostly in male, occupational workers and animal studies being carried out mostly in male rodent models. Health-related issues pertaining to women of all age groups have not been studied thoroughly and rather disregarded in most aspects of basic health science research and it is therefore pertinent that we address these limitations in environmental health. The review also addresses studies looking at the associations between health outcomes and exposures to POPs, particularly, polychlorinated biphenyls (PCBs), dioxins and pesticides, reported in cohort studies while accounting for gender differences. Considering that current levels of POPs in women can also impact future generations, informative guidelines related to dietary patterns and exposure history are needed for women of reproductive age. Additionally, occupational cohorts of highly exposed women worldwide, such as women working in manufacturing plants and female pesticide applicators are required to gather more information on population susceptibility and disease pathology.
Collapse
Affiliation(s)
- Banrida Wahlang
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, 505 S. Hancock Street, CTRB, Louisville, KY 40202-1617, USA
| |
Collapse
|
25
|
The environmental pollutant, polychlorinated biphenyls, and cardiovascular disease: a potential target for antioxidant nanotherapeutics. Drug Deliv Transl Res 2018; 8:740-759. [PMID: 28975503 DOI: 10.1007/s13346-017-0429-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite production having stopped in the 1970s, polychlorinated biphenyls (PCBs) represent persistent organic pollutants that continue to pose a serious human health risk. Exposure to PCBs has been linked to chronic inflammatory diseases, such as cardiovascular disease, type 2 diabetes, obesity, as well as hepatic disorders, endocrine dysfunction, neurological deficits, and many others. This is further complicated by the PCB's strong hydrophobicity, resulting in their ability to accumulate up the food chain and to be stored in fat deposits. This means that completely avoiding exposure is not possible, thus requiring the need to develop intervention strategies that can mitigate disease risks associated with exposure to PCBs. Currently, there is excitement in the use of nutritional compounds as a way of inhibiting the inflammation associated with PCBs, yet the suboptimal delivery and pharmacology of these compounds may not be sufficient in more acute exposures. In this review, we discuss the current state of knowledge of PCB toxicity and some of the antioxidant and anti-inflammatory nanocarrier systems that may be useful as an enhanced treatment modality for reducing PCB toxicity.
Collapse
|
26
|
Sabarwal A, Kumar K, Singh RP. Hazardous effects of chemical pesticides on human health-Cancer and other associated disorders. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 63:103-114. [PMID: 30199797 DOI: 10.1016/j.etap.2018.08.018] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 07/21/2018] [Accepted: 08/27/2018] [Indexed: 05/27/2023]
Abstract
Poisoning from pesticides is a global public health problem and accounts for nearly 300,000 deaths worldwide every year. Exposure to pesticides is inevitable; there are different modes through which humans get exposed to pesticides. The mode of exposure is an important factor as it also signifies the concentration of pesticides exposure. Pesticides are used extensively in agricultural and domestic settings. These chemicals are believed to cause many disorders in humans and wildlife. Research from past few decades has tried to answer the associated mechanism of action of pesticides in conjunction with their harmful effects. This perspective considers the past and present research in the field of pesticides and associated disorders. We have reviewed the most common diseases including cancer which are associated with pesticides. Pesticides have shown to be involved in the pathogenesis of Parkinson's and Alzheimer's diseases as well as various disorders of the respiratory and reproductive tracts. Oxidative stress caused by pesticides is an important mechanism through which many of the pesticides exert their harmful effects. Oxidative stress is known to cause DNA damage which in turn may cause malignancies and other disorders. Many pesticides have shown to modulate the gene expression at the level of non-coding RNAs, histone deacetylases, DNA methylation patterns suggesting their role in epigenetics.
Collapse
Affiliation(s)
- Akash Sabarwal
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India; Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kunal Kumar
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Rana P Singh
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India; Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
27
|
Abstract
SIGNIFICANCE RNA is a heterogeneous class of molecules with the minority being protein coding. Noncoding RNAs (ncRNAs) are involved in translation and epigenetic control mechanisms of gene expression. Recent Advances: In recent years, the number of identified ncRNAs has dramatically increased and it is now clear that ncRNAs provide a complex layer of differential gene expression control. CRITICAL ISSUES NcRNAs exhibit interplay with redox regulation. Redox regulation alters the expression of ncRNAs; conversely, ncRNAs alter the expression of generator and effector systems of redox regulation in a complex manner, which will be the focus of this review article. FUTURE DIRECTIONS Understanding the role of ncRNA in redox control will lead to the development of new strategies to alter redox programs. Given that many ncRNAs (particularly microRNAs [miRNAs]) change large gene sets, these molecules are attractive drug candidates; already, now miRNAs can be targeted in patients. Therefore, the development of ncRNA therapies focusing on these molecules is an attractive future strategy. Antioxid. Redox Signal. 29, 793-812.
Collapse
Affiliation(s)
- Matthias S Leisegang
- 1 Institute for Cardiovascular Physiology, Goethe-University , Frankfurt, Germany .,2 German Center of Cardiovascular Research (DZHK) , Partner Site RheinMain, Frankfurt, Germany
| | - Katrin Schröder
- 1 Institute for Cardiovascular Physiology, Goethe-University , Frankfurt, Germany .,2 German Center of Cardiovascular Research (DZHK) , Partner Site RheinMain, Frankfurt, Germany
| | - Ralf P Brandes
- 1 Institute for Cardiovascular Physiology, Goethe-University , Frankfurt, Germany .,2 German Center of Cardiovascular Research (DZHK) , Partner Site RheinMain, Frankfurt, Germany
| |
Collapse
|
28
|
C1q tumor necrosis factor-related protein 9 in atherosclerosis: Mechanistic insights and therapeutic potential. Atherosclerosis 2018; 276:109-116. [DOI: 10.1016/j.atherosclerosis.2018.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
|
29
|
Miguel V, Cui JY, Daimiel L, Espinosa-Díez C, Fernández-Hernando C, Kavanagh TJ, Lamas S. The Role of MicroRNAs in Environmental Risk Factors, Noise-Induced Hearing Loss, and Mental Stress. Antioxid Redox Signal 2018; 28:773-796. [PMID: 28562070 PMCID: PMC5911706 DOI: 10.1089/ars.2017.7175] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE MicroRNAs (miRNAs) are important regulators of gene expression and define part of the epigenetic signature. Their influence on every realm of biomedicine is established and progressively increasing. The impact of environment on human health is enormous. Among environmental risk factors impinging on quality of life are those of chemical nature (toxic chemicals, heavy metals, pollutants, and pesticides) as well as those related to everyday life such as exposure to noise or mental and psychosocial stress. Recent Advances: This review elaborates on the relationship between miRNAs and these environmental risk factors. CRITICAL ISSUES The most relevant facts underlying the role of miRNAs in the response to these environmental stressors, including redox regulatory changes and oxidative stress, are highlighted and discussed. In the cases wherein miRNA mutations are relevant for this response, the pertinent literature is also reviewed. FUTURE DIRECTIONS We conclude that, even though in some cases important advances have been made regarding close correlations between specific miRNAs and biological responses to environmental risk factors, a need for prospective large-cohort studies is likely necessary to establish causative roles. Antioxid. Redox Signal. 28, 773-796.
Collapse
Affiliation(s)
- Verónica Miguel
- 1 Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) , Madrid, Spain
| | - Julia Yue Cui
- 2 Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, Washington
| | - Lidia Daimiel
- 3 Instituto Madrileño de Estudios Avanzados-Alimentación (IMDEA-Food) , Madrid, Spain
| | - Cristina Espinosa-Díez
- 4 Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University , Portland, Oregon
| | | | - Terrance J Kavanagh
- 2 Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, Washington
| | - Santiago Lamas
- 1 Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) , Madrid, Spain
| |
Collapse
|
30
|
Waugh CA, Arukwe A, Jaspers VLB. Deregulation of microRNA-155 and its transcription factor NF-kB by polychlorinated biphenyls during viral infections. APMIS 2018; 126:234-240. [PMID: 29380441 DOI: 10.1111/apm.12811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
Polychlorinated biphenyls (PCBs), and similar environmental contaminants, have been linked to virus outbreaks and increased viral induced mortality since the 1970s. Yet the mechanisms behind this increased susceptibility remain elusive. It has recently been illustrated that the innate immune viral detection system is tightly regulated by small non-coding RNAs, including microRNAs (miRNAs). For virus infections miRNA-155 expression is an important host response against infection, and deregulation of this miRNA is closely associated with adverse outcomes. Thus, we designed a targeted in vitro study using primary chicken fibroblasts, first exposed to a mixture of PCBs (Arochlor-1250) before being stimulated with a synthetic RNA virus (poly I:C), to determine if PCBs have the potential to deregulate miRNA-155. In this paper, we provide the first data for the deregulation of miRNA-155 when a host is exposed to a mixture of PCBs before a virus infection. Thus, we provide important evidence that PCBs can be involved in the deregulation of important miRNA pathways involved in the immune system; thereby demonstrating novel insights into the mechanism of PCB toxicity on the immune system.
Collapse
Affiliation(s)
- Courtney A Waugh
- Environmental Toxicology, Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Augustine Arukwe
- Environmental Toxicology, Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Veerle L B Jaspers
- Environmental Toxicology, Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
31
|
Helsley RN, Zhou C. Epigenetic impact of endocrine disrupting chemicals on lipid homeostasis and atherosclerosis: a pregnane X receptor-centric view. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx017. [PMID: 29119010 PMCID: PMC5672952 DOI: 10.1093/eep/dvx017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/08/2017] [Accepted: 09/02/2017] [Indexed: 05/25/2023]
Abstract
Despite the major advances in developing diagnostic techniques and effective treatments, atherosclerotic cardiovascular disease (CVD) is still the leading cause of mortality and morbidity worldwide. While considerable progress has been achieved to identify gene variations and environmental factors that contribute to CVD, much less is known about the role of "gene-environment interactions" in predisposing individuals to CVD. Our chemical environment has significantly changed in the last few decades, and there are more than 100,000 synthetic chemicals in the market. Recent large-scale human population studies have associated exposure to certain chemicals including many endocrine disrupting chemicals (EDCs) with increased CVD risk, and animal studies have also confirmed that some EDCs can cause aberrant lipid homeostasis and increase atherosclerosis. However, the underlying mechanisms of how exposure to those EDCs influences CVD risk remain elusive. Numerous EDCs can activate the nuclear receptor pregnane X receptor (PXR) that functions as a xenobiotic sensor to regulate host xenobiotic metabolism. Recent studies have demonstrated the novel functions of PXR in lipid homeostasis and atherosclerosis. In addition to directly regulating transcription, PXR has been implicated in the epigenetic regulation of gene transcription. Exposure to many EDCs can also induce epigenetic modifications, but little is known about how the changes relate to the onset or progression of CVD. In this review, we will discuss recent research on PXR and EDCs in the context of CVD and propose that PXR may play a previously unrealized role in EDC-mediated epigenetic modifications that affect lipid homeostasis and atherosclerosis.
Collapse
Affiliation(s)
- Robert N Helsley
- Department of Pharmacology and Nutritional Sciences, Center for Metabolic Disease Research, University of Kentucky, Lexington, KY 40536, USA
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, Center for Metabolic Disease Research, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
32
|
Wu Z, He Y, Li D, Fang X, Shang T, Zhang H, Zheng X. Long noncoding RNA MEG3 suppressed endothelial cell proliferation and migration through regulating miR-21. Am J Transl Res 2017; 9:3326-3335. [PMID: 28804550 PMCID: PMC5553882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/10/2017] [Indexed: 06/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) act critical roles in many biological processes, including cell proliferation, apoptosis, development, invasion and migration. LncRNA maternally expressed gene 3 (MEG3) is found to be downregulated in several tumors; however, its role in the atherosclerosis is still unknown. In the present study, we demonstrated that MEG3 expression level was downregulated in the coronary artery disease (CAD) tissues compared to in the control tissues. We also showed that TNF-α enhanced EC cell proliferation. In addition, the expression of MEG3 was increased in EC after treated with TNF-α. Overexpression of MEG3 suppressed EC cell proliferation and inhibited the expression of cyclin D1, ki-67 and PCNA. Elevated expression of MEG3 suppressed the type I collagen, type V collagen and proteoglycan expression. In addition, we showed that elevated expression of MEG3 suppressed the miR-21 expression in the EC and promoted the expression of RhoB and PTEN, which were the direct target genes of miR-21. We demonstrated that miR-21 expression level was upregulated in the CAD tissues compared to in the control tissues. Moreover, miR-21 expression was reversely correlated with MEG3 expression in the CAD tissues. Overexpression of MEG3 suppressed EC cell proliferation and type I collagen, type V collagen and proteoglycan expression through inhibiting miR-21 expression. These results suggested that MEG3 played a critical role in regulating EC proliferation and type I collagen, type V collagen and proteoglycan expression partly through suppressing miR-21 expression.
Collapse
Affiliation(s)
- Ziheng Wu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, Zhejiang, People’s Republic of China
| | - Yangyan He
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, Zhejiang, People’s Republic of China
| | - Donglin Li
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, Zhejiang, People’s Republic of China
| | - Xin Fang
- Department of Vascular Surgery, Hangzhou First People’s HospitalHangzhou 310000, People’s Republic of China
| | - Tao Shang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, Zhejiang, People’s Republic of China
| | - Hongkun Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, Zhejiang, People’s Republic of China
| | - Xiangtao Zheng
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325015, People’s Republic of China
| |
Collapse
|
33
|
Hoffman JB, Petriello MC, Hennig B. Impact of nutrition on pollutant toxicity: an update with new insights into epigenetic regulation. REVIEWS ON ENVIRONMENTAL HEALTH 2017; 32:65-72. [PMID: 28076319 PMCID: PMC5489226 DOI: 10.1515/reveh-2016-0041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/09/2016] [Indexed: 05/03/2023]
Abstract
Exposure to environmental pollutants is a global health problem and is associated with the development of many chronic diseases, including cardiovascular disease, diabetes and metabolic syndrome. There is a growing body of evidence that nutrition can both positively and negatively modulate the toxic effects of pollutant exposure. Diets high in proinflammatory fats, such as linoleic acid, can exacerbate pollutant toxicity, whereas diets rich in bioactive and anti-inflammatory food components, including omega-3 fatty acids and polyphenols, can attenuate toxicant-associated inflammation. Previously, researchers have elucidated direct mechanisms of nutritional modulation, including alteration of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, but recently, increased focus has been given to the ways in which nutrition and pollutants affect epigenetics. Nutrition has been demonstrated to modulate epigenetic markers that have been linked either to increased disease risks or to protection against diseases. Overnutrition (i.e. obesity) and undernutrition (i.e. famine) have been observed to alter prenatal epigenetic tags that may increase the risk of offspring developing disease later in life. Conversely, bioactive food components, including curcumin, have been shown to alter epigenetic markers that suppress the activation of NF-κB, thus reducing inflammatory responses. Exposure to pollutants also alters epigenetic markers and may contribute to inflammation and disease. It has been demonstrated that pollutants, via epigenetic modulations, can increase the activation of NF-κB and upregulate microRNAs associated with inflammation, cardiac injury and oxidative damage. Importantly, recent evidence suggests that nutritional components, including epigallocatechin gallate (EGCG), can protect against pollutant-induced inflammation through epigenetic regulation of proinflammatory target genes of NF-κB. Further research is needed to better understand how nutrition can modulate pollutant toxicity through epigenetic regulation. Therefore, the objective of this review is to elucidate the current evidence linking epigenetic changes to pollutant-induced diseases and how this regulation may be modulated by nutrients allowing for the development of future personalized lifestyle interventions.
Collapse
Affiliation(s)
- Jessie B Hoffman
- Superfund Research Center, University of Kentucky, Lexington, KY 40536
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Michael C Petriello
- Superfund Research Center, University of Kentucky, Lexington, KY 40536
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, KY 40536
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536
- Correspondence should be directed to: Bernhard Hennig, 900 S. Limestone Street, Superfund Research Center, University of Kentucky, Lexington, KY 40536, USA. Tel.: +1 859-218-1343; fax: +1 859-257-1811;
| |
Collapse
|
34
|
Ljunggren SA, Helmfrid I, Norinder U, Fredriksson M, Wingren G, Karlsson H, Lindahl M. Alterations in high-density lipoprotein proteome and function associated with persistent organic pollutants. ENVIRONMENT INTERNATIONAL 2017; 98:204-211. [PMID: 27865523 DOI: 10.1016/j.envint.2016.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/16/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
There is a growing body of evidence that persistent organic pollutants (POPs) may increase the risk for cardiovascular disease (CVD), but the mechanisms remain unclear. High-density lipoprotein (HDL) acts protective against CVD by different processes, and we have earlier found that HDL from subjects with CVD contains higher levels of POPs than healthy controls. In the present study, we have expanded analyses on the same individuals living in a contaminated community and investigated the relationship between the HDL POP levels and protein composition/function. HDL from 17 subjects was isolated by ultracentrifugation. HDL protein composition, using nanoliquid chromatography tandem mass spectrometry, and antioxidant activity were analyzed. The associations of 16 POPs, including polychlorinated biphenyls (PCBs) and organochlorine pesticides, with HDL proteins/functions were investigated by partial least square and multiple linear regression analysis. Proteomic analyses identified 118 HDL proteins, of which ten were significantly (p<0.05) and positively associated with the combined level of POPs or with highly chlorinated PCB congeners. Among these, cholesteryl ester transfer protein and phospholipid transfer protein, as well as the inflammatory marker serum amyloid A, were found. The serum paraoxonase/arylesterase 1 activity was inversely associated with POPs. Pathway analysis demonstrated that up-regulated proteins were associated with biological processes involving lipoprotein metabolism, while down-regulated proteins were associated with processes such as negative regulation of proteinases, acute phase response, platelet degranulation, and complement activation. These results indicate an association between POP levels, especially highly chlorinated PCBs, and HDL protein alterations that may result in a less functional particle. Further studies are needed to determine causality and the importance of other environmental factors. Nevertheless, this study provides a first insight into a possible link between exposure to POPs and risk of CVD.
Collapse
Affiliation(s)
- Stefan A Ljunggren
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Ingela Helmfrid
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Ulf Norinder
- Swedish Toxicology Sciences Research Center, Södertälje, Sweden.
| | - Mats Fredriksson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Gun Wingren
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Helen Karlsson
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Mats Lindahl
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|