1
|
Yu HY, Gupta S, Zhou Z. Removal of metals and assimilable organic carbon by activated carbon and reverse osmosis point-of-use water filtration systems. CHEMOSPHERE 2024; 365:143251. [PMID: 39233301 DOI: 10.1016/j.chemosphere.2024.143251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Activated carbon (AC) systems and reverse osmosis (RO) systems are commonly used point-of-use (POU) water filtration systems for removing trace-level contaminants in tap water to protect human health. However, limited research has been done to evaluate their effectiveness in removing heavy metals like manganese (Mn) and uranium (U), or to assess the potential for undesired microbial growth within POU systems, which can reduce their treatment efficiency. This study aimed to systematically evaluate the removal of metals and assimilable organic carbon (AOC) in POU systems. AC systems were operated to 200% of their designed treatment capacities and RO systems were run for three weeks. The results showed that AC systems were generally ineffective at removing metals from drinking water, while RO systems effectively removed them. Both Mn and U were poorly removed by AC systems. Calcium (Ca) and magnesium (Mg) were poorly removed by AC systems, with efficiencies of less than 1%. Iron (Fe) removal by AC systems varied between 61% and 84%. Copper (Fe), likely due to its low influent concentration (<30 μg L-1), was effectively removed by AC systems with efficiencies over 95%. In contrast, RO systems consistently removed all metals effectively. Mn and U removal in RO systems exceeded 95%, while Ca, Mn, Fe, and Cu were all removed with efficiencies greater than 98%. AOC was effectively removed from all AC and RO systems, but with high variability in removal efficiency, which is likely attributed to the heterogeneity of biofilm and microbial growth within the POU systems. The new knowledge generated from this study can improve our understanding of chemical contaminant removal in POU systems and inform the development of better strategies for designing and operating POU systems to remove chemical contaminants in drinking water and mitigate their associated health risks.
Collapse
Affiliation(s)
- Hsin-Yin Yu
- Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Shreya Gupta
- Civil and Construction Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhi Zhou
- Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Civil and Construction Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Arora T, Sharma G, Prashar V, Singh R, Sharma A, Changotra H, Parkash J. Mechanistic Evaluation of miRNAs and Their Targeted Genes in the Pathogenesis and Therapeutics of Parkinson's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04261-x. [PMID: 38823001 DOI: 10.1007/s12035-024-04261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
MicroRNA (miRNA) are usually 18-25 nucleotides long non-coding RNA targeting post-transcriptional regulation of genes involved in various biological processes. The function of miRNA is essential for maintaining a homeostatic cellular condition, regulating autophagy, cellular motility, and inflammation. Dysregulation of miRNA is responsible for multiple disorders, including neurodegeneration, which has emerged as a severe problem in recent times and has verified itself as a life-threatening condition that can be understood by the continuous destruction of neurons affecting various cognitive and motor functions. Parkinson's disease (PD) is the second most common, permanently debilitating neurodegenerative disorder after Alzheimer's, mainly characterized by uncontrolled tremor, stiffness, bradykinesia or akinesia (slowness in movement), and post-traumatic stress disorder. PD is mainly caused by the demolition of the primary dopamine neurotransmitter secretory cells and dopaminergic or dopamine secretory neurons in the substantia nigra pars compacta of the midbrain, which are majorly responsible for motor functions. In this study, a systematic evaluation of research articles from year 2017 to 2022 was performed on multiple search engines, and lists of miRNA being dysregulated in PD in different body components were generated. This study highlighted miR-7, miR-124, miR-29 family, and miR-425, showing altered expression levels during PD's progression, further regulating the expression of multiple genes responsible for PD.
Collapse
Affiliation(s)
- Tania Arora
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Gaurav Sharma
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Vikash Prashar
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Randeep Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Arti Sharma
- Department of Computational Biology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143101, Punjab, India
| | - Jyoti Parkash
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
3
|
Naimi N, Seyedmirzaei H, Hassannejad Z, Soltani Khaboushan A. Advanced nanoparticle strategies for optimizing RNA therapeutic delivery in neurodegenerative disorders. Biomed Pharmacother 2024; 175:116691. [PMID: 38713941 DOI: 10.1016/j.biopha.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024] Open
Abstract
Neurodegenerative diseases affect many people worldwide, and as the population ages, the incidence of these conditions increases. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most prevalent neurodegenerative disorders worldwide. Different medicines are being used to control symptoms related to these conditions, but no treatment has yet been approved. Both genetic and environmental factors are involved in disease pathogenesis, and research on the pathophysiological pathways is still ongoing. The role of subcellular pathways and dysregulation in RNA pathways has been highlighted in pathophysiological studies, and treatment strategies focused on these pathways can be a promising approach. Many experiments have been conducted on delivering RNA cargo to the CNS to modulate various pathways involved. Yet another challenge to be faced is the effective transport of desired molecules to targets, which can be greatly hindered by distinct barriers limiting transport to the CNS, most noticeably the blood-brain barrier (BBB). Nanotechnology and the use of different nano-carriers for the delivery of nucleotides, peptides, proteins, and drug molecules are currently of great interest as these carriers help with better delivery and protection and, as a result, improve the effectiveness of the cargo. Nanocarriers can protect susceptible RNA molecules from possible degradation or destruction and improve their ability to reach the brain by enhancing BBB penetration. Different mechanisms for this process have been hypothesized. This review will go through the therapeutic application of RNA molecules in the treatment of AD and PD and the role of nanocarriers in overcoming delivery challenges and enhancing efficacy.
Collapse
Affiliation(s)
- Narges Naimi
- Departement of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Homa Seyedmirzaei
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Yu G, Wu L, Su Q, Ji X, Zhou J, Wu S, Tang Y, Li H. Neurotoxic effects of heavy metal pollutants in the environment: Focusing on epigenetic mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123563. [PMID: 38355086 DOI: 10.1016/j.envpol.2024.123563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The pollution of heavy metals (HMs) in the environment is a significant global environmental issue, characterized by its extensive distribution, severe contamination, and profound ecological impacts. Excessive exposure to heavy metal pollutants can damage the nervous system. However, the mechanisms underlying the neurotoxicity of most heavy metals are not completely understood. Epigenetics is defined as a heritable change in gene function that can influence gene and subsequent protein expression levels without altering the DNA sequence. Growing evidence indicates that heavy metals can induce neurotoxic effects by triggering epigenetic changes and disrupting the epigenome. Compared with genetic changes, epigenetic alterations are more easily reversible. Epigenetic reprogramming techniques, drugs, and certain nutrients targeting specific epigenetic mechanisms involved in gene expression regulation are emerging as potential preventive or therapeutic tools for diseases. Therefore, this review provides a comprehensive overview of epigenetic modifications encompassing DNA/RNA methylation, histone modifications, and non-coding RNAs in the nervous system, elucidating their association with various heavy metal exposures. These primarily include manganese (Mn), mercury (Hg), lead (Pb), cobalt (Co), cadmium (Cd), nickel (Ni), sliver (Ag), toxic metalloids arsenic (As), and etc. The potential epigenetic mechanisms in the etiology, precision prevention, and target therapy of various neurodevelopmental disorders or different neurodegenerative diseases are emphasized. In addition, the current gaps in research and future areas of study are discussed. From a perspective on epigenetics, this review offers novel insights for prevention and treatment of neurotoxicity induced by heavy metal pollutants.
Collapse
Affiliation(s)
- Guangxia Yu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Lingyan Wu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Qianqian Su
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xianqi Ji
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jinfu Zhou
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Siying Wu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Ying Tang
- Fujian Center for Prevention and Control Occupational Diseases and Chemical Poisoning, Fuzhou 350125, China
| | - Huangyuan Li
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
5
|
Lu W, He J, Wei S, Tang C, Ma X, Li D, Chen H, Zou Y. Circular RNA circRest regulates manganese induced cell apoptosis by targeting the mmu-miR-6914-5p/Ephb3 axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123395. [PMID: 38266697 DOI: 10.1016/j.envpol.2024.123395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/23/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Overexposure to manganese (Mn) can lead to neurotoxicity, the underlying mechanisms remain incompletely understood. Circular RNAs (circRNAs) have emerged as important regulators in various biological processes. It is plausible that circRNAs may be involved in the biological mechanisms underlying Mn caused neurotoxicity. Here, circRest was downregulated in Mn-exposed mouse neuroblastoma cells (N2a cells) by RNA sequencing and quantitative real-time PCR. When circRest was overexpressed, it led to an increase in cell viability and a decrease in apoptosis following Mn exposure. Conversely, silencing circRest resulted in opposite effects in N2a cells. Further investigation revealed that circRest acts as a mmu-miR-6914-5p sponge, and mmu-miR-6914-5p could bind and inhibit Ephb3, thereby promoting apoptosis in N2a cells. This was confirmed through RNA antisense purification and dual luciferase reporter assays. Additionally, the circRest/mmu-miR-6914-5p/Ephb3 axis may influence memory and learning in mice following Mn exposure. In conclusion, our study uncovers a novel mechanism by which circRest may attenuate Mn caused neurotoxicity via the mmu-miR-6914-5p/Ephb3 axis.
Collapse
Affiliation(s)
- Wenmin Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiacheng He
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shengtao Wei
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chuanqiao Tang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoli Ma
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Danni Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hao Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, Guangxi, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning, 530021, Guangxi, China.
| |
Collapse
|
6
|
Mohammed OA, Elballal MS, El-Husseiny AA, Khidr EG, El Tabaa MM, Elazazy O, Abd-Elmawla MA, Elesawy AE, Ibrahim HM, Abulsoud AI, El-Dakroury WA, Abdel Mageed SS, Elrebehy MA, Nomier Y, Abdel-Reheim MA, El-Husseiny HM, Mahmoud AMA, Saber S, Doghish AS. Unraveling the role of miRNAs in the diagnosis, progression, and therapeutic intervention of Parkinson's disease. Pathol Res Pract 2024; 253:155023. [PMID: 38081104 DOI: 10.1016/j.prp.2023.155023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurological disorder characterized by the impairment of the motor system, resulting in symptoms such as resting tremor, cogwheel rigidity, bradykinesia, difficulty with gait, and postural instability. The occurrence of striatal dopamine insufficiency can be attributed to a notable decline in dopaminergic neurons inside the substantia nigra pars compacta. Additionally, the development of Lewy bodies serves as a pathological hallmark of PD. While current therapy approaches for PD aim to preserve dopaminergic neurons or replenish dopamine levels in the brain, it is important to acknowledge that achieving complete remission of the condition remains elusive. MicroRNAs (miRNAs, miR) are a class of small, non-coding ribonucleic acids involved in regulating gene expression at the post-transcriptional level. The miRNAs play a crucial part in the underlying pathogenic mechanisms of several neurodegenerative illnesses, including PD. The aim of this review is to explore the role of miRNAs in regulating genes associated with the onset and progression of PD, investigate the potential of miRNAs as a diagnostic tool, assess the effectiveness of targeting specific miRNAs as an alternative therapeutic strategy to impede disease advancement, and discuss the utilization of newly developed nanoparticles for delivering miRNAs as neurodegenerative therapies.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897 Menoufia, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Henwa M Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
7
|
Pradhan SH, Liu JY, Sayes CM. Evaluating Manganese, Zinc, and Copper Metal Toxicity on SH-SY5Y Cells in Establishing an Idiopathic Parkinson's Disease Model. Int J Mol Sci 2023; 24:16129. [PMID: 38003318 PMCID: PMC10671677 DOI: 10.3390/ijms242216129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition marked by loss of motor coordination and cognitive impairment. According to global estimates, the worldwide prevalence of PD will likely exceed 12 million cases by 2040. PD is primarily associated with genetic factors, while clinically, cases are attributed to idiopathic factors such as environmental or occupational exposure. The heavy metals linked to PD and other neurodegenerative disorders include copper, manganese, and zinc. Chronic exposure to metals induces elevated oxidative stress and disrupts homeostasis, resulting in neuronal death. These metals are suggested to induce idiopathic PD in the literature. This study measures the effects of lethal concentration at 10% cell death (LC10) and lethal concentration at 50% cell death (LC50) concentrations of copper, manganese, and zinc chlorides on SH-SY5Y cells via markers for dopamine, reactive oxygen species (ROS) generation, DNA damage, and mitochondrial dysfunction after a 24 h exposure. These measurements were compared to a known neurotoxin to induce PD, 100 µM 6-hydroxydopamine (6-ODHA). Between the three metal chlorides, zinc was statistically different in all parameters from all other treatments and induced significant dopaminergic loss, DNA damage, and mitochondrial dysfunction. The LC50 of manganese and copper had the most similar response to 6-ODHA in all parameters, while LC10 of manganese and copper responded most like untreated cells. This study suggests that these metal chlorides respond differently from 6-ODHA and each other, suggesting that idiopathic PD utilizes a different mechanism from the classic PD model.
Collapse
Affiliation(s)
| | | | - Christie M. Sayes
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; (S.H.P.)
| |
Collapse
|
8
|
Liu J, Xie J, Xu E, Xu B, Zhou J, Zhou J, Yang Q. CircRNA hsa_circ_0000043 acts as a miR-4492 sponge to promote lung cancer progression via BDNF and STAT3 expression regulation in anti-benzo[a]pyrene-trans-7,8-dihydrodiol-9,10-epoxide-transformed 16HBE cells. Toxicol Sci 2023; 195:87-102. [PMID: 37326964 DOI: 10.1093/toxsci/kfad060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Increasing evidence shows that circular RNA (circRNA) plays an important role in the progression of lung cancer. In this study, we found that has_circ_0000043 was highly expressed in 16HBE-T human bronchial epithelial cells that were malignantly transformed by benzo[a]pyrene-trans-7,8-diol-9,10-epoxide via circRNA microarray. We verified that hsa_circ_0000043 was also significantly overexpressed in lung cancer cell lines and tissues. Moreover, hsa_circ_0000043 overexpression was positively correlated with poor clinicopathological parameters, such as tumor-node metastasis stage, distant metastasis, lymph-node metastasis, and overall survival. In vitro assays revealed that hsa_circ_0000043 inhibition suppressed 16HBE-T cell proliferation, migration, and invasion. Furthermore, hsa_circ_0000043 inhibition suppressed tumor growth in a mouse xenograft model. We discovered that hsa_circ_0000043 binds with miR-4492, acting as a miR-4492 sponge. Decreased miR-4492 expression was also associated with poor clinicopathological parameters. Thus, hsa_circ_0000043 was shown to contribute to the proliferation, malignant transformation ability, migration, and invasion of 16HBE-T cells via miR-4492 sponging and BDNF and STAT3 involvement.
Collapse
Affiliation(s)
- Jiayu Liu
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Guangzhou 511436, China
| | - Jiaying Xie
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Guangzhou 511436, China
| | - Enwu Xu
- Department of Thoracic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China
| | - Binhe Xu
- Basic Medicine College, Zunyi Medical University, Zunyi 563000, China
| | - Jiaxin Zhou
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Guangzhou 511436, China
| | - Jiazhen Zhou
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Guangzhou 511436, China
| | - Qiaoyuan Yang
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Guangzhou 511436, China
| |
Collapse
|
9
|
Tsalenchuk M, Gentleman SM, Marzi SJ. Linking environmental risk factors with epigenetic mechanisms in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:123. [PMID: 37626097 PMCID: PMC10457362 DOI: 10.1038/s41531-023-00568-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Sporadic Parkinson's disease (PD) is a progressive neurodegenerative disease, with a complex risk structure thought to be influenced by interactions between genetic variants and environmental exposures, although the full aetiology is unknown. Environmental factors, including pesticides, have been reported to increase the risk of developing the disease. Growing evidence suggests epigenetic changes are key mechanisms by which these environmental factors act upon gene regulation, in disease-relevant cell types. We present a systematic review critically appraising and summarising the current body of evidence of the relationship between epigenetic mechanisms and environmental risk factors in PD to inform future research in this area. Epigenetic studies of relevant environmental risk factors in animal and cell models have yielded promising results, however, research in humans is just emerging. While published studies in humans are currently relatively limited, the importance of the field for the elucidation of molecular mechanisms of pathogenesis opens clear and promising avenues for the future of PD research. Carefully designed epidemiological studies carried out in PD patients hold great potential to uncover disease-relevant gene regulatory mechanisms. Therefore, to advance this burgeoning field, we recommend broadening the scope of investigations to include more environmental exposures, increasing sample sizes, focusing on disease-relevant cell types, and recruiting more diverse cohorts.
Collapse
Affiliation(s)
- Maria Tsalenchuk
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London, UK.
- Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
10
|
Szelągowski A, Kozakiewicz M. A Glance at Biogenesis and Functionality of MicroRNAs and Their Role in the Neuropathogenesis of Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7759053. [PMID: 37333462 PMCID: PMC10270766 DOI: 10.1155/2023/7759053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are short, noncoding RNA transcripts. Mammalian miRNA coding sequences are located in introns and exons of genes encoding various proteins. As the central nervous system is the largest source of miRNA transcripts in living organisms, miRNA molecules are an integral part of the regulation of epigenetic activity in physiological and pathological processes. Their activity depends on many proteins that act as processors, transporters, and chaperones. Many variants of Parkinson's disease have been directly linked to specific gene mutations which in pathological conditions are cumulated resulting in the progression of neurogenerative changes. These mutations can often coexist with specific miRNA dysregulation. Dysregulation of different extracellular miRNAs has been confirmed in many studies on the PD patients. It seems reasonable to conduct further research on the role of miRNAs in the pathogenesis of Parkinson's disease and their potential use in future therapies and diagnosis of the disease. This review presents the current state of knowledge about the biogenesis and functionality of miRNAs in the human genome and their role in the neuropathogenesis of Parkinson's disease (PD)-one of the most common neurodegenerative disorders. The article also describes the process of miRNA formation which can occur in two ways-the canonical and noncanonical one. However, the main focus was on miRNA's use in in vitro and in vivo studies in the context of pathophysiology, diagnosis, and treatment of PD. Some issues, especially those regarding the usefulness of miRNAs in PD's diagnostics and especially its treatment, require further research. More standardization efforts and clinical trials on miRNAs are needed.
Collapse
Affiliation(s)
- Adam Szelągowski
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| | - Mariusz Kozakiewicz
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| |
Collapse
|
11
|
Zhang S, Wu L, Zhang J, Wang X, Yang X, Xin Y, Chen L, Li J, Niu P. Multi-omics analysis reveals Mn exposure affects ferroptosis pathway in zebrafish brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114616. [PMID: 36796209 DOI: 10.1016/j.ecoenv.2023.114616] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Manganese (Mn) accumulates in the central nervous system and can cause neurotoxicity, but the mechanisms of Mn-induced neurotoxicity remain unclear. We performed single-cell RNA sequencing (scRNA-seq) of zebrafish brain after Mn exposure and identified 10 cell types by marker genes: cholinergic neurons, dopaminergic (DA) neurons, glutaminergic neurons, GABAergic neurons, neuronal precursors, other neurons, microglia, oligodendrocyte, radial glia, and undefined cells. Each cell type has its distinct transcriptome profile. Pseudotime analysis revealed that DA neurons had a critical role in Mn-induced neurological damage. Combined with metabolomic data, chronic Mn exposure significantly impaired amino acid and lipid metabolic processes in the brain. Furthermore, we found that Mn exposure disrupted the ferroptosis signaling pathway in the DA neurons in zebrafish. Overall, our study employed joint analysis of multi-omics and revealed ferroptosis signaling pathway is a novel potential mechanism of Mn neurotoxicity.
Collapse
Affiliation(s)
- Shixuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Luli Wu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Junrou Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xueting Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Yang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ye Xin
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Chen
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jie Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Piye Niu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
12
|
Elangovan A, Venkatesan D, Selvaraj P, Pasha MY, Babu HWS, Iyer M, Narayanasamy A, Subramaniam MD, Valsala Gopalakrishnan A, Kumar NS, Vellingiri B. miRNA in Parkinson's disease: From pathogenesis to theranostic approaches. J Cell Physiol 2023; 238:329-354. [PMID: 36502506 DOI: 10.1002/jcp.30932] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is an age associated neurological disorder which is specified by cardinal motor symptoms such as tremor, stiffness, bradykinesia, postural instability, and non-motor symptoms. Dopaminergic neurons degradation in substantia nigra region and aggregation of αSyn are the classic signs of molecular defects noticed in PD pathogenesis. The discovery of microRNAs (miRNA) predicted to have a pivotal part in various processes regarding regularizing the cellular functions. Studies on dysregulation of miRNA in PD pathogenesis has recently gained the concern where our review unravels the role of miRNA expression in PD and its necessity in clinical validation for therapeutic development in PD. Here, we discussed how miRNA associated with ageing process in PD through molecular mechanistic approach of miRNAs on sirtuins, tumor necrosis factor-alpha and interleukin-6, dopamine loss, oxidative stress and autophagic dysregulation. Further we have also conferred the expression of miRNAs affected by SNCA gene expression, neuronal differentiation and its therapeutic potential with PD. In conclusion, we suggest more rigorous studies should be conducted on understanding the mechanisms and functions of miRNA in PD which will eventually lead to discovery of novel and promising therapeutics for PD.
Collapse
Affiliation(s)
- Ajay Elangovan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Dhivya Venkatesan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Priyanka Selvaraj
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Md Younus Pasha
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Harysh Winster Suresh Babu
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mahalaxmi Iyer
- Livestock Farming, & Bioresources Technology, Tamil Nadu, India
| | - Arul Narayanasamy
- Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Tamil Nadu, Chennai, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, India
| | | | - Balachandar Vellingiri
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Punjab, Bathinda, India
| |
Collapse
|
13
|
Microglial Activation in Metal Neurotoxicity: Impact in Neurodegenerative Diseases. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7389508. [PMID: 36760476 PMCID: PMC9904912 DOI: 10.1155/2023/7389508] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Neurodegenerative processes encompass a large variety of diseases with different pathological patterns and clinical features, such as Alzheimer's and Parkinson's diseases. Exposure to metals has been hypothesized to increase oxidative stress in brain cells leading to cell death and neurodegeneration. Neurotoxicity of metals has been demonstrated by several in vitro and in vivo experimental studies, and most probably, each metal has its specific pathway to trigger cell death. As a result, exposure to essential metals, such as manganese, iron, copper, zinc, and cobalt, and nonessential metals, including lead, aluminum, and cadmium, perturbs metal homeostasis at the cellular and organism levels leading to neurodegeneration. In this contribution, a comprehensive review of the molecular mechanisms by which metals affect microglia physiology and signaling properties is presented. Furthermore, studies that validate the disruption of microglia activation pathways as an essential mechanism of metal toxicity that can contribute to neurodegenerative disease are also presented and discussed.
Collapse
|
14
|
Pajarillo E, Nyarko-Danquah I, Digman A, Multani HK, Kim S, Gaspard P, Aschner M, Lee E. Mechanisms of manganese-induced neurotoxicity and the pursuit of neurotherapeutic strategies. Front Pharmacol 2022; 13:1011947. [PMID: 36605395 PMCID: PMC9808094 DOI: 10.3389/fphar.2022.1011947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
Chronic exposure to elevated levels of manganese via occupational or environmental settings causes a neurological disorder known as manganism, resembling the symptoms of Parkinson's disease, such as motor deficits and cognitive impairment. Numerous studies have been conducted to characterize manganese's neurotoxicity mechanisms in search of effective therapeutics, including natural and synthetic compounds to treat manganese toxicity. Several potential molecular targets of manganese toxicity at the epigenetic and transcriptional levels have been identified recently, which may contribute to develop more precise and effective gene therapies. This review updates findings on manganese-induced neurotoxicity mechanisms on intracellular insults such as oxidative stress, inflammation, excitotoxicity, and mitophagy, as well as transcriptional dysregulations involving Yin Yang 1, RE1-silencing transcription factor, transcription factor EB, and nuclear factor erythroid 2-related factor 2 that could be targets of manganese neurotoxicity therapies. This review also features intracellular proteins such as PTEN-inducible kinase 1, parkin, sirtuins, leucine-rich repeat kinase 2, and α-synuclein, which are associated with manganese-induced dysregulation of autophagy/mitophagy. In addition, newer therapeutic approaches to treat manganese's neurotoxicity including natural and synthetic compounds modulating excitotoxicity, autophagy, and mitophagy, were reviewed. Taken together, in-depth mechanistic knowledge accompanied by advances in gene and drug delivery strategies will make significant progress in the development of reliable therapeutic interventions against manganese-induced neurotoxicity.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Alexis Digman
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Harpreet Kaur Multani
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL, United States
| | - Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Patric Gaspard
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, United States
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
15
|
Razali K, Algantri K, Loh SP, Cheng SH, Mohamed W. Integrating nutriepigenomics in Parkinson's disease management: New promising strategy in the omics era. IBRO Neurosci Rep 2022; 13:364-372. [PMID: 36590101 PMCID: PMC9795299 DOI: 10.1016/j.ibneur.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) is the most prevalent brain motor disorder and is frequently regarded as an idiopathic and sporadic disease due to its unclear etiology. Although the pathological mechanisms of PD have already been investigated at various omics levels, no disease-modifying drugs are currently available. At the moment, treatments can only provide symptomatic relief to control or improve motor symptoms. Parkinson's disease is a multifactorial disease, the development and progression of which are influenced by multiple factors, including the genetic markups and the environment. As an indispensable component of our daily life, nutrition is considered one of the most robust environmental factors affecting our health. Consequently, depending on our dietary habits, nutrition can either induce or reduce our susceptibility to PD. Epigenetic mechanisms regulate gene expression through DNA methylation, histone modifications, and non-coding RNAs (ncRNAs) activity. Accumulating evidence from nutriepigenomics studies has reported altered epigenetic mechanisms in clinical and pre-clinical PD models, and the potential role of nutrition in modifying the changes. In addition, through nutrigenetics and nutrigenomics studies, the diet-gene, and gene-diet interactions concerning PD development and progression have been investigated. Herein, current findings on the roles of nutrition in epigenetic mechanisms underpinning PD development and progression are discussed. Recent advancements in the multi-omics approach in PD nutrition research are also underlined. The ability of nutrients to influence epigenetic mechanisms and the availability of multi-omics applications compel the immediate use of personalized nutrition as adjuvant therapy for PD.
Collapse
Affiliation(s)
- Khairiah Razali
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), 25200 Kuantan, Pahang, Malaysia
| | - Khaled Algantri
- Faculty of Medicine, Anatomy Department, Widad University College, BIM Point, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | - Su Peng Loh
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Shi-Hui Cheng
- Faculty of Science and Engineering, School of Biosciences, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Wael Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), 25200 Kuantan, Pahang, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Menoufia, Egypt
| |
Collapse
|
16
|
Zhang J, Chen Z, Chen H, Deng Y, Li S, Jin L. Recent Advances in the Roles of MicroRNA and MicroRNA-Based Diagnosis in Neurodegenerative Diseases. BIOSENSORS 2022; 12:1074. [PMID: 36551041 PMCID: PMC9776063 DOI: 10.3390/bios12121074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Neurodegenerative diseases manifest as progressive loss of neuronal structures and their myelin sheaths and lead to substantial morbidity and mortality, especially in the elderly. Despite extensive research, there are few effective treatment options for the diseases. MicroRNAs have been shown to be involved in the developmental processes of the central nervous system. Mounting evidence suggest they play an important role in the development of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, there are few reviews regarding the roles of miRNAs in neurodegenerative diseases. This review summarizes the recent developments in the roles of microRNAs in neurodegenerative diseases and presents the application of microRNA-based methods in the early diagnosis of these diseases.
Collapse
|
17
|
Suvarna V, Deshmukh K, Murahari M. miRNA and antisense oligonucleotide-based α-synuclein targeting as disease-modifying therapeutics in Parkinson's disease. Front Pharmacol 2022; 13:1034072. [PMID: 36506536 PMCID: PMC9728483 DOI: 10.3389/fphar.2022.1034072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
α-synuclein is the synaptic protein majorly involved in neuronal dysfunction and death and it is well known for the last two decades as a hallmark of Parkinson's disease. Alpha-synuclein is involved in neurodegeneration mediated through various neurotoxic pathways, majorly including autophagy or lysosomal dysregulation, mitochondrial disruption, synaptic dysfunction, and oxidative stress. Moreover, the alpha-synuclein aggregation has been associated with the development of several neurodegenerative conditions such as various forms of Parkinson's disease. The recent discovery in oligonucleotide chemistry has developed potential alpha-synuclein targeting molecules for the treatment of neurodegenerative diseases. The present review article focuses on recent advances in the applications of oligonucleotides acting via alpha-synuclein targeting mechanisms and their implication in combating Parkinson's disease. Moreover, the article emphasizes the potential of miRNAs, and antisense oligonucleotides and the challenges associated with their use in the therapeutical management of Parkinson's disease.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Kajal Deshmukh
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manikanta Murahari
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India,*Correspondence: Manikanta Murahari,
| |
Collapse
|
18
|
Huang M, Bargues-Carot A, Riaz Z, Wickham H, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Impact of Environmental Risk Factors on Mitochondrial Dysfunction, Neuroinflammation, Protein Misfolding, and Oxidative Stress in the Etiopathogenesis of Parkinson's Disease. Int J Mol Sci 2022; 23:10808. [PMID: 36142718 PMCID: PMC9505762 DOI: 10.3390/ijms231810808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
As a prevalent progressive neurodegenerative disorder, Parkinson's disease (PD) is characterized by the neuropathological hallmark of the loss of nigrostriatal dopaminergic (DAergic) innervation and the appearance of Lewy bodies with aggregated α-synuclein. Although several familial forms of PD have been reported to be associated with several gene variants, most cases in nature are sporadic, triggered by a complex interplay of genetic and environmental risk factors. Numerous epidemiological studies during the past two decades have shown positive associations between PD and several environmental factors, including exposure to neurotoxic pesticides/herbicides and heavy metals as well as traumatic brain injury. Other environmental factors that have been implicated as potential risk factors for PD include industrial chemicals, wood pulp mills, farming, well-water consumption, and rural residence. In this review, we summarize the environmental toxicology of PD with the focus on the elaboration of chemical toxicity and the underlying pathogenic mechanisms associated with exposure to several neurotoxic chemicals, specifically 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat (PQ), dichloro-diphenyl-trichloroethane (DDT), dieldrin, manganese (Mn), and vanadium (V). Our overview of the current findings from cellular, animal, and human studies of PD provides information for possible intervention strategies aimed at halting the initiation and exacerbation of environmentally linked PD.
Collapse
Affiliation(s)
- Minhong Huang
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Alejandra Bargues-Carot
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Zainab Riaz
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Hannah Wickham
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Gary Zenitsky
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Huajun Jin
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Vellareddy Anantharam
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Arthi Kanthasamy
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Anumantha G. Kanthasamy
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
19
|
Tang P, Chen C, Huang X. miR-29b Modulates Bone Marrow Mesenchymal Stem Cells (BMSCs) Differentiation and Induces Nerve Repair in Diabetic Retina Rat Model. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
microRNAs are involved in diabetic retinopathy (DR). This study intends to analyze miR-29b’s role in bone marrow mesenchymal stem cells (BMSCs) differentiation in DR rat models to induce nerve repair. BMSCs from DR rat models were cultured and transfected with miR-29b mimics and
inhibitors followed by measuring miR-29b level, cell proliferation and apoptosis. Retinal ganglion cells (RGC) were treated with high glucose for 24 h, and BMSCs and si-miR-29b-BMSC were cocultured for 24 h, respectively followed by assessing cell proliferation and apoptosis, inflammatory
cytokines by ELISA, MDA, SOD, brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) level by ELISA. MiR-29b was up-regulated in BMSCs of DR rats. miR-29b mimics significantly up-regulated miR-29b, inhibited cell proliferation and promoted apoptosis (P <
0.05), which were reversed by miR-29b inhibitor (P < 0.05). Co-culture of BMSCs with si-miR-29b-BMSC promoted RGC proliferation, inhibited apoptosis and IL-6 secretion, decreased MDA, increased SOD, BDNF and CNTF expression (P < 0.05) with more significant changes in si-miR-29b-BMSC
group (P < 0.05). In conclusion, down-regulation of miR-29b promotes BMSCs proliferation in DR rat models, inhibits BMSCs apoptosis, and promotes the recovery of retinal ganglion cell function.
Collapse
Affiliation(s)
- Ping Tang
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
| | - Chunmei Chen
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
| | - Xionggao Huang
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
| |
Collapse
|
20
|
Long noncoding RNA Sh2d3c promotes manganese-induced neuronal apoptosis through the mmu-miR-675-5p/Chmp4b/Bax axis. Toxicol Lett 2022; 365:24-35. [DOI: 10.1016/j.toxlet.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022]
|
21
|
Colony-stimulating factor 1 receptor signaling in the central nervous system and the potential of its pharmacological inhibitors to halt the progression of neurological disorders. Inflammopharmacology 2022; 30:821-842. [PMID: 35290551 DOI: 10.1007/s10787-022-00958-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Colony Stimulating Factor-1 (CSF-1)/Colony Stimulating Factor-1 Receptor (CSF-1R) signaling axis plays an essential role in the development, maintenance, and proliferation of macrophage lineage cells. Within the central nervous system, CSF-1R signaling primarily maintains microglial homeostasis. Microglia, being the resident macrophage and first responder to any neurological insults, plays critical importance in overall health of the human brain. Aberrant and sustained activation of microglia along with continued proliferation and release of neurotoxic proinflammatory cytokines have been reported in various neurological and neurodegenerative diseases. Therefore, halting the neuroinflammatory pathway via targeting microglial proliferation, which depends on CSF-1R signaling, has emerged as a potential therapeutic target for neurological disorders. However, apart from regulating the microglial function, recently it has been discovered that CSF-1R has much broader role in central nervous system. These findings limit the therapeutic utility of CSF-1R inhibitors but also highlight the need for a complete understanding of CSF-1R function within the central nervous system. Moreover, it has been found that selective inhibitors of CSF-1R may be more efficient in avoiding non-specific targeting and associated side effects. Short-term depletion of microglial population in diseased conditions have also been found to be beneficial; however, the dose and therapeutic window for optimum effects may need to be standardized further.This review summarizes the present understanding of CSF-1R function within the central nervous system. We discuss the CSF-1R signaling in the context of microglia function, crosstalk between microglia and astroglia, and regulation of neuronal cell function. We also discuss a few of the neurological disorders with a focus on the utility of CSF-1R inhibitors as potential therapeutic strategy for halting the progression of neurological diseases.
Collapse
|
22
|
Hernández RB, de Souza-Pinto NC, Kleinjans J, van Herwijnen M, Piepers J, Moteshareie H, Burnside D, Golshani A. Manganese-Induced Neurotoxicity through Impairment of Cross-Talk Pathways in Human Neuroblastoma Cell Line SH-SY5Y Differentiated with Retinoic Acid. TOXICS 2021; 9:toxics9120348. [PMID: 34941782 PMCID: PMC8704659 DOI: 10.3390/toxics9120348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/29/2023]
Abstract
Manganese (Mn) is an important element; yet acute and/or chronic exposure to this metal has been linked to neurotoxicity and neurodegenerative illnesses such as Parkinson’s disease and others via an unknown mechanism. To better understand it, we exposed a human neuroblastoma cell model (SH-SY5Y) to two Mn chemical species, MnCl2 and Citrate of Mn(II) (0–2000 µM), followed by a cell viability assay, transcriptomics, and bioinformatics. Even though these cells have been chemically and genetically modified, which may limit the significance of our findings, we discovered that by using RA-differentiated cells instead of undifferentiated SH-SY5Y cell line, both chemical species induce a similar toxicity, potentially governed by disruption of protein metabolism, with some differences. The MnCl2 altered amino acid metabolism, which affects RNA metabolism and protein synthesis. Citrate of Mn(II), however, inhibited the E3 ubiquitin ligases–target protein degradation pathway, which can lead to the buildup of damaged/unfolded proteins, consistent with histone modification. Finally, we discovered that Mn(II)-induced cytotoxicity in RA-SH-SY5Y cells shared 84 percent of the pathways involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- Raúl Bonne Hernández
- Laboratory of Bioinorganic and Environmental Toxicology—LABITA, Department of Chemistry, Federal University of São Paulo, Rua Prof. Artur Riedel, 275, Diadema 09972-270, SP, Brazil
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
- Correspondence: ; Tel.: +55-11-3385-4137 (ext. 3522)
| | - Nadja C. de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes, 748, Butantã, São Paulo 05508-900, SP, Brazil;
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER Maastricht, The Netherlands; (J.K.); (M.v.H.); (J.P.)
| | - Marcel van Herwijnen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER Maastricht, The Netherlands; (J.K.); (M.v.H.); (J.P.)
| | - Jolanda Piepers
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER Maastricht, The Netherlands; (J.K.); (M.v.H.); (J.P.)
| | - Houman Moteshareie
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
| | - Daniel Burnside
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
| | - Ashkan Golshani
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
| |
Collapse
|
23
|
Cord Blood Manganese Concentrations in Relation to Birth Outcomes and Childhood Physical Growth: A Prospective Birth Cohort Study. Nutrients 2021; 13:nu13124304. [PMID: 34959856 PMCID: PMC8705521 DOI: 10.3390/nu13124304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Gestational exposure to manganese (Mn), an essential trace element, is associated with fetal and childhood physical growth. However, it is unclear which period of growth is more significantly affected by prenatal Mn exposure. The current study was conducted to assess the associations of umbilical cord-blood Mn levels with birth outcomes and childhood continuous physical development. The umbilical cord-blood Mn concentrations of 1179 mother-infant pairs in the Sheyang mini birth cohort were measured by graphite furnace atomic absorption spectrometry (GFAAS). The association of cord-blood Mn concentrations with birth outcomes, and the BMI z-score at 1, 2, 3, 6, 7 and 8 years old, were estimated separately using generalized linear models. The relationship between prenatal Mn exposure and BMI z-score trajectory was assessed with generalized estimating equation models. The median of cord-blood Mn concentration was 29.25 μg/L. Significantly positive associations were observed between Mn exposure and ponderal index (β, regression coefficient = 0.065, 95% CI, confidence interval: 0.021, 0.109; p = 0.004). Mn exposure was negatively associated with the BMI z-score of children aged 1, 2, and 3 years (β = -0.383 to -0.249, p < 0.05), while no significant relationships were found between Mn exposure and the BMI z-score of children at the age of 6, 7, and 8 years. Prenatal Mn exposure was related to the childhood BMI z-score trajectory (β = -0.218, 95% CI: -0.416, -0.021; p = 0.030). These results indicated that prenatal Mn exposure was positively related to the ponderal index (PI), and negatively related to physical growth in childhood, which seemed most significant at an early stage.
Collapse
|
24
|
Budinger D, Barral S, Soo AKS, Kurian MA. The role of manganese dysregulation in neurological disease: emerging evidence. Lancet Neurol 2021; 20:956-968. [PMID: 34687639 DOI: 10.1016/s1474-4422(21)00238-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
Manganese is an essential trace metal. The dysregulation of manganese seen in a broad spectrum of neurological disorders reflects its importance in brain development and key neurophysiological processes. Historically, the observation of acquired manganism in miners and people who misuse drugs provided early evidence of brain toxicity related to manganese exposure. The identification of inherited manganese transportopathies, which cause neurodevelopmental and neurodegenerative syndromes, further corroborates the neurotoxic potential of this element. Moreover, manganese dyshomoeostasis is also implicated in Parkinson's disease and other neurodegenerative conditions, such as Alzheimer's disease and Huntington's disease. Ongoing and future research will facilitate the development of better targeted therapeutical strategies than are currently available for manganese-associated neurological disorders.
Collapse
Affiliation(s)
- Dimitri Budinger
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Serena Barral
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Audrey K S Soo
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK; Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK; Department of Neurology, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
25
|
Nies YH, Mohamad Najib NH, Lim WL, Kamaruzzaman MA, Yahaya MF, Teoh SL. MicroRNA Dysregulation in Parkinson's Disease: A Narrative Review. Front Neurosci 2021; 15:660379. [PMID: 33994934 PMCID: PMC8121453 DOI: 10.3389/fnins.2021.660379] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a severely debilitating neurodegenerative disease, affecting the motor system, leading to resting tremor, cogwheel rigidity, bradykinesia, walking and gait difficulties, and postural instability. The severe loss of dopaminergic neurons in the substantia nigra pars compacta causes striatal dopamine deficiency and the presence of Lewy bodies indicates a pathological hallmark of PD. Although the current treatment of PD aims to preserve dopaminergic neurons or to replace dopamine depletion in the brain, it is notable that complete recovery from the disease is yet to be achieved. Given the complexity and multisystem effects of PD, the underlying mechanisms of PD pathogenesis are yet to be elucidated. The advancement of medical technologies has given some insights in understanding the mechanism and potential treatment of PD with a special interest in the role of microRNAs (miRNAs) to unravel the pathophysiology of PD. In PD patients, it was found that striatal brain tissue and dopaminergic neurons from the substantia nigra demonstrated dysregulated miRNAs expression profiles. Hence, dysregulation of miRNAs may contribute to the pathogenesis of PD through modulation of PD-associated gene and protein expression. This review will discuss recent findings on PD-associated miRNAs dysregulation, from the regulation of PD-associated genes, dopaminergic neuron survival, α-synuclein-induced inflammation and circulating miRNAs. The next section of this review also provides an update on the potential uses of miRNAs as diagnostic biomarkers and therapeutic tools for PD.
Collapse
Affiliation(s)
- Yong Hui Nies
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nor Haliza Mohamad Najib
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | - Mohd Amir Kamaruzzaman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Tinkov AA, Paoliello MMB, Mazilina AN, Skalny AV, Martins AC, Voskresenskaya ON, Aaseth J, Santamaria A, Notova SV, Tsatsakis A, Lee E, Bowman AB, Aschner M. Molecular Targets of Manganese-Induced Neurotoxicity: A Five-Year Update. Int J Mol Sci 2021; 22:4646. [PMID: 33925013 PMCID: PMC8124173 DOI: 10.3390/ijms22094646] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding of the immediate mechanisms of Mn-induced neurotoxicity is rapidly evolving. We seek to provide a summary of recent findings in the field, with an emphasis to clarify existing gaps and future research directions. We provide, here, a brief review of pertinent discoveries related to Mn-induced neurotoxicity research from the last five years. Significant progress was achieved in understanding the role of Mn transporters, such as SLC39A14, SLC39A8, and SLC30A10, in the regulation of systemic and brain manganese handling. Genetic analysis identified multiple metabolic pathways that could be considered as Mn neurotoxicity targets, including oxidative stress, endoplasmic reticulum stress, apoptosis, neuroinflammation, cell signaling pathways, and interference with neurotransmitter metabolism, to name a few. Recent findings have also demonstrated the impact of Mn exposure on transcriptional regulation of these pathways. There is a significant role of autophagy as a protective mechanism against cytotoxic Mn neurotoxicity, yet also a role for Mn to induce autophagic flux itself and autophagic dysfunction under conditions of decreased Mn bioavailability. This ambivalent role may be at the crossroad of mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis. Yet very recent evidence suggests Mn can have toxic impacts below the no observed adverse effect of Mn-induced mitochondrial dysfunction. The impact of Mn exposure on supramolecular complexes SNARE and NLRP3 inflammasome greatly contributes to Mn-induced synaptic dysfunction and neuroinflammation, respectively. The aforementioned effects might be at least partially mediated by the impact of Mn on α-synuclein accumulation. In addition to Mn-induced synaptic dysfunction, impaired neurotransmission is shown to be mediated by the effects of Mn on neurotransmitter systems and their complex interplay. Although multiple novel mechanisms have been highlighted, additional studies are required to identify the critical targets of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia;
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
| | - Monica M. B. Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.B.P.); (A.C.M.)
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, Londrina, PR 86038-350, Brazil
| | - Aksana N. Mazilina
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Anatoly V. Skalny
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
- Laboratory of Medical Elementology, KG Razumovsky Moscow State University of Technologies and Management, 109004 Moscow, Russia
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.B.P.); (A.C.M.)
| | - Olga N. Voskresenskaya
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
| | - Jan Aaseth
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
- Research Department, Innlandet Hospital Trust, P.O. Box 104, 2381 Brumunddal, Norway
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA, Mexico City 14269, Mexico;
| | - Svetlana V. Notova
- Institute of Bioelementology, Orenburg State University, 460018 Orenburg, Russia;
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Aristides Tsatsakis
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13 Heraklion, Greece
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA;
| | - Michael Aschner
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.B.P.); (A.C.M.)
| |
Collapse
|
27
|
Ghibaudi M, Boido M, Green D, Signorino E, Berto GE, Pourshayesteh S, Singh A, Di Cunto F, Dalmay T, Vercelli A. miR-7b-3p Exerts a Dual Role After Spinal Cord Injury, by Supporting Plasticity and Neuroprotection at Cortical Level. Front Mol Biosci 2021; 8:618869. [PMID: 33869277 PMCID: PMC8044879 DOI: 10.3389/fmolb.2021.618869] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) affects 6 million people worldwide with no available treatment. Despite research advances, the inherent poor regeneration potential of the central nervous system remains a major hurdle. Small RNAs (sRNAs) 19-33 nucleotides in length are a set of non-coding RNA molecules that regulate gene expression and have emerged as key players in regulating cellular events occurring after SCI. Here we profiled a class of sRNA known as microRNAs (miRNAs) following SCI in the cortex where the cell bodies of corticospinal motor neurons are located. We identified miR-7b-3p as a candidate target given its significant upregulation after SCI in vivo and we screened by miRWalk PTM the genes predicted to be targets of miR-7b-3p (among which we identified Wipf2, a gene regulating neurite extension). Moreover, 16 genes, involved in neural regeneration and potential miR-7b-3p targets, were found to be downregulated in the cortex following SCI. We also analysed miR-7b-3p function during cortical neuron development in vitro: we observed that the overexpression of miR-7b-3p was important (1) to maintain neurons in a more immature and, likely, plastic neuronal developmental phase and (2) to contrast the apoptotic pathway; however, in normal conditions it did not affect the Wipf2 expression. On the contrary, the overexpression of miR-7b-3p upon in vitro oxidative stress condition (mimicking the SCI environment) significantly reduced the expression level of Wipf2, as observed in vivo, confirming it as a direct miR-7b-3p target. Overall, these data suggest a dual role of miR-7b-3p: (i) the induction of a more plastic neuronal condition/phase, possibly at the expense of the axon growth, (ii) the neuroprotective role exerted through the inhibition of the apoptotic cascade. Increasing the miR-7b-3p levels in case of SCI could reactivate in adult neurons silenced developmental programmes, supporting at the same time the survival of the axotomised neurons.
Collapse
Affiliation(s)
- Matilde Ghibaudi
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
- Polymers and Biomaterials, Italian Institute of Technology, Genova, Italy
| | - Marina Boido
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Darrell Green
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Elena Signorino
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Gaia Elena Berto
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Soraya Pourshayesteh
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Archana Singh
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Ferdinando Di Cunto
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Alessandro Vercelli
- Department of Neuroscience “Rita Levi Montalcini,” Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| |
Collapse
|
28
|
Yang Y, Li Y, Yang H, Guo J, Li N. Circulating MicroRNAs and Long Non-coding RNAs as Potential Diagnostic Biomarkers for Parkinson's Disease. Front Mol Neurosci 2021; 14:631553. [PMID: 33762908 PMCID: PMC7982809 DOI: 10.3389/fnmol.2021.631553] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is the world’s second most common neurodegenerative disease that is associated with age. With the aging of the population, patients with PD are increasing in number year by year. Most such patients lose their ability to self-care with disease progression, which brings an incalculable burden to individual families and society. The pathogenesis of PD is complex, and its clinical manifestations are diverse. Therefore, it is of great significance to screen for circulating biomarkers associated with PD to reveal its pathogenesis and develop objective diagnostic methods so as to prevent, control, and treat the disease. In recent years, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are considered to be effective biomarkers for various diseases due to their stability, and resistance to RNAase digestion and extreme conditions in circulating fluids. Here, we review recent advances in the detection of abnormally expressed miRNAs and lncRNAs in PD circulating fluids, and discuss the function and molecular mechanisms of plasma or serum miR-124, miR-132, miR-29, miR-221, miR-7, miR-433, and miR-153 in the regulation and progression of PD. Additionally, application of the differential expression of lncRNAs in circulating fluid in the pathological progression and diagnosis of PD is also reviewed. In short, the determination of abnormally expressed circulating miRNAs and lncRNAs will be valuable for the future diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Yimin Yang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Yanhua Li
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Yang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Jianxing Guo
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Nan Li
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Dong Y, Xiong J, Ji L, Xue X. MiR-421 Aggravates Neurotoxicity and Promotes Cell Death in Parkinson's Disease Models by Directly Targeting MEF2D. Neurochem Res 2021; 46:299-308. [PMID: 33179210 DOI: 10.1007/s11064-020-03166-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disease characterized by selective loss of dopaminergic neurons, which reduces quality of life of patients and poses a heavy burden to the society. The pathological mechanism of PD remains unclear, and increasing efforts are aimed to solve this problem. MiRNAs are a kind of small noncoding RNA regulating target gene expression. Previous studies have shown that dysregulation of miRNAs is involved in the development of PD. In the present study, we determined that miR-421 and MEF2D are increased and decreased, respectively, in a cellular model of PD. The data on the mechanism of action indicate that miR-421 directly binds to MEF2D mRNA and negatively regulates MEF2D expression. An increase in miR-421 disrupted the Bcl2/Bax system. Functional assays indicated that enhanced miR-421 promotes cell death by negative modulation of MEF2D expression. Inhibition of miR-421 or restoration of MEF2D protected neurons from neurotoxicity in cellular and animal models of PD. Our study is the first to demonstrate that miR-421 is decreased in PD models and to determine a novel putative mechanism of PD pathogenesis.
Collapse
Affiliation(s)
- Yaru Dong
- Department of Neurology, Xi'an central hospital, No. 161 Xi Wu Road, Xi'an, 710000, Shaanxi, China
| | - Jing Xiong
- Department of Neurology, Xi'an central hospital, No. 161 Xi Wu Road, Xi'an, 710000, Shaanxi, China
| | - Liya Ji
- Department of Neurology, Xi'an central hospital, No. 161 Xi Wu Road, Xi'an, 710000, Shaanxi, China
| | - Xiuyun Xue
- Department of Neurology, Xi'an central hospital, No. 161 Xi Wu Road, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
30
|
Ijomone OM, Ijomone OK, Iroegbu JD, Ifenatuoha CW, Olung NF, Aschner M. Epigenetic influence of environmentally neurotoxic metals. Neurotoxicology 2020; 81:51-65. [PMID: 32882300 PMCID: PMC7708394 DOI: 10.1016/j.neuro.2020.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
Continuous globalization and industrialization have ensured metals are an increasing aspect of daily life. Their usefulness in manufacturing has made them vital to national commerce, security and global economy. However, excess exposure to metals, particularly as a result of environmental contamination or occupational exposures, has been detrimental to overall health. Excess exposure to several metals is considered environmental risk in the aetiology of several neurological and neurodegenerative diseases. Metal-induced neurotoxicity has been a major health concern globally with intensive research to unravel the mechanisms associated with it. Recently, greater focus has been directed at epigenetics to better characterize the underlying mechanisms of metal-induced neurotoxicity. Epigenetic changes are those modifications on the DNA that can turn genes on or off without altering the DNA sequence. This review discusses how epigenetic changes such as DNA methylation, post translational histone modification and noncoding RNA-mediated gene silencing mediate the neurotoxic effects of several metals, focusing on manganese, arsenic, nickel, cadmium, lead, and mercury.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.
| | - Olayemi K Ijomone
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria; Department of Anatomy, University of Medical Sciences, Ondo, Nigeria
| | - Joy D Iroegbu
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Chibuzor W Ifenatuoha
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Nzube F Olung
- The Neuro- Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Michael Aschner
- Departments of Molecular Pharmacology and Neurosciences, Albert Einstein College of Medicine, NY, USA.
| |
Collapse
|
31
|
Aloizou AM, Siokas V, Sapouni EM, Sita N, Liampas I, Brotis AG, Rakitskii VN, Burykina TI, Aschner M, Bogdanos DP, Tsatsakis A, Hadjigeorgiou GM, Dardiotis E. Parkinson's disease and pesticides: Are microRNAs the missing link? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140591. [PMID: 32721662 DOI: 10.1016/j.scitotenv.2020.140591] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that leads to significant morbidity and decline in the quality of life. It develops due to loss of dopaminergic neurons in the substantia nigra pars compacta, and among its pathogenic factors oxidative stress plays a critical role in disease progression. Pesticides are a broad class of chemicals widely used in agriculture and households for the protection of crops from insects and fungi. Several of them have been incriminated as risk factors for PD, but the underlying mechanisms have yet to be fully understood. MicroRNAs (miRNAs) are small, non-coding RNA molecules that play an important role in regulating mRNA translation and protein synthesis. miRNA levels have been shown to be affected in several diseases as well. Since the studies on the association between pesticides and PD have yet to reach definitive conclusions, here we review recent evidence on deregulated microRNAs upon pesticide exposure, and attempt to find an overlap between miRNAs deregulated in PD and pesticides, as a missing link between the two, and enhance future research in this direction.
Collapse
Affiliation(s)
- Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| | - Efstathia-Maria Sapouni
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikoleta Sita
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Ioannis Liampas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Alexandros G Brotis
- Department of Neurosurgery, School of Medicine, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Valerii N Rakitskii
- The Federal Budgetary Establishment of Science "Federal Scientific Center of Hygiene named after F. F. Erisman" of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Oblast' 141014, Russian Federation
| | - Tatyana I Burykina
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119048 Moscow, Russian Federation
| | - Michael Aschner
- Albert Einstein College of Medicine, Bronx, NY, USA; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Dimitrios P Bogdanos
- Department of Rheumatology and clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis 40500, Larissa, Greece
| | - Aristidis Tsatsakis
- The Federal Budgetary Establishment of Science "Federal Scientific Center of Hygiene named after F. F. Erisman" of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Oblast' 141014, Russian Federation; Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119048 Moscow, Russian Federation; Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
32
|
Pyrroloquinoline Quinine and LY294002 Changed Cell Cycle and Apoptosis by Regulating PI3K-AKT-GSK3β Pathway in SH-SY5Y Cells. Neurotox Res 2020; 38:266-273. [PMID: 32385839 DOI: 10.1007/s12640-020-00210-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/28/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
To verify the role of PI3K-AKT-GSK3β pathway during manganese (Mn)-induced cell death, apoptosis, related indicators were investigated. SH-SY5Y cells were directly exposed to different concentrations of MnCl2. Then, cell viability, apoptosis, necrosis rate, and cell cycle were detected by MTT, FITC Annexin V Apoptosis Detection Kit with PI and PI staining. Then, in two intervention groups, cells were preconditioned with agonist (PQQ) and suppressant (LY294002). The cell viability decreased with a dose-response relationship (p < 0.05), while apoptosis and necrosis increased (p < 0.05). The ratio of G0/G1 and G2/M also decreased, but the percentage of S phase increased (p < 0.05). During above process, PI3K-AKT-GSK3β pathway was involved by regulating the expression of PI3K, AKT, p-AKT, and GSK3β (p < 0.05). For further research, cell cycle and apoptosis were detected pretreatment with PQQ and LY294002 before Mn exposure. The result showed cell ability, apoptosis, and necrosis rate changed obviously compared with non-pretreated group (p < 0.05). The variance of G0/G1 and G2/M ratio and percentage of S phase were also different, especially in 2.0 mM (p < 0.05). Mn can cause apoptosis and necrosis, varying cell cycle of SH-SY5Y cells, which could be changed by PQQ and LY294002 by regulating PI3K-AKT-GSK3β pathway.
Collapse
|
33
|
Wallace DR, Taalab YM, Heinze S, Tariba Lovaković B, Pizent A, Renieri E, Tsatsakis A, Farooqi AA, Javorac D, Andjelkovic M, Bulat Z, Antonijević B, Buha Djordjevic A. Toxic-Metal-Induced Alteration in miRNA Expression Profile as a Proposed Mechanism for Disease Development. Cells 2020; 9:cells9040901. [PMID: 32272672 PMCID: PMC7226740 DOI: 10.3390/cells9040901] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Toxic metals are extensively found in the environment, households, and workplaces and contaminate food and drinking water. The crosstalk between environmental exposure to toxic metals and human diseases has been frequently described. The toxic mechanism of action was classically viewed as the ability to dysregulate the redox status, production of inflammatory mediators and alteration of mitochondrial function. Recently, growing evidence showed that heavy metals might exert their toxicity through microRNAs (miRNA)—short, single-stranded, noncoding molecules that function as positive/negative regulators of gene expression. Aberrant alteration of the endogenous miRNA has been directly implicated in various pathophysiological conditions and signaling pathways, consequently leading to different types of cancer and human diseases. Additionally, the gene-regulatory capacity of miRNAs is particularly valuable in the brain—a complex organ with neurons demonstrating a significant ability to adapt following environmental stimuli. Accordingly, dysregulated miRNAs identified in patients suffering from neurological diseases might serve as biomarkers for the earlier diagnosis and monitoring of disease progression. This review will greatly emphasize the effect of the toxic metals on human miRNA activities and how this contributes to progression of diseases such as cancer and neurodegenerative disorders (NDDs).
Collapse
Affiliation(s)
- David R. Wallace
- School of Biomedical Science, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA;
| | - Yasmeen M. Taalab
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Dakahlia Governate 35516, Egypt or
- Institute of Forensic and Traffic Medicine, University of Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany;
| | - Sarah Heinze
- Institute of Forensic and Traffic Medicine, University of Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany;
| | - Blanka Tariba Lovaković
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia; (B.T.L.); (A.P.)
| | - Alica Pizent
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia; (B.T.L.); (A.P.)
| | - Elisavet Renieri
- Centre of Toxicology Science and Research, University of Crete, School of Medicine, 71601 Heraklion, Greece; (E.R.); (A.T.)
| | - Aristidis Tsatsakis
- Centre of Toxicology Science and Research, University of Crete, School of Medicine, 71601 Heraklion, Greece; (E.R.); (A.T.)
| | | | - Dragana Javorac
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Milena Andjelkovic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Zorica Bulat
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Biljana Antonijević
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
- Correspondence:
| |
Collapse
|
34
|
Li D, Li Z, Yang Y, Zeng X, Li Y, Du X, Zhu X. Circular RNAs as biomarkers and therapeutic targets in environmental chemical exposure-related diseases. ENVIRONMENTAL RESEARCH 2020; 180:108825. [PMID: 31683121 DOI: 10.1016/j.envres.2019.108825] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Chemical contamination in the environment is known to cause abnormal circular RNA (circRNA) expression through multiple exposure routes; yet, the underlying molecular mechanisms remain unclear. Non-coding RNAs (ncRNAs), especially circRNAs, play important roles in epigenetic regulation and disease pathogenesis; however, few studies have examined the function of circRNAs in chemical contamination-induced diseases. CircRNAs are covalently closed continuous loops that do not possess 5' and 3' ends, increasing their structural stability and limiting degradation by exoribonucleases. In addition, environmental chemical exposure-related diseases are often accompanied by aberrant expression of specific circRNAs and those circRNAs are often detected in tissues and body fluids. Based on these characteristics, circRNAs may serve as candidate biomarkers for the diagnosis of diseases related to environmental chemical exposure. Here, we review the generation and function of circRNAs, and the possible molecular mechanisms underlying the regulation of environmental chemical exposure-related disorders by circRNAs. This is the first comprehensive review of the relationship between environmental chemical exposure and circRNAs in chemical exposure-induced diseases.
Collapse
Affiliation(s)
- Dong Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China; College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Zeqin Li
- College of Environmental and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, China
| | - Yan Yang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Xianyin Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Youping Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Xiaogang Du
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Xiaohua Zhu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China; College of Environmental and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, China.
| |
Collapse
|
35
|
Sang Q, Liu X, Wang L, Qi L, Sun W, Wang W, Sun Y, Zhang H. CircSNCA downregulation by pramipexole treatment mediates cell apoptosis and autophagy in Parkinson's disease by targeting miR-7. Aging (Albany NY) 2019; 10:1281-1293. [PMID: 29953413 PMCID: PMC6046232 DOI: 10.18632/aging.101466] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 05/30/2018] [Indexed: 11/25/2022]
Abstract
We aimed to explore the mechanism of pramipexole (PPX) actions in the treatment of Parkinson’s disease (PD). Genes related to PD and PPX were screened through bioinformatics retrieval. The PD model was constructed by applying 1-methyl-4-phenylpyridinium (MMP+). The RNA expression levels of circSNCA, SNCA, apoptosis-related genes (BCL2, CASP3, BAX, PTEN and P53) and miR-7 were detected by qRT-PCR. Protein expression was determined by western blot. The interactions between circSNCA-miR-7-SNCA were verified by dual luciferase assay and immunofluorescence localization. Cell viability was determined by MTT assay. SNCA and circSNCA expression levels in PD were downregulated after PPX treatment, consistent with the levels of pro-apoptotic genes. CircSNCA increased SNCA expression by downregulating miR-7 in PD as a competitive endogenous RNA (ceRNA). Lower circSNCA expression was associated with the reduced expression of pro-apoptotic (CASP3, BAX, PTEN and P53) proteins. CircSNCA downregulation could decrease apoptosis and induce autophagy in PD. In conclusion, the downregulation of circSNCA by PPX treatment reduced cell apoptosis and promoted cell autophagy in PD via a mechanism that served as a miR-7 sponge to upregulate SNCA.
Collapse
Affiliation(s)
- Qiuling Sang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Xiaoyang Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Libo Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Ling Qi
- Department of Pathophysiology, Jilin Medical University, Jilin, Jilin 132013, China
| | - Wenping Sun
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Weiyao Wang
- Department of Pathophysiology, Jilin Medical University, Jilin, Jilin 132013, China
| | - Yajuan Sun
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Haina Zhang
- Department of Rehabilitation, the Second Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
36
|
Ma J, Zhang Y, Ji H, Chen L, Chen T, Guo C, Zhang S, Jia J, Niu P. Overexpression of miR-138-5p suppresses MnCl 2 -induced autophagy by targeting SIRT1 in SH-SY5Y cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:539-547. [PMID: 30672645 DOI: 10.1002/tox.22708] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
The mechanism of manganism caused by manganese (Mn), an important environmental risk factor for Parkinson's disease, is still unclear. Recent evidence suggested that autophagy participated in neurodegenerative diseases, in which microRNA played a crucial role. However, roles of microRNA in the aberrant autophagy that occurs in neurodegenerative diseases remains controversial. In nervous system, miRNA-138-5p is highly expressed and plays a key role in regulating memory and axon regeneration. Importantly, we also found that miR-138-5p expression decreased significantly after SH-SY5Y cells exposed to manganese chloride (MnCl2 ) in previous study. To explore the role of miR-138-5p in Mn-induced autophagy, autophagy associated indicators were detected. And we found that MnCl2 could induce autophagic dysregulation and inhibit expression of miR-138-5p. While the levels of LC3-II/LC3-I, Beclin1, and p62, the number of autophagosome formation significantly decreased after miR-138-5p over-expression, which demonstrated that miR-138-5p could clearly retard Mn-induced autophagy. In additional, we found there were classical and evolutionarily conserved miR-138-5p binding sites in 3'-UTR region of SIRT1, which was inhibited when overexpression of miR-138-5p. Therefore, it was speculated that elevated expression of SIRT1 may be resulted from inhibition of miR-138-5p after cells exposed to MnCl2 . Finally, we found that SIRT1 inhibitor EX-527 suppressed Mn-induced autophagy as well as miR-138-5p, while the suppression was reversed by SIRT1-specific activator SRT1720. These results indicated that overexpression of miR-138-5p suppressed Mn-induced autophagy by targeting SIRT1.
Collapse
Affiliation(s)
- Junxiang Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Yuanyuan Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Hongyun Ji
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Li Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Tian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Shixuan Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Jiaxin Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Daiwile AP, Tarale P, Sivanesan S, Naoghare PK, Bafana A, Parmar D, Kannan K. Role of fluoride induced epigenetic alterations in the development of skeletal fluorosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:410-417. [PMID: 30469026 DOI: 10.1016/j.ecoenv.2018.11.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/21/2018] [Accepted: 11/09/2018] [Indexed: 05/19/2023]
Abstract
Fluoride is an essential trace element required for proper bone and tooth development. Systemic high exposure to fluoride through environmental exposure (drinking water and food) may result in toxicity causing a disorder called fluorosis. In the present study, we investigated the alteration in DNA methylation profile with chronic exposure (30 days) to fluoride (8 mg/l) and its relevance in the development of fluorosis. Whole genome bisulfite sequencing (WGBS) was carried out in human osteosarcoma cells (HOS) exposed to fluoride. Whole genome bisulfite sequencing (WGBS) and functional annotation of differentially methylated genes indicate alterations in methylation status of genes involved in biological processes associated with bone development pathways. Combined analysis of promoter DNA hyper methylation, STRING: functional protein association networks and gene expression analysis revealed epigenetic alterations in BMP1, METAP2, MMP11 and BACH1 genes, which plays a role in the extracellular matrix disassembly, collagen catabolic/organization process, skeletal morphogenesis/development, ossification and osteoblast development. The present study shows that fluoride causes promoter DNA hypermethylation in BMP1, METAP2, MMP11 and BACH1 genes with subsequent down-regulation in their expression level (RNA level). The results implies that fluoride induced DNA hypermethylation of these genes may hamper extracellular matrix deposition, cartilage formation, angiogenesis, vascular system development and porosity of bone, thus promote skeletal fluorosis.
Collapse
Affiliation(s)
- Atul P Daiwile
- Health and Toxicity Cell, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India
| | - Prashant Tarale
- Health and Toxicity Cell, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India
| | - Saravanadevi Sivanesan
- Health and Toxicity Cell, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India.
| | - Pravin K Naoghare
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India
| | - Amit Bafana
- Director's Research Cell, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India
| | - Devendra Parmar
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow 226001, India
| | - Krishnamurthi Kannan
- Health and Toxicity Cell, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, India
| |
Collapse
|
38
|
Hu J, Wu C, Zheng T, Zhang B, Xia W, Peng Y, Liu W, Jiang M, Liu S, Buka SL, Zhou A, Zhang Y, Jiang Y, Hu C, Chen X, Zeng Q, Chen X, Xu B, Zhang X, Truong A, Shi K, Qian Z, Li Y, Xu S. Critical Windows for Associations between Manganese Exposure during Pregnancy and Size at Birth: A Longitudinal Cohort Study in Wuhan, China. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:127006. [PMID: 30675808 PMCID: PMC6371690 DOI: 10.1289/ehp3423] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND Prenatal overexposure to manganese (Mn), an essential micronutrient, is related to impaired fetal growth and development. Fetuses appear to be highly sensitive to Mn during short periods of gestation. However, little is known about the critical windows of susceptibility to Mn for humans. OBJECTIVES Our objective was to estimate trimester-specific associations of exposure to Mn with size at birth. METHODS Urine samples of 3,022 women were collected repeatedly in the first, second, and third trimesters in Wuhan, China. Urinary concentrations of Mn and other toxic metals were measured using an inductively coupled plasma mass spectrometry. Trimester-specific associations of specific gravity–adjusted urinary Mn concentrations with birth weight, birth length, and ponderal index were estimated using multivariable linear regressions with generalized estimating equations. Linear mixed models were applied to evaluate the windows of susceptibility to Mn exposure by comparing the pattern of Mn exposure among newborns with restricted size at birth to those without. RESULTS When compared with the third quintile of urinary Mn concentrations, both higher and lower quintiles of urinary Mn concentrations in the second and third trimesters were related to reduced birth weight, birth length, and ponderal index. But the observed associations for higher quintiles were stronger and more likely to be statistically significant [e.g., for women who were in the fifth quintile of Mn concentration in the third trimester, the reduction in birth weight was [Formula: see text] (95% CI: [Formula: see text], [Formula: see text]) g and in birth length was [Formula: see text] (95% CI: [Formula: see text], 0.00) cm]. Moreover, newborns with restricted size at birth, compared with those without, had higher levels of Mn exposure in the second and third trimesters. CONCLUSIONS This prospective prenatal cohort study revealed an association of exposure to Mn during pregnancy, especially late pregnancy, with restricted size at birth. Replications are needed. https://doi.org/10.1289/EHP3423.
Collapse
Affiliation(s)
- Jie Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chuansha Wu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tongzhang Zheng
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Bin Zhang
- Wuhan Women and Children Medical Care Center, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Peng
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenyu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Minmin Jiang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Simin Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
- Division of Endocrinology, Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Stephen L Buka
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Aifen Zhou
- Wuhan Women and Children Medical Care Center, Wuhan, Hubei, China
| | - Yiming Zhang
- Wuhan Women and Children Medical Care Center, Wuhan, Hubei, China
| | - Yangqian Jiang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chen Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomei Chen
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiang Zeng
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xi Chen
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xichi Zhang
- George Washington University, Washington, District of Columbia, USA
| | - Ashley Truong
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Kunchong Shi
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Zhengmin Qian
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, St. Louis, Missouri, USA
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
39
|
Ramaswamy P, Christopher R, Pal PK, Yadav R. MicroRNAs to differentiate Parkinsonian disorders: Advances in biomarkers and therapeutics. J Neurol Sci 2018; 394:26-37. [PMID: 30196132 DOI: 10.1016/j.jns.2018.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 12/28/2022]
Abstract
Parkinsonian disorders are a set of progressive neurodegenerative movement disorders characterized by rigidity, tremor, bradykinesia, postural instability and their distinction has significant implications in terms of management and prognosis. Parkinson's disease (PD) is the most common among them. Its clinical diagnosis is challenging and, it can be misdiagnosed in the early stages. Multiple system atrophy and progressive supranuclear palsy are the close mimickers in early stages, due to overlapping clinical features. MicroRNAs are a class of stable non-coding small RNA molecules implicated in post-transcriptional gene regulation. Current studies propose that miRNAs play an essential role in the pathobiology of multiple neurodegenerative disorders including Parkinsonism, and they seem to be one of the reasonably available methods to aid in the differential diagnosis between PD and related disorders. MicroRNA-based diagnostic biomarkers and therapeutics are a powerful tool to understand and explore the function of the pathogenic gene/s, their mechanism in the disease pathobiology, and to validate drug targets. In this review, we emphasize on the recent developments in the usage of miRNAs as diagnostic biomarkers to identify PD and to differentiate it from atypical parkinsonian conditions, their role in disease pathogenesis, and their possible utility in the therapy of these disorders.
Collapse
Affiliation(s)
- Palaniswamy Ramaswamy
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India.
| |
Collapse
|