1
|
Beard J, Sayes CM. An examination of the methods and variables used in experimental design that impact the toxicological outcomes of e-cigarettes. Food Chem Toxicol 2024; 193:114999. [PMID: 39265718 DOI: 10.1016/j.fct.2024.114999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
A clear answer on whether vaping is safe and, if not, to what degree it threatens human health and well-being, still needs to be communicated. Such an answer requires collecting, analyzing, and interpreting sometimes conflicting and indeterminate results. This paper reviews the most recently published research articles that examine vaping toxicities. It highlights the differences in the techniques employed from one paper to another. While e-cigarettes do not appear to cause the same degree of harm as cigarettes, they pose a real biological threat regarding inflammation, oxidative stress, mucociliary interference, and membrane damage. The concentration of nicotine present is directly related to these endpoints and is often higher in fourth-generation devices. However, third-generation devices can do more harm than their successors, possibly due to their high voltage and low resistance capabilities. In addition to nicotine, the flavorants used in e-cigarettes have also been shown to relate to biological stress, and the adverse health effects increase in vape formulations with higher concentrations and numbers of flavor types. Different biological models also yield different health effects, especially when comparing bronchial and alveolar cells or tissues. To universalize the results of vape experiments, researchers should seek greater consistency within the experimental design. Key methodological variables must be recognized and disclosed in future research, including puff duration and number, types of e-cigarettes and e-liquids being tested, device settings during aerosolization, and any details of the employed exposure method that may affect dosimetry.
Collapse
Affiliation(s)
- Jon Beard
- Department of Biology, Baylor University, Waco, TX, 76798-7266, USA
| | - Christie M Sayes
- Department of Biology, Baylor University, Waco, TX, 76798-7266, USA; Department of Environmental Science, Baylor University, Waco, TX, 76798-7266, USA.
| |
Collapse
|
2
|
Sommer N, Franzen K, Andreas S, Pankow W, Kunstmann W, Hanewinkel R. [Harmful health effects of flavors in e-cigarettes]. Laryngorhinootologie 2024. [PMID: 38996433 DOI: 10.1055/a-2341-0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
BACKGROUND Almost all e-cigarettes contain flavorings that make the product more attractive. In the evaluation of e-cigarettes on health, flavors have so far played a subordinate role. METHOD Selective literature search in PubMed, supplemented by legal regulations on the use of flavors in e-cigarettes. RESULTS Flavors make it easier to start using e-cigarettes and have a consumption-promoting effect. Deeper inhalation increases nicotine uptake and the absorption of toxic substances from the e-cigarette liquid. For some flavors, pathological effects have been demonstrated in addition to other toxic components of the e-cigarette. To date, no toxicological analyses are available for the vast majority of flavors contained in e-cigarettes. CONCLUSIONS The proven consumption-promoting effect and the health risks that can be extrapolated from preclinical data are significant for the political discussion of a ban on flavors for e-cigarettes, analogous to the ban on flavors in tobacco products already in force.
Collapse
Affiliation(s)
- Natascha Sommer
- Medizinische Klinik II, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Mitglied des Deutschen Zentrums für Lungenforschung (DZL), Justus-Liebig-Universität Gießen
| | - Klaas Franzen
- Universitätsklinikum Schleswig-Holstein, Medizinische Klinik III, Pneumologie, Campus Lübeck, Airway Research Center North (ARCN), Deutsches Zentrum für Lungenforschung (DZL), Lübeck/Großhansdorf
| | - Stefan Andreas
- Lungenfachklinik Immenhausen, Immenhausen, Klinik für Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Deutsches Zentrum für Lungenforschung
| | - Wulf Pankow
- Philipps-Universität Marburg - Fachbereich Medizin
| | - Wilfried Kunstmann
- IFT-Nord gGmbH, Institut für Therapie- und Gesundheitsforschung, Kiel, Deutschland
| | - Reiner Hanewinkel
- IFT-Nord gGmbH, Institut für Therapie- und Gesundheitsforschung, Kiel, Deutschland
| |
Collapse
|
3
|
Sommer N, Franzen K, Andreas S, Pankow W, Kunstmann W, Hanewinkel R. [Harmful health effects of flavors in e-cigarettes]. Dtsch Med Wochenschr 2024; 149:646-653. [PMID: 38458230 DOI: 10.1055/a-2260-5003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
BACKGROUND Almost all e-cigarettes contain flavorings that make the product more attractive. In the evaluation of e-cigarettes on health, flavors have so far played a subordinate role. METHOD Selective literature search in PubMed, supplemented by legal regulations on the use of flavors in e-cigarettes. RESULTS Flavors make it easier to start using e-cigarettes and have a consumption-promoting effect. Deeper inhalation increases nicotine uptake and the absorption of toxic substances from the e-cigarette liquid. For some flavors, pathological effects have been demonstrated in addition to other toxic components of the e-cigarette. To date, no toxicological analyses are available for the vast majority of flavors contained in e-cigarettes. CONCLUSIONS The proven consumption-promoting effect and the health risks that can be extrapolated from preclinical data are significant for the political discussion of a ban on flavors for e-cigarettes, analogous to the ban on flavors in tobacco products already in force.
Collapse
Affiliation(s)
- Natascha Sommer
- Medizinische Klinik II, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Gießen and Marburg Lung Center (UGMLC), Mitglied des Deutschen Zentrums für Lungenforschung (DZL), Justus-Liebig-Universität Gießen
| | - Klaas Franzen
- Universitätsklinikum Schleswig-Holstein, Medizinische Klinik III, Pneumologie, Campus Lübeck, Airway Research Center North (ARCN), Deutsches Zentrum für Lungenforschung (DZL), Lübeck/Großhansdorf
| | - Stefan Andreas
- Lungenfachklinik Immenhausen, Immenhausen, Klinik für Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Deutsches Zentrum für Lungenforschung
| | - Wulf Pankow
- Philipps-Universität Marburg - Fachbereich Medizin
| | | | - Reiner Hanewinkel
- IFT-Nord gGmbH, Institut für Therapie- und Gesundheitsforschung, Kiel
| |
Collapse
|
4
|
Rupp A, Sommer N, Andreas S, Pankow W, Hanewinkel R, Wienbergen H, Batra A, Sauerbruch T, Kardos P, Ulbricht S, Brinkmann F, Scheubel R, Vogelmeier C, Windisch W. [Medical societies in Germany call for a ban on flavors in e-cigarettes - A Position Paper of the German Respiratory Society (DGP) in cooperation with other professional associations and organizations]. Pneumologie 2024; 78:320-324. [PMID: 38503310 DOI: 10.1055/a-2282-9908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
E-cigarettes are primarily used by teenagers and young adults. Flavors in e-cigarettes increase their attractiveness and encourage young people and adults to start using them. This exposes young people in particular to the risk of nicotine addiction and various toxic substances from the aerosol of e-cigarettes. There are indications that various flavors in e-cigarettes are harmful to health, although toxicological studies are still lacking for the majority of flavors. There is a need for independent scientific investigations in this area. The scientific societies involved are calling for a ban on flavors in e-cigarettes, a ban on disposable e-cigarettes, effective regulation of the sale of e-cigarettes and effective control and implementation of the provisions for the protection of minors.
Collapse
Affiliation(s)
- Alexander Rupp
- Pneumologische Praxis im Zentrum, Stuttgart, Mitglied der Arbeitsgruppe Tabakprävention und -entwöhnung der DGP, Leiter der Arbeitsgruppe Tabak im Bundesverband der Pneumologie, Schlaf- und Beatmungsmedizin, Stuttgart, Deutschland
| | - Natascha Sommer
- Medizinische Klinik II, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Mitglied des Deutschen Zentrums für Lungenforschung (DZL), Justus-Liebig-Universität Gießen, Gießen, Deutschland
| | - Stefan Andreas
- Lungenfachklinik Immenhausen, Klinik für Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Deutsches Zentrum für Lungenforschung, Göttingen, Deutschland
| | - Wulf Pankow
- Vivantes-Institut für Tabakentwöhnung und Raucherprävention, Berlin, Deutschland
| | - Reiner Hanewinkel
- IFT-Nord gGmbH, Institut für Therapie- und Gesundheitsforschung, Kiel, Deutschland
| | - Harm Wienbergen
- Bremer Institut für Herz- und Kreislaufforschung, Klinikum Links der Weser Bremen, Universität zu Lübeck für die Deutsche Gesellschaft für Kardiologie - Herz- und Kreislaufforschung (DGK), Bremen, Deutschland
| | - Anil Batra
- Universitätsklinik für Psychiatrie und Psychotherapie, Universität Tübingen für die Deutsche Gesellschaft für Psychiatrie und Psychotherapie, Psychosomatik und Nervenheilkunde (DGPPN), Tübingen, Deutschland
| | - Tilman Sauerbruch
- Universität Bonn für die Deutsche Gesellschaft für Innere Medizin (DGIM), Bonn, Deutschland
| | - Peter Kardos
- Lungenzentrum Maingau, Frankfurt a. M. für die Deutsche Atemwegsliga, Frankfurt, Deutschland
| | - Sabina Ulbricht
- Abteilung für Präventionsforschung und Sozialmedizin, Universitätsmedizin Greifswald für das Aktionsbündnis Nichtrauchen, Greifswald, Deutschland
| | - Folke Brinkmann
- Sektion Kinderpneumologie und Allergologie, Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Schleswig-Holstein Campus Lübeck für die Gesellschaft für pädiatrische Pneumologie (GPP), Lübeck, Deutschland
| | - Robert Scheubel
- Klinik für Thoraxchirurgie, Fachkliniken Wangen für die Deutsche Gesellschaft für Thoraxchirurgie, Wangen, Deutschland
| | - Claus Vogelmeier
- Abteilung Pneumologie im Universitätsklinikum Gießen und Marburg, Standort Marburg für die Deutsche Lungenstiftung, Marburg, Deutschland
| | - Wolfram Windisch
- Lungenklinik, Kliniken der Stadt Köln gGmbH, Lehrstuhl für Pneumologie Universität Witten/Herdecke für die Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin, Köln, Deutschland
| |
Collapse
|
5
|
Puig-Herreros C, Sanz JL, García-Bernal D, Rodríguez-Lozano FJ, Murcia L, Forner L, Ghilotti J, Oñate-Sánchez RE, López-García S. Comparative Cytotoxicity of Menthol and Eucalyptol: An In Vitro Study on Human Gingival Fibroblasts. Pharmaceutics 2024; 16:521. [PMID: 38675182 PMCID: PMC11054097 DOI: 10.3390/pharmaceutics16040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to assess the influence of eucalyptol and menthol on the cell viability, migration, and reactive oxygen species production of human gingival fibroblasts (GFs) in vitro. Three different concentrations of eucalyptol and menthol were prepared following ISO 10993-5 guidelines (1, 5, and 10 mM). GFs were isolated from extracted teeth from healthy donors. The following parameters were assessed: cell viability via MTT, Annexin-V-FITC and 7-AAD staining, and IC50 assays; cell migration via horizontal scratch wound assay; and cell oxidative stress via reactive oxygen species assay. Data were analyzed using one-way ANOVA and Tukey's post hoc test. Statistical significance was established at p < 0.05. Eucalyptol and Menthol exhibited high cytotoxicity on gingival fibroblasts, as evidenced by cytotoxicity assays. Eucalyptol showed lower levels of cytotoxicity than menthol, compared to the control group. The cytotoxicity of the tested substances increased in a concentration-dependent manner. The same occurred in a time-dependent manner, although even 10 min of exposure to the tested substances showed a high cytotoxicity to the GFs. Commercially available products for oral application with these substances in their composition should be tested for cytotoxicity before their use.
Collapse
Affiliation(s)
- Clara Puig-Herreros
- Speech Therapy University Clinic, Department of Basic Psychology, Universitat de València, 46010 Valencia, Spain
| | - José Luis Sanz
- Departament d’Estomatologia, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain (S.L.-G.)
| | - David García-Bernal
- Department of Biochemistry, Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain;
- Biomedical Research Institute (IMIB), 30120 Murcia, Spain
| | - Francisco Javier Rodríguez-Lozano
- Biomedical Research Institute (IMIB), 30120 Murcia, Spain
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30008 Murcia, Spain
| | - Laura Murcia
- Department of Health Sciences, Catholic University San Antonio of Murcia, 30107 Murcia, Spain
| | - Leopoldo Forner
- Departament d’Estomatologia, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain (S.L.-G.)
| | - James Ghilotti
- Departament d’Estomatologia, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain (S.L.-G.)
| | - Ricardo E. Oñate-Sánchez
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30008 Murcia, Spain
| | - Sergio López-García
- Departament d’Estomatologia, Facultat de Medicina i Odontologia, Universitat de València, 46010 Valencia, Spain (S.L.-G.)
| |
Collapse
|
6
|
Petpiroon N, Netkueakul W, Sukrak K, Wang C, Liang Y, Wang M, Liu Y, Li Q, Kamran R, Naruse K, Aueviriyavit S, Takahashi K. Development of lung tissue models and their applications. Life Sci 2023; 334:122208. [PMID: 37884207 DOI: 10.1016/j.lfs.2023.122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The lungs are important organs that play a critical role in the development of specific diseases, as well as responding to the effects of drugs, chemicals, and environmental pollutants. Due to the ethical concerns around animal testing, alternative methods have been sought which are more time-effective, do not pose ethical issues for animals, do not involve species differences, and provide easy investigation of the pathobiology of lung diseases. Several national and international organizations are working to accelerate the development and implementation of structurally and functionally complex tissue models as alternatives to animal testing, particularly for the lung. Unfortunately, to date, there is no lung tissue model that has been accepted by regulatory agencies for use in inhalation toxicology. This review discusses the challenges involved in developing a relevant lung tissue model derived from human cells such as cell lines, primary cells, and pluripotent stem cells. It also introduces examples of two-dimensional (2D) air-liquid interface and monocultured and co-cultured three-dimensional (3D) culture techniques, particularly organoid culture and 3D bioprinting. Furthermore, it reviews development of the lung-on-a-chip model to mimic the microenvironment and physiological performance. The applications of lung tissue models in various studies, especially disease modeling, viral respiratory infection, and environmental toxicology will be also introduced. The development of a relevant lung tissue model is extremely important for standardizing and validation the in vitro models for inhalation toxicity and other studies in the future.
Collapse
Affiliation(s)
- Nalinrat Petpiroon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Woranan Netkueakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kanokwan Sukrak
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Thailand Network Center on Air Quality Management: TAQM, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chen Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yin Liang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Mengxue Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yun Liu
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Qiang Li
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Rumaisa Kamran
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Keiji Naruse
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Ken Takahashi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan.
| |
Collapse
|
7
|
Auschwitz E, Almeda J, Andl CD. Mechanisms of E-Cigarette Vape-Induced Epithelial Cell Damage. Cells 2023; 12:2552. [PMID: 37947630 PMCID: PMC10650279 DOI: 10.3390/cells12212552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
E-cigarette use has been reported to affect cell viability, induce DNA damage, and modulate an inflammatory response resulting in negative health consequences. Most studies focus on oral and lung disease associated with e-cigarette use. However, tissue damage can be found in the cardio-vascular system and even the bladder. While the levels of carcinogenic compounds found in e-cigarette aerosols are lower than those in conventional cigarette smoke, the toxicants generated by the heat of the vaping device may include probable human carcinogens. Furthermore, nicotine, although not a carcinogen, can be metabolized to nitrosamines. Nitrosamines are known carcinogens and have been shown to be present in the saliva of e-cig users, demonstrating the health risk of e-cigarette vaping. E-cig vape can induce DNA adducts, promoting oxidative stress and DNA damage and NF-kB-driven inflammation. Together, these processes increase the transcription of pro-inflammatory cytokines. This creates a microenvironment thought to play a key role in tumorigenesis, although it is too early to know the long-term effects of vaping. This review considers different aspects of e-cigarette-induced cellular changes, including the generation of reactive oxygen species, DNA damage, DNA repair, inflammation, and the possible tumorigenic effects.
Collapse
Affiliation(s)
| | | | - Claudia D. Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
8
|
Caruso M, Distefano A, Emma R, Zuccarello P, Copat C, Ferrante M, Carota G, Pulvirenti R, Polosa R, Missale GA, Rust S, Raciti G, Li Volti G. In vitro cytoxicity profile of e-cigarette liquid samples on primary human bronchial epithelial cells. Drug Test Anal 2023; 15:1145-1155. [PMID: 35434934 DOI: 10.1002/dta.3275] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/08/2022]
Abstract
Cigarette smoke is associated to severe chronic diseases. The most harmful components of cigarette smoke derive from the combustion process, which are significantly reduced in the electronic cigarette aerosol, thus providing a valid option in harm reduction strategies. To develop safer products, it is therefore necessary to screen electronic cigarette liquids (e-liquids) to meet high safety standards defined by government regulations. The aim of the present study was to evaluate the presence of metal- and plastic-derived contaminants in four different commercial e-liquids with high concentration of nicotine and their cytotoxic effect in normal human bronchial epithelial cells by a number of in vitro assays, in comparison with the 1R6F reference cigarette, using an air-liquid interface (ALI) exposure system. Moreover, we evaluated the effect of aerosol exposure on oxidative stress by measuring the production of reactive oxygen species and mitochondrial potential. Our results showed no contaminants in all e-liquids and a significantly reduced cytotoxic effect of e-liquid aerosol compared to cigarette smoke as well as a maintained mitochondria integrity. Moreover, no production of reactive oxygen species was detected with e-cigarette aerosol. In conclusion, these results support the reduced toxicity potential of e-cigs compared to tobacco cigarettes in an in vitro model resembling real life smoke exposure.
Collapse
Affiliation(s)
- Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction, University of Catania, Catania, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalia Emma
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pietro Zuccarello
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania, Italy
| | - Chiara Copat
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania, Italy
| | - Margherita Ferrante
- Center of Excellence for the Acceleration of Harm Reduction, University of Catania, Catania, Italy
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Catania, Italy
| | - Giuseppe Carota
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Roberta Pulvirenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Riccardo Polosa
- Center of Excellence for the Acceleration of Harm Reduction, University of Catania, Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- ECLAT Srl, University of Catania, Catania, Italy
| | | | - Sonja Rust
- ECLAT Srl, University of Catania, Catania, Italy
| | - Giuseppina Raciti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Ashour AM. Use of Vaping as a Smoking Cessation Aid: A Review of Clinical Trials. J Multidiscip Healthc 2023; 16:2137-2144. [PMID: 37529148 PMCID: PMC10389080 DOI: 10.2147/jmdh.s419945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
Purpose Smoking is a global public health concern, with a significant negative impact on human health and healthcare spending. Vaping, or the use of electronic cigarettes (e-cigarettes), has emerged as a popular alternative to traditional nicotine replacement therapies (NRTs) for smoking cessation. While considered less harmful than combustible cigarettes, the long-term health effects of e-cigarettes (vaping) are unknown. Therefore, this study aimed to identify and provide a comprehensive overview of the performance of vaping in clinical trials. Patients and Methods A search was conducted in the ClinicalTrials.gov database on April 14th, 2023, using the search term "smoking cessation, e-cigarettes, NRTs, and vaping". Inclusion and exclusion criteria were defined to identify relevant clinical trials. Randomized controlled trials (RCTs) and non-randomized clinical trials that evaluated vaping as a therapeutic approach to smoking cessation were included. Results A total of 87 clinical trials were identified, of which only seven were related to smoking cessation through vaping as a form of treatment. The primary endpoint was the effect of vaping as smoking cessation, and the secondary endpoints were patients' abstinence rate, withdrawal symptoms, and adverse events of e-cigarettes. Most of the trials used e-cigarettes as an intervention, with some trials including a combination of e-cigarettes and other NRTs. The trials lasted from 4 weeks to 12 months. The overall results of the trials indicated that vaping was effective in helping smokers to quit. It was also associated with a lower risk of adverse events than combustible cigarettes. Conclusion Vaping appears to be an effective method for smoking cessation, and it is associated with a lower risk of adverse events than combustible cigarettes.
Collapse
Affiliation(s)
- Ahmed M Ashour
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
10
|
Upadhyay P, Wu CW, Pham A, Zeki AA, Royer CM, Kodavanti UP, Takeuchi M, Bayram H, Pinkerton KE. Animal models and mechanisms of tobacco smoke-induced chronic obstructive pulmonary disease (COPD). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:275-305. [PMID: 37183431 PMCID: PMC10718174 DOI: 10.1080/10937404.2023.2208886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, and its global health burden is increasing. COPD is characterized by emphysema, mucus hypersecretion, and persistent lung inflammation, and clinically by chronic airflow obstruction and symptoms of dyspnea, cough, and fatigue in patients. A cluster of pathologies including chronic bronchitis, emphysema, asthma, and cardiovascular disease in the form of hypertension and atherosclerosis variably coexist in COPD patients. Underlying causes for COPD include primarily tobacco use but may also be driven by exposure to air pollutants, biomass burning, and workplace related fumes and chemicals. While no single animal model might mimic all features of human COPD, a wide variety of published models have collectively helped to improve our understanding of disease processes involved in the genesis and persistence of COPD. In this review, the pathogenesis and associated risk factors of COPD are examined in different mammalian models of the disease. Each animal model included in this review is exclusively created by tobacco smoke (TS) exposure. As animal models continue to aid in defining the pathobiological mechanisms of and possible novel therapeutic interventions for COPD, the advantages and disadvantages of each animal model are discussed.
Collapse
Affiliation(s)
- Priya Upadhyay
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Alexa Pham
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Amir A. Zeki
- Department of Internal Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology and Medicine, School of Medicine; University of California, Davis, School of Medicine; U.C. Davis Lung Center; Davis, CA USA
| | - Christopher M. Royer
- California National Primate Research Center, University of California, Davis, Davis, CA 95616 USA
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Minoru Takeuchi
- Department of Animal Medical Science, Kyoto Sangyo University, Kyoto, Japan
| | - Hasan Bayram
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Istanbul, Turkey
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
11
|
Chandra D, Bogdanoff RF, Bowler RP, Benam KH. Electronic cigarette menthol flavoring is associated with increased inhaled micro and sub-micron particles and worse lung function in combustion cigarette smokers. Respir Res 2023; 24:108. [PMID: 37038183 PMCID: PMC10088218 DOI: 10.1186/s12931-023-02410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
Flavored electronic cigarettes (ECs) present a serious health challenge globally. Currently, it is unknown whether the addition of highly popular menthol flavoring to e-liquid is associated with changes in the number of aerosolized particles generated or altered lung function. Here, we first performed preclinical studies using our novel robotic platform Human Vaping Mimetic Real-Time Particle Analyzer (HUMITIPAA). HUMITIPAA generates fresh aerosols for any desired EC in a very controlled and user-definable manner and utilizes an optical sensing system to quantitate and analyze sub-micron and microparticles from every puff over the course of vaping session in real-time while emulating clinically relevant breathing mechanics and vaping topography. We discovered that addition of menthol flavoring to freshly prepared e-liquid base propylene glycol-vegetable glycerin leads to enhanced particle counts in all tested size fractions, similar to the effect of adding vitamin E acetate to e-liquid we previously reported. Similarly, we found that menthol vs. non-menthol (tobacco) flavored pods from commercially available ECs leads to generation of significantly higher quantities of 1-10 µm particles upon inhalation. We then retrospectively analyzed data from the COPDGene study and identified an association between the use of menthol flavored ECs and reduced FEV1% predicted and FEV1/FVC independent of age, gender, race, pack-years of smoking, and use of nicotine or cannabis-containing vaping products. Our results reveal an association between enhanced inhaled particle due to menthol addition to ECs and worse lung function indices. Detailed causal relation remains to be demonstrated in future large-scale prospective clinical studies. Importantly, here we demonstrate utility of the HUMITIPAA as a predictive enabling technology to identify inhalation toxicological potential of emerging ECs as the chemical formulation of e-liquid gets modified.
Collapse
Affiliation(s)
- Divay Chandra
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Rachel F Bogdanoff
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Russell P Bowler
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Kambez H Benam
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
12
|
Sabo AN, Filaudeau E, Da Silva S, Becker G, Monassier L, Kemmel V. Flavoured and nicotine-containing e-liquids impair homeostatic properties of an alveolar-capillary cell model. Food Chem Toxicol 2023; 174:113650. [PMID: 36758787 DOI: 10.1016/j.fct.2023.113650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Most people consider that electronic cigarettes are safer than tobacco and are marketed as quit-smoking products. The e-liquid, which usually contains propylene glycol (PG) and vegetable glycerin (VG) in different ratios, nicotine and a wide variety of flavours, is heated by a coil and the aerosol droplets are primarily delivered to the alveolar area where nicotine and other molecules cross the alveolar-capillary barrier (ACB). However, e-cigarettes effects on the ACB are not yet established. In our study, a well-characterised in vitro model of the ACB was exposed to PG and VG and to five flavoured e-liquids with and without nicotine. The vehicles, due to their hypertonic properties, modulated the ACB integrity by modifying occludin expression. Below a 10% concentration, the vehicles did not trigger oxidative stress or cell death. Different results were observed between flavoured e-liquids: while red fruits and mint-eucalyptus disrupted ACB integrity, triggered oxidative stress and cell death, blond tobacco had no worse effect compared to the vehicles. However, the addition of nicotine in the latter e-liquid increased oxidative stress and cell death compared to the vehicles. Finally, mint-eucalyptus e-liquid increased some inflammation markers. Our results revealed that e-liquids alter ACB homeostasis, depending on flavour and nicotine presence.
Collapse
Affiliation(s)
- Amelia-Naomi Sabo
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR 7296, Faculté de Médecine de Maïeutique et des Métiers de la Santé, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 67085, Strasbourg, France; Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, 67200, Strasbourg, France.
| | - Emma Filaudeau
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR 7296, Faculté de Médecine de Maïeutique et des Métiers de la Santé, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 67085, Strasbourg, France.
| | - Sylvia Da Silva
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR 7296, Faculté de Médecine de Maïeutique et des Métiers de la Santé, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 67085, Strasbourg, France.
| | - Guillaume Becker
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR 7296, Faculté de Médecine de Maïeutique et des Métiers de la Santé, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 67085, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Pôle Pharmacie-Pharmacologie, 67200, France.
| | - Laurent Monassier
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR 7296, Faculté de Médecine de Maïeutique et des Métiers de la Santé, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 67085, Strasbourg, France.
| | - Véronique Kemmel
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR 7296, Faculté de Médecine de Maïeutique et des Métiers de la Santé, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 67085, Strasbourg, France; Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, 67200, Strasbourg, France.
| |
Collapse
|
13
|
Staal YCM, Li Y, Gerber LS, Fokkens P, Cremers H, Cassee FR, Talhout R, Westerink RHS, Heusinkveld HJ. Neuromodulatory and neurotoxic effects of e-cigarette vapor using a realistic exposure method. Inhal Toxicol 2023; 35:76-85. [PMID: 36053669 DOI: 10.1080/08958378.2022.2118911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The most direct effects of inhaled harmful constituents are the effects on the airways. However, inhaled compounds can be rapidly absorbed and subsequently result in systemic effects. For example, e-cigarette vapor has been shown to evoke local effects in the lung, although little is known about subsequent effects in secondary target organs such as the brain. Traditionally, such effects are tested using in vivo models. As an alternative, we have combined two in vitro systems, which are Air-Liquid-Interface (ALI) cultured alveolar cells (A549) and rat primary cortical cultures grown on multi-well microelectrode arrays. This allows us to assess the neurological effects of inhaled compounds. We have used exposure to e-cigarette vapor, containing nicotine, menthol, or vanillin to test the model. Our results show that ALI cultured A549 cells respond to the exposure with the production of cytokines (IL8 and GROalpha). Furthermore, nicotine, menthol, and vanillin were found on the basolateral side of the cell culture, which indicates their translocation. Upon transfer of the basolateral medium to the primary cortical culture, exposure-related changes in spontaneous electrical activity were observed correlating with the presence of e-liquid components in the medium. These clear neuromodulatory effects demonstrate the feasibility of combining continuous exposure of ALI cultured cells with subsequent exposure of neuronal cells to assess neurotoxicity. Although further optimization steps are needed, such a combination of methods is important to assess the neurotoxic effects of inhaled compounds realistically. As such, an approach like this could play a role in future mechanism-based risk assessment strategies.
Collapse
Affiliation(s)
- Yvonne C M Staal
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Yixuan Li
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Lora-Sophie Gerber
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Paul Fokkens
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Hans Cremers
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Reinskje Talhout
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Harm J Heusinkveld
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
14
|
Chapman F, Pour SJ, Wieczorek R, Trelles Sticken E, Budde J, Röwer K, Otte S, Mason E, Czekala L, Nahde T, O'Connell G, Simms L, Stevenson M. Twenty-eight day repeated exposure of human 3D bronchial epithelial model to heated tobacco aerosols indicates decreased toxicological responses compared to cigarette smoke. FRONTIERS IN TOXICOLOGY 2023; 5:1076752. [PMID: 36875887 PMCID: PMC9979258 DOI: 10.3389/ftox.2023.1076752] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/09/2023] [Indexed: 02/18/2023] Open
Abstract
Tobacco harm reduction (THR) involves providing adult smokers with potentially reduced harm modes of nicotine delivery as alternatives to smoking combustible cigarettes. Heated tobacco products (HTPs) form a category with THR potential due to their ability to deliver nicotine and flavours through heating, not burning, tobacco. By eliminating burning, heated tobacco does not produce smoke but an aerosol which contains fewer and lower levels of harmful chemicals compared to cigarette smoke. In this study we assessed the in vitro toxicological profiles of two prototype HTPs' aerosols compared to the 1R6F reference cigarette using the 3D human (bronchial) MucilAir™ model. To increase consumer relevance, whole aerosol/smoke exposures were delivered repeatedly across a 28 day period (16, 32, or 48 puffs per exposure). Cytotoxicity (LDH secretion), histology (Alcian Blue/H&E; Muc5AC; FoxJ1 staining), cilia active area and beat frequency and inflammatory marker (IL-6; IL-8; MMP-1; MMP-3; MMP-9; TNFα) levels were assessed. Diluted 1R6F smoke consistently induced greater and earlier effects compared to the prototype HTP aerosols across the endpoints, and in a puff dependent manner. Although some significant changes across the endpoints were induced by exposure to the HTPs, these were substantially less pronounced and less frequently observed, with apparent adaptive responses occurring over the experimental period. Furthermore, these differences between the two product categories were observed at a greater dilution (and generally lower nicotine delivery range) for 1R6F (1R6F smoke diluted 1/14, HTP aerosols diluted 1/2, with air). Overall, the findings demonstrate the THR potential of the prototype HTPs through demonstrated substantial reductions in toxicological outcomes in in vitro 3D human lung models.
Collapse
Affiliation(s)
| | | | | | | | | | - Karin Röwer
- Reemtsma Cigarettenfabriken GmbH, Hamburg, Germany
| | - Sandra Otte
- Reemtsma Cigarettenfabriken GmbH, Hamburg, Germany
| | | | | | - Thomas Nahde
- Reemtsma Cigarettenfabriken GmbH, Hamburg, Germany
| | | | - Liam Simms
- Imperial Brands PLC, Bristol, United Kingdom
| | | |
Collapse
|
15
|
Morales-Bárcenas R, Sánchez-Pérez Y, Santibáñez-Andrade M, Chirino YI, Soto-Reyes E, García-Cuellar CM. Airborne particulate matter (PM 10) induces cell invasion through Aryl Hydrocarbon Receptor and Activator Protein 1 (AP-1) pathway deregulation in A549 lung epithelial cells. Mol Biol Rep 2023; 50:107-119. [PMID: 36309615 DOI: 10.1007/s11033-022-07986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Particulate matter with an aerodynamic size ≤ 10 μm (PM10) is a risk factor for lung cancer development, mainly because some components are highly toxic. Polycyclic aromatic hydrocarbons (PAHs) are present in PM10, such as benzo[a]pyrene (BaP), which is a well-known genotoxic and carcinogenic compound to humans, capable of activating AP-1 transcription factor family genes through the Aryl Hydrocarbon Receptor (AhR). Because effects of BaP include metalloprotease 9 (MMP-9) activation, cell invasion, and other pathways related to carcinogenesis, we aimed to demonstrate that PM10 (10 µg/cm2) exposure induces the activation of AP-1 family members as well as cell invasion in lung epithelial cells, through AhR pathway. METHODS AND RESULTS The role of the AhR gene in cells exposed to PM10 (10 µg/cm2) and BaP (1µM) for 48 h was evaluated using AhR-targeted interference siRNA. Then, the AP-1 family members (c-Jun, Jun B, Jun D, Fos B, C-Fos, and Fra-1), the levels/activity of MMP-9, and cell invasion were analyzed. We found that PM10 increased AhR levels and promoted its nuclear localization in A549 treated cells. Also, PM10 and BaP deregulated the activity of AP-1 family members. Moreover, PM10 upregulated the secretion and activity of MMP-9 through AhR, while BaP had no effect. Finally, we found that cell invasion in A549 cells exposed to PM10 and BaP is modulated by AhR. CONCLUSION Our results demonstrated that PM10 exposure induces upregulation of the c-Jun, Jun B, and Fra-1 activity, the expression/activity of MMP-9, and the cell invasion in lung epithelial cells, effects mediated through the AhR. Also, the Fos B and C-Fos activity were downregulated. In addition, the effects induced by PM10 exposure were like those induced by BaP, which highlights the potentially toxic effects of the PM10 mixture in lung epithelial cells.
Collapse
Affiliation(s)
- Rocío Morales-Bárcenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México
| | - Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, CP 54090, Tlalnepantla de Baz, Estado de México, México
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Ciudad de México, México
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, 14080, México, D.F, México.
| |
Collapse
|
16
|
Effah F, Taiwo B, Baines D, Bailey A, Marczylo T. Pulmonary effects of e-liquid flavors: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:343-371. [PMID: 36154615 PMCID: PMC9590402 DOI: 10.1080/10937404.2022.2124563] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Electronic cigarettes (ECs) are purported to be tobacco harm-reduction products whose degree of harm has been highly debated. EC use is considered less hazardous than smoking but is not expected to be harmless. Following the banning of e-liquid flavors in countries such as the US, Finland, Ukraine, and Hungary, there are growing concerns regarding the safety profile of e-liquid flavors used in ECs. While these are employed extensively in the food industry and are generally regarded as safe (GRAS) when ingested, GRAS status after inhalation is unclear. The aim of this review was to assess evidence from 38 reports on the adverse effects of flavored e-liquids on the respiratory system in both in vitro and in vivo studies published between 2006 and 2021. Data collected demonstrated greater detrimental effects in vitro with cinnamon (9 articles), strawberry (5 articles), and menthol (10 articles), flavors than other flavors. The most reported effects among these investigations were perturbations of pro-inflammatory biomarkers and enhanced cytotoxicity. There is sufficient evidence to support the toxicological impacts of diacetyl- and cinnamaldehyde-containing e-liquids following human inhalation; however, safety profiles on other flavors are elusive. The latter may result from inconsistencies between experimental approaches and uncertainties due to the contributions from other e-liquid constituents. Further, the relevance of the concentration ranges to human exposure levels is uncertain. Evidence indicates that an adequately controlled and consistent, systematic toxicological investigation of a broad spectrum of e-liquid flavors may be required at biologically relevant concentrations to better inform public health authorities on the risk assessment following exposure to EC flavor ingredients.
Collapse
Affiliation(s)
- Felix Effah
- Pharmacology Section, St George’s University of London, London, UK
- Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Didcot, UK
| | - Benjamin Taiwo
- Physiology Section, St George’s University of London, London, UK
| | - Deborah Baines
- Infection and Immunity Institute, St George’s University of London, London, UK
| | - Alexis Bailey
- Pharmacology Section, St George’s University of London, London, UK
| | - Tim Marczylo
- Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Didcot, UK
| |
Collapse
|
17
|
Olive GN, Yang IA, Marshall H, Bowman RV, Fong KM. More than meets the eye. Eur Respir J 2022; 60:60/3/2200763. [PMID: 36109046 DOI: 10.1183/13993003.00763-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Gerard N Olive
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia.,UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Ian A Yang
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia.,UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Henry Marshall
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia.,UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Rayleen V Bowman
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia.,UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kwun M Fong
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia .,UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
18
|
Stermann T, Nguyen T, Stahlmecke B, Todea AM, Woeste S, Hacheney I, Krutmann J, Unfried K, Schins RPF, Rossi A. Carbon nanoparticles adversely affect CFTR expression and toxicologically relevant pathways. Sci Rep 2022; 12:14255. [PMID: 35995803 PMCID: PMC9395428 DOI: 10.1038/s41598-022-18098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
Cystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) that can lead to terminal respiratory failure. Ultrafine carbonaceous particles, which are ubiquitous in ambient urban and indoor air, are increasingly considered as major contributors to the global health burden of air pollution. However, their effects on the expression of CFTR and associated genes in lung epithelial cells have not yet been investigated. We therefore evaluated the effects of carbon nanoparticles (CNP), generated by spark-ablation, on the human bronchial epithelial cell line 16HBE14o- at air-liquid interface (ALI) culture conditions. The ALI-cultured cells exhibited epithelial barrier integrity and increased CFTR expression. Following a 4-h exposure to CNP, the cells exhibited a decreased barrier integrity, as well as decreased expression of CFTR transcript and protein levels. Furthermore, transcriptomic analysis revealed that the CNP-exposed cells showed signs of oxidative stress, apoptosis and DNA damage. In conclusion, this study describes spark-ablated carbon nanoparticles in a realistic exposure of aerosols to decrease CFTR expression accompanied by transcriptomic signs of oxidative stress, apoptosis and DNA damage.
Collapse
Affiliation(s)
- Torben Stermann
- IUF - Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Thach Nguyen
- IUF - Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | | | - Ana Maria Todea
- IUTA - Institut für Energie- und Umwelttechnik e.V., Duisburg, Germany
| | - Selina Woeste
- IUF - Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Inken Hacheney
- IUF - Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
- Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Klaus Unfried
- IUF - Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Roel P F Schins
- IUF - Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Andrea Rossi
- IUF - Leibniz-Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany.
| |
Collapse
|
19
|
Trifunovic S, Smiljanić K, Sickmann A, Solari FA, Kolarevic S, Divac Rankov A, Ljujic M. Electronic cigarette liquids impair metabolic cooperation and alter proteomic profiles in V79 cells. Respir Res 2022; 23:191. [PMID: 35840976 PMCID: PMC9285873 DOI: 10.1186/s12931-022-02102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Background Although still considered a safer alternative to classical cigarettes, growing body of work points to harmful effects of electronic cigarettes (e-cigarettes) affecting a range of cellular processes. The biological effect of e-cigarettes needs to be investigated in more detail considering their widespread use. Methods In this study, we treated V79 lung fibroblasts with sub-cytotoxic concentration of e-cigarette liquids, with and without nicotine. Mutagenicity was evaluated by HPRT assay, genotoxicity by comet assay and the effect on cellular communication by metabolic cooperation assay. Additionally, comprehensive proteome analysis was performed via high resolution, parallel accumulation serial fragmentation-PASEF mass spectrometry. Results E-cigarette liquid concentration used in this study showed no mutagenic or genotoxic effect, however it negatively impacted metabolic cooperation between V79 cells. Both e-cigarette liquids induced significant depletion in total number of proteins and impairment of mitochondrial function in treated cells. The focal adhesion proteins were upregulated, which is in accordance with the results of metabolic cooperation assay. Increased presence of posttranslational modifications (PTMs), including carbonylation and direct oxidative modifications, was observed. Data are available via ProteomeXchange with identifier PXD032071. Conclusions Our study revealed impairment of metabolic cooperation as well as significant proteome and PTMs alterations in V79 cells treated with e-cigarette liquid warranting future studies on e-cigarettes health impact. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02102-w.
Collapse
Affiliation(s)
- Sara Trifunovic
- Biology of Robustness Group, Mediterranean Institute for Life Sciences, Split, Croatia.
| | - Katarina Smiljanić
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, University of Belgrade, Faculty of Chemistry, Studentski Trg 12-14, 11000, Belgrade, Serbia
| | - Albert Sickmann
- Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V., Bunsen-Kirchhoff-Straße 11, Dortmund, Germany.,Medizinische Fakultät, Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, 44801, Bochum, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, AB243FX, Scotland, UK
| | - Fiorella A Solari
- Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V., Bunsen-Kirchhoff-Straße 11, Dortmund, Germany
| | - Stoimir Kolarevic
- Department of Hydroecology and Water Protection, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Divac Rankov
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Mila Ljujic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
20
|
A Review of Toxicity Mechanism Studies of Electronic Cigarettes on Respiratory System. Int J Mol Sci 2022; 23:ijms23095030. [PMID: 35563421 PMCID: PMC9102406 DOI: 10.3390/ijms23095030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Electronic cigarettes (e-cigarettes) have attracted much attention as a new substitute for conventional cigarettes. E-cigarettes are first exposed to the respiratory system after inhalation, and studies on the toxicity mechanisms of e-cigarettes have been reported. Current research shows that e-cigarette exposure may have potentially harmful effects on cells, animals, and humans, while the safety evaluation of the long-term effects of e-cigarette use is still unknown. Similar but not identical to conventional cigarettes, the toxicity mechanisms of e-cigarettes are mainly manifested in oxidative stress, inflammatory responses, and DNA damage. This review will summarize the toxicity mechanisms and signal pathways of conventional cigarettes and e-cigarettes concerning the respiratory system, which could give researchers a better understanding and direction on the effects of e-cigarettes on our health.
Collapse
|
21
|
Moshensky A, Brand CS, Alhaddad H, Shin J, Masso-Silva JA, Advani I, Gunge D, Sharma A, Mehta S, Jahan A, Nilaad S, Olay J, Gu W, Simonson T, Almarghalani D, Pham J, Perera S, Park K, Al-Kolla R, Moon H, Das S, Byun MK, Shah Z, Sari Y, Heller Brown J, Crotty Alexander LE. Effects of mango and mint pod-based e-cigarette aerosol inhalation on inflammatory states of the brain, lung, heart, and colon in mice. eLife 2022; 11:e67621. [PMID: 35411847 PMCID: PMC9005188 DOI: 10.7554/elife.67621] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/04/2022] [Indexed: 12/13/2022] Open
Abstract
While health effects of conventional tobacco are well defined, data on vaping devices, including one of the most popular e-cigarettes which have high nicotine levels, are less established. Prior acute e-cigarette studies have demonstrated inflammatory and cardiopulmonary physiology changes while chronic studies have demonstrated extra-pulmonary effects, including neurotransmitter alterations in reward pathways. In this study we investigated the impact of inhalation of aerosols produced from pod-based, flavored e-cigarettes (JUUL) aerosols three times daily for 3 months on inflammatory markers in the brain, lung, heart, and colon. JUUL aerosol exposure induced upregulation of cytokine and chemokine gene expression and increased HMGB1 and RAGE in the nucleus accumbens in the central nervous system. Inflammatory gene expression increased in the colon, while gene expression was more broadly altered by e-cigarette aerosol inhalation in the lung. Cardiopulmonary inflammatory responses to acute lung injury with lipopolysaccharide were exacerbated in the heart. Flavor-specific findings were detected across these studies. Our findings suggest that daily e-cigarette use may cause neuroinflammation, which may contribute to behavioral changes and mood disorders. In addition, e-cigarette use may cause gut inflammation, which has been tied to poor systemic health, and cardiac inflammation, which leads to cardiovascular disease.
Collapse
Affiliation(s)
- Alex Moshensky
- Pulmonary and Critical Care Section, VA San Diego Healthcare SystemLa JollaUnited States
- Division of Pulmonary, Critical Care and Sleep Medicine and Section of Physiology, Department of Medicine, University of California San Diego (UCSD)San DiegoUnited States
| | - Cameron S Brand
- Department of Pharmacology, University of California San Diego (UCSD)San DiegoUnited States
| | - Hasan Alhaddad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledoUnited States
| | - John Shin
- Pulmonary and Critical Care Section, VA San Diego Healthcare SystemLa JollaUnited States
- Division of Pulmonary, Critical Care and Sleep Medicine and Section of Physiology, Department of Medicine, University of California San Diego (UCSD)San DiegoUnited States
| | - Jorge A Masso-Silva
- Pulmonary and Critical Care Section, VA San Diego Healthcare SystemLa JollaUnited States
- Division of Pulmonary, Critical Care and Sleep Medicine and Section of Physiology, Department of Medicine, University of California San Diego (UCSD)San DiegoUnited States
| | - Ira Advani
- Pulmonary and Critical Care Section, VA San Diego Healthcare SystemLa JollaUnited States
- Division of Pulmonary, Critical Care and Sleep Medicine and Section of Physiology, Department of Medicine, University of California San Diego (UCSD)San DiegoUnited States
| | - Deepti Gunge
- Pulmonary and Critical Care Section, VA San Diego Healthcare SystemLa JollaUnited States
- Division of Pulmonary, Critical Care and Sleep Medicine and Section of Physiology, Department of Medicine, University of California San Diego (UCSD)San DiegoUnited States
| | - Aditi Sharma
- Department of Pathology, University of California San Diego (UCSD)San DiegoUnited States
| | - Sagar Mehta
- Pulmonary and Critical Care Section, VA San Diego Healthcare SystemLa JollaUnited States
- Division of Pulmonary, Critical Care and Sleep Medicine and Section of Physiology, Department of Medicine, University of California San Diego (UCSD)San DiegoUnited States
| | - Arya Jahan
- Pulmonary and Critical Care Section, VA San Diego Healthcare SystemLa JollaUnited States
- Division of Pulmonary, Critical Care and Sleep Medicine and Section of Physiology, Department of Medicine, University of California San Diego (UCSD)San DiegoUnited States
| | - Sedtavut Nilaad
- Pulmonary and Critical Care Section, VA San Diego Healthcare SystemLa JollaUnited States
- Division of Pulmonary, Critical Care and Sleep Medicine and Section of Physiology, Department of Medicine, University of California San Diego (UCSD)San DiegoUnited States
| | - Jarod Olay
- Pulmonary and Critical Care Section, VA San Diego Healthcare SystemLa JollaUnited States
- Division of Pulmonary, Critical Care and Sleep Medicine and Section of Physiology, Department of Medicine, University of California San Diego (UCSD)San DiegoUnited States
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine and Section of Physiology, Department of Medicine, University of California San Diego (UCSD)San DiegoUnited States
| | - Tatum Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine and Section of Physiology, Department of Medicine, University of California San Diego (UCSD)San DiegoUnited States
| | - Daniyah Almarghalani
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledoUnited States
| | - Josephine Pham
- Pulmonary and Critical Care Section, VA San Diego Healthcare SystemLa JollaUnited States
- Division of Pulmonary, Critical Care and Sleep Medicine and Section of Physiology, Department of Medicine, University of California San Diego (UCSD)San DiegoUnited States
| | - Samantha Perera
- Pulmonary and Critical Care Section, VA San Diego Healthcare SystemLa JollaUnited States
- Division of Pulmonary, Critical Care and Sleep Medicine and Section of Physiology, Department of Medicine, University of California San Diego (UCSD)San DiegoUnited States
| | - Kenneth Park
- Pulmonary and Critical Care Section, VA San Diego Healthcare SystemLa JollaUnited States
- Division of Pulmonary, Critical Care and Sleep Medicine and Section of Physiology, Department of Medicine, University of California San Diego (UCSD)San DiegoUnited States
| | - Rita Al-Kolla
- Pulmonary and Critical Care Section, VA San Diego Healthcare SystemLa JollaUnited States
- Division of Pulmonary, Critical Care and Sleep Medicine and Section of Physiology, Department of Medicine, University of California San Diego (UCSD)San DiegoUnited States
| | - Hoyoung Moon
- Department of Pharmacology, University of California San Diego (UCSD)San DiegoUnited States
| | - Soumita Das
- Department of Pathology, University of California San Diego (UCSD)San DiegoUnited States
| | - Min Kwang Byun
- Division of Pulmonary, Critical Care and Sleep Medicine and Section of Physiology, Department of Medicine, University of California San Diego (UCSD)San DiegoUnited States
- Division of Pulmonology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Zahoor Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledoUnited States
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledoUnited States
| | - Joan Heller Brown
- Department of Pharmacology, University of California San Diego (UCSD)San DiegoUnited States
| | - Laura E Crotty Alexander
- Pulmonary and Critical Care Section, VA San Diego Healthcare SystemLa JollaUnited States
- Division of Pulmonary, Critical Care and Sleep Medicine and Section of Physiology, Department of Medicine, University of California San Diego (UCSD)San DiegoUnited States
| |
Collapse
|
22
|
Alanazi H, Rouabhia M. Effect of e-cigarette aerosol on gingival mucosa structure and proinflammatory cytokine response. Toxicol Rep 2022; 9:1624-1631. [DOI: 10.1016/j.toxrep.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
|
23
|
Goenka S, Simon SR. Effects of E-Cigarette Refill Liquid Flavorings with and without Nicotine on Human Retinal Pigment Epithelial Cells: A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11655. [PMID: 34770169 PMCID: PMC8582700 DOI: 10.3390/ijerph182111655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
Smoking is an etiologic factor for age-related macular degeneration (AMD). Although cigarette smoke has been extensively researched for retinal pigment epithelial (RPE) cell degeneration, the potential for adverse effects on the retinal epithelium following exposure to flavored e-cigarette refill liquid has never been explored. In this preliminary study, we have examined the effects of 20 e-liquids (10 different flavored nicotine-free and 10 nicotine-rich e-liquids) used in e-cigarettes on the metabolic activity, membrane integrity, and mitochondrial membrane potential of RPE cells. Our results showed that of the flavors studied over the concentration range: 0.5, 1, and 2% v/v for a duration of 48 h, cinnamon was the most toxic and menthol was the second most toxic, while other flavors showed lesser or no cytotoxicity. The presence of nicotine augmented cytotoxicity for cinnamon, menthol, strawberry, vanilla, and banana while for other flavors there was no synergism. Together, our results demonstrate that exposure of RPE to flavored e-cigarette refill liquids caused significant cytotoxicity and may be a risk factor for the development of retinal pathogenesis, although further in-depth studies are necessary.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA;
- Department of Biochemistry and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Sanford R. Simon
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA;
- Department of Biochemistry and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|