1
|
Chronister BNC, Justo D, Wood RJ, Lopez-Paredes D, Gonzalez E, Suarez-Torres J, Gahagan S, Martinez D, Jacobs DR, Checkoway H, Jankowska MM, Suarez-Lopez JR. Sex and adrenal hormones in association with insecticide biomarkers among adolescents living in ecuadorian agricultural communities. Int J Hyg Environ Health 2024; 259:114386. [PMID: 38703462 PMCID: PMC11421858 DOI: 10.1016/j.ijheh.2024.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Organophosphate, pyrethroid, and neonicotinoid insecticides have resulted in adrenal and gonadal hormone disruption in animal and in vitro studies; limited epidemiologic evidence exists in humans. We assessed relationships of urinary insecticide metabolite concentrations with adrenal and gonadal hormones in adolescents living in Ecuadorean agricultural communities. METHODS In 2016, we examined 522 Ecuadorian adolescents (11-17y, 50.7% female, 22% Indigenous; ESPINA study). We measured urinary insecticide metabolites, blood acetylcholinesterase activity (AChE), and salivary testosterone, dehydroepiandrosterone (DHEA), 17β-estradiol, and cortisol. We used general linear models to assess linear (β = % hormone difference per 50% increase of metabolite concentration) and curvilinear relationships (β2 = hormone difference per unit increase in squared ln-metabolite) between ln-metabolite or AChE and ln-hormone concentrations, stratified by sex, adjusting for anthropometric, demographic, and awakening response variables. Bayesian Kernel Machine Regression was used to assess non-linear associations and interactions. RESULTS The organophosphate metabolite malathion dicarboxylic acid (MDA) had positive associations with testosterone (βboys = 5.88% [1.21%, 10.78%], βgirls = 4.10% [-0.02%, 8.39%]), and cortisol (βboys = 6.06 [-0.23%, 12.75%]. Para-nitrophenol (organophosphate) had negatively-trending curvilinear associations, with testosterone (β2boys = -0.17 (-0.33, -0.003), p = 0.04) and DHEA (β2boys = -0.49 (-0.80, -0.19), p = 0.001) in boys. The neonicotinoid summary score (βboys = 5.60% [0.14%, 11.36%]) and the neonicotinoid acetamiprid-N-desmethyl (βboys = 3.90% [1.28%, 6.58%]) were positively associated with 17β-estradiol, measured in boys only. No associations between the pyrethroid 3-phenoxybenzoic acid and hormones were observed. In girls, bivariate response associations identified interactions of MDA, Para-nitrophenol, and 3,5,6-trichloro-2-pyridinol (organophosphates) with testosterone and DHEA concentrations. In boys, we observed an interaction of MDA and Para-nitrophenol with DHEA. No associations were identified for AChE. CONCLUSIONS We observed evidence of endocrine disruption for specific organophosphate and neonicotinoid metabolite exposures in adolescents. Urinary organophosphate metabolites were associated with testosterone and DHEA concentrations, with stronger associations in boys than girls. Urinary neonicotinoids were positively associated with 17β-estradiol. Longitudinal repeat-measures analyses would be beneficial for causal inference.
Collapse
Affiliation(s)
- Briana N C Chronister
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA; School of Public Health, San Diego State University, San Diego, CA, 92182, USA
| | - Denise Justo
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert J Wood
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Eduardo Gonzalez
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Sheila Gahagan
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - David R Jacobs
- School of Public Health, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Harvey Checkoway
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Marta M Jankowska
- Department of Population Sciences, Beckman Research Institute of City of Hope, Los Angeles, CA, 91010, USA
| | - Jose R Suarez-Lopez
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Yang Z, Wang W, Lin L, Xiao K, Peng L, Gao X, Zhou L. The association between urinary organophosphate insecticide metabolites and erectile dysfunction in the United States. Int J Impot Res 2024; 36:226-231. [PMID: 36513813 DOI: 10.1038/s41443-022-00655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Organophosphate (OP) insecticides are the main chemicals used in agriculture for pest elimination, and they have been linked with many diseases. However, there is no literature regarding the impacts of organophosphate insecticide metabolite exposure on erectile dysfunction (ED). We aimed to evaluate the correlation between 4 urinary organophosphate insecticide metabolites and the presence of ED in a representative sample of men aged 20 and older. The dataset including a total of 555 subjects was obtained from the National Health and Nutrition Examination Survey (NHANES) 2003-2004. ED was assessed by a question from a self-report questionnaire. Weighted proportions and multivariable logistic regression analysis were utilized to examine the relationship between organophosphate insecticide metabolite exposure and ED. In multivariable logistic regression analysis, diethylphosphate (DEP) was positively correlated with ED (OR 1.07; 95% CI 1.01-1.14; P = 0.033) after full adjustment. Men in DEP tertile 4 had a significant 33% higher risk of ED than those in tertile 1. Furthermore, in a subgroup analysis, our results showed that higher DEP levels were significantly associated with ED in the young age group (20 ≤ age ≤ 39). Our study revealed a significant association between organophosphate insecticide metabolite exposure and an increased risk of ED. Moreover, the correlations were more evident in the young age group. The evaluation of urinary organophosphate insecticide metabolite exposure should be included in the risk assessment of ED. Further study to investigate the underlying mechanism, such as how long the urinary metabolite is present, whether ED is reversible in this population by lowering DEP concentrations, and how exposure to this metabolite affects erectile tissue, is warranted.
Collapse
Affiliation(s)
- Zerui Yang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Wei Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lede Lin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaiwen Xiao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liao Peng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoshuai Gao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liang Zhou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Kilonzi JM, Otieno S. Degradation kinetics and physiological studies of organophosphates degrading microorganisms for soil bioremediation. STRESS BIOLOGY 2024; 4:11. [PMID: 38319394 PMCID: PMC10847075 DOI: 10.1007/s44154-023-00138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/15/2023] [Indexed: 02/07/2024]
Abstract
Organophosphate compounds are widely used in agricultural activities to optimize food production. Contamination of field soil by these compounds may result in detrimental effects on soil biota. The aim of the present study was to isolate microorganisms from field soils and evaluate the strains on ability to degrade organophosphates as single isolate and as a consortium. Isolated strains were identified using both biochemical and molecular techniques. Results revealed that, out of the 46 isolated strains, three isolates herein referred to as S6, S36 and S37 showed an average diazinon degradation rate of 76.4%, 76.7% and 76.8% respectively, of the initial dose (50 ppm) within 11 days of incubation in mineral medium. Notably, isolates S36 and S37 were more effective than S6 in degrading diazinon by 40% in soil aliquot after 11 days and therefore were evaluated on biochemical reactions and molecular identification. The isolates showed variable biochemical characteristics. However, both isolates possessed catalase enzyme, but lacked oxidase enzyme. Molecular characterization showed that, the closest species for S36 and S37 were Priestia megaterium and P. arybattia, respectively, based on 16S rRNA gene similarity (> 99%). Combination of the strains increased diazinon degradation ability by 45% compared to single strain treatment. Chlorpyrifos was the most highly degraded organophosphate, compared to phorate and cadusafos. Therefore it is expected that the pesticide-degrading bacteria could be a solution to soil health improvement and contribution to the production of safe agricultural products.
Collapse
Affiliation(s)
- J M Kilonzi
- Kenya Agricultural and Livestock Research Organization Tigoni, Limuru, P.O BOX 338-0217, Kenya.
| | - S Otieno
- Kenya Agricultural and Livestock Research Organization Tigoni, Limuru, P.O BOX 338-0217, Kenya
| |
Collapse
|
4
|
Neves AP, Rosa ACS, Larentis AL, da Silva Rodrigues Vidal PJ, Gonçalves ES, da Silveira GR, Dos Santos MVC, de Carvalho LVB, Alves SR. Urinary dialkylphosphate metabolites in the assessment of exposure to organophosphate pesticides: from 2000 to 2022. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:10. [PMID: 38049584 DOI: 10.1007/s10661-023-12184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
The general population and workers are exposed to organophosphate insecticides, one of the leading chemical classes of pesticides used in rural and urban areas, in the control of arboviruses and agriculture. These pesticides cause environmental/occupational exposure and associated risks to human and environmental health. The objective of this study was to carry out an integrative review of epidemiological studies that identified and quantified dialkylphosphate metabolites in the urine of exposed populations, focusing on the vector control workers, discussing the application and the results found. Searches utilized the Pubmed, Scielo, and the Brazilian Digital Library of Theses and Dissertations (BDTD) databases between 2000 and 2021. From the 194 selected studies, 75 (39%) were with children/adolescents, 48 (24%) with rural workers, 36 (19%) with the general population, 27 (14%) with pregnant women, and 9 (4%) with vector control workers. The total dialkylphosphate concentrations found in the occupationally exposed population were higher than in the general population. Studies demonstrate that dialkylphosphates are sensitive and representative exposure biomarkers for environmental and occupational organophosphate exposure. The work revealed a lack of studies with vector control workers and a lack of studies in developing countries.
Collapse
Affiliation(s)
- Ana Paula Neves
- Public Health and Environment Postgraduation Program (PSPMA), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Sergio Arouca National School of Public Health (ENSP), Rio de Janeiro, Brazil.
- Centro de Estudos da Saúde do Trabalhador e Ecologia Humana (CESTEH) - Rua Leopoldo Bulhões, nº. 1480 - Manguinhos, Rio de Janeiro, RJ, 21041-210, Brasil.
| | - Ana Cristina Simões Rosa
- Toxicology Laboratory, Center for the Study of Workers' Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Rio de Janeiro, Brazil
| | - Ariane Leites Larentis
- Toxicology Laboratory, Center for the Study of Workers' Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Rio de Janeiro, Brazil
| | - Priscila Jeronimo da Silva Rodrigues Vidal
- Public Health and Environment Postgraduation Program (PSPMA), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Sergio Arouca National School of Public Health (ENSP), Rio de Janeiro, Brazil
| | - Eline Simões Gonçalves
- Postgraduate Program in Geochemistry, Institute of Chemistry, Federal Fluminense University (UFF), Niterói, Brazil
| | - Gabriel Rodrigues da Silveira
- Public Health and Environment Postgraduation Program (PSPMA), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Sergio Arouca National School of Public Health (ENSP), Rio de Janeiro, Brazil
| | - Marcus Vinicius Corrêa Dos Santos
- Public Health and Environment Postgraduation Program (PSPMA), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Sergio Arouca National School of Public Health (ENSP), Rio de Janeiro, Brazil
| | - Leandro Vargas Barreto de Carvalho
- Toxicology Laboratory, Center for the Study of Workers' Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Rio de Janeiro, Brazil
| | - Sergio Rabello Alves
- Toxicology Laboratory, Center for the Study of Workers' Health and Human Ecology (CESTEH), Sergio Arouca National School of Public Health (ENSP), Oswaldo Cruz Foundation - Department of Health (FIOCRUZ-MS), Rio de Janeiro, Brazil
- General Superintendence of Technical and Scientific Police/Department of Civilian Police of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Kumar D, Sinha SN, Vasudev K. Development and Validation of a New UFLC-MS/MS Method for the Detection of Organophosphate Pesticide Metabolites in Urine. Molecules 2023; 28:5800. [PMID: 37570770 PMCID: PMC10421278 DOI: 10.3390/molecules28155800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
To monitor human exposure to pesticides, experts commonly measure their metabolites in urine, particularly dialkyl phosphates (DAPs), which include diethyl phosphate (DEP), Diethyl thiophosphate (DETP), diethyl dithiophosphate (DEDTP), dimethyl phosphate (DMP), dimethyl thiophosphate (DMTP) and dimethyl dithiophosphate (DMDTP)to monitor the metabolites of organophosphates. These DAP metabolites are a urinary biomarker for assessing pesticide exposure and potential health risks. This study presented a new screening method combining ultrafast liquid chromatography with tandem mass spectrometry (UFLC-MS/MS) to detect six DAP metabolites in human urine. The study also compared standard sample extraction methods, namely, liquid-liquid extraction (LLE); quick, easy, cheap, effective, ruggedand safe (QuEChERS); and lyophilization. After a comprehensive analysis of the methods used to extract the analytes, including recovery rate, repeatability and reproducibility, the liquid-liquid extraction (LLE) method was found to be the best. It had a high recovery rate, was easy to handle, required less sample volume and had a short extraction time. Therefore, the LLE method was chosen for further analysis. The results showed excellent performance with high recoveries between 93% and 102%, precise repeatability (RSD) between 0.62% and 5.46% and acceptable reproducibility values (RSD) between 0.80% and 11.33%. The method also had limits of detection (LOD) ranging from 0.0201 ng/mL to 0.0697 ng/mL and limits of quantification (LOQ) ranging from 0.0609 ng/mL to 0.2112 ng/mL. Furthermore, the UFLC-MS/MS method was validated based on the SANTE guidance and successfully analyzed 150 urine samples from farmers and non-farmers. This validated method proved useful for biomonitoring studies focusing on OP pesticide exposure. It offers several advantages, such as a reduced need for samples, chemicals and materials, and a shorter analysis time. The method is sensitive and selective in detecting metabolites in human urine, making it a valuable approach for the practical and efficient assessment of pesticide exposure.
Collapse
Affiliation(s)
- Dileshwar Kumar
- Food Safety Division, ICMR—National Institute of Nutrition, Hyderabad 500007, Telangana, India
- Department of Biochemistry, Osmania University, Hyderabad 500007, Telangana, India
| | - Sukesh Narayan Sinha
- Food Safety Division, ICMR—National Institute of Nutrition, Hyderabad 500007, Telangana, India
| | - Kasturi Vasudev
- Food Safety Division, ICMR—National Institute of Nutrition, Hyderabad 500007, Telangana, India
| |
Collapse
|
6
|
Alva-Gallegos R, Carazo A, Mladěnka P. Toxicity overview of endocrine disrupting chemicals interacting in vitro with the oestrogen receptor. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104089. [PMID: 36841273 DOI: 10.1016/j.etap.2023.104089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The oestrogen receptor (ER) from the nuclear receptor family is involved in different physiological processes, which can be affected by multiple xenobiotics. Some of these compounds, such as bisphenols, pesticides, and phthalates, are widespread as consequence of human activities and are commonly present also in human organism. Xenobiotics able to interact with ER and trigger a hormone-like response, are known as endocrine disruptors. In this review, we aim to summarize the available knowledge on products derived from human industrial activity and other xenobiotics reported to interact with ER. ER-disrupting chemicals behave differently towards oestrogen-dependent cell lines than endogenous oestradiol. In low concentrations, they stimulate proliferation, whereas at higher concentrations, are toxic to cells. In addition, most of the knowledge on the topic is based on individual compound testing, and only a few studies assess xenobiotic combinations, which better resemble real circumstances. Confirmation from in vivo models is lacking also.
Collapse
Affiliation(s)
- Raul Alva-Gallegos
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
7
|
Martins JRN, Lopes S, Hurtado HN, da Silva FN, Villard DR, Taboga SR, Souza KLA, Quesada I, Soriano S, Rafacho A. Acute and chronic effects of the organophosphate malathion on the pancreatic α and β cell viability, cell structure, and voltage-gated K + currents. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104046. [PMID: 36587778 DOI: 10.1016/j.etap.2022.104046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Studies indicate that the pesticide malathion may have a role in diabetes. Herein, we determined the effects of different concentrations of malathion on survival, ultrastructure, and electrophysiologic islet cell parameters. Acutely, high concentrations of malathion (0.5 or 1 mM) increased cell death in rat islet cells, while low concentrations (0.1 mM) caused signs of cell damage in pancreatic α and β cells. Exposure of RINm5F cells to malathion for 24 or 48 h confirmed the reduction in β-cell viability at lower concentrations (0.001-100 µM). Chronic exposure of mouse pancreatic α and β cells to 3 nM of malathion led to increased voltage-gated K+ (Kv) currents in α-cells. Our findings show a time and concentration dependency for the malathion effect on the reduction of islet cell viability and indicate that pancreatic α cells are more sensitive to malathion effects on Kv currents and cell death.
Collapse
Affiliation(s)
- J R N Martins
- Laboratory of Investigation in Chronic Diseases LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil
| | - S Lopes
- Central Laboratory of Electron Microscopy LCME, PROPESQ, Federal University of Santa Catarina UFSC, Florianópolis, Brazil
| | - H N Hurtado
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - F N da Silva
- Laboratory of Investigation in Chronic Diseases LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil
| | - D R Villard
- NUMPEX-BIO, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro (UFRJ), Campus UFRJ Duque de Caxias Prof. Geraldo Cidade, Duque de Caxias 25245-390, Brazil
| | - S R Taboga
- Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, Universidade Estadual Paulista-UNESP, São Paulo, Brazil
| | - K L A Souza
- NUMPEX-BIO, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro (UFRJ), Campus UFRJ Duque de Caxias Prof. Geraldo Cidade, Duque de Caxias 25245-390, Brazil
| | - I Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - S Soriano
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - A Rafacho
- Laboratory of Investigation in Chronic Diseases LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil; Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina UFSC, Florianópolis, Brazil.
| |
Collapse
|
8
|
Ramezanifar S, Beyrami S, Mehrifar Y, Ramezanifar E, Soltanpour Z, Namdari M, Gharari N. Occupational Exposure to Physical and Chemical Risk Factors: A Systematic Review of Reproductive Pathophysiological Effects in Women and Men. Saf Health Work 2023; 14:17-30. [PMID: 36941939 PMCID: PMC10024186 DOI: 10.1016/j.shaw.2022.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
The human reproductive system can be affected by occupational exposure to many physical and chemical risk factors. This study was carried out to review the studies conducted on the issue of the pathophysiological effects of occupational physical and chemical risk factors on the reproductive system of females and males. In this systematic review, the databases such as "Google Scholar," "Pub-Med," "Scopus," and "Web of Science" were used. Following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA 2020), the studies included in our study were published between 2000 and 2021. In order to extract the required data, all sections of the articles were reviewed. Out of 57 articles we reviewed, 34 articles were related to field studies and 23 articles to clinical studies. Among them, 43 studies dealt with the pathophysiological effects of chemical agents, six studies dealt with the pathophysiological effects of physical factors, and 8 studies dealt with the pathophysiological effects of physicochemical factors on the human reproductive system. Physical (noise, heat, and radiofrequency radiation) and chemical (such as carbamate and organophosphate pesticides, benzene, toluene, xylene, formaldehyde, NO2, CS2, manganese, lead, nickel, and n-hexane) risk factors had pathophysiological effects on the human reproductive system. The presence of these risk factors in the workplace caused damage to the human reproductive system. The rate of these negative pathophysiological effects can be reduced by performing appropriate managerial, technical, and engineering measures in work environments.
Collapse
Affiliation(s)
- Soleiman Ramezanifar
- Student Research Committee, Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sona Beyrami
- Student Research Committee, Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Younes Mehrifar
- Student Research Committee, Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Ramezanifar
- Center of Excellence for Occupational Health and Research, Center of Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Soltanpour
- Department of Occupational Health and Safety, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahshid Namdari
- Department of Community Oral Health, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Noradin Gharari
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding author. Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Zhang Y, Wu W, Zhu X, Wu J, Wu X. Organophosphorus insecticides exposure and sex hormones in general U.S. population: A cross-sectional study. ENVIRONMENTAL RESEARCH 2022; 215:114384. [PMID: 36150437 DOI: 10.1016/j.envres.2022.114384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Evidence showed organophosphorus (OPs) insecticide exposure is common in general population with endocrine-disrupting effects. However, the association between OPs metabolites and sex hormones remains unclear. OBJECTIVE To investigate the association between OPs metabolites and sex hormones. METHODS Data of 1438 participants from NHANES 2015-2016 was applied. Urinary OPs metabolites, dialkyl phosphates (DAPs), and serum sex hormones (total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG)) were measured. Free androgen index (FAI) and TT/E2 ratio were also calculated. The generalized linear regression model and restricted cubic spline (RCS) model were employed to evaluate the association and exposure-response curve of DAPs and sex hormones in males and females. The modulation effect of age on their associations in female participants was also explored. RESULTS After adjusting for confounding factors, DETP was negatively associated with E2 (β = -0.03; 95% CI: -0.05, -0.01) and FAI (β = -0.03; 95% CI: -0.06, -0.001) in males. In females, all the four DAP metabolites (DMP, DEP, DMTP, and DETP) were negatively associated with FAI (DMP: β = -0.06, 95% CI: -0.11, -0.01; DEP: β = -0.06, 95% CI: -0.12, -0.01; DMTP: -0.05, 95% CI: -0.09, -0.02; DETP: -0.09, 95% CI: -0.14, -0.04). DETP was also found negatively associated with TT and TT/E2 ratio in females. The associations between DETP and TT, FAI, and TT/E2 ratio were modified by gender (Pinteraction<0.05). RCS analysis found these associations were in linear decreased exposure-response curves. For females of different age groups, the inverse associations of DETP with TT and FAI remained stable. Decreased FAI with DMP and DMTP was also found in females ≤50 years old. CONCLUSIONS Our study indicates OPs metabolites had negative associations with androgen indicators, which was characterized as decreased FAI and E2 in males and decreased TT, FAI, and TT/E2 ratio in females, particularly among females ≤50 years old. Further studies are warranted in larger-scale populations.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wanke Wu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xingdi Zhu
- School of the First Clinical Mediine, Nanjing Medical University, Nanjing, China
| | - Jiangping Wu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Xiaoli Wu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
10
|
Zúñiga-Venegas LA, Hyland C, Muñoz-Quezada MT, Quirós-Alcalá L, Butinof M, Buralli R, Cardenas A, Fernandez RA, Foerster C, Gouveia N, Gutiérrez Jara JP, Lucero BA, Muñoz MP, Ramírez-Santana M, Smith AR, Tirado N, van Wendel de Joode B, Calaf GM, Handal AJ, Soares da Silva A, Cortés S, Mora AM. Health Effects of Pesticide Exposure in Latin American and the Caribbean Populations: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:96002. [PMID: 36173136 PMCID: PMC9521041 DOI: 10.1289/ehp9934] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND Multiple epidemiological studies have shown that exposure to pesticides is associated with adverse health outcomes. However, the literature on pesticide-related health effects in the Latin American and the Caribbean (LAC) region, an area of intensive agricultural and residential pesticide use, is sparse. We conducted a scoping review to describe the current state of research on the health effects of pesticide exposure in LAC populations with the goal of identifying knowledge gaps and research capacity building needs. METHODS We searched PubMed and SciELO for epidemiological studies on pesticide exposure and human health in LAC populations published between January 2007 and December 2021. We identified 233 publications from 16 countries that met our inclusion criteria and grouped them by health outcome (genotoxicity, neurobehavioral outcomes, placental outcomes and teratogenicity, cancer, thyroid function, reproductive outcomes, birth outcomes and child growth, and others). RESULTS Most published studies were conducted in Brazil (37%, n = 88 ) and Mexico (20%, n = 46 ), were cross-sectional in design (72%, n = 167 ), and focused on farmworkers (45%, n = 105 ) or children (21%, n = 48 ). The most frequently studied health effects included genotoxicity (24%, n = 62 ) and neurobehavioral outcomes (21%, n = 54 ), and organophosphate (OP) pesticides were the most frequently examined (26%, n = 81 ). Forty-seven percent (n = 112 ) of the studies relied only on indirect pesticide exposure assessment methods. Exposure to OP pesticides, carbamates, or to multiple pesticide classes was consistently associated with markers of genotoxicity and adverse neurobehavioral outcomes, particularly among children and farmworkers. DISCUSSION Our scoping review provides some evidence that exposure to pesticides may adversely impact the health of LAC populations, but methodological limitations and inconsistencies undermine the strength of the conclusions. It is critical to increase capacity building, integrate research initiatives, and conduct more rigorous epidemiological studies in the region to address these limitations, better inform public health surveillance systems, and maximize the impact of research on public policies. https://doi.org/10.1289/EHP9934.
Collapse
Affiliation(s)
- Liliana A. Zúñiga-Venegas
- Centro de Investigaciones de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Carly Hyland
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- School of Public Health and Population Science, Boise State University, Boise, Idaho, USA
| | - María Teresa Muñoz-Quezada
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - Lesliam Quirós-Alcalá
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, John Hopkins University, Baltimore, Maryland, USA
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Mariana Butinof
- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rafael Buralli
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brasil
| | - Andres Cardenas
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Ricardo A. Fernandez
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Claudia Foerster
- Instituto de Ciencias de la Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando, Chile
| | - Nelson Gouveia
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Juan P. Gutiérrez Jara
- Centro de Investigaciones de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Boris A. Lucero
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - María Pía Muñoz
- Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Muriel Ramírez-Santana
- Departamento de Salud Pública, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Anna R. Smith
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Noemi Tirado
- Instituto de Genética, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Berna van Wendel de Joode
- Infants’ Environmental Health Study, Central American Institute for Studies on Toxic Substances, Universidad Nacional, Heredia, Costa Rica
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
- Columbia University Medical Center, New York, New York, USA
| | - Alexis J. Handal
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | - Sandra Cortés
- Centro Avanzado de Enfermedades Crónicas (ACCDiS), Centro de Desarrollo Urbano Sustentable, Departamento de Salud Pública, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana M. Mora
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Infants’ Environmental Health Study, Central American Institute for Studies on Toxic Substances, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
11
|
Fu H, Tan P, Wang R, Li S, Liu H, Yang Y, Wu Z. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127494. [PMID: 34687999 DOI: 10.1016/j.jhazmat.2021.127494] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPPs) are one of the most widely used types of pesticide that play an important role in the production process due to their effects on preventing pathogen infection and increasing yield. However, in the early development and application of OPPs, their toxicological effects and the issue of environmental pollution were not considered. With the long-term overuse of OPPs, their hazards to the ecological environment (including soil and water) and animal health have attracted increasing attention. Therefore, this review first clarified the classification, characteristics, applications of various OPPs, and the government's restriction requirements on various OPPs. Second, the toxicological effects and metabolic mechanisms of OPPs and their metabolites were introduced in organisms. Finally, the existing methods of degrading OPPs were summarized, and the challenges and further addressing strategy of OPPs in the sustainable development of agriculture, the environment, and ecology were prospected. However, methods to solve the environmental and ecological problems caused by OPPs from the three aspects of use source, use process, and degradation methods were proposed, which provided a theoretical basis for addressing the stability of the ecological environment and improving the structure of the pesticide industry in the future.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Renjie Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Senlin Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Fucic A, Duca RC, Galea KS, Maric T, Garcia K, Bloom MS, Andersen HR, Vena JE. Reproductive Health Risks Associated with Occupational and Environmental Exposure to Pesticides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126576. [PMID: 34207279 PMCID: PMC8296378 DOI: 10.3390/ijerph18126576] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
A marked reduction in fertility and an increase in adverse reproductive outcomes during the last few decades have been associated with occupational and environmental chemical exposures. Exposure to different types of pesticides may increase the risks of chronic diseases, such as diabetes, cancer, and neurodegenerative disease, but also of reduced fertility and birth defects. Both occupational and environmental exposures to pesticides are important, as many are endocrine disruptors, which means that even very low-dose exposure levels may have measurable biological effects. The aim of this review was to summarize the knowledge collected between 2000 and 2020, to highlight new findings, and to further interpret the mechanisms that may associate pesticides with infertility, abnormal sexual maturation, and pregnancy complications associated with occupational, environmental and transplacental exposures. A summary of current pesticide production and usage legislation is also included in order to elucidate the potential impact on exposure profile differences between countries, which may inform prevention measures. Recommendations for the medical surveillance of occupationally exposed populations, which should be facilitated by the biomonitoring of reduced fertility, is also discussed.
Collapse
Affiliation(s)
- Aleksandra Fucic
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-15682500; Fax: +3814673303
| | - Radu C. Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory, L-3555 Dudelange, Luxembourg;
- Centre for Environment and Health, KU Leuven, 3001 Leuven, Belgium
| | - Karen S. Galea
- Institute of Occupational Medicine, Edinburgh EH14 4AP, UK;
| | - Tihana Maric
- Medical School, University of Zagreb, 10000 Zagreb, Croatia;
| | - Kelly Garcia
- Department of Global and Community Health, George Mason University, Fairfax, VA 22030, USA; (K.G.); (M.S.B.)
| | - Michael S. Bloom
- Department of Global and Community Health, George Mason University, Fairfax, VA 22030, USA; (K.G.); (M.S.B.)
| | - Helle R. Andersen
- Department of Public Health, University of Southern Denmark, DK-5000 Odense C, Denmark;
| | - John E. Vena
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
13
|
Exposure to Organophosphate and Neonicotinoid Insecticides and Its Association with Steroid Hormones among Male Reproductive-Age Farmworkers in Northern Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115599. [PMID: 34073889 PMCID: PMC8197278 DOI: 10.3390/ijerph18115599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022]
Abstract
Several studies indicated organophosphate (OP) and neonicotinoid (NEO) insecticides are endocrine disruptors; however, data are scarce. This cross-sectional study recruited 143 male farmworkers aged 18-40 years in Fang district, Chiang Mai province, northern Thailand. OP exposure was assessed by measuring urinary dialkylphosphate (DAPs) using a gas-chromatography flame photometric detector. Urinary NEOs, their metabolites (NEO/m) and serum steroid hormones were measured using liquid chromatography-tandem mass spectrometry. Characteristics of participants were determined by face-to-face interviews. DAPs and five NEO/m were detected in more than 60% of samples. The concentration of diethylphosphate was highest among DAP metabolites (geometric mean concentration (GM: 23.9 ng/mL) and the concentration of imidacloprid (IMI) was highest among NEO/m (GM: 17.4 ng/mL). Linear regression models showed that the IMI level was positively associated with testosterone, dehydrocorticosterone (DHC) and dehydroepiandrosterone (DHEA) levels. Imidacloprid-olefin and DHEA levels were positively associated. Thiamethoxam (THX) were inversely associated with DHC and deoxycorticosterone levels. Clothianidin (CLO), THX and N-desmethyl-acetamiprid levels were positively associated with the androstenedione level. CLO and THX levels were inversely associated with the cortisone level. In conclusion, the association between NEO insecticides exposure and adrenal androgens, glucocorticoids and mineralocorticoids, suggest potential steroidogenesis activities. Our findings warrant further investigation.
Collapse
|
14
|
Suárez B, Vela-Soria F, Castiello F, Olivas-Martinez A, Acuña-Castroviejo D, Gómez-Vida J, Olea N, Fernández MF, Freire C. Organophosphate pesticide exposure, hormone levels, and interaction with PON1 polymorphisms in male adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144563. [PMID: 33485193 DOI: 10.1016/j.scitotenv.2020.144563] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/06/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To examine the association between urinary metabolites of organophosphate (OP) pesticides and serum concentrations of thyroid and reproductive hormones in male adolescents and to assess the potential effect of interactions between OP pesticides and paraoxonase 1 (PON1) polymorphisms on hormone levels. METHODS Study subjects (N = 117) were male 16- to 17-year-olds from the Environment and Childhood (INMA)-Granada cohort in Spain. Concentrations of 3,5,6-trichloro-2-pyridinol (TCPy), a metabolite of chlorpyrifos/chlorpyrifos-methyl, 2-isopropyl-6-methyl-4-pyrimidinol (IMPy), a metabolite of diazinon, and diethylthiophosphate (DETP) and diethyldithiophosphate (DEDTP), non-specific metabolites of OP pesticides, were measured in a spot urine sample from each subject and adjusted for creatinine. Levels of reproductive hormones (total testosterone [TT], estradiol [E2], dehydroepiandrosterone sulfate [DHEAS], sex hormone binding globulin [SHBG], luteinizing hormone [LH], follicle stimulating hormone [FSH], anti-Müllerian hormone [AMH], insulin growth factor 1 [IGF-1], and prolactin), thyroid hormones (free thyroxine [FT4], total triiodothyronine [TT3], and thyroid stimulating hormone [TSH]), and PON1 Q192R and L55M polymorphisms were determined in blood drawn during the same clinical visit. RESULTS Multiple linear regression models showed that detectable levels of TCPy were associated with an increase in DHEAS and decreases in E2, FSH, and AMH; detectable IMPy with increases in E2, DHEAS, FSH, AMH, and prolactin and decreases in SHBG and LH; and detectable DETP with marginally-significant increases in TT and TT3 and decreases in FSH, AMH, and prolactin. The effect of IMPy and DETP on DHEAS and TT levels, respectively, was higher in subjects that carried the PON1 55MM genotype, while the effect of TCPy, IMPy, and DETP on thyroid hormone levels was higher in PON1 192QR/RR or 55MM genotype carriers. CONCLUSIONS In male adolescents, non-occupational exposure to OP pesticides was associated with several changes in reproductive and thyroid hormone levels, and the magnitude of some associations was greater in adolescents genetically more susceptible to OP pesticide exposure who carry the PON1 55MM genotype.
Collapse
Affiliation(s)
- Beatriz Suárez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain.
| | - Francesca Castiello
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Unidad de Gestión Clínica (UGC) de Pediatría, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Alicia Olivas-Martinez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
| | - Dario Acuña-Castroviejo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain; Department of Physiology, School of Medicine, University of Granada, 18071 Granada, Spain.
| | - José Gómez-Vida
- Unidad de Gestión Clínica (UGC) de Pediatría, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18071 Granada, Spain.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18071 Granada, Spain.
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
| |
Collapse
|
15
|
Al-Rashed S, Marraiki N, Syed A, Elgorban AM, Prasad KS, Shivamallu C, Bahkali AH. Bioremediation characteristics, influencing factors of dichlorodiphenyltrichloroethane (DDT) removal by using non-indigenous Paracoccus sp. CHEMOSPHERE 2021; 270:129474. [PMID: 33445153 DOI: 10.1016/j.chemosphere.2020.129474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/16/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
The marine bacterium able to consume DDT as the nutrient source was isolated from sea water which was identified as Paracoccus sp. DDT-21 based on 16 S rDNA gene sequence and Gram negative rod, obligate aerobic, non-motile biochemical characteristics. The isolate can degrade over 80% of the DDT, at a concentration of 50 mg/L in MSM in 72 h. Time and pollutant (DDT) dependent growth studies indicated that the isolate Paracoccus sp., DDT-21 significantly degrade the DDT and tolerates under DDT stress up to 50 mg/L. The DDT degradation capability of the strain Paracoccus sp. DDT-21 was found to be 5 ˃ 10 ˃ 15 ˃ 25 ˃ 50 mg/L DDT. The high concentrations (75 and 100 mg/L) of DDT showed significant decrease in DDT degradation. The optimal DDT degradation (∼90.0%) was observed at 6 g/L of yeast extract, 6% of glucose in pH 7.0 at 35 °C with 72 h of incubation as constant. Furthermore, four metabolites were observed by GC-MS analysis such as, DDE, DDD, DDMU, and DDA. The obtained results indicate that the isolate Paracoccus sp. DDT-21 is a promising candidate for the removal and/or detoxification of DDT in the environment.
Collapse
Affiliation(s)
- Sarah Al-Rashed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia; Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia.
| | - Kollur Shiva Prasad
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, 570 026, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research Mysuru, 570 015, India
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
16
|
A Fluidics-Based Biosensor to Detect and Characterize Inhibition Patterns of Organophosphate to Acetylcholinesterase in Food Materials. MICROMACHINES 2021; 12:mi12040397. [PMID: 33916863 PMCID: PMC8065683 DOI: 10.3390/mi12040397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022]
Abstract
A chip-based electrochemical biosensor is developed herein for the detection of organophosphate (OP) in food materials. The principle of the sensing platform is based on the inhibition of dimethoate (DMT), a typical OP that specifically inhibits acetylcholinesterase (AChE) activity. Carbon nanotube-modified gold electrodes functionalized with polydiallyldimethylammonium chloride (PDDA) and oxidized nanocellulose (NC) were investigated for the sensing of OP, yielding high sensitivity. Compared with noncovalent adsorption and deposition in bovine serum albumin, bioconjugation with lysine side chain activation allowed the enzyme to be stable over three weeks at room temperature. The total amount of AChE was quantified, whose activity inhibition was highly linear with respect to DMT concentration. Increased incubation times and/or DMT concentration decreased current flow. The composite electrode showed a sensitivity 4.8-times higher than that of the bare gold electrode. The biosensor was challenged with organophosphate-spiked food samples and showed a limit of detection (LOD) of DMT at 4.1 nM, with a limit of quantification (LOQ) at 12.6 nM, in the linear range of 10 nM to 1000 nM. Such performance infers significant potential for the use of this system in the detection of organophosphates in real samples.
Collapse
|
17
|
Requena-Mullor M, Navarro-Mena A, Wei R, López-Guarnido O, Lozano-Paniagua D, Alarcon-Rodriguez R. Evaluation of Gonadal Alterations in a Population Environmentally Exposed to a Mixture of Endocrine Active Pesticides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2355. [PMID: 33670911 PMCID: PMC7957776 DOI: 10.3390/ijerph18052355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022]
Abstract
Although there are studies that show that some pesticides produce gonadal dysfunction and gonadal cancer in different animals, there are not many studiesregardinghumans. This study determined the prevalence and risk in humans of developing ovarian or testicular dysfunction or cancer in areas with distinct exposure to pesticides, which have endocrine disrupting properties. A population-based case-control study was carried out on humans living in ten health districts of Andalusia (Southern Spain) classified as areas of high or low environmental exposure to pesticides according to agronomic criteria. The study population included 5332 cases and 13,606 controls. Data were collected from computerized hospital records between 2000 and 2018.The risk of gonadal dysfunction or cancer was significantly higher in areas with higher use of pesticides in relation to those with lower use.
Collapse
Affiliation(s)
- Mar Requena-Mullor
- Department of Nursing, Physiotherapy and Medicine, University of Almería, 04120 Almería, Spain; (M.R.-M.); (D.L.-P.); (R.A.-R.)
| | | | - Ruqiong Wei
- Department of Rehabilitation Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China;
| | - Olga López-Guarnido
- Department of Legal Medicine and Toxicology, Medical School, University of Granada, 18016 Granada, Spain
| | - David Lozano-Paniagua
- Department of Nursing, Physiotherapy and Medicine, University of Almería, 04120 Almería, Spain; (M.R.-M.); (D.L.-P.); (R.A.-R.)
| | - Raquel Alarcon-Rodriguez
- Department of Nursing, Physiotherapy and Medicine, University of Almería, 04120 Almería, Spain; (M.R.-M.); (D.L.-P.); (R.A.-R.)
| |
Collapse
|
18
|
Rodprasert W, Toppari J, Virtanen HE. Endocrine Disrupting Chemicals and Reproductive Health in Boys and Men. Front Endocrinol (Lausanne) 2021; 12:706532. [PMID: 34690925 PMCID: PMC8530230 DOI: 10.3389/fendo.2021.706532] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Male reproductive health has declined as indicated by increasing rates of cryptorchidism, i.e., undescended testis, poor semen quality, low serum testosterone level, and testicular cancer. Exposure to endocrine disrupting chemicals (EDCs) has been proposed to have a role in this finding. In utero exposure to antiandrogenic EDCs, particularly at a sensitive period of fetal testicular development, the so-called 'masculinization programming window (MPW)', can disturb testicular development and function. Low androgen effect during the MPW can cause both short- and long-term reproductive disorders. A concurrent exposure to EDCs may also affect testicular function or damage testicular cells. Evidence from animal studies supports the role of endocrine disrupting chemicals in development of male reproductive disorders. However, evidence from epidemiological studies is relatively mixed. In this article, we review the current literature that evaluated relationship between prenatal EDC exposures and anogenital distance, cryptorchidism, and congenital penile abnormality called hypospadias. We review also studies on the association between early life and postnatal EDC exposure and semen quality, hypothalamic-pituitary-gonadal axis hormone levels and testicular cancer.
Collapse
Affiliation(s)
- Wiwat Rodprasert
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E. Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- *Correspondence: Helena E. Virtanen,
| |
Collapse
|
19
|
Therkorn J, Drewry DG, Tiburzi O, Astatke M, Young C, Rainwater-Lovett K. Review of Biomarkers and Analytical Methods for Organophosphate Pesticides and Applicability to Nerve Agents. Mil Med 2020; 185:e414-e421. [DOI: 10.1093/milmed/usz441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/05/2019] [Indexed: 11/12/2022] Open
Abstract
Abstract
Introduction
Recent malicious use of chemical warfare agents (CWAs) is a reminder of their severity and ongoing threat. One of the main categories of CWAs is the organophosphate (OP) nerve agents. Presently, there is an urgent need to identify and evaluate OP nerve agent biomarkers that can facilitate identification of exposed individuals post-CWA incident. While exposures to OP nerve agents may be scenario-specific, the public is commonly exposed to OP compounds through the ubiquitous use of OP pesticides, which are chemically related to nerve agents. Therefore, a systematic literature review and methodological quality assessment were conducted for OP pesticide biomarker studies to serve as a baseline to assess if these approaches may be adapted to OP nerve agent exposures.
Materials and Methods
We conducted a systematic literature review to identify biomarkers of OP pesticide exposures. English language studies of any design that reported primary data on biomarkers for exposures in nonhuman primates or adult human study participants were eligible for inclusion. Using standard criteria for assessing the completeness of reported analytical methods, the quality of study methods was critically evaluated.
Results
A total of 1,044 studies of biomarkers of OP pesticide exposure were identified, of which 75 articles satisfied the inclusion and exclusion criteria. These studies described 143 different analyte/sample matrix combinations: 99 host-based biomarkers, 28 metabolites, 12 pesticides, and 4 adducts. The most commonly reported biomarkers were dialkyl phosphate urinary metabolites (22 studies), blood acetylcholinesterase, and plasma butyrylcholinesterase (26 studies each). None of the assessed quality review criteria were fully addressed by all identified studies, with almost all criteria scoring less than 50%.
Conclusion
Cholinesterase activity may have utility for identifying individuals with exposures surpassing a given threshold of OP nerve agent, but further investigation of how acetylcholinesterase and butyrylcholinesterase levels correlate with observed patient symptoms may be required to ensure accuracy of results. As CWAs and nerve agents are more readily used, more standardized reporting of biomarker measurements are needed to develop new approaches for OP nerve agent biomarkers.
Collapse
Affiliation(s)
- Jennifer Therkorn
- Asymmetric Operations Sector, Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723
| | - David G Drewry
- Asymmetric Operations Sector, Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723
| | - Olivia Tiburzi
- Asymmetric Operations Sector, Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723
| | - Mekbib Astatke
- Asymmetric Operations Sector, Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723
| | - Charles Young
- Asymmetric Operations Sector, Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723
| | - Kaitlin Rainwater-Lovett
- Asymmetric Operations Sector, Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723
| |
Collapse
|
20
|
Yang FW, Zhao GP, Ren FZ, Pang GF, Li YX. Assessment of the endocrine-disrupting effects of diethyl phosphate, a nonspecific metabolite of organophosphorus pesticides, by in vivo and in silico approaches. ENVIRONMENT INTERNATIONAL 2020; 135:105383. [PMID: 31835022 DOI: 10.1016/j.envint.2019.105383] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/13/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Organophosphorus pesticides (OPs) remain one of the most commonly used pesticides, and their detection rates and residues in agricultural products, foods and environmental samples have been underestimated. Humans and environmental organisms are at high risk of exposure to OPs. Most OPs can be degraded and metabolized into dialkyl phosphates (DAPs) in organisms and the environment, and can be present in urine as biomarkers for exposure to OPs, of which diethyl phosphate (DEP) is a high-exposure metabolite. Epidemiological and cohort studies have found that DAPs are associated with endocrine hormone disorders, especially sex hormone disorders and thyroid hormone disorders, but there has been no direct causal evidence to support these findings. Our study explored the effects of chronic exposure to DEP on endocrine hormones and related metabolic indicators in adult male rats at actual doses that can be reached in the human body. The results showed that chronic exposure to DEP could cause thyroid-related hormone disorders in the serum of rats, causing symptoms of hyperthyroidism in rats, and could also lead to abnormal expression of thyroid hormone-related genes in the rat liver. However, DEP exposure did not seem to affect serum sex hormone levels, spermatogenesis or sperm quality in rats. The molecular interactions between DEP and thyroid hormone-related enzymes/proteins were investigated by molecular docking and molecular dynamics methods in silico. It was found that DEP could strongly interact with thyroid hormone biosynthesis, blood transport, receptor binding and metabolism-related enzymes/proteins, interfering with the production and signal regulation of thyroid hormones. In vivo and in silico experiments showed that DEP might be a potential thyroid hormone-disrupting chemical, and therefore, we need to be more cautious and rigorous regarding organophosphorus chemical exposure.
Collapse
Affiliation(s)
- Fang-Wei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guo-Ping Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Yi-Xuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
21
|
Brahmand MB, Yunesian M, Nabizadeh R, Nasseri S, Alimohammadi M, Rastkari N. Evaluation of chlorpyrifos residue in breast milk and its metabolite in urine of mothers and their infants feeding exclusively by breast milk in north of Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:817-825. [PMID: 32030155 PMCID: PMC6985376 DOI: 10.1007/s40201-019-00398-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The most common method of combating insects in low-income communities and developing countries, is the use of insecticides. The use of organophosphate insecticides is increasing due to their low prices and availability on the market. Chlorpyrifos is a medium-risk insecticide for human. The widespread use of organophosphorus insecticides, especially chlorpyrifos, in residential homes has undoubtedly created many health concerns. Babies have a high sensitivity to pesticides and environmental contaminants because of their evolutionary status. On the other hand, the main source of infants' exposure who are breast-fed exclusively to environmental pollutants is through breast milk and oral contact with objects that are covered with dust and particles. METHODS In this cross-sectional study, the concentration of chlorpyrifos in breast milk and its metabolite in urine samples of mothers and their under six months infants, feeding exclusively by breast milk in north of Iran have been investigated. The demographic data was collected through interviewing with selected mothers and completion of prepared data collecting forms. The data were statistically analyzed to investigate the relationships between exposure of mothers and their infants to chlorpyrifos. RESULTS The mean concentration of chlorpyrifos and its metabolite in mothers' urine and milk samples and infant's urines were 1.3 ± 0.6, 2.1 ± 1.4 and 1.4 ± 0.7 μg/L, respectively. Also, the mean concentration of chlorpyrifos in the dust on the house floors was73.4 ± 49 ng/g. There are good correlations between the mean values of chlorpyrifos concentrations and its metabolite in mother's milk and urine (r = 0.872, p = 0.001), and the mother's milk and infant's urine (r = 0.722, p = 0.001). Also, there was a significant correlation between the concentration of chlorpyrifos in floor dust and its metabolites in the infant's urine (r = 0.554, p = 0.001). CONCLUSION Our study suggests that the infants are the recipient of concentrated forms of chlorpyrifos residues through breast milk and house dust and it is quite well known that OP pesticides are toxic and have different kinds of adverse health effects. However, further research needs to be done to determine what these chemicals are doing to our children.
Collapse
Affiliation(s)
- Masoud Binesh Brahmand
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of research methodology and data analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Nasseri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Rastkari
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, 1417993359 Iran
| |
Collapse
|
22
|
Santos R, Piccoli C, Cremonese C, Freire C. Thyroid and reproductive hormones in relation to pesticide use in an agricultural population in Southern Brazil. ENVIRONMENTAL RESEARCH 2019; 173:221-231. [PMID: 30928852 DOI: 10.1016/j.envres.2019.03.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/09/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to assess the association of short- and long-term exposure to pesticides with circulating levels of thyroid and reproductive hormones in an agricultural population in the South of Brazil. Serum specimens from 122 male and female adults residing in small agricultural properties were sampled both in the low and high pesticide use season. A comprehensive questionnaire was used to collect detailed information on recent and cumulative lifetime use of pesticides and other agricultural-related exposures. The difference in serum hormone levels between seasons was assessed by the T-test and Wilcoxon test for paired samples, and associations between pesticide exposure-related variables and hormone values were explored by multivariate linear regression analysis. Levels of total thyroxine (T4) and male testosterone were significantly reduced from the low to high pesticide use season. In the high exposure season, recent use of dithiocarbamate fungicides, not using full personal protection equipment, and use of manual equipment was associated with reduced levels of thyroid-stimulating hormone (TSH). Moreover, recent use of lambda-cyhalothrin (pyrethroid) was associated with reduced total T4 and increased male luteinizing hormone (LH), use of paraquat (herbicide) with reduced free triiodothyronine (T3), and use of phthalamide (fungicide) with increased male LH. We also found associations of lifetime years of agricultural work with reduced total T4 and increased male testosterone; and of lifetime agricultural work and use of various pesticide classes (i.e. insecticides, herbicides, organophosphate insecticides, dithiocarbamate fungicides, and pyrethroids), mancozeb (fungicide), and paraquat with slight changes in free or total levels of T4 and/or T3. Findings suggest that both short- and long-term exposure to agricultural pesticides may alter thyroid hormones and male testosterone levels among farm residents.
Collapse
Affiliation(s)
- Ramison Santos
- Centro Universitario da Serra Gaúcha (FSG), Caxias do Sul, Rio Grande do Sul, CEP: 95020-472, Brazil.
| | - Camila Piccoli
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, CEP: 90619-900, Brazil.
| | - Cleber Cremonese
- Centro Universitario da Serra Gaúcha (FSG), Caxias do Sul, Rio Grande do Sul, CEP: 95020-472, Brazil.
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18016, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; National School of Public Health, Oswaldo Cruz Foundation (ENSP-FIOCRUZ), Rio de Janeiro, CEP: 21041-210, Brazil.
| |
Collapse
|
23
|
Yang F, Li J, Pang G, Ren F, Fang B. Effects of Diethyl Phosphate, a Non-Specific Metabolite of Organophosphorus Pesticides, on Serum Lipid, Hormones, Inflammation, and Gut Microbiota. Molecules 2019; 24:molecules24102003. [PMID: 31137755 PMCID: PMC6572208 DOI: 10.3390/molecules24102003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
Organophosphorus pesticides (OPs) can be metabolized to diethyl phosphate (DEP) in the gut environment, which may affect the immune and endocrine systems and the microbiota. Correlations between OPs and diseases have been established by epidemiological studies, mainly based on the contents of their metabolites, including DEP, in the serum or urine. However, the effects of DEP require further study. Therefore, in this study, adult male rats were exposed to 0.08 or 0.13 mg/kg DEP for 20 weeks. Serum levels of hormones, lipids, and inflammatory cytokines as well as gut microbiota were measured. DEP significantly enriched opportunistic pathogens, including Paraprevotella, Parabacteroides, Alloprevotella, and Helicobacter, leading to a decrease in interleukin-6 (IL-6). Exposure to the high dose of DEP enriched the butyrate-producing genera, Alloprevotella and Intestinimonas, leading to an increase in estradiol and a resulting decrease in total triglycerides (TGs) and low-density lipoprotein cholesterol (LDL-C); meanwhile, DEP-induced increases in peptide tyrosine‒tyrosine (PYY) and ghrelin were attributed to the enrichment of short-chain fatty acid-producing Clostridium sensu stricto 1 and Lactobacillus. These findings indicate that measuring the effects of DEP is not a proxy for measuring the effects of its parent compounds.
Collapse
Affiliation(s)
- Fangwei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jinwang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Guofang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China.
| | - Bing Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
24
|
Lozano-Paniagua D, Parrón T, Alarcón R, Requena M, Gil F, López-Guarnido O, Lacasaña M, Hernández AF. Biomarkers of oxidative stress in blood of workers exposed to non-cholinesterase inhibiting pesticides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:121-128. [PMID: 29990723 DOI: 10.1016/j.ecoenv.2018.06.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 05/07/2023]
Abstract
In occupational settings workers are often exposed to pesticides at relatively high doses compared to environmental exposures. Long-term exposure to pesticides has been associated with numerous adverse health effects in epidemiological studies, and oxidative stress is often claimed as one of the underlying mechanisms. In fact, different pesticides have been reported to induce oxidative stress due to the generation of free radicals and/or alteration in antioxidant defense enzymes. The present study examined greenhouse workers regularly exposed to diverse pesticides under integrated production system, and a group of controls of the same geographic area without any chemical exposure. Two different periods of the same crop season were assessed, one of high exposure (with greater use of pesticides) and other of low exposure (in which a less use of these compounds was made). Non-specific biomarkers of oxidative stress, e.g. thiobarbituric acid reactive substances (TBARS), ferric reducing ability of serum (FRAS), total thiol groups (SHT), gamma-glutamyl transpeptidase (GGT) and paraoxonase-1 (PON1) were measured in serum samples from all study subjects, alongside erythrocyte acetylcholinesterase (AChE). Results are suggestive of a mild increase in oxidative stress associated with pesticide exposure, which was compensated by an adaptive response to raise the antioxidant defenses and thus counter the detrimental effects of sustained oxidative stress. This response led to significantly increased levels of FRAS, SHT and PON1 in greenhouse workers relative to controls. Furthermore, AChE was decreased likely as a result of oxidative stress as workers did not use organophosphate insecticides.
Collapse
Affiliation(s)
- David Lozano-Paniagua
- Dept. Legal Medicine and Toxicology, University of Granada School of Medicine, Spain
| | | | | | - Mar Requena
- University of Almería School of Health Sciences, Spain
| | - Fernando Gil
- Dept. Legal Medicine and Toxicology, University of Granada School of Medicine, Spain
| | - Olga López-Guarnido
- Dept. Legal Medicine and Toxicology, University of Granada School of Medicine, Spain
| | - Marina Lacasaña
- Escuela Andaluza de Salud Pública, Spain; CIBERESP, Spain; ibs.GRANADA, Spain
| | - Antonio F Hernández
- Dept. Legal Medicine and Toxicology, University of Granada School of Medicine, Spain.
| |
Collapse
|
25
|
Associations of maternal exposure to organophosphate and pyrethroid insecticides and the herbicide 2,4-D with birth outcomes and anogenital distance at 3 months in the Odense Child Cohort. Reprod Toxicol 2018; 76:53-62. [DOI: 10.1016/j.reprotox.2017.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 11/23/2022]
|
26
|
Waheed S, Halsall C, Sweetman AJ, Jones KC, Malik RN. Pesticides contaminated dust exposure, risk diagnosis and exposure markers in occupational and residential settings of Lahore, Pakistan. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:375-382. [PMID: 29127912 DOI: 10.1016/j.etap.2017.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 05/27/2023]
Abstract
There are few studies documenting the dust loaded with pesticides as a potential non-dietary exposure source for occupational worker and populations living near agricultural farms and pesticides formulation plants. In present study we have evaluated the pesticide concentration in dust from potential sites and relevant health risk from dust ingestion. Furthermore, the effect of currently used pesticides was investigated on blood and urine parameters of subjects: farmer, factory worker, urban resident and rural resident and controlled subjects with presumably different levels of exposure. The urinary metabolites (TCPY and IMPY) were quantified as biomarkers of exposure to chlorpyrifos and diazinon in relation with biomarkers of effect including BuChE, LH, FSH, testosterone and oxidative stress. Results showed that chlorpyrifos and diazinon were present in higher concentration in dust and posed a high health risk to exposed subjects. The mean SOD value was high among the farmer (3048U/g Hb) followed by factory worker (1677.6U/g Hb). The urinary biomarkers - TCPY and IMPY- were found higher in exposed subjects as compared to control. Furthermore, testosterone was found in higher concentration in factory worker than control (12.63ng/ml vs 4.61ng/ml respectively). A decreased BuChE activity was noticed in occupational group and significant differences were observed in control verses exposed subjects. The PCA analysis evidenced the impact of pesticides on exposure biomarkers and male reproductive hormones. The study suggests that dust contaminated with pesticides engenders significant health risk particularly related to the nervous and endocrine system, not only for occupational workers exposed to direct ingestion but also for nearby residential community. Succinctly putting: Pesticides loaded dust in the city of Lahore, being a high priority concern for the government of Pakistan, demands to be addressed.
Collapse
Affiliation(s)
- Sidra Waheed
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, F Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Crispin Halsall
- Centre for Chemicals Management, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Andrew J Sweetman
- Centre for Chemicals Management, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Kevin C Jones
- Centre for Chemicals Management, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, F Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
27
|
Gundogan K, Donmez-Altuntas H, Hamurcu Z, Akbudak IH, Sungur M, Bitgen N, Baskol G, Bayram F. Evaluation of chromosomal DNA damage, cytotoxicity, cytostasis, oxidative DNA damage and their relationship with endocrine hormones in patients with acute organophosphate poisoning. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 825:1-7. [PMID: 29307370 DOI: 10.1016/j.mrgentox.2017.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/27/2017] [Accepted: 11/07/2017] [Indexed: 11/25/2022]
Abstract
Pesticides are commonly used compounds in agriculture. Especially, organophosphates (OPs) are among the extensively used pesticides. Therefore, OPs poisoning is common, especially in underdeveloped and developing countries. Primary aim of this study was to research the effects of acute OPs poisoning on genome instability in the individuals' lymphocytes with acute OPs poisoning both by using the cytokinesis-block micronucleus cytome (CBMN-cyt) assay to examine chromosome/genome damage, cell proliferation index and cell death rate and by using the plasma 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels to determine oxidative DNA damage. Secondary aim of this study was also to assess whether a relation exists between endocrine hormones and the genome damage in acute OPs poisoning. In the study, blood samples were analysed of 13 patients before and after treatment admitted to the Department of Intensive Care Unit with acute OPs poisoning and of 13 healthy subjects of similar age and sex. The present study demonstrates that genome damage (micronucleus; MN and nucleoplasmic bridges; NPBs frequencies), apoptotic and necrotic cell frequencies increased in lymphocytes of patients with acute OPs poisoning before treatment and decreased after treatment. The present study also show that CBMN cyt assay parameters and 8-OHdG levels could be affected by some endocrine hormones such as E2, fT3, fT4, GH, IGF-1, FSH, LH, TSH, PRL, but not be related to ACTH and tT levels in acute OPs poisoning. In conclusion, it is believed that this is the first study to evaluate the chromosomal/oxidative DNA damage, cell proliferation, cell death and their associations with endocrine hormones in acute OPs poisoning. These preliminary findings need to be supported by further studies with larger sample sizes.
Collapse
Affiliation(s)
- Kursat Gundogan
- Intensive Care Unit, Department of Internal Medicine, Medical Faculty, Erciyes University, Kayseri, Turkey
| | | | - Zuhal Hamurcu
- Department of Medical Biology, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Ismail Hakkı Akbudak
- Intensive Care Unit, Department of Internal Medicine, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Murat Sungur
- Intensive Care Unit, Department of Internal Medicine, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Nazmiye Bitgen
- Department of Chemical Technology, Technical Sciences Vocational School, Aksaray University, Aksaray, Turkey
| | - Gulden Baskol
- Department of Biochemistry, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Fahri Bayram
- Department of Endocrinology and Metabolism, Medical Faculty, Erciyes University, Kayseri, Turkey
| |
Collapse
|
28
|
Abstract
BACKGROUND Recent evidence highlights the reality of unprecedented human exposure to toxic chemical agents found throughout our environment - in our food and water supply, in the air we breathe, in the products we apply to our skin, in the medical and dental materials placed into our bodies, and even within the confines of the womb. With biomonitoring confirming the widespread bioaccumulation of myriad toxicants among population groups, expanding research continues to explore the pathobiological impact of these agents on human metabolism. METHODS This review was prepared by assessing available medical and scientific literature from Medline as well as by reviewing several books, toxicology journals, government publications, and conference proceedings. The format of a traditional integrated review was chosen. RESULTS Toxicant exposure and accrual has been linked to numerous biochemical and pathophysiological mechanisms of harm. Some toxicants effect metabolic disruption via multiple mechanisms. CONCLUSIONS As a primary causative determinant of chronic disease, toxicant exposures induce metabolic disruption in myriad ways, which consequently result in varied clinical manifestations, which are then categorized by health providers into innumerable diagnoses. Chemical disruption of human metabolism has become an etiological determinant of much illness throughout the lifecycle, from neurodevelopmental abnormalities in-utero to dementia in the elderly.
Collapse
Affiliation(s)
- Stephen J Genuis
- a Faculty of Medicine, University of Alberta , Edmonton , Alberta , Canada
| | - Edmond Kyrillos
- b Department of Family Medicine , Faculty of Medicine, University of Ottawa , Ottawa , Ontario , Canada
| |
Collapse
|
29
|
Cremonese C, Piccoli C, Pasqualotto F, Clapauch R, Koifman RJ, Koifman S, Freire C. Occupational exposure to pesticides, reproductive hormone levels and sperm quality in young Brazilian men. Reprod Toxicol 2017; 67:174-185. [DOI: 10.1016/j.reprotox.2017.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 12/09/2016] [Accepted: 01/04/2017] [Indexed: 02/02/2023]
|
30
|
Naksen W, Prapamontol T, Mangklabruks A, Chantara S, Thavornyutikarn P, Robson MG, Ryan PB, Barr DB, Panuwet P. A single method for detecting 11 organophosphate pesticides in human plasma and breastmilk using GC-FPD. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1025:92-104. [PMID: 27232054 PMCID: PMC4930899 DOI: 10.1016/j.jchromb.2016.04.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 01/03/2023]
Abstract
Organophosphate (OP) pesticides are widely used for crop protection in many countries including Thailand. Aside from causing environmental contamination, they affect human health especially by over-stimulating of the neurotransmission system. OP pesticides, as with other non-persistent pesticides, degrade quickly in the environment as well as are metabolized quite rapidly in humans. Assessing human exposures to these compounds requires analytical methods that are sensitive, robust, and most importantly, suitable for specific laboratory settings. The aim of this study was to develop and validate an analytical method for measuring 11 OP pesticide residues in human plasma and breast milk. Analytes in both plasma and breast milk samples were extracted with acetone and methylene chloride, cleaned-up using aminopropyl solid phase extraction cartridges, and analyzed by gas chromatography with flame photometric detection. The optimized method exhibited good linearity, with the coefficients of determination of 0.996-0.999 and <7% error about the slope. Extraction recoveries from spiked plasma and breast milk samples at low and medium concentrations (0.8-5.0 and 1.6-10ngmL(-1), respectively) ranged from 59.4% (ethion) to 94.0% (chlorpyrifos). Intra-batch and inter-batch precisions ranged from 2.3-18.9% and 5.8-19.5%, respectively. Method detection limits of plasma and breast milk ranged from 0.18-1.36 and 0.09-2.66ngmL(-1), respectively. We analyzed 63 plasma and 30 breastmilk samples collected from farmworkers in Chiang Mai Province to determine the suitability of this method for occupational exposure assessment. Of the 11 pesticides measured, seven were detected in plasma samples and five were detected in breast milk samples. Mass spectrometry was used to confirm results. Overall, this method is rapid and reliable. It offers the laboratories with limited access to mass spectrometry a capacity to investigate levels OP pesticides in plasma and breastmilk in those occupationally exposed for health risk assessment.
Collapse
Affiliation(s)
- Warangkana Naksen
- Environment and Health Research Unit, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tippawan Prapamontol
- Environment and Health Research Unit, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Ampica Mangklabruks
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Somporn Chantara
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Prasak Thavornyutikarn
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mark G Robson
- Department of Plant Biology & Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - P Barry Ryan
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Parinya Panuwet
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
31
|
Qi L, Cao C, Hu L, Chen S, Zhao X, Sun C. Metabonomic analysis of the protective effect of quercetin on the toxicity induced by mixture of organophosphate pesticides in rat urine. Hum Exp Toxicol 2016; 36:494-507. [DOI: 10.1177/0960327116652460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present study aims to investigate the protective effect of quercetin against the joint toxic action induced by the mixture of four organophosphate pesticides (mixture-OPs) (dimethoate, acephate, dichlorvos, and phorate) at their corresponding no observed adverse effect level (NOAEL) using metabonomics. Rats were randomly divided into control, quercetin-treated, mixture-OPs-treated, and quercetin plus mixture-OPs-treated groups. Mixture-OPs and quercetin were given to the rats daily through drinking water and intragastric administration, respectively, for 90 days. The metabonomic profiles of rat urine were analyzed using ultra-performance liquid chromatography–mass spectrometry (UPLC/MS). The 14 metabolites significantly changed in the treatment groups compared with the control group, including the biomarkers of OPs exposure (dimethylphosphate, dimethyldithiophosphate, diethylphosphate) and the metabolites of quercetin (quercetin and isorhamnetina). The intensities of gentisic acid, creatinine, suberic acid, hippuric acid, uric acid, and citric acid significantly decreased, whereas the intensities of 7-methylguanine, estrone sulfate, and cholic acid significantly increased, in the mixture-OPs-treated group compared with the control group ( p < 0.01). The variation tendency of the aforementioned metabolites was significantly ameliorated in the high-dose quercetin (50 mg/(kg bw day)) plus mixture-OPs-treated group compared with the mixture-OPs-treated group ( p < 0.05). However, the intensities of these metabolites in the high-dose quercetin plus mixture-OPs-treated group were still significantly different from those of the control group ( p < 0.05). Results indicated that high dose of quercetin elicits a partial protective effect on the toxicity induced by mixture-OPs, including fatty acid and energy metabolism, antioxidant defense system, DNA damage, and liver and kidney function.
Collapse
Affiliation(s)
- L Qi
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - C Cao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - L Hu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - S Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - X Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - C Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
32
|
Mokarizadeh A, Faryabi MR, Rezvanfar MA, Abdollahi M. A comprehensive review of pesticides and the immune dysregulation: mechanisms, evidence and consequences. Toxicol Mech Methods 2016; 25:258-78. [PMID: 25757504 DOI: 10.3109/15376516.2015.1020182] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nowadays, in many communities, there is a growing concern about possible adverse effects of pesticides on human health. Reports indicate that during environmental or occupational exposure, pesticides can exert some intense adverse effects on human health through transient or permanent alteration of the immune system. There is evidence on the relation between pesticide-induced immune alteration and prevalence of diseases associated with alterations of the immune response. In the present study, direct immunotoxicity, endocrine disruption and antigenicity have been introduced as the main mechanisms working with pesticides-induced immune dysregulation. Moreover, the evidence on the relationship between pesticide exposure, dysregulation of the immune system and predisposition to different types of psychiatric disorders, cancers, allergies, autoimmune and infectious diseases are criticized.
Collapse
Affiliation(s)
- Aram Mokarizadeh
- a Department of Immunology, Faculty of Medicine , Cellular and Molecular Research Center, Kurdistan University of Medical Sciences , Sanandaj , Iran and
| | | | | | | |
Collapse
|
33
|
Omoike OE, Lewis RC, Meeker JD. Association between urinary biomarkers of exposure to organophosphate insecticides and serum reproductive hormones in men from NHANES 1999-2002. Reprod Toxicol 2015; 53:99-104. [PMID: 25908234 DOI: 10.1016/j.reprotox.2015.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/07/2015] [Indexed: 01/06/2023]
Abstract
Exposure to organophosphate (OP) insecticides may alter reproductive hormone levels in men and increase the risk for poor reductive health and other adverse health outcomes. However, relevant epidemiology studies in men are limited. We evaluated urinary concentrations of OP metabolites (3,5,6-trichloro-2-pyridinol and six dialkyl phosphates) in relation to serum concentrations of testosterone (T) and estradiol among 356 men aged 20-55 years old from the U.S. National Health and Nutrition Examination Survey. Biomarkers were detected in greater than 50% of the samples, except for diethyldithiophosphate, dimethylphosphate, and dimethyldithiophosphate. In adjusted regression models, we observed a statistically significant inverse relationship between diethyl phosphate (DEP) and T when DEP was modeled as either a continuous or categorical variable. These findings add to the limited evidence that exposure to certain OP insecticides is linked to altered T in men, which may have important implications for male health.
Collapse
Affiliation(s)
- Ogbebor Enaholo Omoike
- University of Michigan School of Public Health, Department of Environmental Health Sciences, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Ryan C Lewis
- University of Michigan School of Public Health, Department of Environmental Health Sciences, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - John D Meeker
- University of Michigan School of Public Health, Department of Environmental Health Sciences, 1415 Washington Heights, Ann Arbor, MI 48109, United States.
| |
Collapse
|
34
|
Melgarejo M, Mendiola J, Koch HM, Moñino-García M, Noguera-Velasco JA, Torres-Cantero AM. Associations between urinary organophosphate pesticide metabolite levels and reproductive parameters in men from an infertility clinic. ENVIRONMENTAL RESEARCH 2015; 137:292-298. [PMID: 25601731 DOI: 10.1016/j.envres.2015.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/15/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Organophosphate (OP) pesticides are compounds used for pest control at home or in agriculture activities. Almost all OP pesticides are metabolized to at least one of six possible dialkylphosphates (DAPs). Despite wide use, their potential effects on human reproductive health have not yet been fully characterized. The aim of this study was to evaluate the associations between urinary concentrations of six DAP metabolites and reproductive parameters in men. All men were attended an infertility clinic and provided urine, serum and semen samples on the same day. Six DAP metabolites were measured in urine (dimethylphosphate [DMP], dimethylthiophosphate [DMTP], dimethyldithiophosphate [DMDTP], diethylphosphate [DEP], diethylthiophosphate [DETP], and diethyldithiophosphate [DEDTP]). Sperm quality was assessed by measuring volume, concentration, total sperm count (TSC), motility and morphology, and serum samples were analyzed for reproductive hormones, including follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, prolactin and estradiol. Pearson correlations were used for unadjusted analyses, and multiple linear regression analysis was performed controlling for appropriate covariates. All men presented detectable concentrations of at least one urinary OP metabolite. After adjustment by important covariates, there was a significant positive association between DEDTP concentrations and LH [(β)=11.4; 95% CI 0.81-22.1] as well as FSH levels [(β)=3.2; 95% CI 0.08-6.2]. Sperm concentration and TSC were both significantly inversely associated with DMP, DMDP, DMDTP and ∑DAP in multivariate analysis. Besides, there was a significant inverse association between percentage of motile sperm and DMTP, DMDTP and DEP metabolite concentrations. Our results suggest that exposure to OP pesticides may be associated with decreased sperm counts and motility and altered reproductive hormone levels in male partners of couples seeking for infertility treatment. However, further studies are warranted to confirm and extent these findings.
Collapse
Affiliation(s)
- María Melgarejo
- Division of Preventive Medicine and Public Health, Department of Health and Social Sciences, University of Murcia School of Medicine, 30100 Espinardo, Murcia, Spain; Department of Laboratory Medicine, "Virgen de la Arrixaca" University Hospital, 30120 El Palmar, Murcia, Spain
| | - Jaime Mendiola
- Division of Preventive Medicine and Public Health, Department of Health and Social Sciences, University of Murcia School of Medicine, 30100 Espinardo, Murcia, Spain.
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-Universität Bochum (IPA), 44789 Bochum, Germany
| | - Miriam Moñino-García
- Division of Preventive Medicine and Public Health, Department of Health and Social Sciences, University of Murcia School of Medicine, 30100 Espinardo, Murcia, Spain
| | - José A Noguera-Velasco
- Department of Laboratory Medicine, "Virgen de la Arrixaca" University Hospital, 30120 El Palmar, Murcia, Spain
| | - Alberto M Torres-Cantero
- Division of Preventive Medicine and Public Health, Department of Health and Social Sciences, University of Murcia School of Medicine, 30100 Espinardo, Murcia, Spain; Department of Preventive Medicine, "Reina Sofia" University General Hospital, 30003 Murcia, Murcia, Spain; Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30003 Murcia, Murcia, Spain
| |
Collapse
|
35
|
Shomar B, Al-Saad K, Nriagu J. Mishandling and exposure of farm workers in Qatar to organophosphate pesticides. ENVIRONMENTAL RESEARCH 2014; 133:312-320. [PMID: 24997273 DOI: 10.1016/j.envres.2014.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/01/2014] [Accepted: 06/11/2014] [Indexed: 06/03/2023]
Abstract
We used a combination of subjective (questionnaire) and objective (urinary metabolites) measurements to evaluate factors that can predict the exposure of farm workers in Qatar to organophosphate pesticides and to assess whether the levels of exposure are associated with any self-reported health outcomes. The results show that pesticides were being extensively mishandled in the farms. Very few (<2%) of the farm workers knew the names of the pesticide they were using, and about one-third of the participants did not know the amount of pesticides to be applied to the crops. Nearly all (96%) of the participants had participated in mixing pesticides together before use and few (29%) used protective clothing while engaged in this operation. A significant number of participants (18%) had no knowledge that pesticides are a health hazard. At least one dialkyllphosphate (DAP) metabolite was detected in every worker. The geometric mean (GM) concentration of the dimethylalkylphosphates (DMAP) was 108 nM (range, from below the limit of detection (LOD) to 351 nM), and the GM for the diethylalkylphosphates (DEAP) was 43 nM (range, LOD-180 nM). The GM for total concentration of the metabolites (DAP) of 146 nM (maximum value estimated to be 531 nM) is below the values that have been reported for farmers in some countries, but higher than the levels in the general populations of many countries. We explored the influence of metal exposure and found consistent and negative relationships between the DAP metabolites and the concentrations of most of the trace elements in the urine of the farm workers; the negative associations were statistically significant for Cr, Mn, Fe, Ni, As, and Pb. We suspect that the negative associations are not source-dependent but may be reflective of antagonistic relationships in human metabolism of OPPs and trace metals; hence we recommend that metals should be included as co-factors in assessing the health effects of OPP exposure.
Collapse
Affiliation(s)
- Basem Shomar
- Qatar Environmental & Energy Research Institute (QEER), Doha, Qatar.
| | - Khalid Al-Saad
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor 48103, MI, USA
| |
Collapse
|
36
|
Schrader SM, Marlow KL. Assessing the reproductive health of men with occupational exposures. Asian J Androl 2014; 16:23-30. [PMID: 24369130 PMCID: PMC3901877 DOI: 10.4103/1008-682x.122352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/24/2013] [Accepted: 08/28/2013] [Indexed: 12/16/2022] Open
Abstract
The earliest report linking environmental (occupational) exposure to adverse human male reproductive effects dates back to1775 when an English physician, Percival Pott, reported a high incidence of scrotal cancer in chimney sweeps. This observation led to safety regulations in the form of bathing requirements for these workers. The fact that male-mediated reproductive harm in humans may be a result of toxicant exposures did not become firmly established until relatively recently, when Lancranjan studied lead-exposed workers in Romania in 1975, and later in 1977, when Whorton examined the effects of dibromochloropropane (DBCP) on male workers in California. Since these discoveries, several additional human reproductive toxicants have been identified through the convergence of laboratory and observational findings. Many research gaps remain, as the pool of potential human exposures with undetermined effects on male reproduction is vast. This review provides an overview of methods used to study the effects of exposures on male reproduction and their reproductive health, with a primary emphasis on the implementation and interpretation of human studies. Emphasis will be on occupational exposures, although much of the information is also useful in assessing environmental studies, occupational exposures are usually much higher and better defined.
Collapse
Affiliation(s)
- Steven M Schrader
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Applied Research and Technology, Cincinnati, OH, USA
| | - Katherine L Marlow
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Applied Research and Technology, Cincinnati, OH, USA
| |
Collapse
|
37
|
Berman T, Goldsmith R, Göen T, Spungen J, Novack L, Levine H, Amitai Y, Shohat T, Grotto I. Urinary concentrations of organophosphate pesticide metabolites in adults in Israel: demographic and dietary predictors. ENVIRONMENT INTERNATIONAL 2013; 60:183-189. [PMID: 24064379 DOI: 10.1016/j.envint.2013.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/30/2013] [Accepted: 08/08/2013] [Indexed: 06/02/2023]
Abstract
Exposure to organophosphate pesticides (OPs) in agricultural and urban populations has been associated with a range of adverse health effects. The purpose of the current study was to estimate exposure to OPs in the general adult population in Israel and to determine dietary and demographic predictors of exposure. We measured six non-specific organophosphate pesticide metabolites (dialkyl phosphates) in urine samples collected from 247 Israeli adults from the general population. We collected detailed demographic and dietary data from these individuals, and explored associations between demographic and dietary characteristics and urinary dialkyl phosphate concentrations. OP metabolites were detectable in all urine samples. Concentrations of several dialkyl phosphate metabolites (dimethylphosphate, dimethylthiophosphate, diethylphosphate) were high in our study population relative to the general populations in the US and Canada and were comparable to those reported in 2010 in France. Total dialkyl phosphates were higher in individuals with fruit consumption above the 75th percentile. In a multivariate analysis, total molar dialkyl phosphate concentration increased with age and was higher in individuals with high income compared to individuals with the lowest income. Total diethyl metabolite concentrations were higher in females and in study participants whose fruit consumption was above the 75th percentile. In conclusion, we found that levels of exposure to OP pesticides were high in our study population compared to the general population in the US and Canada and that intake of fruits is an important source of exposure.
Collapse
Affiliation(s)
- T Berman
- Public Health Services, Ministry of Health, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Afeiche M, Williams PL, Mendiola J, Gaskins AJ, Jørgensen N, Swan SH, Chavarro JE. Dairy food intake in relation to semen quality and reproductive hormone levels among physically active young men. Hum Reprod 2013; 28:2265-75. [PMID: 23670169 DOI: 10.1093/humrep/det133] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
STUDY QUESTION Is increased consumption of dairy foods associated with lower semen quality? SUMMARY ANSWER We found that intake of full-fat dairy was inversely related to sperm motility and morphology. These associations were driven primarily by intake of cheese and were independent of overall dietary patterns. WHAT IS KNOWN ALREADY It has been suggested that environmental estrogens could be responsible for the putative secular decline in sperm counts. Dairy foods contain large amounts of estrogens. While some studies have suggested dairy as a possible contributing factor for decreased semen quality, this finding has not been consistent across studies. STUDY DESIGN, SIZE, DURATION The Rochester Young Men's Study (n = 189) was a cross-sectional study conducted between 2009 and 2010 at the University of Rochester. PARTICIPANTS/MATERIALS, SETTING, METHODS Men aged 18-22 years were included in this analysis. Diet was assessed via food frequency questionnaire. Linear regression was used to analyze the relation between dairy intake and conventional semen quality parameters (total sperm count, sperm concentration, progressive motility, morphology and ejaculate volume) adjusting for age, abstinence time, race, smoking status, body mass index, recruitment period, moderate-to-intense exercise, TV watching and total calorie intake. MAIN RESULTS AND THE ROLE OF CHANCE Total dairy food intake was inversely related to sperm morphology (P-trend = 0.004). This association was mostly driven by intake of full-fat dairy foods. The adjusted difference (95% confidence interval) in normal sperm morphology percent was -3.2% (-4.5 to -1.8) between men in the upper half and those in the lower half of full-fat dairy intake (P < 0.0001), while the equivalent contrast for low-fat dairy intake was less pronounced [-1.3% (-2.7 to -0.07; P= 0.06)]. Full-fat dairy intake was also associated with significantly lower percent progressively motile sperm (P= 0.05). LIMITATIONS, REASONS FOR CAUTION As it was a cross-sectional study, causal inference is limited. WIDER IMPLICATIONS OF THE FINDINGS Further research is needed to prove a causal link between a high consumption of full-fat dairy foods and detrimental effects on semen quality. If verified our findings would mean that intake of full-fat dairy foods should be considered in attempts to explain secular trends in semen quality and that men trying to have children should restrict their intake. STUDY FUNDING/COMPETING INTEREST(S) European Union Seventh Framework Program (Environment), 'Developmental Effects of Environment on Reproductive Health' (DEER) grant 212844. Grant P30 DK046200 and Ruth L. Kirschstein National Research Service Award T32 DK007703-16 from the National Institutes of Health. None of the authors has any conflicts of interest to declare.
Collapse
Affiliation(s)
- M Afeiche
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|