1
|
Miller M, Douillet C, Cable PH, Krupenko SA, Shang B, Hartwell HJ, Zou F, Koller BH, Fry RC, de Villena FPM, Stýblo M. Metabolism of inorganic arsenic in mice carrying the human AS3MT gene and fed folate deficient or folate supplemented diet. Toxicol Appl Pharmacol 2024; 495:117173. [PMID: 39603428 DOI: 10.1016/j.taap.2024.117173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Arsenic (+3 oxidation state) methyltransferase (AS3MT) catalyzes the S-adenosylmethionine (SAM)-dependent methylation of inorganic arsenic (iAs), yielding monomethyl‑arsenic (MAs) and dimethyl‑arsenic (DMAs) metabolites. The formation of DMAs in this pathway is considered a key mechanism for iAs detoxification. Availability of SAM for iAs methylation depends in part on dietary intake of folate. Results of population studies suggest that supplementation with folate stimulates iAs methylation, increasing DMAs and decreasing iAs and MAs proportions in urine and/or blood. The goal of the present study was to determine if folate intake affects methylation and clearance of iAs in a recently established mouse strain that expresses human AS3MT and exhibits a human-like pattern of iAs metabolism. The humanized male and female mice were fed folate-deficient (FD) or folate-supplemented (FS) diet for 6 weeks, followed by exposure to 0 ppb or 400 ppb iAs in drinking water for 5 weeks, while on the same types of diet. The concentrations and proportions of iAs, MAs and DMAs were determined in urine, liver, kidneys, and spleen. The diet-, sex- and dose-related differences were assessed by t-test or a non-parametric test; Bonferroni test was used to correct for multiple comparisons. In general, proportions of DMAs were greater and proportions of iAs were smaller in urine and tissues of FS mice as compared to FD mice. However, folate supplementation also increased MAs proportions. Notably, the folate intake had no effect on the concentrations of total arsenic either in the urine or the tissues. These results suggest that, similar to humans, folate supplementation stimulates iAs methylation in the humanized mice. However, the stimulation of iAs methylation is not associated with clearance of arsenic from tissues, possibly due to an inefficient conversion of MAs to DMAs.
Collapse
Affiliation(s)
- Madison Miller
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Christelle Douillet
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Peter H Cable
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Sergey A Krupenko
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA; The UNC Nutrition Research Institute, Kannapolis, NC 28081, USA
| | - Bingzhen Shang
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Hadley J Hartwell
- Department of Environmental Sciences and Engineering, CB#7431, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7420, USA
| | - Beverly H Koller
- Department of Genetics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, CB#7431, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Miroslav Stýblo
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| |
Collapse
|
2
|
Wei CF, Tindula G, Mukherjee SK, Wang X, Ekramullah SM, Arman DM, Islam MJ, Azim M, Rahman A, Afreen S, Ziaddin M, Warf BC, Weisskopf MG, Christiani DC, Liang L, Mazumdar M. Maternal arsenic exposure modifies associations between arsenic, folate and arsenic metabolism gene variants, and spina bifida risk: A case‒control study in Bangladesh. ENVIRONMENTAL RESEARCH 2024; 261:119714. [PMID: 39094898 PMCID: PMC11460318 DOI: 10.1016/j.envres.2024.119714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Spina bifida is a type of neural tube defect (NTD); NTDs are developmental malformations of the spinal cord that result from failure of neural tube closure during embryogenesis and are likely caused by interactions between genetic and environmental factors. Arsenic induces NTDs in animal models, and studies demonstrate that mice with genetic defects related to folate metabolism are more susceptible to arsenic's effects. We sought to determine whether 25 single-nucleotide polymorphisms (SNPs) in genes involved in folate and arsenic metabolism modified the associations between maternal arsenic exposure and risk of spina bifida (a common NTD) among a hospital-based case-control study population in Bangladesh. METHODS We used data from 262 mothers and 220 infants who participated in a case‒control study at the National Institutes of Neurosciences & Hospital and Dhaka Shishu Hospital in Dhaka, Bangladesh. Neurosurgeons assessed infants using physical examinations, review of imaging, and we collected histories using questionnaires. We assessed arsenic from mothers' toenails using inductively coupled plasma mass spectrometry (ICP-MS), and we genotyped participants using the Illumina Global Screening Array v1.0. We chose candidate genes and SNPs through a review of the literature. We assessed SNP-environment interactions using interaction terms and stratified models, and we assessed gene-environment interactions using interaction sequence/SNP-set kernel association tests (iSKAT). RESULTS The median toenail arsenic concentration was 0.42 μg/g (interquartile range [IQR]: 0.27-0.86) among mothers of cases and 0.47 μg/g (IQR: 0.30-0.97) among mothers of controls. We found an two SNPs in the infants' AS3MT gene (rs11191454 and rs7085104) and one SNP in mothers' DNMT1 gene (rs2228611) were associated with increased odds of spina bifida in the setting of high arsenic exposure (rs11191454, OR 3.01, 95% CI: 1.28-7.09; rs7085104, OR 2.33, 95% CI: 1.20-4.and rs2228611, OR 2.11, 95% CI: 1.11-4.01), along with significant SNP-arsenic interactions. iSKAT analyses revealed significant interactions between mothers' toenail concentrations and infants' AS3MT and MTR genes (p = 0.02), and mothers' CBS gene (p = 0.05). CONCLUSIONS Our results support the hypothesis that arsenic increases spina bifida risk via interactions with folate and arsenic metabolic pathways and suggests that individuals in the population who have certain genetic polymorphisms in genes involved with arsenic and folate metabolism may be more susceptible than others to the arsenic teratogenicity.
Collapse
Affiliation(s)
- Chih-Fu Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gwen Tindula
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA, USA
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Xingyan Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - D M Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Md Joynul Islam
- Department of Clinical Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | | | - Asifur Rahman
- Department of Neurosurgery, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Shamantha Afreen
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Md Ziaddin
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Luecke SM, Aryee G, Holman DB, Schmidt KN, King LE, Crouse MS, Ward AK, Dahlen CR, Caton JS, Amat S. Effects of dietary restriction and one-carbon metabolite supplementation during the first 63 days of gestation on the maternal gut, vaginal, and blood microbiota in cattle. Anim Microbiome 2024; 6:48. [PMID: 39210404 PMCID: PMC11360793 DOI: 10.1186/s42523-024-00335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Maternal diet quality and quantity have significant impacts on both maternal and fetal health and development. The composition and function of the maternal gut microbiome is also significantly influenced by diet; however, little is known about the impact of gestational nutrient restriction on the bovine maternal microbiome during early gestation, which is a critical stage for maternal microbiome-mediated fetal programming to take place. The objective of the present study was to evaluate the impacts of diet restriction and one-carbon metabolite (OCM) supplementation during early gestation on maternal ruminal, vaginal, and blood microbiota in cattle. Thirty-three beef heifers (approx. 14 months old) were used in a 2 × 2 factorial experiment with main factors of target gain (control [CON]; targeted 0.45 kg/d gain vs restricted [RES]; targeted - 0.23 kg/d gain), and OCM supplementation (+ OCM vs - OCM; n = 8/treatment; except n = 9 for RES-OCM). Heifers were individually fed, starting treatment at breeding (d 0) and concluding at d 63 of gestation. Ruminal fluid and vaginal swabs were collected on d - 2, d 35, and d 63 (at necropsy) and whole blood was collected on d 63 (necropsy). Bacterial microbiota was assessed using 16S rRNA gene (V3-V4) sequencing. RESULTS Overall ruminal microbiota structure was affected by gain, OCM, time, and their interactions. The RES heifers had greater microbial richness (observed ASVs) but neither Shannon nor Inverse Simpson diversity was significantly influenced by gain or OCM supplementation; however, on d 63, 34 bacterial genera showed differential abundance in the ruminal fluid, with 25 genera enriched in RES heifers as compared to CON heifers. In addition, the overall interaction network structure of the ruminal microbiota changed due to diet restriction. The vaginal microbiota community structure was influenced by gain and time. Overall microbial richness and diversity of the vaginal microbiota steadily increased as pregnancy progressed. The vaginal ecological network structure was distinctive between RES and CON heifers with genera-genera interactions being intensified in RES heifers. A relatively diverse bacterial community was detected in blood samples, and the composition of the blood microbiota differed from that of ruminal and vaginal microbiota. CONCLUSION Restricted dietary intake during early gestation induced significant alterations in the ruminal microbiota which also extended to the vaginal microbiota. The composition of these two microbial communities was largely unaffected by OCM supplementation. Blood associated microbiota was largely distinctive from the ruminal and vaginal microbiota.
Collapse
Affiliation(s)
- Sarah M Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Godson Aryee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Devin B Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Kaycie N Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Layla E King
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Alison K Ward
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Joel S Caton
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
4
|
Yang H, Wang J, Chen Q, Wu Y, Wu Y, Deng Q, Yu Y, Yan F, Li Y, He B, Chen F. Associations of Urinary Total Arsenic and Arsenic Species and Periodontitis. Int Dent J 2024; 74:713-721. [PMID: 38388241 PMCID: PMC11287149 DOI: 10.1016/j.identj.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
AIMS Arsenic exposure is a significant global public health concern and has been implicated in endocrine disruption and increased oxidative stress, both of which are crucial pathogenic mechanisms of periodontitis. This study aimed to investigate the association of urinary total arsenic and arsenic species with periodontitis and to further explore the potential mediating roles of sex hormones and oxidative stress indicators. METHODS Data used in this study were derived from the 2013-2014 National Health and Nutrition Examination Survey (NHANES) in the US population. In all, 1063 participants with complete data were included in this study. Weighted logistic regression analyses were used to evaluate the relationship between urinary arsenic and periodontitis. Mediation analyses were used to explore the effects of potential mediators on these associations. RESULTS High concentrations of urinary dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), 2 types of toxic urinary arsenic (TUA2), and 4 types of toxic urinary arsenic (TUA4) were positively related to periodontitis (P < .05). After adjusting for potential confounders, the positive association remained significant (odds ratio, 1.32; 95% confidence interval, 1.01-1.71). Testosterone may partially mediate the relationship between MMA and periodontitis, with mediating effects of 21.78% and 39.73% of the total effect. No significant mediation effect of oxidative stress indicators was found for this relationship. CONCLUSIONS This study reports a positive association between urinary MMA and periodontitis, and testosterone may mediate this relationship. Our findings serve as a call for action to avoid the deployment of arsenic-containing therapeutic agents as treatment modalities for oral afflictions.
Collapse
Affiliation(s)
- Han Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jing Wang
- Laboratory Center, The Major Subject of Environment and Health of Fujian Key Universities, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Qiansi Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yuxuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yuying Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Qingrong Deng
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yiming Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanfen Li
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Baochang He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.
| | - Fa Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China; Clinical Research Unit, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.
| |
Collapse
|
5
|
Wei CF, Mukherjee SK, Ekramullah SM, Arman DM, Islam MJ, Azim M, Rahman A, Rahman MN, Ziauddin M, Tindula G, Suchanda HS, Gomberg DF, Weisskopf MG, Liang L, Warf BC, Christiani DC, Mazumdar M. Arsenic modifies the effect of folic acid in spina bifida prevention, a large hospital-based case-control study in Bangladesh. Environ Health 2024; 23:51. [PMID: 38831396 PMCID: PMC11145859 DOI: 10.1186/s12940-024-01091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Spina bifida, a developmental malformation of the spinal cord, is associated with high rates of mortality and disability. Although folic acid-based preventive strategies have been successful in reducing rates of spina bifida, some areas continue to be at higher risk because of chemical exposures. Bangladesh has high arsenic exposures through contaminated drinking water and high rates of spina bifida. This study examines the relationships between mother's arsenic exposure, folic acid, and spina bifida risk in Bangladesh. METHODS We conducted a hospital-based case-control study at the National Institute of Neurosciences & Hospital (NINS&H) in Dhaka, Bangladesh, between December 2016 and December 2022. Cases were infants under age one year with spina bifida and further classified by a neurosurgeon and imaging. Controls were drawn from children seen at NINS&H and nearby Dhaka Shishu Hospital. Mothers reported folic acid use during pregnancy, and we assessed folate status with serum assays. Arsenic exposure was estimated in drinking water using graphite furnace atomic absorption spectrophotometry (GF-AAS) and in toenails using inductively coupled plasma mass spectrometry (ICP-MS). We used logistic regression to examine the associations between arsenic and spina bifida. We used stratified models to examine the associations between folic acid and spina bifida at different levels of arsenic exposure. RESULTS We evaluated data from 294 cases of spina bifida and 163 controls. We did not find a main effect of mother's arsenic exposure on spina bifida risk. However, in stratified analyses, folic acid use was associated with lower odds of spina bifida (adjusted odds ratio [OR]: 0.50, 95% confidence interval [CI]: 0.25-1.00, p = 0.05) among women with toenail arsenic concentrations below the median value of 0.46 µg/g, and no association was seen among mothers with toenail arsenic concentrations higher than 0.46 µg/g (adjusted OR: 1.09, 95% CI: 0.52-2.29, p = 0.82). CONCLUSIONS Mother's arsenic exposure modified the protective association of folic acid with spina bifida. Increased surveillance and additional preventive strategies, such as folic acid fortification and reduction of arsenic, are needed in areas of high arsenic exposure.
Collapse
Affiliation(s)
- Chih-Fu Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - D M Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Md Joynul Islam
- Department of Clinical Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | | | - Asifur Rahman
- Department of Neurosurgery, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Md Nafaur Rahman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Md Ziauddin
- Department of Paediatric Neurosurgery, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Gwen Tindula
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, , 300 Pasteur Drive, CA, 94305, USA
| | - Hafiza Sultana Suchanda
- Pediatric Neurosurgery Research Committee, National Institute of Neurosciences & Hospital, Sher-e-Bangla Nagar, Agargoan, Dhaka, 1207, Bangladesh
| | - Diana F Gomberg
- Department of Neurology, Boston Children's Hospital, BCH3443, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Liming Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA.
- Department of Neurology, Boston Children's Hospital, BCH3443, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Martinez-Morata I, Parvez F, Wu H, Eunus M, Goldsmith J, Ilievski V, Slavkovich V, Balac O, Izuchukwu C, Glabonjat RA, Ellis T, Nasir Uddin M, Islam T, Sadat Arif A, van Geen A, Navas-Acien A, Graziano JH, Gamble MV. Influence of folic acid and vitamin B12 supplementation on arsenic methylation: A double-blinded, placebo-controlled trial in Bangladeshi children. ENVIRONMENT INTERNATIONAL 2024; 187:108715. [PMID: 38728816 PMCID: PMC11316459 DOI: 10.1016/j.envint.2024.108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Inorganic arsenic is metabolized to monomethyl- (MMAs) and dimethyl- (DMAs) species via one-carbon metabolism (OCM); this facilitates urinary arsenic elimination. OCM is influenced by folate and vitamin B12 and previous randomized control trials (RCTs) showed that folic acid (FA) supplementation increases arsenic methylation in adults. This RCT investigated the effects of FA + B12 supplementation on arsenic methylation in children, a key developmental stage where OCM supports growth. METHODS A total of 240 participants (8-11 years, 53 % female) drinking from wells with arsenic concentrations > 50 μg/L, were encouraged to switch to low arsenic wells and were randomized to receive 400 μg FA + 5 μg B12 or placebo daily for 12-weeks. Urine and blood samples were collected at baseline, week 1 (only urine) and week 12. Generalized estimated equation (GEE) models were used to assess treatment effects on arsenic species in blood and urine. RESULTS At baseline, the mean ± SD total blood and urinary arsenic were 5.3 ± 2.9 μg/L and 91.2 ± 89.5 μg/L. Overall, total blood and urine arsenic decreased by 11.7% and 17.6%, respectively, at the end of follow up. Compared to placebo, the supplementation group experienced a significant increase in the concentration of blood DMAs by 14.0% (95% CI 5.0, 25.0) and blood secondary methylation index (DMAs/MMAs) by 0.19 (95% CI: 0.09, 0.35) at 12 weeks. Similarly, there was a 1.62% (95% CI: 0.43, 20.83) significantly higher urinary %DMAs and -1.10% (95% CI: -1.73, -0.48) significantly lower urinary %MMAs in the supplementatio group compared to the placebo group after 1 week. The direction of the changes in the urinary %iAs, %MMAs, and %DMAs at week 12 were consistent with those at week 1, though estimates were not significant. Treatment effects were stronger among participants with higher baseline blood arsenic concentrations. Results were consistent across males and females, and participants with higher and lower folate and B12 status at baseline. CONCLUSION This RCT confirms that FA + B12 supplementation increases arsenic methylation in children as reflected by decreased MMAs and increased DMAs in blood and urine. Nutritional interventions may improve arsenic methylation and elimination in children, potentially reducing arsenic toxicity while also improving nutritional status.
Collapse
Affiliation(s)
- Irene Martinez-Morata
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Faruque Parvez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Mahbubul Eunus
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Jeff Goldsmith
- Department of Biostatistics, Columbia University Mailman School of Public Health, NY, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Olgica Balac
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Chiugo Izuchukwu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Tyler Ellis
- Lamont-Doherty Earth Observatory, Columbia University, NY, USA; Minnesota Pollution Control Agency, St. Paul, MN, USA
| | - Mohammad Nasir Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh; Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Anwar Sadat Arif
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | | | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA.
| |
Collapse
|
7
|
Zhang J, Bai Y, Chen X, Li S, Meng X, Jia A, Yang X, Huang F, Zhang X, Zhang Q. Association between urinary arsenic species and vitamin D deficiency: a cross-sectional study in Chinese pregnant women. Front Public Health 2024; 12:1371920. [PMID: 38694994 PMCID: PMC11062242 DOI: 10.3389/fpubh.2024.1371920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/19/2024] [Indexed: 05/04/2024] Open
Abstract
Background An increasing number of studies suggest that environmental pollution may increase the risk of vitamin D deficiency (VDD). However, less is known about arsenic (As) exposure and VDD, particularly in Chinese pregnant women. Objectives This study examines the correlations of different urinary As species with serum 25 (OH) D and VDD prevalence. Methods We measured urinary arsenite (As3+), arsenate (As5+), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) levels and serum 25(OH)D2, 25(OH)D3, 25(OH) D levels in 391 pregnant women in Tianjin, China. The diagnosis of VDD was based on 25(OH) D serum levels. Linear relationship, Logistic regression, and Bayesian kernel machine regression (BKMR) were used to examine the associations between urinary As species and VDD. Results Of the 391 pregnant women, 60 received a diagnosis of VDD. Baseline information showed significant differences in As3+, DMA, and tAs distribution between pregnant women with and without VDD. Logistic regression showed that As3+ was significantly and positively correlated with VDD (OR: 4.65, 95% CI: 1.79, 13.32). Meanwhile, there was a marginally significant positive correlation between tAs and VDD (OR: 4.27, 95% CI: 1.01, 19.59). BKMR revealed positive correlations between As3+, MMA and VDD. However, negative correlations were found between As5+, DMA and VDD. Conclusion According to our study, there were positive correlations between iAs, especially As3+, MMA and VDD, but negative correlations between other As species and VDD. Further studies are needed to determine the mechanisms that exist between different As species and VDD.
Collapse
Affiliation(s)
- Jingran Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Yuxuan Bai
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Shuying Li
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin, China
| | - Xiangmin Meng
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin, China
| | - Aifeng Jia
- Department of Gynecology and Obstetrics, Tianjin Xiqing Hospital, Tianjin, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Fenglei Huang
- Department of Reproductive Health, Maternal and Child Health Center of Dongchangfu District, Liaocheng, China
| | - Xumei Zhang
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, Tianjin Medical University, Tianjin, China
| |
Collapse
|
8
|
Liu Y, Li W, Zhang J, Yan Y, Zhou Q, Liu Q, Guan Y, Zhao Z, An J, Cheng X, He M. Associations of arsenic exposure and arsenic metabolism with the risk of non-alcoholic fatty liver disease. Int J Hyg Environ Health 2024; 257:114342. [PMID: 38401403 DOI: 10.1016/j.ijheh.2024.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Growing evidences supported that arsenic exposure contributes to non-alcoholic fatty liver disease (NAFLD) risk, but findings were still inconsistent. Additionally, once absorbed, arsenic is methylated into monomethyl and dimethyl arsenicals. However, no studies investigated the association of arsenic metabolism with NAFLD. Our objectives were to evaluate the associations of arsenic exposure and arsenic metabolism with NAFLD prevalence. We conducted a case-control study with 1790 participants derived from Dongfeng-Tongji cohort and measured arsenic species (arsenite, arsenate, monomethylarsonate [MMA], dimethylarsinate [DMA], and arsenobetaine) in urine. Arsenic exposure (∑As) was defined as the sum of inorganic arsenic (iAs), MMA, and DMA. Arsenic metabolism was evaluated as the proportions of inorganic-related species (iAs%, MMA%, and DMA%) and methylation efficiency ratios (primary methylation index [PMI], secondary methylation index [SMI]). NAFLD was diagnosed by liver ultrasound. Logistic regression was used to evaluate the associations. The median of ∑As was 13.24 μg/g creatinine. The ∑As showed positive and nonlinear association with moderate/severe NAFLD (OR: per log-SD = 1.33, 95% CI: [1.03,1.71]; Pfor nonlinearity = 0.021). The iAs% (OR: per SD = 1.16, 95% CI: [1.03,1.30]) and SMI (OR: per log-SD = 1.16, 95% CI: [1.03,1.31]) showed positive while MMA% (OR: per SD = 0.80, 95% CI: [0.70,0.91]) and PMI (OR: per log-SD = 0.86, 95% CI: [0.77,0.96]) showed inverse associations with NAFLD. Moreover, the ORs (95% CI) of NAFLD for each 5% increase in iAs% was 1.36 (1.17,1.58) when MMA% decreased and 1.07 (1.01,1.13) when DMA% decreased; and for each 5% increase in MMA%, it was 0.74 (0.63,0.86) and 0.79 (0.69,0.91) when iAs% and DMA% decreased, respectively. The results suggest that inorganic arsenic exposure is positively associated with NAFLD risk and arsenic methylation efficiency plays a role in the NAFLD. The findings provide clues to explore potential interventions for the prevention of NAFLD. Prospective studies are needed to validate our findings.
Collapse
Affiliation(s)
- Yuenan Liu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiya Li
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qianying Liu
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youbin Guan
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuoya Zhao
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun An
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Cheng
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
Wei CF, Mukherjee SK, Ekramullah SM, Arman DM, Islam MJ, Azim M, Rahman A, Rahman MN, Ziauddin M, Tindula G, Suchanda HS, Gomberg DF, Weisskopf MG, Liang L, Warf BC, Christiani DC, Mazumdar M. Arsenic modifies the effect of folic acid in spina bifida prevention, a large hospital-based case-control study in Bangladesh. RESEARCH SQUARE 2024:rs.3.rs-3989039. [PMID: 38464105 PMCID: PMC10925447 DOI: 10.21203/rs.3.rs-3989039/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Spina bifida, a developmental malformation of the spinal cord, is associated with high rates of mortality and disability. Although folic acid-based preventive strategies have been successful in reducing rates of spina bifida, some areas continue to be at higher risk because of chemical exposures. Bangladesh has high arsenic exposures through contaminated drinking water and high rates of spina bifida. Methods We conducted a hospital-based case-control study at the National Institute of Neurosciences & Hospital (NINS&H) in Dhaka, Bangladesh, between December 2016 and December 2022. Cases were infants under age one year with spina bifida and further classified using data from observations by neurosurgeons and available imaging. Controls were drawn from children who presented to NINS&H or Dhaka Shishu Hospital (DSH) during the same study period. Mothers reported folic acid use during pregnancy, and we assessed folate status with serum assays. Arsenic exposure was estimated in drinking water using graphite furnace atomic absorption spectrophotometry (GF-AAS) and in toenails using inductively coupled plasma mass spectrometry (ICP-MS). Results We evaluated data from 294 cases of spina bifida and 163 controls. We did not find a main effect of mother's arsenic exposure on spina bifida risk. However, in stratified analyses, folic acid use was associated with lower odds of spina bifida (adjusted odds ratio [OR]: 0.50, 95% confidence interval [CI]: 0.25-1.00, p = 0.05) among women with toenail arsenic concentrations below the median, and no association was seen among mothers with toenail arsenic concentrations higher than median (adjusted OR: 1.09, 95% CI: 0.52-2.29, p = 0.82). Conclusions Mother's arsenic exposure modified the protective association of folic acid with spina bifida. Increased surveillance and additional preventive strategies, such as folic acid fortification and reduction of arsenic, are needed in areas of high arsenic exposure.
Collapse
Affiliation(s)
| | | | | | - D M Arman
- National Institute of Neurosciences & Hospital
| | | | | | | | | | - Md Ziauddin
- National Institute of Neurosciences & Hospital
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Roh T, Regan AK, Johnson NM, Hasan NT, Trisha NF, Aggarwal A, Han D. Association of arsenic exposure with measles antibody titers in US children: Influence of sex and serum folate levels. ENVIRONMENT INTERNATIONAL 2024; 183:108329. [PMID: 38071850 DOI: 10.1016/j.envint.2023.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
Exposure to arsenic during childhood is associated with various adverse health conditions. However, little is known about the effect of arsenic exposure on vaccine-related humoral immunity in children. We analyzed data from the National Health and Nutrition Examination Survey (2003-2004 and 2009-2010) to study the relationship between urinary arsenic and measles antibody levels in 476 US children aged 6-11. Multivariable linear regression was used to evaluate the association, adjusting for cycle, age, race, body mass index (BMI), serum cotinine, poverty index ratio, and vitamin B12 and selenium intakes. Stratified analyses were conducted by sex and serum folate levels using the median as cutoff (18.7 ng/mL). The measles antibody concentrations in the 3rd and 4th quartiles were found to have significantly decreased by 28.5 % (95 % Confidence Interval (CI) -47.6, -2.28) and 36.8 % (95 % CI -50.2, -19.5), compared to the lowest quartile among boys with serum folate levels lower than 18.7 ng/ml. The serum measles antibody titers significantly decreased by 16.7 % (95 %CI -25.0, -7.61) for each doubling of creatinine-corrected urinary total inorganic arsenic concentrations in the same group. No associations were found in boys with high serum folate levels or in girls. Further prospective studies are needed to validate these findings and develop interventions to protect children from infectious diseases.
Collapse
Affiliation(s)
- Taehyun Roh
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA.
| | - Annette K Regan
- School of Nursing and Health Professions, University of San Francisco, San Francisco, CA 94117, USA
| | - Natalie M Johnson
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Nishat Tasnim Hasan
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Nusrat Fahmida Trisha
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Anisha Aggarwal
- Department of Health Behavior, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Daikwon Han
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Yamauchi H, Hitomi T, Takata A. Evaluation of arsenic metabolism and tight junction injury after exposure to arsenite and monomethylarsonous acid using a rat in vitro blood-Brain barrier model. PLoS One 2023; 18:e0295154. [PMID: 38032905 PMCID: PMC10688625 DOI: 10.1371/journal.pone.0295154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Experimental verification of impairment to cognitive abilities and cognitive dysfunction resulting from inorganic arsenic (iAs) exposure in children and adults is challenging. This study aimed to elucidate the effects of arsenite (iAsIII; 1, 10 and 20 μM) or monomethylarsonous acid (MMAIII; 0.1, 1 and 2 μM) exposure on arsenic metabolism and tight junction (TJ) function in the blood-brain barrier (BBB) using a rat in vitro-BBB model. The results showed that a small percentage (~15%) of iAsIII was oxidized or methylated within the BBB, suggesting the persistence of toxicity as iAsIII. Approximately 65% of MMAIII was converted to low-toxicity monomethylarsonic acid and dimethylarsenic acid via oxidation and methylation. Therefore, it is estimated that MMAIII causes TJ injury to the BBB at approximately 35% of the unconverted level. TJ injury of BBB after iAsIII or MMAIII exposure could be significantly assessed from decreased expression of claudin-5 and decreased transepithelial electrical resistance values. TJ injury in BBB was found to be significantly affected by MMAIII than iAsIII. Relatedly, the penetration rate in the BBB by 24 h of exposure was higher for MMAIII (53.1% ± 2.72%) than for iAsIII (43.3% ± 0.71%) (p < 0.01). Exposure to iAsIII or MMAIII induced an antioxidant stress response, with concentration-dependent increases in the expression of nuclear factor-erythroid 2-related factor 2 in astrocytes and heme oxygenase-1 in a group of vascular endothelial cells and pericytes, respectively. This study found that TJ injury at the BBB is closely related to the chemical form and species of arsenic; we believe that elucidation of methylation in the brain is essential to verify the impairment of cognitive abilities and cognitive dysfunction caused by iAs exposure.
Collapse
Affiliation(s)
- Hiroshi Yamauchi
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Toshiaki Hitomi
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ayako Takata
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
12
|
Soler-Blasco R, Harari F, Riutort-Mayol G, Murcia M, Lozano M, Irizar A, Marina LS, Zubero MB, Fernández-Jimenez N, Braeuer S, Ballester F, Llop S. Influence of genetic polymorphisms on arsenic methylation efficiency during pregnancy: Evidence from a Spanish birth cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165740. [PMID: 37495132 DOI: 10.1016/j.scitotenv.2023.165740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Inorganic arsenic (iAs) is a widespread toxic metalloid. It is well-known that iAs metabolism and its toxicity are mediated by polymorphisms in AS3MT and other genes. However, studies during pregnancy are scarce. We aimed to examine the role of genetic polymorphisms in AS3MT, GSTO2, N6AMT1, MTHFR, MTR, FTCD, CBS, and FOLH1 in iAs methylation efficiency during pregnancy. METHODS The study included 541 pregnant participants from the INMA (Environment and Childhood) Spanish cohort. Using high-performance liquid chromatography coupled to inductively coupled plasma-tandem mass, we measured arsenic (iAs and the metabolites monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)) in urine samples collected during the first trimester. iAs methylation efficiency was determined based on relative concentrations of the As metabolites in urine (%MMA, %DMA, and %iAs). Thirty-two single nucleotide polymorphisms (SNPs) in nine genes were determined in maternal DNA; AS3MT haplotypes were inferred. We assessed the association between genotypes/haplotypes and maternal As methylation efficiency using multivariate linear regression models. RESULTS The median %MMA and %DMA were 5.3 %, and 89 %, respectively. Ancestral alleles of AS3MT SNPs (rs3740393, rs3740390, rs11191453, and rs11191454) were significantly associated with higher %MMA, %iAs, and lower %DMA. Pregnant participants with zero copies of the GGCTTCAC AS3MT haplotype presented a higher %MMA. Statistically significant associations were also found for the FOLH1 SNP rs202676 (β 0.89 95%CI: 0.24, 1.55 for carriers of the G allele vs. the A allele). CONCLUSIONS Our study shows that ancestral alleles in AS3MT polymorphisms were associated with lower As methylation efficiency in early pregnancy and suggests that FOLH1 also plays a role in As methylation efficiency. These results support the hypothesis that As metabolism is multigenic, being a key element for identifying susceptible populations.
Collapse
Affiliation(s)
- Raquel Soler-Blasco
- Department of Nursing, Universitat de València, Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Florencia Harari
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Gabriel Riutort-Mayol
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Mario Murcia
- Health Policy Planning and Evaluation Service, Conselleria de Sanitat Universal i Salut Pública, Generalitat Valenciana, Valencia, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Amaia Irizar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biodonostia Health Research Institute, San Sebastian, Spain; Departament of Preventive Medicine and Public Health of the University of the Basque Country, UPV/EHU, Bizkaia, Spain
| | - Loreto Santa Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biodonostia Health Research Institute, San Sebastian, Spain; Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
| | - Miren Begoña Zubero
- Departament of Preventive Medicine and Public Health of the University of the Basque Country, UPV/EHU, Bizkaia, Spain
| | - Nora Fernández-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute, University of the Basque Country (UPV/EHU), Bizkaia, Spain
| | - Simone Braeuer
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Ferran Ballester
- Department of Nursing, Universitat de València, Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
13
|
Dashner-Titus EJ, Schilz JR, Alvarez SA, Wong CP, Simmons K, Ho E, Hudson LG. Zinc supplementation alters tissue distribution of arsenic in Mus musculus. Toxicol Appl Pharmacol 2023; 478:116709. [PMID: 37797845 PMCID: PMC10729601 DOI: 10.1016/j.taap.2023.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Arsenic occurs naturally in the environment and humans can be exposed through food, drinking water and inhalation of air-borne particles. Arsenic exposure is associated with cardiovascular, pulmonary, renal, immunologic, and developmental toxicities as well as carcinogenesis. Arsenic displays dose-depen toxicities in target organs or tissues with elevated levels of arsenic. Zinc is an essential micronutrient with proposed protective benefits due to its antioxidant properties, integration into zinc-containing proteins and zinc-related immune signaling. In this study, we tested levels of arsenic and zinc in plasma, kidney, liver, and spleen as model tissues after chronic (42-day) treatment with either arsenite, zinc, or in combination. Arsenite exposure had minimal impact on tissue zinc levels with the exception of the kidney. Conversely, zinc supplementation of arsenite-exposed mice reduced the amount of arsenic detected in all tissues tested. Expression of transporters associated with zinc or arsenic influx and efflux were evaluated under each treatment condition. Significant effects of arsenite exposure on zinc transporter expression displayed tissue selectivity for liver and kidney, and was restricted to Zip10 and Zip14, respectively. Arsenite also interacted with zinc co-exposure for Zip10 expression in liver tissue. Pairwise comparisons show neither arsenite nor zinc supplementation alone significantly altered expression of transporters utilized by arsenic. However, significant interactions between arsenite and zinc were evident for Aqp7 and Mrp1 in a tissue selective manner. These findings illustrate interactions between arsenite and zinc leading to changes in tissue metal level and suggest a potential mechanism by which zinc may offer protection from arsenic toxicities.
Collapse
Affiliation(s)
- Erica J Dashner-Titus
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America.
| | - Jodi R Schilz
- Division of Physical Therapy, School of Medicine, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America
| | - Sandra A Alvarez
- Early Childhood Services Center, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America
| | - Carmen P Wong
- School of Public Health, College of Health, Oregon State University, Corvallis, OR 97331, United States of America
| | - Karen Simmons
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America
| | - Emily Ho
- School of Public Health, College of Health, Oregon State University, Corvallis, OR 97331, United States of America; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America
| |
Collapse
|
14
|
Notario-Barandiaran L, Irizar A, Begoña-Zubero M, Soler-Blasco R, Riutort-Mayol G, Fernández-Somoano A, Tardón A, Casas M, Vrijheid M, Meharg A, Carey M, Meharg C, Ralphs K, McCreanor C, Grimalt JO, Vioque J, Signes-Pastor AJ. Association between mediterranean diet and metal(loid) exposure in 4-5-year-old children living in Spain. ENVIRONMENTAL RESEARCH 2023; 233:116508. [PMID: 37392824 DOI: 10.1016/j.envres.2023.116508] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Even relatively low levels of metals exposure may impact health, particularly among vulnerable populations such as infants and young children. However, little is known about the interplay between simultaneous metal exposures, common in real-life scenarios, and their association with specific dietary patterns. In this study, we have evaluated the association between adherence to Mediterranean diet (MD) and urinary metal concentrations individually and as an exposure mixture in 713 children aged 4-5-years from the INMA cohort study. We used a validated food frequency questionnaire to calculate two MD indexes scores: aMED and rMED. These indexes gather information on various food groups within the MD and score differently. To measure urinary concentrations of cobalt, copper, zinc, molybdenum, selenium, lead, and cadmium as exposure biomarkers, we used inductively coupled plasma mass spectrometry (ICP-MS), coupled with an ion chromatography (IC) equipment for arsenic speciation analysis. We applied linear regression and quantile g-computation, adjusted for confounders, to analyse the association between MD adherence and exposure to the metal mixture. High adherence to MD such as the quintile (Q) 5 MD was associated with higher urinary arsenobetaine (AsB) levels than Q1, with β values of 0.55 (confidence interval - CI 95% 0.01; 1.09) for aMED and 0.73 (CI 95% 0.13; 1.33) for rMED. Consumption of fish was associated with increased urinary AsB but reduced inorganic arsenic concentrations. In contrast, the aMED vegetables consumption increased urinary inorganic arsenic content. A moderate level of adherence to MD (Q2 and Q3) was associated with lower copper urinary concentrations than Q1, with β values of -0.42 (CI 95% -0.72; -0.11) for Q2 and -0.33 (CI 95% -0.63; -0.02) for Q3, but only with aMED. Our study, conducted in Spain, revealed that adhering to the MD reduces exposure to certain metals while increasing exposure to others. Specifically, we observed increase in exposure to non-toxic AsB, highlighting the significance of consuming fish/seafood. However, it is crucial to emphasize the necessity for additional efforts in reducing early-life exposure to toxic metals, even when adhering to certain food components of the MD.
Collapse
Affiliation(s)
- L Notario-Barandiaran
- Unidad de Epidemiología de La Nutrición, Universidad Miguel Hernández, Alicante, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| | - A Irizar
- Biodonostia, Health Research Institute, Donostia, Gipuzkoa, Spain
| | - M Begoña-Zubero
- Biodonostia, Health Research Institute, Donostia, Gipuzkoa, Spain; Preventive Medicine and Public Health Department, University of the Basque Country, Leioa, Bizkaia, Spain
| | - R Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Department of Nursing, Universitat de València, Valencia, Spain
| | - G Riutort-Mayol
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - A Fernández-Somoano
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), Departamento de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), 33001, Oviedo, Spain
| | - A Tardón
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), Departamento de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), 33001, Oviedo, Spain
| | - M Casas
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - M Vrijheid
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - A Meharg
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - M Carey
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - C Meharg
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - K Ralphs
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - C McCreanor
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - J O Grimalt
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona Street, 18-26, 08034, Barcelona, Cataluña, Spain
| | - J Vioque
- Unidad de Epidemiología de La Nutrición, Universidad Miguel Hernández, Alicante, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - A J Signes-Pastor
- Unidad de Epidemiología de La Nutrición, Universidad Miguel Hernández, Alicante, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| |
Collapse
|
15
|
Petit A, Tesseraud S, Beauclercq S, Nadal-Desbarats L, Cailleau-Audouin E, Réhault-Godbert S, Berri C, Le Bihan-Duval E, Métayer-Coustard S. Allantoic fluid metabolome reveals specific metabolic signatures in chicken lines different for their muscle glycogen content. Sci Rep 2023; 13:8867. [PMID: 37258592 DOI: 10.1038/s41598-023-35652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Nutrient availability in eggs can affect early metabolic orientation in birds. In chickens divergently selected on the Pectoralis major ultimate pH, a proxy for muscle glycogen stores, characterization of the yolk and amniotic fluid revealed a different nutritional environment. The present study aimed to assess indicators of embryo metabolism in pHu lines (pHu+ and pHu-) using allantoic fluids (compartment storing nitrogenous waste products and metabolites), collected at days 10, 14 and 17 of embryogenesis and characterized by 1H-NMR spectroscopy. Analysis of metabolic profiles revealed a significant stage effect, with an enrichment in metabolites at the end of incubation, and an increase in interindividual variability during development. OPLS-DA analysis discriminated the two lines. The allantoic fluid of pHu- was richer in carbohydrates, intermediates of purine metabolism and derivatives of tryptophan-histidine metabolism, while formate, branched-chain amino acids, Krebs cycle intermediates and metabolites from different catabolic pathways were more abundant in pHu+. In conclusion, the characterization of the main nutrient sources for embryos and now allantoic fluids provided an overview of the in ovo nutritional environment of pHu lines. Moreover, this study revealed the establishment, as early as day 10 of embryo development, of specific metabolic signatures in the allantoic fluid of pHu+ and pHu- lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cécile Berri
- INRAE, Université de Tours, BOA, 37380, Nouzilly, France
| | | | | |
Collapse
|
16
|
Butler EE, Karagas MR, Demidenko E, Bellinger DC, Korrick SA. In utero arsenic exposure and early childhood motor development in the New Hampshire Birth Cohort Study. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1139337. [PMID: 38455900 PMCID: PMC10910989 DOI: 10.3389/fepid.2023.1139337] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/21/2023] [Indexed: 03/09/2024]
Abstract
Introduction High-level prenatal and childhood arsenic (As) exposure characteristic of several regions in Asia (e.g., Bangladesh), may impact motor function. However, the relationship between lower-level arsenic exposure (characteristic of other regions) and motor development is largely unstudied, despite the potential for deficient motor skills in childhood to have adverse long-term consequences. Thus, we sought to investigate the association between prenatal As exposure and motor function among 395 children in the New Hampshire Birth Cohort Study, a rural cohort from northern New England. Methods Prenatal exposure was estimated by measuring maternal urine speciated As at 24-28 weeks of gestation using high-performance liquid chromatography (HPLC) inductively coupled plasma mass spectrometry (ICP-MS) and summing inorganic As, monomethylarsonic acid, and dimethylarsinic acid to obtain total urinary As (tAs). Motor function was assessed with the Bruininks-Oseretsky Test of Motor Proficiency, 2nd Edition (BOT-2) at a mean (SD) age of 5.5 (0.4) years. Results Children who completed this exam were largely reported as white race (97%), born to married mothers (86%) with a college degree or higher (67%). The median (IQR) gestational urine tAs concentration was 4.0 (5.0) µg/L. Mean (SD) BOT-2 scores were 48.6 (8.4) for overall motor proficiency and 48.2 (9.6) for fine manual control [standard score = 50 (10)], and were 16.3 (5.1) for fine motor integration and 12.5 (4.1) for fine motor precision [standard score = 15 (5)]. We found evidence of a non-linear dose response relationship and used a change-point model to assess the association of tAs with overall motor proficiency and indices of fine motor integration, fine motor precision, and their composite, fine manual control, adjusted for age and sex. In models adjusted for potential confounders, each doubling of urine tAs decreased overall motor proficiency by -3.3 points (95% CI: -6.1, -0.4) for tAs concentrations greater than the change point of 9.5 µg/L and decreased fine motor integration by -4.3 points (95% CI: -8.0, -0.6) for tAs concentrations greater than the change point of 17.0 µg/L. Discussion In summary, we found that levels of prenatal As exposure above an empirically-derived threshold (i.e., the change point) were associated with decrements in childhood motor development in a US population.
Collapse
Affiliation(s)
- Erin E. Butler
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Children’s Environmental Health and Disease Prevention Research Center, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Eugene Demidenko
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - David C. Bellinger
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Susan A. Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Abuawad AK, Bozack AK, Navas-Acien A, Goldsmith J, Liu X, Hall MN, Ilievski V, Lomax-Luu AM, Parvez F, Shahriar H, Uddin MN, Islam T, Graziano JH, Gamble MV. The Folic Acid and Creatine Trial: Treatment Effects of Supplementation on Arsenic Methylation Indices and Metabolite Concentrations in Blood in a Bangladeshi Population. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:37015. [PMID: 36976258 PMCID: PMC10045040 DOI: 10.1289/ehp11270] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chronic arsenic (As) exposure is a global environmental health issue. Inorganic As (InAs) undergoes methylation to monomethyl (MMAs) and dimethyl-arsenical species (DMAs); full methylation to DMAs facilitates urinary excretion and is associated with reduced risk for As-related health outcomes. Nutritional factors, including folate and creatine, influence one-carbon metabolism, the biochemical pathway that provides methyl groups for As methylation. OBJECTIVE Our aim was to investigate the effects of supplementation with folic acid (FA), creatine, or the two combined on the concentrations of As metabolites and the primary methylation index (PMI: MMAs/InAs) and secondary methylation index (SMI: DMAs/MMAs) in blood in Bangladeshi adults having a wide range of folate status. METHODS In a randomized, double-blinded, placebo (PBO)-controlled trial, 622 participants were recruited independent of folate status and assigned to one of five treatment arms: a) PBO (n = 102 ), b) 400 μ g FA/d (400FA; n = 153 ), c) 800 μ g FA/d (800FA; n = 151 ), d) 3 g creatine/d (creatine; n = 101 ), or e) 3 g creatine + 400 μ g of FA / d (creatine + 400 FA ; n = 103 ) for 12 wk. For the following 12 wk, half of the FA participants were randomly switched to the PBO while the other half continued FA supplementation. All participants received As-removal water filters at baseline. Blood As (bAs) metabolites were measured at weeks 0, 1, 12, and 24. RESULTS At baseline, 80.3% (n = 489 ) of participants were folate sufficient (≥ 9 nmol / L in plasma). In all groups, bAs metabolite concentrations decreased, likely due to filter use; for example, in the PBO group, blood concentrations of MMAs (bMMAs) (geometric mean ± geometric standard deviation ) decreased from 3.55 ± 1.89 μ g / L at baseline to 2.73 ± 1.74 at week 1. After 1 wk, the mean within-person increase in SMI for the creatine + 400 FA group was greater than that of the PBO group (p = 0.05 ). The mean percentage decrease in bMMAs between baseline and week 12 was greater for all treatment groups compared with the PBO group [400FA: - 10.4 (95% CI: - 11.9 , - 8.75 ), 800FA: - 9.54 (95% CI: - 11.1 , - 7.97 ), creatine: - 5.85 (95% CI: - 8.59 , - 3.03 ), creatine + 400 FA : - 8.44 (95% CI: - 9.95 , - 6.90 ), PBO: - 2.02 (95% CI: - 4.03 , 0.04)], and the percentage increase in blood DMAs (bDMAs) concentrations for the FA-treated groups significantly exceeded that of PBO [400FA: 12.8 (95% CI: 10.5, 15.2), 800FA: 11.3 (95% CI: 8.95, 13.8), creatine + 400 FA : 7.45 (95% CI: 5.23, 9.71), PBO: - 0.15 (95% CI: - 2.85 , 2.63)]. The mean decrease in PMI and increase in SMI in all FA groups significantly exceeded PBO (p < 0.05 ). Data from week 24 showed evidence of a reversal of treatment effects on As metabolites from week 12 in those who switched from 800FA to PBO, with significant decreases in SMI [- 9.0 % (95% CI: - 3.5 , - 14.8 )] and bDMAs [- 5.9 % (95% CI: - 1.8 , - 10.2 )], whereas PMI and bMMAs concentrations continued to decline [- 7.16 % (95% CI: - 0.48 , - 14.3 ) and - 3.1 % (95% CI: - 0.1 , - 6.2 ), respectively] for those who remained on 800FA supplementation. CONCLUSIONS FA supplementation lowered bMMAs and increased bDMAs in a sample of primarily folate-replete adults, whereas creatine supplementation lowered bMMAs. Evidence of the reversal of treatment effects on As metabolites following FA cessation suggests short-term benefits of supplementation and underscores the importance of long-term interventions, such as FA fortification. https://doi.org/10.1289/EHP11270.
Collapse
Affiliation(s)
- Ahlam K. Abuawad
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Anne K. Bozack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Megan N. Hall
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Angela M. Lomax-Luu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Mohammad N. Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Mary V. Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
18
|
Abstract
Arsenic is a naturally occurring hazardous element that is environmentally ubiquitous in various chemical forms. Upon exposure, the human body initiates an elimination pathway of progressive methylation into relatively less bioreactive and more easily excretable pentavalent methylated forms. Given its association with decreasing the internal burden of arsenic with ensuing attenuation of its related toxicities, biomethylation has been applauded for decades as a pure route of arsenic detoxification. However, the emergence of detectable trivalent species with profound toxicity has opened a long-standing debate regarding whether arsenic methylation is a detoxifying or bioactivating mechanism. In this review, we approach the topic of arsenic metabolism from both perspectives to create a complete picture of its potential role in the mitigation or aggravation of various arsenic-related pathologies.
Collapse
Affiliation(s)
- Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada;
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada;
| |
Collapse
|
19
|
Christensen K. Nutritional Multitasking? Exploring Calcium Supplementation to Reduce Toxic Metal Effects. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:124002. [PMID: 36541789 PMCID: PMC9769400 DOI: 10.1289/ehp12341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/26/2022] [Indexed: 05/19/2023]
|
20
|
Karagas MR, McRitchie S, Hoen AG, Takigawa C, Jackson B, Baker ER, Madan J, Sumner SJ, Pathmasiri W. Alterations in Microbial-Associated Fecal Metabolites in Relation to Arsenic Exposure Among Infants. EXPOSURE AND HEALTH 2022; 14:941-949. [PMID: 36776720 PMCID: PMC9918239 DOI: 10.1007/s12403-022-00468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/09/2021] [Accepted: 01/22/2022] [Indexed: 05/13/2023]
Abstract
In utero and early life exposure to inorganic arsenic (iAs) alters immune response in experimental animals and is associated with an increased risk of infant infections. iAs exposure is related to differences in the gut microbiota diversity, community structure, and the relative abundance of individual microbial taxa both in laboratory and human studies. Metabolomics permits a direct measure of molecular products of microbial and host metabolic processes. We conducted NMR metabolomics analysis on infant stool samples and quantified the relative concentrations of 34 known microbial-related metabolites. We examined these metabolites in relation to both in utero and infant log2 urinary total arsenic concentrations (utAs, the sum of iAs and iAs metabolites) collected at approximately 6 weeks of age using linear regression models, adjusted for infant sex, age at sample collection, type of delivery (vaginal vs. cesarean section), feeding mode (breast milk vs. any formula), and specific gravity. Increased fecal butyrate (b = 214.24), propionate (b = 518.33), cholate (b = 8.79), tryptophan (b= 14.23), asparagine (b = 28.80), isoleucine (b = 65.58), leucine (b = 95.91), malonate (b = 50.43), and uracil (b = 36.13), concentrations were associated with a doubling of infant utAs concentrations (p< 0.05). These associations were largely among infants who were formula fed. No clear associations were observed with maternal utAs and infant fecal metabolites. Metabolomic analyses of infant stool samples lend further evidence that the infant gut microbiota is sensitive to As exposure, and these effects may have functional consequences.
Collapse
Affiliation(s)
- Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Susan McRitchie
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Cindy Takigawa
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Brian Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Emily R. Baker
- Department of Obstetrics and Gynecology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Juliette Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Department of Pediatrics & Psychiatry, Children’s Hospital at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Susan J. Sumner
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wimal Pathmasiri
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Xu FX, Chen X, Zhang H, Fan YJ, Song YP, Lv JW, Xie YL, Huang Y, Chen DZ, Wang H, Xu DX. Association between gestational arsenic exposure and intrauterine growth restriction: the role of folate content. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89652-89661. [PMID: 35857162 DOI: 10.1007/s11356-022-21961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Gestational arsenic (As) exposure is associated with intrauterine growth restriction (IUGR). This study explored the association among gestational As exposure, IUGR, and reduction of folate content in maternal and umbilical plasma from 530 mother-and-singleton-offspring pairs. Birth weight (BW) was negatively correlated with As in maternal plasma (r=-0.194, P<0.001) and umbilical plasma (r=-0.235, P<0.001). By contrast, a positive correlation was found between BW and maternal folate content (r=0.198, P<0.001). The subjects were divided into As-L and As-H groups. The influence of As-H on small for gestational age (SGA) infants, a marker of IUGR, was evaluated by multivariate logistic regression that excludes interferences of gestational age, infant sex, and other confounding factors. Mothers with As-H had an elevated risk of SGA infants (adjusted OR, 2.370; P<0.05). Interestingly, maternal folate content was lower in subjects with As-H than those with As-L (22.4±10.7 vs 11.2±6.7 nmol/L, P<0.001). Linear correlation models show that As level was negatively correlated with folate content in maternal plasma (r=-0.615, P<0.001) and umbilical plasma (r=-0.209, P<0.001). Moreover, maternal folate reduction has an obvious mediating effect between increased As and decreased BW (β=-0.078, P<0.05). Our results indicate that folate reduction may be a mediator between gestational As exposure and IUGR.
Collapse
Affiliation(s)
- Fei-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Xu Chen
- Department of Toxicology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Heng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi, 214122, Jiangsu Province, China
| | - Yi-Jun Fan
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ya-Ping Song
- Department of Toxicology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ya-Li Xie
- Department of Nutrition, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Yichao Huang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Dao-Zhen Chen
- Wuxi Maternity and Child Health Care Hospital, Wuxi, 214122, Jiangsu Province, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
22
|
Laue HE, Moroishi Y, Palys TJ, Jackson BP, Madan JC, Karagas MR. Contribution of gut bacteria to arsenic metabolism in the first year of life in a prospective birth cohort. ENVIRONMENTAL RESEARCH 2022; 214:114099. [PMID: 35998698 PMCID: PMC10319341 DOI: 10.1016/j.envres.2022.114099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 05/05/2023]
Abstract
Gut bacteria are at the interface of environmental exposures and their impact on human systems, and may alter host absorption, metabolism, and excretion of toxic chemicals. We investigated whether arsenic-metabolizing bacterial gene pathways related to urinary arsenic concentrations. In the New Hampshire Birth Cohort Study, urine and stool samples were obtained at six weeks (n = 186) and one year (n = 190) of age. Inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and arsenobetaine (AsB) were quantified in infant urine samples using high-performance liquid chromatography with inductively coupled plasma mass spectrometry. Total arsenic exposure (tAs) was summarized as Σ(iAs, MMA, DMA) and log2-transformed. Fecal microbial DNA underwent metagenomic sequencing and the relative abundance of bacterial gene pathways were grouped as KEGG Orthologies (KOs) using BioBakery algorithms. Arsenic metabolism KOs with >80% prevalence were log2-transformed and modeled continuously using linear regression, those with <10% were not evaluated and those with 10-80% prevalence were analyzed dichotomously (detect/non-detect) using logistic regression. In the first set of models, tAs was regressed against KO relative abundance or detection adjusting for age at sample collection and child's sex. Effect modification by delivery mode was assessed in stratified models. In the second set of models, the association between the relative abundance/detection of the KOs and arsenic speciation (%iAs, %MMA, %DMA) was quantified with linear regression. Urinary tAs was associated with the increased relative abundance/detection odds of several arsenic-related KOs, including K16509, an arsenate reductase transcriptional regulator, with stronger associations among six-week-olds than one-year-olds. K16509 was also associated with decreased %MMA and increased %DMA at six weeks and one year. Notably, many associations were stronger among operatively-delivered than vaginally-delivered infants. Our findings suggest associations between arsenic-metabolizing bacteria in the infant gut microbiome and urinary arsenic excretion.
Collapse
Affiliation(s)
- Hannah E Laue
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| | - Yuka Moroishi
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| | - Thomas J Palys
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA.
| | - Juliette C Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Pediatrics and Psychiatry, Children's Hospital at Dartmouth,Lebanon, NH, United States.
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
23
|
Hamner HC, Nelson JM, Sharma AJ, Jefferds MED, Dooyema C, Flores-Ayala R, Bremer AA, Vargas AJ, Casavale KO, de Jesus JM, Stoody EE, Scanlon KS, Perrine CG. Improving Nutrition in the First 1000 Days in the United States: A Federal Perspective. Am J Public Health 2022; 112:S817-S825. [PMID: 36122314 PMCID: PMC9612192 DOI: 10.2105/ajph.2022.307028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/04/2022]
Abstract
The first 1000 days begins with pregnancy and ends at the child's second birthday. Nutrition throughout the life course, and especially during the first 1000 days, supports maternal health and optimal growth and development for children. We give a high-level summary of the state of nutrition in the first 1000 days in the United States. We provide examples where continued efforts are needed. We then discuss select opportunities to strengthen federal research and surveillance, programs, and communication and dissemination efforts aimed at improving nutrition and positively, and equitably, influencing the health and well-being of mothers and children. (Am J Public Health. 2022;112(S8):S817-S825. https://doi.org/10.2105/AJPH.2022.307028).
Collapse
Affiliation(s)
- Heather C Hamner
- Heather C. Hamner, Jennifer M. Nelson, Andrea J. Sharma, Maria Elena D. Jefferds, Carrie Dooyema, Rafael Flores-Ayala, and Cria G. Perrine are with the Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA. Andrew A. Bremer and Ashley J. Vargas are with the Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD. Kellie O. Casavale is with the Office of Nutrition and Food Labeling, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD. Janet M. de Jesus is with the Office of Disease Prevention and Health Promotion, US Department of Health and Human Services, Rockville, MD. Eve E. Stoody is with the Center for Nutrition Policy and Promotion, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA. Kelley S. Scanlon is with the Office of Policy Support, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA
| | - Jennifer M Nelson
- Heather C. Hamner, Jennifer M. Nelson, Andrea J. Sharma, Maria Elena D. Jefferds, Carrie Dooyema, Rafael Flores-Ayala, and Cria G. Perrine are with the Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA. Andrew A. Bremer and Ashley J. Vargas are with the Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD. Kellie O. Casavale is with the Office of Nutrition and Food Labeling, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD. Janet M. de Jesus is with the Office of Disease Prevention and Health Promotion, US Department of Health and Human Services, Rockville, MD. Eve E. Stoody is with the Center for Nutrition Policy and Promotion, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA. Kelley S. Scanlon is with the Office of Policy Support, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA
| | - Andrea J Sharma
- Heather C. Hamner, Jennifer M. Nelson, Andrea J. Sharma, Maria Elena D. Jefferds, Carrie Dooyema, Rafael Flores-Ayala, and Cria G. Perrine are with the Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA. Andrew A. Bremer and Ashley J. Vargas are with the Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD. Kellie O. Casavale is with the Office of Nutrition and Food Labeling, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD. Janet M. de Jesus is with the Office of Disease Prevention and Health Promotion, US Department of Health and Human Services, Rockville, MD. Eve E. Stoody is with the Center for Nutrition Policy and Promotion, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA. Kelley S. Scanlon is with the Office of Policy Support, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA
| | - Maria Elena D Jefferds
- Heather C. Hamner, Jennifer M. Nelson, Andrea J. Sharma, Maria Elena D. Jefferds, Carrie Dooyema, Rafael Flores-Ayala, and Cria G. Perrine are with the Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA. Andrew A. Bremer and Ashley J. Vargas are with the Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD. Kellie O. Casavale is with the Office of Nutrition and Food Labeling, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD. Janet M. de Jesus is with the Office of Disease Prevention and Health Promotion, US Department of Health and Human Services, Rockville, MD. Eve E. Stoody is with the Center for Nutrition Policy and Promotion, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA. Kelley S. Scanlon is with the Office of Policy Support, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA
| | - Carrie Dooyema
- Heather C. Hamner, Jennifer M. Nelson, Andrea J. Sharma, Maria Elena D. Jefferds, Carrie Dooyema, Rafael Flores-Ayala, and Cria G. Perrine are with the Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA. Andrew A. Bremer and Ashley J. Vargas are with the Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD. Kellie O. Casavale is with the Office of Nutrition and Food Labeling, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD. Janet M. de Jesus is with the Office of Disease Prevention and Health Promotion, US Department of Health and Human Services, Rockville, MD. Eve E. Stoody is with the Center for Nutrition Policy and Promotion, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA. Kelley S. Scanlon is with the Office of Policy Support, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA
| | - Rafael Flores-Ayala
- Heather C. Hamner, Jennifer M. Nelson, Andrea J. Sharma, Maria Elena D. Jefferds, Carrie Dooyema, Rafael Flores-Ayala, and Cria G. Perrine are with the Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA. Andrew A. Bremer and Ashley J. Vargas are with the Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD. Kellie O. Casavale is with the Office of Nutrition and Food Labeling, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD. Janet M. de Jesus is with the Office of Disease Prevention and Health Promotion, US Department of Health and Human Services, Rockville, MD. Eve E. Stoody is with the Center for Nutrition Policy and Promotion, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA. Kelley S. Scanlon is with the Office of Policy Support, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA
| | - Andrew A Bremer
- Heather C. Hamner, Jennifer M. Nelson, Andrea J. Sharma, Maria Elena D. Jefferds, Carrie Dooyema, Rafael Flores-Ayala, and Cria G. Perrine are with the Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA. Andrew A. Bremer and Ashley J. Vargas are with the Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD. Kellie O. Casavale is with the Office of Nutrition and Food Labeling, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD. Janet M. de Jesus is with the Office of Disease Prevention and Health Promotion, US Department of Health and Human Services, Rockville, MD. Eve E. Stoody is with the Center for Nutrition Policy and Promotion, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA. Kelley S. Scanlon is with the Office of Policy Support, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA
| | - Ashley J Vargas
- Heather C. Hamner, Jennifer M. Nelson, Andrea J. Sharma, Maria Elena D. Jefferds, Carrie Dooyema, Rafael Flores-Ayala, and Cria G. Perrine are with the Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA. Andrew A. Bremer and Ashley J. Vargas are with the Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD. Kellie O. Casavale is with the Office of Nutrition and Food Labeling, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD. Janet M. de Jesus is with the Office of Disease Prevention and Health Promotion, US Department of Health and Human Services, Rockville, MD. Eve E. Stoody is with the Center for Nutrition Policy and Promotion, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA. Kelley S. Scanlon is with the Office of Policy Support, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA
| | - Kellie O Casavale
- Heather C. Hamner, Jennifer M. Nelson, Andrea J. Sharma, Maria Elena D. Jefferds, Carrie Dooyema, Rafael Flores-Ayala, and Cria G. Perrine are with the Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA. Andrew A. Bremer and Ashley J. Vargas are with the Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD. Kellie O. Casavale is with the Office of Nutrition and Food Labeling, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD. Janet M. de Jesus is with the Office of Disease Prevention and Health Promotion, US Department of Health and Human Services, Rockville, MD. Eve E. Stoody is with the Center for Nutrition Policy and Promotion, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA. Kelley S. Scanlon is with the Office of Policy Support, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA
| | - Janet M de Jesus
- Heather C. Hamner, Jennifer M. Nelson, Andrea J. Sharma, Maria Elena D. Jefferds, Carrie Dooyema, Rafael Flores-Ayala, and Cria G. Perrine are with the Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA. Andrew A. Bremer and Ashley J. Vargas are with the Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD. Kellie O. Casavale is with the Office of Nutrition and Food Labeling, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD. Janet M. de Jesus is with the Office of Disease Prevention and Health Promotion, US Department of Health and Human Services, Rockville, MD. Eve E. Stoody is with the Center for Nutrition Policy and Promotion, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA. Kelley S. Scanlon is with the Office of Policy Support, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA
| | - Eve E Stoody
- Heather C. Hamner, Jennifer M. Nelson, Andrea J. Sharma, Maria Elena D. Jefferds, Carrie Dooyema, Rafael Flores-Ayala, and Cria G. Perrine are with the Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA. Andrew A. Bremer and Ashley J. Vargas are with the Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD. Kellie O. Casavale is with the Office of Nutrition and Food Labeling, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD. Janet M. de Jesus is with the Office of Disease Prevention and Health Promotion, US Department of Health and Human Services, Rockville, MD. Eve E. Stoody is with the Center for Nutrition Policy and Promotion, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA. Kelley S. Scanlon is with the Office of Policy Support, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA
| | - Kelley S Scanlon
- Heather C. Hamner, Jennifer M. Nelson, Andrea J. Sharma, Maria Elena D. Jefferds, Carrie Dooyema, Rafael Flores-Ayala, and Cria G. Perrine are with the Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA. Andrew A. Bremer and Ashley J. Vargas are with the Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD. Kellie O. Casavale is with the Office of Nutrition and Food Labeling, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD. Janet M. de Jesus is with the Office of Disease Prevention and Health Promotion, US Department of Health and Human Services, Rockville, MD. Eve E. Stoody is with the Center for Nutrition Policy and Promotion, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA. Kelley S. Scanlon is with the Office of Policy Support, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA
| | - Cria G Perrine
- Heather C. Hamner, Jennifer M. Nelson, Andrea J. Sharma, Maria Elena D. Jefferds, Carrie Dooyema, Rafael Flores-Ayala, and Cria G. Perrine are with the Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA. Andrew A. Bremer and Ashley J. Vargas are with the Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD. Kellie O. Casavale is with the Office of Nutrition and Food Labeling, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD. Janet M. de Jesus is with the Office of Disease Prevention and Health Promotion, US Department of Health and Human Services, Rockville, MD. Eve E. Stoody is with the Center for Nutrition Policy and Promotion, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA. Kelley S. Scanlon is with the Office of Policy Support, Food and Nutrition Service, US Department of Agriculture, Alexandria, VA
| |
Collapse
|
24
|
Speer RM, Zhou X, Volk LB, Liu KJ, Hudson LG. Arsenic and cancer: Evidence and mechanisms. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:151-202. [PMID: 36858772 DOI: 10.1016/bs.apha.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Arsenic is a potent carcinogen and poses a significant health concern worldwide. Exposure occurs through ingestion of drinking water and contaminated foods and through inhalation due to pollution. Epidemiological evidence shows arsenic induces cancers of the skin, lung, liver, and bladder among other tissues. While studies in animal and cell culture models support arsenic as a carcinogen, the mechanisms of arsenic carcinogenesis are not fully understood. Arsenic carcinogenesis is a complex process due its ability to be metabolized and because of the many cellular pathways it targets in the cell. Arsenic metabolism and the multiple forms of arsenic play distinct roles in its toxicity and contribute differently to carcinogenic endpoints, and thus must be considered. Arsenic generates reactive oxygen species increasing oxidative stress and damaging DNA and other macromolecules. Concurrently, arsenic inhibits DNA repair, modifies epigenetic regulation of gene expression, and targets protein function due its ability to replace zinc in select proteins. While these mechanisms contribute to arsenic carcinogenesis, there remain significant gaps in understanding the complex nature of arsenic cancers. In the future improving models available for arsenic cancer research and the use of arsenic induced human tumors will bridge some of these gaps in understanding arsenic driven cancers.
Collapse
Affiliation(s)
- Rachel M Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Lindsay B Volk
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States; Stony Brook Cancer Center, Renaissance School of Medicine, State University of New York Stony Brook, Stony Brook, NY, United States.
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
25
|
Clark J, Bommarito P, Stýblo M, Rubio-Andrade M, García-Vargas GG, Gamble MV, Fry RC. Maternal serum concentrations of one-carbon metabolism factors modify the association between biomarkers of arsenic methylation efficiency and birth weight. Environ Health 2022; 21:68. [PMID: 35836250 PMCID: PMC9281096 DOI: 10.1186/s12940-022-00875-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/27/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Inorganic arsenic (iAs) is a ubiquitous metalloid and drinking water contaminant. Prenatal exposure is associated with birth outcomes across multiple studies. During metabolism, iAs is sequentially methylated to mono- and di-methylated arsenical species (MMAs and DMAs) to facilitate whole body clearance. Inefficient methylation (e.g., higher urinary % MMAs) is associated with increased risk of certain iAs-associated diseases. One-carbon metabolism factors influence iAs methylation, modifying toxicity in adults, and warrant further study during the prenatal period. The objective of this study was to evaluate folate, vitamin B12, and homocysteine as modifiers of the relationship between biomarkers of iAs methylation efficiency and birth outcomes. METHODS Data from the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort (2011-2012) with maternal urine and cord serum arsenic biomarkers and maternal serum folate, vitamin B12, and homocysteine concentrations were utilized. One-carbon metabolism factors were dichotomized using clinical cutoffs and median splits. Multivariable linear regression models were fit to evaluate associations between each biomarker and birth outcome overall and within levels of one-carbon metabolism factors. Likelihood ratio tests of full and reduced models were used to test the significance of statistical interactions on the additive scale (α = 0.10). RESULTS Among urinary biomarkers, % U-MMAs was most strongly associated with birth weight (β = - 23.09, 95% CI: - 44.54, - 1.64). Larger, more negative mean differences in birth weight were observed among infants born to women who were B12 deficient (β = - 28.69, 95% CI: - 53.97, - 3.42) or experiencing hyperhomocysteinemia (β = - 63.29, 95% CI: - 154.77, 28.19). Generally, mean differences in birth weight were attenuated among infants born to mothers with higher serum concentrations of folate and vitamin B12 (or lower serum concentrations of homocysteine). Effect modification by vitamin B12 and homocysteine was significant on the additive scale for some associations. Results for gestational age were less compelling, with an approximate one-week mean difference associated with C-tAs (β = 0.87, 95% CI: 0, 1.74), but not meaningful otherwise. CONCLUSIONS Tissue distributions of iAs and its metabolites (e.g., % MMAs) may vary according to serum concentrations of folate, vitamin B12 and homocysteine during pregnancy. This represents a potential mechanism through which maternal diet may modify the harms of prenatal exposure to iAs.
Collapse
Affiliation(s)
- Jeliyah Clark
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Paige Bommarito
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Miroslav Stýblo
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Marisela Rubio-Andrade
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Gonzalo G García-Vargas
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
26
|
Hafey MJ, Aleksunes LM, Bridges CC, Brouwer KR, Chien HC, Leslie EM, Hu S, Li Y, Shen J, Sparreboom A, Sprowl J, Tweedie D, Lai Y. Transporters and Toxicity: Insights from the International Transporter Consortium Workshop 4. Clin Pharmacol Ther 2022; 112:527-539. [PMID: 35546260 DOI: 10.1002/cpt.2638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/30/2022] [Indexed: 12/29/2022]
Abstract
Over the last decade, significant progress been made in elucidating the role of membrane transporters in altering drug disposition, with important toxicological consequences due to changes in localized concentrations of compounds. The topic of "Transporters and Toxicity" was recently highlighted as a scientific session at the International Transporter Consortium (ITC) Workshop 4 in 2021. The current white paper is not intended to be an extensive review on the topic of transporters and toxicity but an opportunity to highlight aspects of the role of transporters in various toxicities with clinically relevant implications as covered during the session. This includes a review of the role of solute carrier transporters in anticancer drug-induced organ injury, transporters as key players in organ barrier function, and the role of transporters in metal/metalloid toxicity.
Collapse
Affiliation(s)
- Michael J Hafey
- ADME and Discovery Toxicology, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Christy C Bridges
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, USA
| | | | - Huan-Chieh Chien
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco, California, USA
| | - Elaine M Leslie
- Departments of Physiology and Lab Med and Path, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Shuiying Hu
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Jinshan Shen
- Relay Therapeutics, Cambridge, Massachusetts, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Jason Sprowl
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, California, USA
| |
Collapse
|
27
|
Detrimental health relationship between blood lead and cadmium and the red blood cell folate level. Sci Rep 2022; 12:6628. [PMID: 35459281 PMCID: PMC9033805 DOI: 10.1038/s41598-022-10562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Increasing studies have demonstrated the association between heavy metal pollution and micronutrients, especially folate. However, the relationship between cadmium and folate remains rarely discussed. In this study, we aim to explore the potential correlation between cadmium and folate in human population and highlight the possible mechanism of cadmium impacting human health. We utilized the National Health and Nutrition Examination Survey (NHANES) 2017–2018 data with 5690 participants in this study. Multivariable linear regression models were adopted to investigate the serum lead and cadmium levels and RBC folate concentration. A significant reverse relationship was found between serum lead and cadmium and RBC folate. A negative relationship between serum lead and cadmium levels and the levels of RBC folate in the U.S. adult population was found in this study. Nevertheless, due to the general limitations of the NHANES data, as a cross-sectional study, a further prospective investigation is needed to discover the causality of lead and cadmium in folate status and to determine whether the folate supplement has a beneficial influence against heavy metal toxicities.
Collapse
|
28
|
Luo WM, Zhang ZP, Zhang W, Su JY, Gao XQ, Liu X, Wang WY, Jiang CT, Fang ZZ. The Association of Homocysteine and Diabetic Retinopathy in Homocysteine Cycle in Chinese Patients With Type 2 Diabetes. Front Endocrinol (Lausanne) 2022; 13:883845. [PMID: 35846275 PMCID: PMC9276920 DOI: 10.3389/fendo.2022.883845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE This study aimed to explore the relationship between homocysteine (Hcy) and diabetic retinopathy (DR) and the impacts of the Hcy pathway on this relationship against this background. METHODS This study retrieved 1979 patients with type 2 diabetes (T2D) from the First Affiliated Hospital of Liaoning Medical University in Jinzhou, Liaoning Province, China. Multiple logistic regression was used to analyze the effects of Hcy cycle on the relationship between Hcy and DR. Spearman's rank correlation analysis was used to analyze the correlation between risk factors related to DR progression and Hcy. Finally, the results of logistic regression were supplemented by mediation analysis. RESULTS We found there was a negative correlation between low concentration of Hcy and DR (OR : 0.83, 95%CI: 0.69-1). After stratifying all patients by cysteine (Cys) or Methionine (Met), this relationship remained significant only in low concentration of Cys (OR: 0.75, 95%CI: 0.61-0.94). Through the RCS curve, we found that the effect of Hcy on DR presents a U-shaped curve relationship. Mediating effect in Met and Hcy cycles was also significant [Total effect c (OR: 0.968, 95%CI: 0.938-0.998), Direct effect path c' (OR: 0.969, 95%CI: 0.940-0.999), Path a (OR: 1.047, 95%CI: 1.004-1.091), Path b (OR: 0.964, 95%CI: 0.932-0.998)]. CONCLUSIONS The relationship between Hcy and DR presents a U-shaped curve and the homocysteine cycle pathway has an impact on it. And too low concentration of Hcy indicates a lack of other substances, such as vitamins. It is suggested that the progression of DR is the result of a combination of many risk factors. Further prospective studies are needed to determine the role of Hcy in the pathogenesis of DR.
Collapse
Affiliation(s)
- Wei-Ming Luo
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhi-Peng Zhang
- Department of Surgery, Peking University Third Hospital, Beijing, China
| | - Wei Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jing-Yang Su
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiao-Qian Gao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xu Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Wan-Ying Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Chang-Tao Jiang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ministry of Education, Peking University, Beijing, China
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- *Correspondence: Zhong-Ze Fang,
| |
Collapse
|
29
|
Okeke ES, Okagu IU, Okoye CO, Ezeorba TPC. The use of calcium carbide in food and fruit ripening: potential mechanisms of toxicity to humans and future prospects. Toxicology 2022; 468:153112. [DOI: 10.1016/j.tox.2022.153112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 01/30/2023]
|
30
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|