1
|
Kiani M, Mehranjani MS, Shariatzadeh MA. Myoinositol improves sperm parameters in diabetic rats by reducing oxidative stress and regulating apoptosis-related genes. J Mol Histol 2025; 56:165. [PMID: 40397159 DOI: 10.1007/s10735-025-10451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 05/03/2025] [Indexed: 05/22/2025]
Abstract
Diabetes disrupts spermatogenesis and leads to low-quality sperm by causing oxidative stress, inducing apoptosis and reducing testosterone level. Myoinositol has antiglycemic, antioxidant, anti-apoptotic, and testosterone-regulating properties. This study aimed to evaluate the potential of myoinositol in improving sperm production and sperm quality in diabetic rats. Eighteen rats were divided into three groups (n = 6 per group): control, diabetic (Streptozotocin + Nicotinamide), and diabetic + myoinositol supplementation (300 mg/kg, for 56 days). Sperm parameters, including count, total motility, viability, and morphology, were evaluated. Additionally, several biochemical and molecular markers were measured including serum malondialdehyde (MDA), superoxide dismutase (SOD), total antioxidant capacity (TAC), testosterone, Follicle-stimulating hormone (FSH), Luteinizing hormone (LH), and Bax/Bcl2 gene expression ratio, Bax and Bcl2 protein expression, germinal epithelium apoptosis. In the diabetic group, sperm count, viability, and normal morphology significantly decreased, along with lower levels of SOD, TAC, testosterone, FSH, and LH. Conversely, MDA levels and the Bax/Bcl2 gene ratio significantly increased compared to the control group. In the diabetic + myoinositol group, sperm count, viability, morphology, and motility significantly improved (P < 0.001), as did TAC, testosterone, and FSH levels (P < 0.001), with a significant increase in LH levels (P < 0.05). Additionally, MDA levels (P < 0.01) and the Bax/Bcl2 gene ratio (P < 0.05) were significantly reduced compared to the diabetic group. This study showed that diabetes impairs sperm quality, antioxidant capacity, and hormones while increasing oxidative stress and apoptosis. Myoinositol improves sperm parameters, boosts antioxidants, and reduces apoptosis, suggesting its therapeutic potential for diabetes-induced reproductive dysfunction.
Collapse
Affiliation(s)
- Mina Kiani
- Department of Biology, Faculty of Science, Arak University, Arak, 384817758, Iran
| | | | | |
Collapse
|
2
|
Bayat M, Koohpeyma F, Montazeri-Najafabady N, Dabbaghmanesh MH, Asmarian N, Hosseini SI. The effects of modest intake of soy milk enriched with Lactobacillus casei and omega-3 on the testis parameters in diabetic rats: a stereological study. Int Urol Nephrol 2025; 57:1123-1133. [PMID: 39592499 DOI: 10.1007/s11255-024-04243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/13/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Diabetes mellitus is a widely distributed endocrine disorder in the world. Altered reproductive function is a notable long-term consequence of type 1 diabetes mellitus (T1DM). In the current study, we assessed the effects of soya milk containing Lactobacillus casei and omega-3 on stereology of testes in type 1 diabetic rats. METHODS 30 male Sprague Dawley rats were randomly allocated into five groups. Streptozocin (STZ (60 mg/kg)) was applied for diabetes induction. The non-diabetic and diabetic control groups were fed with 1 ml of distilled water. Three treatment diabetic groups were fed 1 ml of Soy milk group (SM), Probiotic soy milk group (PSM), and Omega-3 probiotic soy milk group (OPSM) via intragastric gavage for 60 days. At the endpoint, the animals were sacrificed and serum luteinizing hormone (LH), Follicle-stimulating hormone (FSH), testosterone, MDA besides testicular, and seminal parameters were analyzed. RESULTS The administration of soy milk supplemented with L. casei and omega-3 in diabetic rats elevated the concentrations of LH, FSH, testosterone, and reduced malondialdehyde (MDA). In addition, this combination improved sperm quality, enhanced the number of sperm with rapid progress, increased testis weight and volume, seminiferous tubule and germinal epithelium volume; and also augmented the number of spermatogonia, spermatocyte, round and long spermatids, Sertoli cells and Leydig cells. CONCLUSION Supplementation with soy milk containing L. casei and omega-3 can inhibit T1DM-induced infertility rats through improving testicular parameters, enhancing sperm quality, and increasing Sertoli and Leydig cell number.
Collapse
Affiliation(s)
- Maryam Bayat
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box: 719363-5899, Shiraz, Iran
| | - Farhad Koohpeyma
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box: 719363-5899, Shiraz, Iran.
| | - Nima Montazeri-Najafabady
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box: 719363-5899, Shiraz, Iran
| | - Mohammad Hossein Dabbaghmanesh
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box: 719363-5899, Shiraz, Iran
| | - Naeimehossadat Asmarian
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Iman Hosseini
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box: 719363-5899, Shiraz, Iran
| |
Collapse
|
3
|
Vali R, Shirvanian K, Farkhondeh T, Aschner M, Samini F, Samarghandian S. A review study on the effect of zinc on oxidative stress-related neurological disorders. J Trace Elem Med Biol 2025; 88:127618. [PMID: 39978164 DOI: 10.1016/j.jtemb.2025.127618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
Zinc plays a main role in maintaining homeostasis and neuronal function. Disorders in zinc homeostasis are connected to several neurological disorders due to inflammation and oxidative stress. This review explores the effect of zinc on neurological disorders through the Nrf2 signaling pathway. The Nrf2 pathway modulates oxidative stress and regulates antioxidant defenses, which is critical in the pathogenesis of neurological diseases. We provide an overview of in vivo and in vitro studies illustrating zinc's neuroprotective effects in conditions such as Alzheimer's disease, spinal cord injury, and stroke. The dual role of zinc, where both excess and deficiency can be detrimental, is highlighted, emphasizing the need for optimal zinc levels. Limitations of current research and future perspectives are also discussed.
Collapse
Affiliation(s)
- Reyhaneh Vali
- Department of Biology, Faculty of Modern Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran.
| | - Kasra Shirvanian
- Department of Biology, Faculty of Sciences, University of Tehran, Iran.
| | - Tahereh Farkhondeh
- Geriatric Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fariborz Samini
- Department of Neurosurgery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
4
|
Ajiboye BO, Ayemoni FI, Famusiwa CD, Lawal OE, Falode JA, Onikanni SA, Akhtar MF, Gupta S, Oyinloye BE. Effect of Dalbergiella welwitschi alkaloid-rich leaf extracts on testicular damage in streptozotocin-induced diabetic rats. J Mol Histol 2025; 56:93. [PMID: 39976838 DOI: 10.1007/s10735-025-10366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 01/31/2025] [Indexed: 04/02/2025]
Abstract
Diabetes mellitus is a chronic disease affecting young and old, even though it can be managed with orthodox medicine, which has a series of side effects. Therefore, Dalbergiella welwitschi is one of the medicinal plants that is commonly used for the management of diabetes mellitus and its associated complications. Hence, this study was designed to assess the testicular-protective ability of alkaloid-rich leaf extract of D. welwitschi in streptozotocin-induced type 2 diabetic rats D. welwitshii leaf alkaloid-rich extract was obtained using standard procedure. Streptozotocin was injected into the experimental animals intraperitoneally at a dose of 45 mg/kg body weight to induce type 2 diabetes mellitus. Prior to this, the animals were given 20% (w/v) fructose for one week. Thus, the animals were grouped into five (n = 8), comprising of un-induced rats (NC), diabetic control (DC), diabetic rats treated with low (50 mg/kg body weight) and high (100 mg/kg body weight) doses of D. welwitschi alkaloid-rich leaf extracts (i.e., DWL and DWH respectively) and 200 mg/kg body weight dose of metformin (MET). The animals were sacrificed on the 21st day, blood and testis were harvested and used for the determination of ions (Fe, Cu and Zn), sialic acid, some hormones (testosterone, luteinizing and follicle stimulating), oxidative stress biomarkers [malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione (GSH)] as well as histological examination. In addition, the results show that diabetic rats placed on DWL, and DWH significantly (p < 0.05) decreased ion levels (Fe, Cu and Zn) and ameliorated oxidative stress biomarkers such as MDA, SOD, CAT, GPx, GST, and GSH. These were supported by the histological examination by improving testicular-protective effects in diabetic rats administered DWL, and DWH. Therefore, it is that assume that the alkaloid-rich leaf extracts of D. welwitschi may offer potential benefits in the treatment of diabetic testicular dysfunction.
Collapse
Affiliation(s)
- B O Ajiboye
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria.
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, Ado-Ekiti, Nigeria.
| | - F I Ayemoni
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - C D Famusiwa
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - O E Lawal
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - J A Falode
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - S A Onikanni
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
- Postgraduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
- Biochemistry Unit, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, 360101, Ekiti State, Nigeria
| | - M F Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Islamabad, Punjab, Pakistan
| | - S Gupta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala, Haryana, India
| | - B E Oyinloye
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, Ado-Ekiti, Nigeria
- Biochemistry Unit, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, 360101, Ekiti State, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| |
Collapse
|
5
|
Mu Y, Luo LB, Huang R, Shen ZY, Huang D, Zhao SH, Yang J, Ma ZG. Cardiac-derived CTRP9 mediates the protection of empagliflozin against diabetes-induced male subfertility in mice. Clin Sci (Lond) 2024; 138:1421-1440. [PMID: 39392219 DOI: 10.1042/cs20241477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
Previous studies have shown beneficial effects of empagliflozin (Empa), a selective inhibitor of the sodium-glucose cotransporter 2 (SGLT2), on diabetes and cardiovascular outcomes in patients with diabetes. However, whether Empa could ameliorate diabetes mellitus (DM)-induced male spermatogenesis dysfunction remains unclear. Our study aimed to investigate the effect of Empa in the development of DM-induced male spermatogenesis dysfunction and to reveal the molecular mechanisms. DM mice were orally treated with Empa to investigate the effects of Empa on DM-induced male mice spermatogenesis dysfunction. We employed a cardiac-specific C1q/tumor necrosis factor-related protein 9 (CTRP9)-deficient mouse model and a cardiac-specific CTRP9 overexpression mouse model to investigate its role in the protection of Empa against diabetes-induced male subfertility. We found that Empa treatment could improve DM-induced male mice subfertility. Interestingly, we discovered that cardiac-derived CTRP9 was decreased in DM mice and this decrease was prevented by Empa treatment. A CTRP9 blocking antibody or cardiac-specific depletion of CTRP9 abolished the protection of Empa on DM-induced male subfertility. Cardiac-specific CTRP9 overexpression ameliorated DM-induced male subfertility. Mechanistically, we identified that cardiac-derived CTRP9 increased steroidogenesis in mice with diabetes in a PKA-dependent manner. We also provided direct evidence that activation of AMP activated protein kinase α (AMPKα)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signalling pathway by CTRP9 was responsible for the attenuation of ferroptosis in Leydig cells. In conclusions, we supposed that Empa was a potential therapeutic agent against DM-induced male mice spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ling-Bo Luo
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Rong Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zhuo-Yu Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Dan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Shu-Hong Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
6
|
Ahmad R, Shaju R, Atfi A, Razzaque MS. Zinc and Diabetes: A Connection between Micronutrient and Metabolism. Cells 2024; 13:1359. [PMID: 39195249 PMCID: PMC11352927 DOI: 10.3390/cells13161359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetes mellitus is a global health problem and a major contributor to mortality and morbidity. The management of this condition typically involves using oral antidiabetic medication, insulin, and appropriate dietary modifications, with a focus on macronutrient intake. However, several human studies have indicated that a deficiency in micronutrients, such as zinc, can be associated with insulin resistance as well as greater glucose intolerance. Zinc serves as a chemical messenger, acts as a cofactor to increase enzyme activity, and is involved in insulin formation, release, and storage. These diverse functions make zinc an important trace element for the regulation of blood glucose levels. Adequate zinc levels have also been shown to reduce the risk of developing diabetic complications. This review article explains the role of zinc in glucose metabolism and the effects of its inadequacy on the development, progression, and complications of diabetes mellitus. Furthermore, it describes the impact of zinc supplementation on preventing diabetes mellitus. The available information suggests that zinc has beneficial effects on the management of diabetic patients. Although additional large-scale randomized clinical trials are needed to establish zinc's clinical utility further, efforts should be made to increase awareness of its potential benefits on human health and disease.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh
| | - Ronald Shaju
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78541, USA
| | - Azeddine Atfi
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mohammed S. Razzaque
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78541, USA
| |
Collapse
|
7
|
Ashour AM. Propolis attenuates diabetes-induced testicular injury by protecting against DNA damage and suppressing cellular stress. Front Pharmacol 2024; 15:1416238. [PMID: 39055492 PMCID: PMC11269134 DOI: 10.3389/fphar.2024.1416238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/23/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction: Propolis has a wide range of biological and pharmacological actions, including antioxidant properties-particularly its phenolic and flavonoid constituents-that could potentially protect the reproductive system from oxidative damage. Method: Four groups were allocated 40 male Wistar rats each. The vehicle was given to the first group's normal control rats negative control. The second, third, and fourth groups of diabetic rats were given vehicle (diabetic control) and propolis orally at 50 and 100 mg/kg, respectively, for 8 weeks. Diabetes was induced in rats via injection of nicotinamide and streptozotocin (STZ). Fasting blood glucose (FBG) and insulin levels, homeostatic model assessment for insulin resistance (HOMA-IR), and semen analysis were assessed. In addition, assessments of serum reproductive hormones, including total testosterone (TTST), estradiol (E2), follicle-stimulating hormone luteinizing hormone (LH), and prolactin (PRL), were measured at the end of the study. Tissue total testosterone, E2, and dihydrotestosterone were also evaluated. Serum and tissue oxidative enzymes, including catalase (CAT), superoxide dismutase, and glutathione peroxidase activities, were examined, and malondialdehyde content was determined. The pancreatic and testicular tissues were histopathologically examined, and proliferating cell nuclear antigen (PCNA) and B-cell lymphoma 2 (Bcl-2) in testicular tissue were immunohistochemically analyzed. Testicular tissue was examined for DNA integrity using a comet assay. Results: Compared to the STZ-control group, propolis greatly decreased FBG levels and improved the glycemic status of diabetic rats. In comparison to the STZ-DC group, propolis increased the number of sperm cells and the percent of morphologically normal and viable sperm in male rats, improving their fertility. Propolis also restored the pancreatic islets, protected the testis from oxidative stress, and increased levels of reproductive hormones in the blood, especially testosterone. Moreover, propolis at high doses demonstrated a strong positive response for Bcl-2 and a negative expression of proliferating cell nuclear antigen in spermatogenic cells. Conclusion: The data obtained strongly indicate that STZ causes severe impairments to the testis whereas propolis, acting as an antioxidant, protects against the adverse effects of STZ on the testis.
Collapse
Affiliation(s)
- Ahmed M. Ashour
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
8
|
Wen Y, Deng S, Wang B, Zhang F, Luo T, Kuang H, Kuang X, Yuan Y, Huang J, Zhang D. Exposure to polystyrene nanoplastics induces hepatotoxicity involving NRF2-NLRP3 signaling pathway in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116439. [PMID: 38728945 DOI: 10.1016/j.ecoenv.2024.116439] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Nanoplastic contamination has been of intense concern by virtue of the potential threat to human and ecosystem health. Animal experiments have indicated that exposure to nanoplastics (NPs) can deposit in the liver and contribute to hepatic injury. To explore the mechanisms of hepatotoxicity induced by polystyrene-NPs (PS-NPs), mice and AML-12 hepatocytes were exposed to different dosages of 20 nm PS-NPs in this study. The results illustrated that in vitro and in vivo exposure to PS-NPs triggered excessive production of reactive oxygen species and repressed nuclear factor erythroid-derived 2-like 2 (NRF2) antioxidant pathway and its downstream antioxidase expression, thus leading to hepatic oxidative stress. Moreover, PS-NPs elevated the levels of NLRP3, IL-1β and caspase-1 expression, along with an activation of NF-κB, suggesting that PS-NPs induced hepatocellular inflammatory injury. Nevertheless, the activaton of NRF2 signaling by tert-butylhydroquinone mitigated PS-NPs-caused oxidative stress and inflammation, and inbihited NLRP3 and caspase-1 expression. Conversely, the rescuing effect of NRF2 signal activation was dramatically supressed by treatment with NRF2 inhibitor brusatol. In summary, our results demonstrated that NRF2-NLRP3 pathway is involved in PS-NPs-aroused hepatotoxicity, and the activation of NRF2 signaling can protect against PS-NPs-evoked liver injury. These results provide novel insights into the hepatotoxicity elicited by NPs exposure.
Collapse
Affiliation(s)
- Yiqian Wen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Shiyi Deng
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Binhui Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Fan Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, China
| | - Haibin Kuang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xiaodong Kuang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yangyang Yuan
- Clinical Medical Experimental Center of Nanchang University, Nanchang 330031, China
| | - Jian Huang
- Clinical Medical Experimental Center of Nanchang University, Nanchang 330031, China
| | - Dalei Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang 330006, China.
| |
Collapse
|
9
|
Kiani M, Soleimani Mehranjani M, Ali Shariatzadeh M. Empagliflozin reduces the adverse effects of diabetes mellitus on testicular tissue in type 2 diabetic Rats: A stereological and biochemical study. Biochem Pharmacol 2024; 223:116135. [PMID: 38508421 DOI: 10.1016/j.bcp.2024.116135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Empagliflozin as an antioxidant decreases blood glucose and insulin resistance in type 2 diabetes mellitus. Base on the empagliflozin antioxidant properties we decided to investigate the its effects on the testis histological changes through stereological techniques and biochemical evaluations in T2 diabetes mellitus rats. Rats were divided into: control, diabetes mellitus (DM, streptozotocin + nicotinamide) and diabetes mellitus + empagliflozin (DM + EMPA, 10 mg/kg/day) groups. 56 days after inducing diabetes mellitus testis histological changes and serum biochemical factors along with the level of Bax, Bcl2 and Nrf2 genes expression in the testicular tissue were assessed. A significant decrease in the mean total volume of testis and its components, the level of Bcl2 and Nrf2 gene expression (p < 0.001) along with a significant increase in the level of IL-6, TNF-α, MDA, Bax gene expression were observed in the DM group compared to the control group (p < 0.001). In the DM + EMPA group, the mean total volume of testis and its components, the level of Bcl2 gene expression (p< 0.01) and Nrf2 (p < 0.001) significantly increased whereas the mean level of IL-6 (p < 0.01), TNF-α (p < 0.001), MDA (p < 0.001), Bax (p < 0.001) gene expression significantly decreased compared to the DM group. Our results showed that empagliflozin, by improving the antioxidant defense system, can reduce testicular inflammation and apoptosis and partly prevent the adverse effects of diabetes mellitus on testicular tissue.
Collapse
Affiliation(s)
- Mina Kiani
- Department of Biology, Faculty of Science, Arak University, Arak 3815688138, Iran
| | | | | |
Collapse
|
10
|
Saad EA, Hassan HA, Ghoneum MH, Alaa El-Dein M. Edible wild plants, chicory and purslane, alleviated diabetic testicular dysfunction, and insulin resistance via suppression 8OHdg and oxidative stress in rats. PLoS One 2024; 19:e0301454. [PMID: 38603728 PMCID: PMC11008903 DOI: 10.1371/journal.pone.0301454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Testicular dysfunction is a prevalent health problem frequently reported in individuals with diabetes mellitus (DM). Oxidative-inflammatory reactions, hormonal and spermatic abnormalities often accompany this illness. Herbal remedies "particularly wild plants" including chicory (Chicorium Intybus) and purslane (Portulaca Oleracea) are emerging as popular agents for people dealing with these issues due to their ability to act as antioxidants, reduce inflammation, and exhibit antidiabetic effects. According to the collected data, the daily administration of chicory (Ch) seed-extract (250 mg/kg) or purslane (Pu) seed-extract (200 mg/kg) to streptozotocin (STZ)-induced diabetic rats (50 mg/kg) for 30 days resulted in the normalization of fasting blood glucose (FBG), serum fructosamine, insulin levels, and insulin resistance (HOMA-IR), as well as reducing lipid peroxidation end-product malondialdehyde (MDA) level, aldehyde oxidase (AO) and xanthene oxidase (XO) activities. While caused a considerable improvement in glutathione (GSH) content, superoxide dismutase (SOD), catalase (CAT) activity, and total antioxidant capacity (TAC) when compared to diabetic rats. Ch and Pu extracts had a substantial impact on testicular parameters including sperm characterization, testosterone level, vimentin expression along with improvements in body and testis weight. They also mitigated hyperlipidemia by reducing total lipids (TL), total cholesterol (TC) levels, and low-density lipoprotein cholesterol (LDL-C), while increasing high-density lipoprotein cholesterol (HDL-C). Furthermore, oral administration of either Ch or Pu notably attuned the elevated proinflammatory cytokines as tumor necrotic factor (TNF-α), C-reactive protein (CRP), and Interleukin-6 (IL-6) together with reducing apoptosis and DNA damage. This was achieved through the suppression of DNA-fragmentation marker 8OHdG, triggering of caspase-3 immuno-expression, and elevation of Bcl-2 protein. The histological studies provided evidence supporting the preventive effects of Ch and Pu against DM-induced testicular dysfunction. In conclusion, Ch and Pu seed-extracts mitigate testicular impairment during DM due to their antihyperglycemic, antilipidemic, antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Enas A. Saad
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Hanaa A. Hassan
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mamdooh H. Ghoneum
- Department of Surgery, Charles Drew University of Medicine and Science, Los Angeles, CA, United States of America
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Mai Alaa El-Dein
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Razazi A, Kakanezhadi A, Raisi A, Pedram B, Dezfoulian O, Davoodi F. D-limonene inhibits peritoneal adhesion formation in rats via anti-inflammatory, anti-angiogenic, and antioxidative effects. Inflammopharmacology 2024; 32:1077-1089. [PMID: 38308792 DOI: 10.1007/s10787-023-01417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
The aim of this research was to investigate the effects of D-limonene on decreasing post-operative adhesion in rats and to understand the mechanisms involved. Peritoneal adhesions were induced by creating different incisions and excising a 1 × 1 cm section of the peritoneum. The experimental groups included a sham group, a control group in which peritoneal adhesions were induced without any treatment, and two treatment groups in which animals received D-limonene with dosages of 25 and 50 mg/kg after inducing peritoneal adhesions. Macroscopic examination of adhesions showed that both treatment groups had reduced adhesion bands in comparison to the control group. Immunohistochemical assessment of TGF-β1, TNF-α, and VEGF on day 14 revealed a significant increment in the level of immunopositive cells for the mentioned markers in the control group, whereas administration of limonene in both doses significantly reduced levels of TGF-β1, TNF-α, and VEGF (P < 0.05). Induction of peritoneal adhesions in the control group significantly increased TGF-β1, TNF-α, and VEGF on days 3 and 14 in western blot evaluation, while treatment with limonene significantly reduced TNF-α level on day 14 (P < 0.05). Moreover, VEGF levels in both treatment groups significantly reduced on days 3 and 14. In the control group, a significant increment in the levels of MDA and NO and a notable decline in the levels of GPX, CAT was observed (P < 0.05). Limonene 50 group significantly reduced MDA level and increased GPx and CAT levels on day 14 (P < 0.05). In summary, D-limonene reduced adhesion bands, inflammatory cytokines, angiogenesis, and oxidative stress.
Collapse
Affiliation(s)
- Ali Razazi
- Department of Veterinary, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Ali Kakanezhadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Abbas Raisi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Behnam Pedram
- Department of Veterinary, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Farshid Davoodi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
12
|
Zheng H, Hu Y, Zhou J, Zhou B, Qi S. Protective Effect of Black Rice Cyanidin-3-Glucoside on Testicular Damage in STZ-Induced Type 1 Diabetic Rats. Foods 2024; 13:727. [PMID: 38472840 DOI: 10.3390/foods13050727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Diabetic testicular damage is quite a common and significant complication in diabetic men, which could result in infertility. The natural fertility rate of type 1 diabetes men is only 50% because of testicular damage. This research first aimed to explore the intervention effect of C3G on testicular tissue damage induced by diabetes. Here, a streptozotocin-induced type 1 diabetic rat model was established, and then C3G was administered. After 8 weeks of C3G supplementation, the symptoms of diabetes (e.g., high blood glucose, lower body weight, polydipsia, polyphagia) were relieved, and at the same time that sperm motility and viability increased, sperm abnormality decreased in C3G-treated diabetic rats. Furthermore, the pathological structure of testis was restored; the fibrosis of the testicular interstitial tissue was inhibited; and the LH, FSH, and testosterone levels were all increased in the C3G-treated groups. Testicular oxidative stress was relieved; serum and testicular inflammatory cytokines levels were significantly decreased in C3G-treated groups; levels of Bax, Caspase-3, TGF-β1 and Smad2/3 protein in testis decreased; and the level of Bcl-2 was up-regulated in the C3G-treated groups. A possible mechanism might be that C3G improved antioxidant capacity, relieved oxidative stress, increased anti-inflammatory cytokine expression, and inhibited the apoptosis of spermatogenic cells and testicular fibrosis, thus promoting the production of testosterone and repair of testicular function. In conclusion, this study is the first to reveal that testicular damage could be mitigated by C3G in type 1 diabetic rats. Our results provide a theoretical basis for the application of C3G in male reproductive injury caused by diabetes.
Collapse
Affiliation(s)
- Hongxing Zheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
- State Key Laboratory of Qinba Biological Resources and Ecological Environment, Hanzhong 723000, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723000, China
| | - Yingjun Hu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
- Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong 723000, China
| | - Jia Zhou
- Shaanxi Black Organic Food Engineering Technology Research Center, Hanzhong 723000, China
| | - Baolong Zhou
- Shaanxi Black Organic Food Engineering Technology Research Center, Hanzhong 723000, China
| | - Shanshan Qi
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
- State Key Laboratory of Qinba Biological Resources and Ecological Environment, Hanzhong 723000, China
- Shaanxi Guzhongcun Ecological Agriculture Company, Hanzhong 723000, China
| |
Collapse
|
13
|
Siddique R, Mehmood MH, Shehzad MA. Current antioxidant medicinal regime and treatments used to alleviate oxidative stress in infertility issues. FUNDAMENTAL PRINCIPLES OF OXIDATIVE STRESS IN METABOLISM AND REPRODUCTION 2024:287-315. [DOI: 10.1016/b978-0-443-18807-7.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Prado Y, Aravena D, Gatica S, Llancalahuen FM, Aravena C, Gutiérrez-Vera C, Carreño LJ, Cabello-Verrugio C, Simon F. From genes to systems: The role of food supplementation in the regulation of sepsis-induced inflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166909. [PMID: 37805092 DOI: 10.1016/j.bbadis.2023.166909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Systemic inflammation includes a widespread immune response to a harmful stimulus that results in extensive systemic damage. One common example of systemic inflammation is sepsis, which is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Under the pro-inflammatory environment of sepsis, oxidative stress contributes to tissue damage due to dysfunctional microcirculation that progressively causes the failure of multiple organs that ultimately triggers death. To address the underlying inflammatory condition in critically ill patients, progress has been made to assess the beneficial effects of dietary supplements, which include polyphenols, amino acids, fatty acids, vitamins, and minerals that are recognized for their immuno-modulating, anticoagulating, and analgesic properties. Therefore, we aimed to review and discuss the contribution of food-derived supplementation in the regulation of inflammation from gene expression to physiological responses and summarize the precedented potential of current therapeutic approaches during systemic inflammation.
Collapse
Affiliation(s)
- Yolanda Prado
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Sebastian Gatica
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe M Llancalahuen
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristobal Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Claudio Cabello-Verrugio
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
15
|
Salama MA, Alabiad MA, Saleh AA. Impact of resveratrol and zinc on biomarkers of oxidative stress induced by Trichinella spiralis infection. J Helminthol 2023; 97:e100. [PMID: 38099459 DOI: 10.1017/s0022149x23000810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Trichinellosis is a re-emerging worldwide foodborne zoonosis. Oxidative stress is one of the most common detrimental effects caused by trichinellosis. In addition, Trichinella infection poses an infinite and major challenge to the host's immune system. Resistance and side effects limit the efficiency of the existing anti-trichinella medication. Given that concern, this work aimed to investigate the anti-helminthic, antioxidant, anti-inflammatory and immunomodulatory effects of resveratrol and zinc during both phases of Trichinella spiralis infection. Sixty-four Swiss albino mice were divided into four equal groups: non-infected control, infected control, infected and treated with resveratrol, and infected and treated with zinc. Animals were sacrificed on the 7th and 35th days post-infection for intestinal and muscular phase assessments. Drug efficacy was assessed by biochemical, parasitological, histopathological, immunological, and immunohistochemical assays. Resveratrol and zinc can be promising antiparasitic, antioxidant, anti-inflammatory, and immunomodulatory agents, as evidenced by the significant decrease in parasite burden, the significant improvement of liver and kidney function parameters, the increase in total antioxidant capacity (TAC), the reduction of malondialdehyde (MDA) level, the increase in nuclear factor (erythroid-derived 2)-like-2 factor expression, and the improvement in histopathological findings. Moreover, both drugs enhanced the immune system and restored the disturbed immune balance by increasing the interleukin 12 (IL-12) level. In conclusion, resveratrol and zinc provide protection for the host against oxidative harm and the detrimental effects produced by the host's defense response during Trichinella spiralis infection, making them promising natural alternatives for the treatment of trichinellosis.
Collapse
Affiliation(s)
- M A Salama
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Egypt
| | - M A Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Egypt
| | - A A Saleh
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
16
|
Zheng H, Hu Y, Shao M, Chen S, Qi S. Chromium Picolinate Protects against Testicular Damage in STZ-Induced Diabetic Rats via Anti-Inflammation, Anti-Oxidation, Inhibiting Apoptosis, and Regulating the TGF-β1/Smad Pathway. Molecules 2023; 28:7669. [PMID: 38005391 PMCID: PMC10674689 DOI: 10.3390/molecules28227669] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Chromium picolinate (CP) is an organic compound that has long been used to treat diabetes. Our previous studies found CP could relieve diabetic nephropathy. Thus, we speculate that it might have a positive effect on diabetic testicular injury. In this study, a diabetic rat model was established, and then the rats were treated with CP for 8 weeks. We found that the levels of blood glucose, food, and water intake were reduced, and body weight was enhanced in diabetic rats after CP supplementation. Meanwhile, in CP treatment groups, the levels of male hormone and sperm parameters were improved, the pathological structure of the testicular tissue was repaired, and testicular fibrosis was inhibited. In addition, CP reduced the levels of serum inflammatory cytokines, and decreased oxidative stress and apoptosis in the testicular tissue. In conclusion, CP could ameliorate testicular damage in diabetic rats, as well as being a potential testicle-protective nutrient in the future to prevent the testicular damage caused by diabetes.
Collapse
Affiliation(s)
- Hongxing Zheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (H.Z.); (Y.H.); (M.S.); (S.C.)
- State Key Laboratory of Qinba Biological Resources and Ecological Environment, Hanzhong 723000, China
- Shaanxi Black Organic Food Engineering Technology Research Center, Hanzhong 723000, China
| | - Yingjun Hu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (H.Z.); (Y.H.); (M.S.); (S.C.)
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723000, China
| | - Mengli Shao
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (H.Z.); (Y.H.); (M.S.); (S.C.)
| | - Simin Chen
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (H.Z.); (Y.H.); (M.S.); (S.C.)
- Shaanxi Province Key Laboratory of Bioresources, Hanzhong 723000, China
| | - Shanshan Qi
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (H.Z.); (Y.H.); (M.S.); (S.C.)
- Shaanxi Daoerfeng Biotechnology Company, Hanzhong 723000, China
| |
Collapse
|
17
|
Zeng Y, Yang Q, Ouyang Y, Lou Y, Cui H, Deng H, Zhu Y, Geng Y, Ouyang P, Chen L, Zuo Z, Fang J, Guo H. Nickel induces blood-testis barrier damage through ROS-mediated p38 MAPK pathways in mice. Redox Biol 2023; 67:102886. [PMID: 37742495 PMCID: PMC10520947 DOI: 10.1016/j.redox.2023.102886] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
Nickel (Ni) is an essential common environmental contaminant, it is hazardous to male reproduction, but the precise mechanisms are still unknown. Blood-testis barrier (BTB), an important testicular structure consisting of connections between sertoli cells, is the target of reproductive toxicity caused by many environmental toxins. In this study, ultrastructure observation and BTB integrity assay results indicated that NiCl2 induced BTB damage. Meanwhile, BTB-related proteins including the tight junction (TJ), adhesion junction (AJ) and the gap junction (GJ) protein expression in mouse testes as well as in sertoli cells (TM4) were significantly decreased after NiCl2 treatment. Next, the antioxidant N-acetylcysteine (NAC) was co-treated with NiCl2 to study the function of oxidative stress in NiCl2-mediated BTB deterioration. The results showed that NAC attenuated testicular histopathological damage, and the expression of BTB-related proteins were markedly reversed by NAC co-treatment in vitro and vivo. Otherwise, NiCl2 activated the p38 MAPK signaling pathway. And, NAC co-treatment could significantly inhibit p38 activation induced by NiCl2 in TM4 cells. Furthermore, in order to confirm the role of the p38 MAPK signaling pathway in NiCl2-induced BTB impairment, a p38 inhibitor (SB203580) was co-treated with NiCl2 in TM4 cells, and p38 MAPK signaling inhibition significantly restored BTB damage induced by NiCl2 in TM4 cells. These results suggest that NiCl2 treatment destroys the BTB, in which the oxidative stress-mediated p38 MAPK signaling pathway plays a vital role.
Collapse
Affiliation(s)
- Yuxin Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Qing Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yujuan Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yanbin Lou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Lian Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China.
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, PR China.
| |
Collapse
|
18
|
Guney C, Bal NB, Akar F. The impact of dietary fructose on gut permeability, microbiota, abdominal adiposity, insulin signaling and reproductive function. Heliyon 2023; 9:e18896. [PMID: 37636431 PMCID: PMC10447940 DOI: 10.1016/j.heliyon.2023.e18896] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
The excessive intake of fructose in the regular human diet could be related to global increases in metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal permeability and circulatory endotoxin by changing the gut barrier function and microbial composition. Excess fructose transports to the liver and then triggers inflammation as well as de novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some evidence that high intake of fructose negatively affects both male and female reproductive systems and may lead to infertility. This review addresses dietary high-fructose-induced deteriorations that are obvious, especially in gut permeability, microbiota, abdominal fat accumulation, insulin signaling, and reproductive function. The recognition of the detrimental effects of fructose and the development of relevant new public health policies are necessary in order to prevent diet-related metabolic disorders.
Collapse
Affiliation(s)
| | | | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
19
|
Zhu B, Yang C, Liu D, Zhi Q, Hua ZC. Zinc depletion induces JNK/p38 phosphorylation and suppresses Akt/mTOR expression in acute promyelocytic NB4 cells. J Trace Elem Med Biol 2023; 79:127264. [PMID: 37473591 DOI: 10.1016/j.jtemb.2023.127264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Myeloid leukemia is associated with reduced serum zinc and increased intracellular zinc. Our previous studies found that zinc depletion by TPEN induced apoptosis with PML-RARα oncoprotein degradation in acute promyelocytic NB4 cells. The effect of zinc homeostasis on intracellular signaling pathways in myeloid leukemia cells remains unclear. OBJECTIVE This study examined how zinc homeostasis affected MAPK and Akt/mTOR pathways in NB4 cells. METHODS We used western blotting to detect the activation of p38 MAPK, JNK, ERK1/2, and Akt/mTOR pathways in NB4 cells stimulated with the zinc chelator TPEN. Whether the effects of TPEN on these pathways could be reversed by zinc or the nitric oxide donor sodium nitroprusside (SNP) was further explored by western blotting. We used Zinpyr-1 staining to assess the role of SNP on labile zinc levels in NB4 cells treated with TPEN. In additional, we evaluated expressional correlations between the zinc-binding protein Metallothionein-2A (MT2A) and genes related to MAPKs and Akt/mTOR pathways in acute myeloid leukemia (AML) based on the TCGA database. RESULTS Zinc depletion by TPEN activated p38 and JNK phosphorylation in NB4 cells, whereas ERK1/2 phosphorylation was increased first and then decreased. The protein expression levels of Akt and mTOR were downregulated by TPEN. The nitric oxide donor SNP promotes zinc release in NB4 cells under zinc depletion conditions. We further found that the effects of zinc depletion on MAPK and Akt/mTOR pathways in NB4 cells can be reversed by exogenous zinc supplementation or treatment with the nitric oxide donor SNP. By bioinformatics analyses based on the TCGA database, we demonstrated that MT2A expression was negatively correlated with the expression of JNK, and was positively correlated with the expression of ERK1 and Akt in AML. CONCLUSION Our findings indicate that zinc plays a critical role in leukemia cells and help understanding how zinc depletion induces apoptosis.
Collapse
Affiliation(s)
- Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Chunhao Yang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Dekang Liu
- School of Medicine, and Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qi Zhi
- School of Medicine, and Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zi-Chun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
20
|
Costa MI, Sarmento-Ribeiro AB, Gonçalves AC. Zinc: From Biological Functions to Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24054822. [PMID: 36902254 PMCID: PMC10003636 DOI: 10.3390/ijms24054822] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The trace element zinc (Zn) displays a wide range of biological functions. Zn ions control intercellular communication and intracellular events that maintain normal physiological processes. These effects are achieved through the modulation of several Zn-dependent proteins, including transcription factors and enzymes of key cell signaling pathways, namely those involved in proliferation, apoptosis, and antioxidant defenses. Efficient homeostatic systems carefully regulate intracellular Zn concentrations. However, perturbed Zn homeostasis has been implicated in the pathogenesis of several chronic human diseases, such as cancer, diabetes, depression, Wilson's disease, Alzheimer's disease, and other age-related diseases. This review focuses on Zn's roles in cell proliferation, survival/death, and DNA repair mechanisms, outlines some biological Zn targets, and addresses the therapeutic potential of Zn supplementation in some human diseases.
Collapse
Affiliation(s)
- Maria Inês Costa
- Laboratory of Oncobiology and Hematology (LOH), University Clinics of Hematology and Oncology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH), University Clinics of Hematology and Oncology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-061 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH), University Clinics of Hematology and Oncology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-480-023
| |
Collapse
|
21
|
Ye F, Wu L, Li H, Peng X, Xu Y, Li W, Wei Y, Chen F, Zhang J, Liu Q. SIRT1/PGC-1α is involved in arsenic-induced male reproductive damage through mitochondrial dysfunction, which is blocked by the antioxidative effect of zinc. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121084. [PMID: 36681380 DOI: 10.1016/j.envpol.2023.121084] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Exposure to arsenic poses threats to male reproductive system, including impairing the testes and sperm quality. Although an association regarding arsenic exposure and male reproductive damage has been reported, the undergoing molecular mechanisms and interventions for prevention remain unclear. For the present work, male mice were exposed to 0, 2.5, 5, or 10 ppm sodium arsenite (NaAsO2) for 8 months. The results showed that arsenic-exposed mice had reduced fertility with abnormalities in the testes, epididymides, and sperm. Exposure of mice to arsenic caused a redox imbalance, decreased SIRT1 and PGC-1α levels, and affected mitochondrial biogenesis and proteins related to mitochondrial dynamics. For immortalized spermatogenic (GC-2) cells, arsenic caused apoptosis and oxidative stress, reduced SIRT1/PGC-1α levels and ATP production, inhibited mitochondrial respiration, and changed the mitochondrial membrane potential (MMP). Mitochondrial biogenesis and dynamics were also impaired. However, by reducing mitochondrial damage in GC-2 cells, upregulation of SIRT1 or zinc (Zn) supplementation reversed the apoptosis induced by arsenic. For mice, Zn supplementation blocked arsenic-induced oxidative stress, the decreases of SIRT1 and PGC-1α levels, and the impairment of mitochondrial function, and it reversed the damage to testes, low sperm quality, and low litter size. Collectively, these results suggest that arsenic causes excessive production of ROS, inhibits the SIRT1/PGC-1α pathway, and causing mitochondrial dysfunction by mediating impairment of mitochondrial biogenesis and dynamics, which results in germ cells apoptosis and male reproductive damage, processes that are blocked by Zn via an antioxidative effect. Our study contributes to understanding of the mechanisms for arsenic-induced male reproductive damage and points to the therapeutic significance of Zn.
Collapse
Affiliation(s)
- Fuping Ye
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lu Wu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Suzhou Center for Disease Control and Prevention, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Han Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xiaoshan Peng
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yuan Xu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Wenqi Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yongyue Wei
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Feng Chen
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jingshu Zhang
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Suzhou Center for Disease Control and Prevention, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Suzhou, 215004, Jiangsu, People's Republic of China.
| |
Collapse
|
22
|
Andlib N, Sajad M, Kumar R, Thakur SC. Abnormalities in sex hormones and sexual dysfunction in males with diabetes mellitus: A mechanistic insight. Acta Histochem 2023; 125:151974. [PMID: 36455338 DOI: 10.1016/j.acthis.2022.151974] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022]
Abstract
Diabetes is a considerate metabolic disorder that can lead to a series of complications, involving the malfunctioning of the reproductive system of males. It has been observed that there is a gradual rise in male diabetic patients and almost half of the diabetic males have low semen quality and decrease reproductive function. In diabetic conditions, prolonged hyperglycemia leads to oxidative stress, diabetic neuropathy, and insulin resistance. Insulin resistance and its deficiency can impair the hypothalamus, pituitary gland, gonads, and perigonads. This causes a decrease in the secretion of gonadal steroids such as GnRH (gonadotropin-releasing hormone), FSH (follicle-stimulating hormone), LH (luteinizing hormone), and Testosterone. Moreover, it also causes damage to the testicles, spermatogenic and stromal cells, seminiferous tubules, and various structural injuries to male reproductive organs. During spermatogenesis, glucose metabolism plays an important role, because the fundamental activities of cells and their specific features, such as motility and mature sperm fertilization activity, are maintained by glucose metabolism. All these activities can influence the fertility and reproductive health of males. But the glucose metabolism is primarily disrupted in diabetic conditions. Until now, there has been no medicine focusing on the reproductive health of diabetic people. In this chapter, we review the consequences of diabetes on the reproductive system of males and all the pathways involved in the dysfunction of the reproductive system. This will help interpret the effects of DM on male reproductive health.
Collapse
Affiliation(s)
- Nida Andlib
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; Department of Reproductive Biomedicine, The National Institute of Health, and Family Welfare, Baba Gang Nath Marg, Munirka, New Delhi 110067, India
| | - Mohd Sajad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; Department of Reproductive Biomedicine, The National Institute of Health, and Family Welfare, Baba Gang Nath Marg, Munirka, New Delhi 110067, India
| | - Rajesh Kumar
- Department of Reproductive Biomedicine, The National Institute of Health, and Family Welfare, Baba Gang Nath Marg, Munirka, New Delhi 110067, India
| | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
23
|
Quercetin Ameliorates Testicular Damage in Zucker Diabetic Fatty Rats through Its Antioxidant, Anti-Inflammatory and Anti-Apoptotic Properties. Int J Mol Sci 2022; 23:ijms232416056. [PMID: 36555696 PMCID: PMC9781092 DOI: 10.3390/ijms232416056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate the effects of quercetin (QUE) on the testicular architecture as well as markers of oxidative, inflammatory, and apoptotic profile of male gonads in Zucker diabetic fatty (ZDF) rats suffering from Type 2 diabetes mellitus in the absence or presence of obesity. QUE was administered orally at a dose of 20 mg/kg/day for 6 weeks. Morphometric analysis revealed that QUE treatment led to an improvement in testicular appearance, particularly in the case of Obese ZDF rats. Furthermore, a significant stabilization of the antioxidant capacity (p < 0.05), superoxide dismutase and catalase activity (p < 0.01), with a concomitant decrease in lipid peroxidation (p < 0.05) were observed in Obese ZDF animals exposed to QUE. Our data also indicate a significant decline in the levels of interleukin (IL)-1 (p < 0.05), IL-6 (p < 0.01) and tumor necrosis factor alpha (p < 0.001) following QUE supplementation to Obese ZDF rats in comparison with their respective control. Finally, a significant down-regulation of the pro-apoptotic BAX protein (p < 0.0001) was observed in Obese ZDF rats administered with QUE, while a significant Bcl-2 protein overexpression (p < 0.0001) was recorded in Lean ZDF animals when compared to their untreated control. As such, our results suggest that QUE is a potentially beneficial agent to reduce testicular damage in ZDF rats with Type 2 diabetes mellitus by decreasing oxidative stress, chronic inflammation, and excessive cell loss through apoptosis.
Collapse
|
24
|
Tvrdá E, Kováč J, Benko F, Ďuračka M, Varga A, Uličná O, Almášiová V, Capcarová M, Chomová M. Characterization of the structural, oxidative, and immunological features of testis tissue from Zucker diabetic fatty rats. Open Life Sci 2022; 17:1383-1397. [PMID: 36405233 PMCID: PMC9644704 DOI: 10.1515/biol-2022-0495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
The purpose of this study was to characterize the testicular profile of Zucker diabetic fatty (ZDF) rats presenting with type 2 diabetes mellitus (DM2) in the absence or presence of obesity. To achieve this, testes were collected from 270-day-old male Wistar (n = 15), ZDF nonobese (n = 15), and ZDF obese rats (n = 16). Changes to the testicular structure were quantified morphometrically, while immunocytochemistry was employed to assess caspase-3 activity. Reactive oxygen species (ROS) production, fluctuations of major antioxidant molecules, and the extent of damage to the proteins and lipids were assessed in tissue lysates. Levels of selected interleukins (ILs) were determined by enzyme-linked immunosorbent assay. The results reveal significant alterations to the testicular structure accompanied by caspase-3 overexpression, particularly in ZDF obese rats. The most notable disruption of the oxidative balance, characterized by ROS overproduction, antioxidant deficiency, protein, and lipid deterioration was recorded in ZDF rats suffering from both DM2 and obesity. Accordingly, the highest concentrations of pro-inflammatory IL-1, IL-6, and IL-18 accompanied by reduced levels of the anti-inflammatory IL-10 were found in testicular tissue collected from ZDF obese rats. This study highlights the vulnerability of male gonads to pathophysiological changes caused by hyperglycemia, which are further exacerbated by excessive adipose tissue.
Collapse
Affiliation(s)
- Eva Tvrdá
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra , Tr. A. Hlinku 2 , 949 76 Nitra , Slovakia
| | - Ján Kováč
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra , Tr. A. Hlinku 2 , 949 76 Nitra , Slovakia
| | - Filip Benko
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra , Tr. A. Hlinku 2 , 949 76 Nitra , Slovakia
| | - Michal Ďuračka
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra , Tr. A. Hlinku 2 , 949 76 Nitra , Slovakia
| | - Anikó Varga
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra , Tr. A. Hlinku 2 , 949 76 Nitra , Slovakia
| | - Oľga Uličná
- Third Intern Clinic, Comenius University in Bratislava , Bratislava , Slovakia
| | - Viera Almášiová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Košice , Košice , Slovakia
| | - Marcela Capcarová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra , Tr. A. Hlinku 2 , 949 76 Nitra , Slovakia
| | - Mária Chomová
- Institute of Medical Chemistry and Clinical Biochemistry, Comenius University in Bratislava , Bratislava , Slovakia
| |
Collapse
|
25
|
Kakanezhadi A, Rezaei M, Raisi A, Dezfoulian O, Davoodi F, Ahmadvand H. Rosmarinic acid prevents post-operative abdominal adhesions in a rat model. Sci Rep 2022; 12:18593. [PMID: 36329196 PMCID: PMC9633689 DOI: 10.1038/s41598-022-22000-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
This study aims to determine the effects of rosmarinic acid which involved the mechanisms to decrease the postoperative peritoneal adhesion formation in rats. Various incisions and removing a 1 × 1 cm piece of peritoneum was used to induce the peritoneal adhesions. Experimental groups were as follows: 1-Sham group. 2-Control group: Peritoneal adhesions were induced and no treatments were performed. 3-Treatment groups: Following inducing peritoneal adhesions, animals received rosmarinic acid with 50 and 70 mg/kg dosage, respectively. Macroscopic examination of adhesions indicated that adhesion bands were reduced in both treatment groups compared to the control group. Moreover, the adhesion score was decreased in both treatment groups on day 14. Inflammation and fibroblast proliferation were both reduced in the treatment groups on day 14. TGF-β1, TNF-α, and VEGF were all evaluated by western blot and immunohistochemistry on days 3 and 14. Treatment groups reduced inflammatory cytokines on days 3 and 14. The treatment group with a 70 mg/kg dosage decreased TGF-β1 and TNF-α levels more than the other treatment group. The administration of rosmarinic acid significantly reduced MDA and increased CAT levels. In conclusion, the rosmarinic acid was effective to reduce the adhesion bands, inflammatory cytokines, angiogenesis, and oxidative stress.
Collapse
Affiliation(s)
- Ali Kakanezhadi
- grid.411406.60000 0004 1757 0173Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Mehrdad Rezaei
- grid.411406.60000 0004 1757 0173Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Abbas Raisi
- grid.411406.60000 0004 1757 0173Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Omid Dezfoulian
- grid.411406.60000 0004 1757 0173Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Farshid Davoodi
- grid.412763.50000 0004 0442 8645Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hassan Ahmadvand
- grid.411950.80000 0004 0611 9280Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
26
|
Shaman AA, Zidan NS, Atteia HH, Alalawy AI, Alzahrani S, AlBishi LA, Helal AI, Braiji SH, Farrag F, Shukry M, Sakran MI. Arthrospira platensis nanoparticles defeat against diabetes-induced testicular injury in rat targeting, oxidative, apoptotic, and steroidogenesis pathways. Andrologia 2022; 54:e14456. [PMID: 35560246 DOI: 10.1111/and.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/12/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022] Open
Abstract
Varieties of studies have been used to investigate the health benefits of Spirulina (Arthrospira platensis); however, more research is needed to examine if its nano form may be utilized to treat or prevent several chronic diseases. So, we designed this study to explore the effect and the cellular intracellular mechanisms by which Arthrospira platensis Nanoparticles (NSP) alleviates the testicular injury induced by diabetes in male Wistar rats. Eighty Wistar male rats (n = 80) were randomly allocated into eight groups. Group 1 is untreated rats (control), Group 2 including STZ-induced diabetic rats with 65 mg/kg body weight STZ (STZ-diabetic), Group 3-5: including diabetic rats treated with NSP1, NSP2, and NSP3 at 0.25, 0.5, and 1 mg/kg body weight, respectively, once daily orally by the aid of gastric gavage for 12 consecutive weeks and groups 6-8 include normal rats received NSP (0.25, 0.5, and 1 mg/kg body weight once daily orally. The identical volume of normal saline was injected into both control and diabetic rats. After 12 weeks of diabetes induction, the rats were killed. According to our findings, NSP administration to diabetic rats enhances the total body weight and the weight of testes and accessory glands; in addition, NSP significantly reduced nitric oxide and malondialdehyde in testicular tissue improved sperm parameters. Intriguingly, it raises testicular GSH and SOD activity by a significant amount (p < 0.05). As well, Oral administration of NSP to diabetic rats resulted in a decrease in the blood glucose levels, HA1C, induced in the diabetic group, which overcame the diabetic complications NSP caused down-regulation of apoptotic genes with upregulation of BCL-2 mRNA expression (p < 0.05) and prominent up-regulation of steroidogenesis genes expression level in testes in comparison to the diabetic rats which resulted in improving the decreased levels of testosterone hormone, FSH, and LH induced by diabetes. In the same way, our histopathological findings support our biochemical and molecular findings; in conclusion, NSP exerted a protective effect against reproductive dysfunction induced by diabetes not only through its high antioxidant and hypoglycemic action but also through its down-regulation of Apoptotic genes and up-regulation of steroidogenesis regulatory genes expression level in diabetic testes.
Collapse
Affiliation(s)
- Amani Ali Shaman
- Faculty of Medicine, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Nahla S Zidan
- Faculty of Home Economics, University of Tabuk, Tabuk, Saudi Arabia
- Department of nutrition and food science Faculty of Specific Education, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Hebatallah H Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Sharifa Alzahrani
- Pharmacilogy Department, Faculty of Pharmacy, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Laila A AlBishi
- Pediatric Department, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Azza I Helal
- Faculty of Medicine, Histology and Cell Biology Department, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | | | - Foad Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mohamed I Sakran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biochemistry Section, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
27
|
Hassan ME, Hassan MA, El-Nekeety AA, Abdel-Aziem SH, Bakeer RM, Abdel-Wahhab MA. Zinc-loaded whey protein nanoparticles alleviate the oxidative damage and enhance the gene expression of inflammatory mediators in rats. J Trace Elem Med Biol 2022; 73:127030. [PMID: 35779434 DOI: 10.1016/j.jtemb.2022.127030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Zinc (Zn) is an essential trace element required for the function of the immune system. However, Zn fortification of food has faced some challenges, although excess Zn may be induced obesity and other related. This study aimed to use Zn-loaded whey protein nanoparticles (Zn-WPNPs) to enhance the immunomodulatory activity of Zn in rats treated with CCl4. METHODS Zn was loaded to WPNPs at a level of 14 mg/g. Four experimental groups of male albino Wistar rats were treated for 30 days including the control group, CCl4-treated group (0.5 ml/100 g b.w), Zn plus CCl4-treated group (50 mg/kg b.w), and CCl4 plus Zn-WPNPs-treated group (50 mg/kg b.w). Blood and tissue samples were collected for different assays and histological examinations. RESULTS The results revealed that CCl4 disturbs the serum biochemical, hematological, and immune indicators in different organs besides the liver as a target organ. Animals that received CCl4 showed a significant increase in oxidative stress markers, cytokines, and the mRNA expression of inflammatory mediators in the lung and spleen accompanied by a significant decrease in the hepatic and renal antioxidant enzymes along with histological changes in the liver, kidney, spleen, and lung. Zn or Zn-WPNPs could improve these parameters and the histological picture of the tested organs and Zn-WPNPs were more effective than Zn alone. CONCLUSION WPNPs induced synergistic immune-modulating effects which may control Zn release and may be a suitable candidate to enhance the immune system during any pandemic or the exposure to any chemicals that affect the immune system.
Collapse
Affiliation(s)
- Marwa E Hassan
- Toxicology Department, Research Institute of Medical Entomology, Giza, Egypt
| | - Mona A Hassan
- Food Evaluation and Food Science Department, National Organization for Drug Control and Research, Giza, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Rofanda M Bakeer
- Pathology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
28
|
Role of p38 MAPK Signalling in Testis Development and Male Fertility. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6891897. [PMID: 36092154 PMCID: PMC9453003 DOI: 10.1155/2022/6891897] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/31/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022]
Abstract
The testis is an important male reproductive organ, which ensures reproductive function via the secretion of testosterone and the generation of spermatozoa. Testis development begins in the embryonic period, continues after birth, and generally reaches functional maturation at puberty. The stress-activated kinase, p38 mitogen-activated protein kinase (MAPK), regulates multiple cell processes including proliferation, differentiation, apoptosis, and cellular stress responses. p38 MAPK signalling plays a crucial role in testis development by regulating spermatogenesis, the fate determination of pre-Sertoli, and primordial germ cells during embryogenesis, the proliferation of testicular cells in the postnatal period, and the functions of mature Sertoli and Leydig cells. In addition, p38 MAPK signalling is involved in decreased male fertility when exposed to various harmful stimuli. This review will describe in detail the biological functions of p38 MAPK signalling in testis development and male reproduction, together with its pathological role in male infertility.
Collapse
|
29
|
Ouyang H, Zhu H, Li J, Chen L, Zhang R, Fu Q, Li X, Cao C. Fumonisin B 1 promotes germ cells apoptosis associated with oxidative stress-related Nrf2 signaling in mice testes. Chem Biol Interact 2022; 363:110009. [PMID: 35697133 DOI: 10.1016/j.cbi.2022.110009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022]
Abstract
Fumonisins (FBs) are widespread Fusarium toxins commonly found in corn. This study aimed to establish the mechanism of oxidative stress via the Nrf2 signaling pathway associated with FB1-induced toxicity in mice testis. Male mice were fed with 5 mg/kg FB1 diet for 21 or 42 days, the expression of inflammatory related genes, apoptosis related genes and Nrf2 pathway genes were detected by RT-qPCR, Western blot and immunohistochemical. Furthermore, Sertoli cell was treatment with FB1. Cell viability was measured by CCK8 assay, ROS level and apoptosis related genes were detected by immunofluorescence staining. The results showed that FB1 had toxic effects on testis, which could increase the ROS level of Sertoli cells, affect the Keap1-Nrf2 pathway related factors, destroy the oxidative balance of testis, lead to the occurrence of inflammation and the initiation of apoptosis, and finally destroy the testicular tissue structure and affect the formation of sperm.
Collapse
Affiliation(s)
- Huimin Ouyang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Huquan Zhu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Jinhong Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Lina Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Ruofan Zhang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Qiang Fu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Xinran Li
- Foshan University Veterinary Teaching Hospital, Foshan 528225, Guangdong Province, China
| | - Changyu Cao
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China.
| |
Collapse
|
30
|
Ma D, Hu L, Wang J, Luo M, Liang A, Lei X, Liao B, Li M, Xie M, Li H, Gong Y, Zi D, Li X, Chen X, Liao X. Nicotinamide mononucleotide improves spermatogenic function in streptozotocin-induced diabetic mice via modulating the glycolysis pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1314-1324. [PMID: 35929593 PMCID: PMC9828322 DOI: 10.3724/abbs.2022099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Spermatogenic dysfunction is one of the major secondary complications of diabetes; however, the underlying mechanisms remain ill-defined, and there is no available drug or strategy for the radical treatment of diabetic spermatogenic dysfunction. Therefore, the objective of this study is to investigate the protective effects of nicotinamide mononucleotide (NMN) on testicular spermatogenic function in streptozotocin (STZ)-induced diabetic mice. The results show that oral administration of NMN significantly increases the body and testis weight and the number of sperms. Moreover, the abnormal sperm count and the rate of sperm malformation are significantly decreased compared with the saline-treated diabetic mice. Histological analysis reveals that NMN treatment significantly increases the area and diameter of seminiferous tubules, accompanied by an increased number of spermatogenic cells and sperms. Immunohistochemistry and qRT-PCR results show that NMN increases Bcl-2 expression and decreases Bax expression in the testis. NMN also increases the protein expression of Vimentin and the mRNA expressions of WT1 and GATA4. In addition, qRT-PCR, western blot analysis and immunohistochemistry results also show that NMN increases the expressions of glycolysis-related rate-limiting enzymes including HK2, PKM2, and LDHA. In summary, this study demonstrates the protective effects of NMN on the testis in an STZ-induced diabetic mice model. NMN exerts its protective effects via reducing spermatogenic cell apoptosis by regulating glycolysis of Sertoli cells in diabetic mice. This study provides an experimental basis for the future clinical application of NMN in diabetes-induced spermatogenic dysfunction.
Collapse
Affiliation(s)
- Duo Ma
- Hunan Province Collaborative Innovation Base of Endocrinology & Metabolism Science and Education for PostgraduatesThe First Affiliated Hospital of Shaoyang University and Hengyang Medical SchoolUniversity of South ChinaHengyang422000China,Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Linlin Hu
- Reproductive Medicine CenterThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaise533000China
| | - Jinyuan Wang
- Hunan Province Collaborative Innovation Base of Endocrinology & Metabolism Science and Education for PostgraduatesThe First Affiliated Hospital of Shaoyang University and Hengyang Medical SchoolUniversity of South ChinaHengyang422000China,Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Min Luo
- Hunan Province Collaborative Innovation Base of Endocrinology & Metabolism Science and Education for PostgraduatesThe First Affiliated Hospital of Shaoyang University and Hengyang Medical SchoolUniversity of South ChinaHengyang422000China,Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Aihong Liang
- Hunan Province Collaborative Innovation Base of Endocrinology & Metabolism Science and Education for PostgraduatesThe First Affiliated Hospital of Shaoyang University and Hengyang Medical SchoolUniversity of South ChinaHengyang422000China,Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Xiaocan Lei
- Hunan Province Collaborative Innovation Base of Endocrinology & Metabolism Science and Education for PostgraduatesThe First Affiliated Hospital of Shaoyang University and Hengyang Medical SchoolUniversity of South ChinaHengyang422000China,Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Biyun Liao
- Reproductive Medicine CenterThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaise533000China
| | - Meixiang Li
- Hunan Province Collaborative Innovation Base of Endocrinology & Metabolism Science and Education for PostgraduatesThe First Affiliated Hospital of Shaoyang University and Hengyang Medical SchoolUniversity of South ChinaHengyang422000China,Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Ming Xie
- Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Haicheng Li
- Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Yiwei Gong
- Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Dan Zi
- Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Xiangrun Li
- Hunan Province Collaborative Innovation Base of Endocrinology & Metabolism Science and Education for PostgraduatesThe First Affiliated Hospital of Shaoyang University and Hengyang Medical SchoolUniversity of South ChinaHengyang422000China,Correspondence address. Tel: +86-13973593250; E-mail: (X.L.) / Tel: +86-13973403619; E-mail: (X.C.) / Tel: +86-13807398512; E-mail: (X.L.) @
| | - Xi Chen
- Hunan Province Collaborative Innovation Base of Endocrinology & Metabolism Science and Education for PostgraduatesThe First Affiliated Hospital of Shaoyang University and Hengyang Medical SchoolUniversity of South ChinaHengyang422000China,Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China,Correspondence address. Tel: +86-13973593250; E-mail: (X.L.) / Tel: +86-13973403619; E-mail: (X.C.) / Tel: +86-13807398512; E-mail: (X.L.) @
| | - Xucai Liao
- Hunan Province Collaborative Innovation Base of Endocrinology & Metabolism Science and Education for PostgraduatesThe First Affiliated Hospital of Shaoyang University and Hengyang Medical SchoolUniversity of South ChinaHengyang422000China,Correspondence address. Tel: +86-13973593250; E-mail: (X.L.) / Tel: +86-13973403619; E-mail: (X.C.) / Tel: +86-13807398512; E-mail: (X.L.) @
| |
Collapse
|
31
|
Prophylactic Zinc Administration Combined with Swimming Exercise Prevents Cognitive-Emotional Disturbances and Tissue Injury following a Transient Hypoxic-Ischemic Insult in the Rat. Behav Neurol 2022; 2022:5388944. [PMID: 35637877 PMCID: PMC9146809 DOI: 10.1155/2022/5388944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Exercise performance and zinc administration individually yield a protective effect on various neurodegenerative models, including ischemic brain injury. Therefore, this work was aimed at evaluating the combined effect of subacute prophylactic zinc administration and swimming exercise in a transient cerebral ischemia model. The prophylactic zinc administration (2.5 mg/kg of body weight) was provided every 24 h for four days before a 30 min common carotid artery occlusion (CCAO), and 24 h after reperfusion, the rats were subjected to swimming exercise in the Morris Water Maze (MWM). Learning was evaluated daily for five days, and memory on day 12 postreperfusion; anxiety or depression-like behavior was measured by the elevated plus maze and the motor activity by open-field test. Nitrites, lipid peroxidation, and the activity of superoxide dismutase (SOD) and catalase (CAT) were assessed in the temporoparietal cortex and hippocampus. The three nitric oxide (NO) synthase isoforms, chemokines, and their receptor levels were measured by ELISA. Nissl staining evaluated hippocampus cytoarchitecture and Iba-1 immunohistochemistry activated the microglia. Swimming exercise alone could not prevent ischemic damage but, combined with prophylactic zinc administration, reversed the cognitive deficit, decreased NOS and chemokine levels, prevented tissue damage, and increased Iba-1 (+) cell number. These results suggest that the subacute prophylactic zinc administration combined with swimming exercise, but not the individual treatment, prevents the ischemic damage on day 12 postreperfusion in the transient ischemia model.
Collapse
|
32
|
Rozenberg JM, Kamynina M, Sorokin M, Zolotovskaia M, Koroleva E, Kremenchutckaya K, Gudkov A, Buzdin A, Borisov N. The Role of the Metabolism of Zinc and Manganese Ions in Human Cancerogenesis. Biomedicines 2022; 10:biomedicines10051072. [PMID: 35625809 PMCID: PMC9139143 DOI: 10.3390/biomedicines10051072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Metal ion homeostasis is fundamental for life. Specifically, transition metals iron, manganese and zinc play a pivotal role in mitochondrial metabolism and energy generation, anti-oxidation defense, transcriptional regulation and the immune response. The misregulation of expression or mutations in ion carriers and the corresponding changes in Mn2+ and Zn2+ levels suggest that these ions play a pivotal role in cancer progression. Moreover, coordinated changes in Mn2+ and Zn2+ ion carriers have been detected, suggesting that particular mechanisms influenced by both ions might be required for the growth of cancer cells, metastasis and immune evasion. Here, we present a review of zinc and manganese pathophysiology suggesting that these ions might cooperatively regulate cancerogenesis. Zn and Mn effects converge on mitochondria-induced apoptosis, transcriptional regulation and the cGAS-STING signaling pathway, mediating the immune response. Both Zn and Mn influence cancer progression and impact treatment efficacy in animal models and clinical trials. We predict that novel strategies targeting the regulation of both Zn and Mn in cancer will complement current therapeutic strategies.
Collapse
Affiliation(s)
- Julian Markovich Rozenberg
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Correspondence:
| | - Margarita Kamynina
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Maksim Sorokin
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Marianna Zolotovskaia
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- OmicsWay Corporation, Walnut, CA 91789, USA
| | - Elena Koroleva
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
| | - Kristina Kremenchutckaya
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
| | - Alexander Gudkov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Anton Buzdin
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
- OmicsWay Corporation, Walnut, CA 91789, USA
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Oncobox Ltd., 121205 Moscow, Russia
| | - Nicolas Borisov
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- OmicsWay Corporation, Walnut, CA 91789, USA
| |
Collapse
|
33
|
Ayad B, Omolaoye TS, Louw N, Ramsunder Y, Skosana BT, Oyeipo PI, Du Plessis SS. Oxidative Stress and Male Infertility: Evidence From a Research Perspective. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:822257. [PMID: 36303652 PMCID: PMC9580735 DOI: 10.3389/frph.2022.822257] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Male fertility potential can be influenced by a variety of conditions that frequently coincide. Spermatozoa are particularly susceptible to oxidative damage due to their limited antioxidant capacity and cell membrane rich in polyunsaturated fatty acids (PUFAs). The role of oxidative stress (OS) in the etiology of male infertility has been the primary focus of our Stellenbosch University Reproductive Research Group (SURRG) over the last 10 years. This review aims to provide a novel insight into the impact of OS on spermatozoa and male reproductive function by reviewing the OS-related findings from a wide variety of studies conducted in our laboratory, along with those emerging from other investigators. We will provide a concise overview of the production of reactive oxygen species (ROS) and the development of OS in the male reproductive tract along with the physiological and pathological effects thereof on male reproductive functions. Recent advances in methods and techniques used for the assessment of OS will also be highlighted. We will furthermore consider the current evidence regarding the association between OS and ejaculatory abstinence period, as well as the potential mechanisms involved in the pathophysiology of various systemic diseases such as obesity, insulin resistance, hypertension, and certain mental health disorders which have been shown to cause OS induced male infertility. Finally, special emphasis will be placed on the potential for transferring and incorporating research findings emanating from different experimental studies into clinical practice.
Collapse
Affiliation(s)
- Bashir Ayad
- Department of Physiology, Faculty of Medicine, Misurata University, Misrata, Libya
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Temidayo S. Omolaoye
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nicola Louw
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Yashthi Ramsunder
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Bongekile T. Skosana
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Peter I. Oyeipo
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Physiology, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Stefan S. Du Plessis
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
34
|
MacKenzie S, Bergdahl A. Zinc Homeostasis in Diabetes Mellitus and Vascular Complications. Biomedicines 2022; 10:biomedicines10010139. [PMID: 35052818 PMCID: PMC8773686 DOI: 10.3390/biomedicines10010139] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress represents an impaired metabolic system that promotes damage to cells and tissues. This is the predominant factor that leads to the development and progression of diabetes and diabetic complications. Research has indicated that zinc plays a consequential mechanistic role in the protection against oxidative stress as zinc is required for the proper functioning of the antioxidant system, the suppression of inflammatory mediators, and the modulation of zinc transporters. Recently, the mechanisms surrounding ZnT8, ZIP7, and metallothionein have shown to be of particular pathogenic importance and are considered as potential therapeutic targets in disease management. The literature has shown that zinc dysregulation is associated with diabetes and may be considered as a leading contributor to the deleterious vascular alterations exhibited by the disease. Although further investigation is required, studies have indicated the favorable use of zinc supplementation in the protection against and prevention of oxidative stress and its consequences over the course of the condition. This review aims to provide a comprehensive account of zinc homeostasis, the oxidative mechanisms governed by zinc status, current therapeutic targets, and the impact of zinc supplementation in the prevention of disease onset and in mitigating vascular complications.
Collapse
|
35
|
Akar F, Yildirim OG, Yucel Tenekeci G, Tunc AS, Demirel MA, Sadi G. Dietary high-fructose reduces barrier proteins and activates mitogenic signalling in the testis of a rat model: Regulatory effects of kefir supplementation. Andrologia 2021; 54:e14342. [PMID: 34872158 DOI: 10.1111/and.14342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
There are limited data on the influence of fructose rich diet on the male reproductive system. Kefir may have health beneficial effects, but its mechanism of action remains mostly unclear. Herein, we investigated the impact of dietary high fructose on tight junction proteins and mitogenic pathways in rat testis as well as their modulation by kefir supplementation. Twenty-two male Wistar rats (4 weeks old) were divided into the following three groups: Control; Fructose; Fructose + Kefir. Fructose was added to drinking water at concentration of 20% and administered to the rats for 15 weeks and kefir was supplemented by gavage once a day during final 6 weeks. Dietary fructose-induced testicular degeneration was associated with the downregulation of the blood-testis barrier proteins, claudin-11 and N-cadherin as well as SIRT1 expression in testicular tissue of rats. However, p38MAPK, p-p38MAPK and p-ERK1/2 levels were increased in testis of fructose-fed rats. Interestingly, JNK1 and p-JNK1 protein levels were decreased following this dietary intervention. Raf1, ERK1/2, and caspase 3 and TUNEL staining of the testis reveal the activation of apoptosis due to fructose intake. Kefir supplementation markedly promoted the expression of claudin-11, SIRT1, JNK1 and p-JNK1 but suppressed testicular mitogenic and apoptotic factors in fructose-fed rats.
Collapse
Affiliation(s)
- Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Onur Gokhan Yildirim
- Department of Pharmacy Services, Vocational School of Health Services, Artvin Coruh University, Artvin, Turkey
| | - Gozde Yucel Tenekeci
- Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Arda Selin Tunc
- Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Murside Ayse Demirel
- Laboratory Animals Breeding and Experimental Researches Center, Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Gokhan Sadi
- Department of Biology, KO Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
36
|
Kizilay G, Bayram S, Ersoy O, Cerkezkayabekir A, Sapmaz-Metin M, Karaca T. Role of JNK, TGF-β1, Akt, IL-1β and INSL-3 in proanthocyanidin protection against apoptosis in diabetic rat testis. Biotech Histochem 2021; 97:363-371. [PMID: 34789048 DOI: 10.1080/10520295.2021.2002931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We investigated how proanthocyanidin treatment altered c-Jun N-terminal kinases, transforming growth factor beta 1, serine/threonine-specific protein kinase, interleukin 1 beta and insulin-like 3 expression in the testis of diabetic rats. We used 24 Wistar albino male rats divided into four groups. Group 1 was untreated control. Group 2 was treated with 40 mg/kg streptozotocin (STZ) for 5 days. Group 3 was treated with 40 mg/kg STZ + 250 mg/kg proanthocyanidin once daily for six weeks. Group 4 was treated with 40 mg/kg STZ + 250 mg/kg proanthocyanidin. Superoxide dismutase activity was reduced in groups 3 and 4 compared to group 2. Glutathione peroxidase activity was increased significantly in groups 3 and 4 compared to groups 1 and 2. Catalase activity was decreased in group 4 compared to group 2. We found that proanthocyanidin increased cell proliferation in diabetic testis. Phospho-JNK and TGF-β1 immunostaining was decreased groups 3 and 4 compared to group 2, while p-Akt immunostaining was increased in groups 3 and 4. The number of IL-1β immunostained cells in groups 3 and 4 was decreased compared to group 2. INSL-3 immunostaining was increased significantly in group 3 compared to group 2. Our findings indicate that proanthocyanidin ameliorated diabetes related testicular dysfunction. Proanthocyanidin contributes to a balanced oxidant-antioxidant status, and balanced proliferation and apoptosis activity in the germinal cells.
Collapse
Affiliation(s)
- Gulnur Kizilay
- Department of Histology and Embryology, School of Medicine, Trakya University, Edirne, Turkey
| | - Sinasi Bayram
- Department of Histology and Embryology, School of Medicine, Trakya University, Edirne, Turkey
| | - Onur Ersoy
- Department of Histology and Embryology, School of Medicine, Trakya University, Edirne, Turkey
| | | | - Melike Sapmaz-Metin
- Department of Histology and Embryology, School of Medicine, Trakya University, Edirne, Turkey
| | | |
Collapse
|
37
|
Dziedziak J, Kasarełło K, Cudnoch-Jędrzejewska A. Dietary Antioxidants in Age-Related Macular Degeneration and Glaucoma. Antioxidants (Basel) 2021; 10:antiox10111743. [PMID: 34829613 PMCID: PMC8614766 DOI: 10.3390/antiox10111743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Age-related macular degeneration (AMD) and glaucoma are ophthalmic neurodegenerative diseases responsible for irreversible vision loss in the world population. Only a few therapies can be used to slow down the progression of these diseases and there are no available treatment strategies for reversing the degeneration of the neural retina. In AMD, the pathological process causes the malfunction and damage of the retinal pigmented epithelium and photoreceptors in the macula. In glaucoma, damage of the retinal ganglion cells and their axons is observed and treatment strategies are limited to intraocular pressure lowering. Therefore, other prophylactic and/or therapeutic methods are needed. Oxidative stress is involved in the neurodegenerative process accompanying both AMD and glaucoma; therefore, the use of antioxidant agents would clearly be beneficial, which is supported by the decreased prevalence and progression of AMD in patients adherent to a diet naturally rich in antioxidants. Dietary antioxidants are easily available and their use is based on the natural route of administration. Many preclinical studies both in vitro and using animal models of retinal degeneration showed the efficacy of dietary antioxidants, which was further proved in clinical trials. Resveratrol is beneficial both in AMD and glaucoma animal models, but confirmed only among AMD patients. For AMD, carotenoids and omega-3 fatty acids were also proved to be sufficient in preventing neurodegeneration. For glaucoma, coenzyme Q10 and alpha-lipoic acid showed efficacy for decreasing retinal ganglion cell loss and inhibiting the accompanying destructive processes. Interestingly, the benefits of vitamins, especially vitamin E was not confirmed, neither in preclinical nor in clinical studies.
Collapse
|
38
|
Liu K, Sun T, Luan Y, Chen Y, Song J, Ling L, Yuan P, Li R, Cui K, Ruan Y, Lan R, Wang T, Wang S, Liu J, Rao K. Berberine ameliorates erectile dysfunction in rats with streptozotocin-induced diabetes mellitus through the attenuation of apoptosis by inhibiting the SPHK1/S1P/S1PR2 and MAPK pathways. Andrology 2021; 10:404-418. [PMID: 34674380 DOI: 10.1111/andr.13119] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The population with diabetes mellitus-induced erectile dysfunction is increasing rapidly, but current drugs are not effective in treating erectile dysfunction. Studies of the traditional Chinese medicine extract berberine on diabetes and its complications provide us with new ideas. OBJECTIVES To evaluate the therapeutic effect and potential mechanism of berberine on the erectile function of diabetic rats. MATERIALS AND METHODS Fifty male Sprague-Dawley rats were randomly grouped, and 42 rats were injected intraperitoneally with streptozotocin to establish a diabetes model. Erectile dysfunction rats were screened out through the apomorphine test and randomly divided into the diabetes mellitus and berberine groups, and these animals were administered berberine (200 mg/kg/day) and normal saline by gavage for 4 weeks. Primary corpus cavernous smooth muscle cells from healthy rats were cultured and treated with berberine. RESULTS Fasting blood glucose in the diabetes mellitus group was significantly increased, while berberine showed no significant effect on glucose. Erectile function was obviously impaired in the diabetes mellitus group, and berberine administration partially rescued this impairment. The expression of sphingosine kinase 1, S1PR2, and sphingosine-1-phosphate in the diabetes mellitus group was increased. Berberine partially inhibited the expression of sphingosine kinase 1 and S1PR2, but the decrease in sphingosine-1-phosphate was not significant. Moreover, mitogen-activated protein kinase pathway factor expression was upregulated and eNOS activity was decreased in the diabetes mellitus group. Berberine treatment could partially reverse these alterations. Severe fibrosis and apoptosis were detected in diabetic rats, accompanied by higher expression of TGFβ1, collagen I/IV, Bax/Bcl-2, and caspase 3 than in the other groups. However, supplementation with berberine inhibited the expression of these proteins and attenuated fibrosis and apoptosis. CONCLUSIONS Berberine ameliorated erectile dysfunction in rats with diabetes mellitus, possibly by improving endothelial function and inhibiting apoptosis and fibrosis by suppressing the sphingosine kinase 1/sphingosine-1-phosphate/S1PR2 and mitogen-activated protein kinase pathways.
Collapse
Affiliation(s)
- Kang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Luan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yinwei Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyu Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Le Ling
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Penghui Yuan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Cui
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yajun Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruzhu Lan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ke Rao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
39
|
Solgi T, Amiri I, Asl SS, Saidijam M, Seresht BM, Artimani T. Antiapoptotic and antioxidative effects of cerium oxide nanoparticles on the testicular tissues of streptozotocin-induced diabetic rats: An experimental study. Int J Reprod Biomed 2021; 19:589-598. [PMID: 34458667 PMCID: PMC8387707 DOI: 10.18502/ijrm.v19i7.9465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/18/2020] [Accepted: 12/09/2020] [Indexed: 11/24/2022] Open
Abstract
Background Cerium dioxide nanoparticles (CNPs) due to the antidiabetic and antioxidant activities are proposed for the treatment of oxidative stress-associated diseases. Objective To examine the impact of CNPs on hyperglycemia-induced apoptosis and oxidative stress in the testis of diabetic rats. Materials and Methods Twenty-four male rats were divided into four groups (n = 6/each) as diabetic rats, CNPs group, diabetic + CNPs rats, and controls. The control group was fed only mouse food and water. Rats became diabetic through receiving streptozotocin (STZ) 60 mg/kg. CNPs were given to the rats at a dose of 30 mg/kg daily for 2 wk. Malondialdehyde and total thiol group (TTG) levels were measured using spectrofluorometer. Expression of b-cell lymphoma protein 2-associated X protein (BAX) and b-cell lymphoma protein 2 (Bcl-2) were investigated using quantitative real-time polymerase chain reaction. Western blot analysis was used to examine caspase 3 protein levels. Results The content of malondialdehyde significantly increased in the STZ-diabetic rats, while TTG levels demonstrated a remarkable decrease. Caspase-3, BAX, and BAX/Bcl-2 mRNA ratio raised significantly in the STZ-diabetic rats. On the other hand, Bcl-2 mRNA levels reduced in the testis of diabetic rats (p = 0.006). Intervention with CNPs caused a substantial increase in the TTG levels, while the malondialdehyde contents, caspase-3, BAX levels, as well as BAX/Bcl-2 mRNA ratio were considerably decreased following CNPs treatment. Administration of CNPs increased mRNA levels of Bcl-2 (p < 0.0001). Conclusion CNPs treatment attenuates testicular apoptosis and oxidative stress induced by diabetes. This nanoparticle might be suggested for the treatment of diabetes-associated reproductive disorders.
Collapse
Affiliation(s)
- Torab Solgi
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Banafsheh Mirzaei Seresht
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tayebe Artimani
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
40
|
Suleiman JB, Bakar ABA, Mohamed M. Review on Bee Products as Potential Protective and Therapeutic Agents in Male Reproductive Impairment. Molecules 2021; 26:molecules26113421. [PMID: 34198728 PMCID: PMC8201164 DOI: 10.3390/molecules26113421] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/22/2022] Open
Abstract
Bee products are sources of functional food that have been used in complementary medicine to treat a variety of acute and chronic illnesses in many parts of the world. The products vary from location to location as well as country to country. Therefore, the aim of this review was to identify various bee products with potential preventive and therapeutic values used in the treatment of male reproductive impairment. We undertook a vigorous search for bee products with preventive and therapeutic values for the male reproductive system. These products included honey, royal jelly, bee pollen, bee brood, apilarnil, bee bread, bee wax, and bee venom. We also explained the mechanisms involved in testicular steroidogenesis, reactive oxygen species, oxidative stress, inflammation, and apoptosis, which may cumulatively lead to male reproductive impairment. The effects of bee pollen, bee venom, honey, propolis, royal jelly, and bee bread on male reproductive parameters were examined. Conclusively, these bee products showed positive effects on the steroidogenic, spermatogenic, oxidative stress, inflammatory, and apoptotic parameters, thereby making them a promising possible preventive and therapeutic treatment of male sub/infertility.
Collapse
Affiliation(s)
- Joseph Bagi Suleiman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (J.B.S.); (A.B.A.B.)
- Department of Science Laboratory Technology, Akanu Ibiam Federal Polytechnic, Unwana P.M.B. 1007, Afikpo, Ebonyi State, Nigeria
| | - Ainul Bahiyah Abu Bakar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (J.B.S.); (A.B.A.B.)
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (J.B.S.); (A.B.A.B.)
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence:
| |
Collapse
|
41
|
ALTamimi JZ, AlFaris NA, Aljabryn DH, Alagal RI, Alshammari GM, Aldera H, Alqahtani S, Yahya MA. Ellagic acid improved diabetes mellitus-induced testicular damage and sperm abnormalities by activation of Nrf2. Saudi J Biol Sci 2021; 28:4300-4310. [PMID: 34354412 PMCID: PMC8324935 DOI: 10.1016/j.sjbs.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 11/05/2022] Open
Abstract
Diabetes mellitus induces testicular damage, increases sperm abnormalities, and impairs reproductive dysfunction due to induction of endocrine disturbance and testicular oxidative stress. This study evaluated the reproductive protective effect of ellagic acid (EA) against testicular damage and abnormalities in sperm parameters in Streptozotocin (STZ)-induced diabetic rats (T1DM) and examined some possible mechanisms of protection. Adult male rats were segregated into 5 groups (n = 12 rat/each) as control, control + EA (50 mg/kg/day), T1DM, T1DM + EA, and T1DM + EA + brusatol (an Nrf-2 inhibitor) (2 mg/twice/week). All treatments were conducted for 12 weeks, daily. EA preserved the structure of the seminiferous tubules, prevented the reduction in sperm count, motility, and viability, reduced sperm abnormalities, and downregulated testicular levels of cleaved caspase-3 and Bax in diabetic rats. In the control and diabetic rats, EA significantly increased the circulatory levels of testosterone, reduced serum levels of FSH and LH, and upregulated Bcl-2 and all steroidogenic genes (StAr, 3β-HSD1, and 11β-HSD1). Besides, it reduced levels of ROS and MDA but increased levels of GSH and MnSOD and the transactivation of Nrf2. All these biochemical alterations induced by EA were associated with increased activity and nuclear accumulation of Nrf2. However, all these effects afforded by EA were weakened in the presence of brusatol. In conclusion, EA could be an effective therapy to alleviated DM-induced reproductive toxicity and dysfunction in rats by a potent antioxidant potential mediated by the upregulation of Nrf2.
Collapse
Affiliation(s)
- Jozaa Z ALTamimi
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nora A AlFaris
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Dalal H Aljabryn
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Reham I Alagal
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hussain Aldera
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Sultan Alqahtani
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Akarca Dizakar SÖ, Saribas GS, Tekcan A. Effects of ellagic acid in the testes of streptozotocin induced diabetic rats. Drug Chem Toxicol 2021; 45:2123-2130. [PMID: 33832387 DOI: 10.1080/01480545.2021.1908714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diabetes mellitus (DM) is a serious and common in the world health problem that leads to different complications. Changes in oxidative stress and antioxidant capacity play an important role in the pathogenesis of DM. The purpose of this study was to investigate ellagic acid (EA) treatment in diabetes induced testicular damage. In our study, 24 male Sprague Dawley rats were divided into four groups. Group 1: Control (n = 6), Group 2: EA (n = 6), Group 3: Diabet (n = 6), Group 4: Diabet + EA (n = 6). Diabetes was induced by intraperitoneal injection of streptozocin (STZ) (55 mg/kg) to group 3 and 4. EA was given 100 mg/kg/day group 2 and 4 for 35 days by oral gavage. We used that Hematoxylen-Eosin (H&E) and Johnsen's scoring to determine histological change. The terminal-deoxynucleoitidyl-transferase mediated nick end-labeling assay (TUNEL) was used for apoptosis. Oxidative stress markers were determined by qRT-PCR and immunexpression of Nrf2 was evaluated in testicular tissue. In conclusion, EA administration on the diabetes model has changed the histopathological features, apopotosis and oxidative stress marker genes in the testis and may have an effect on the reduction of diabetes induced testicular damage.
Collapse
Affiliation(s)
| | - Gulistan Sanem Saribas
- Department of Histology and Embryology, Faculty of Medicine, Ahi Evran University, Kirsehir, turkey
| | - Akın Tekcan
- Department of Medical Biology Faculty of Medicine, Amasya University, Amasya, Turkey
| |
Collapse
|
43
|
Abstract
OBJECTIVE The vast majority of type 1 diabetes leads to a higher prevalence of reproductive system's impairments. Troxerutin has attracted much attention owing to its favorable properties, including antihyperglycemic, anti-inflammatory, and antiapoptotic effects. This investigation was proposed to evaluate whether pretreatment with troxerutin could prevent apoptosis-induced testicular disorders in prepubertal diabetic rats. METHODS Fifty prepubertal male Wistar rats were randomly allocated into five groups: control (C), troxerutin (TX), diabetic (D), diabetic+troxerutin (DTX), and diabetic+insulin (DI). Diabetes was induced by 55 mg/kg of streptozotocin applied intraperitoneally. In TX and DTX groups, 150 mg/kg troxerutin was administered by oral gavage. Diabetic rats in DI group received 2-4 U NPH insulin subcutaneously. Troxerutin and insulin treatments were begun immediately on the day of diabetes confirmation. After 30 days, the testicular lipid peroxidation and antioxidant activity, apoptosis process, and stereology as well as serum glucose and insulin levels were assessed. RESULTS The results showed that diabetes caused a significant increase in the blood glucose, the number of TUNEL positive cells and tubules, and the malondialdehyde level as well as a significant decrease in serum insulin level compared to controls. The stereological analysis also revealed various alterations in diabetic rats compared to controls. Troxerutin treatment improved these alterations compared to the diabetic group. CONCLUSION Troxerutin-pretreatment may play an essential role in the management of the type-1 diabetes-induced testicular disorders by decreasing blood glucose and modulating apoptosis.
Collapse
|
44
|
Zhao LL, Makinde EA, Olatunji OJ. Protective effects of ethyl acetate extract from Shorea roxburghii against diabetes induced testicular damage in rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:374-385. [PMID: 33058396 DOI: 10.1002/tox.23043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/15/2020] [Accepted: 10/03/2020] [Indexed: 05/06/2023]
Abstract
Diabetic mellitus is a chronic metabolic disorder that is associated with several complications including testicular dysfunction. This research investigated the protective action of the ethyl acetate extract from Shorea roxburghii (SRE) on diabetes induced testicular damage in rats. Diabetic rats were orally administered with SRE at doses of 100 and 400 mg/kg for 4 weeks. SRE improved the body weight gain, testes weight, testes index and increased serum concentration of testosterone. Furthermore, SRE increased the testicular antioxidant enzymes including superoxide dismutase, catalase and glutathione peroxidase. In addition, SRE ameliorated testicular inflammatory mediators such as myeloperoxidase, tumor necrosis factor alpha, interleukin 6, p38 MAPK and nuclear factor kappa B activation and decreased testicular cell apoptosis in the treated diabetic rats. SRE also raised sperm parameters after treatment of diabetic rats. Conclusively, our results suggested that SRE ameliorated diabetes induced testicular damage by inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Ling-Ling Zhao
- Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | | | | |
Collapse
|
45
|
Abdel-Wahhab MA, Hassan MA, El-Nekeety AA, Abdel-Azeim SH, Hassan NS, Jaswir I, Salleh HM. Zinc loaded whey protein nanoparticles mitigate the oxidative stress and modulate antioxidative gene expression in testicular tissues in rats. J Drug Deliv Sci Technol 2021; 61:102322. [DOI: 10.1016/j.jddst.2021.102322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Anbara H, Sheibani MT, Razi M, Kian M. Insight into the mechanism of aspartame-induced toxicity in male reproductive system following long-term consumption in mice model. ENVIRONMENTAL TOXICOLOGY 2021; 36:223-237. [PMID: 32951320 DOI: 10.1002/tox.23028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Aspartame is one of the most common consumed artificial sweeteners utilized in many food products and beverages. It has been indicated that long-term consumption of aspartame leads to reproductive toxicity but its mechanism is not well-clear. In this study we investigated mechanism of aspartame-induced reproductive toxicity in male mice. For this purpose, 36 NMRI mature male mice received three doses of 40, 80, and 160 mg/kg body weight of aspartame, respectively per day by gavage for 90 days and also a control group was considered which received 0.5 mL of normal saline as the same route. The results revealed that long-term administration of aspartame at high doses significantly (P < .05) reduced gonadosomatic index, serum concentration of pituitary-testicular axis hormones (FSH, LH, and testosterone). It also decreased sperm parameters and total antioxidant capacity, antioxidant enzyme activities (superoxide dismutase, catalase, and glutathione peroxidase), while it caused increase in nitric oxide and malondialdehyde levels in testis tissue and sperm samples. Also, it decreased attenuated testicular histomorphometric indices (tubular differentiation index, spermiogenesis index, and repopulation index), and steroidogenic foci, while increased mRNA damages and apoptosis rate, downregulated antiapoptotic (Bcl-2) and upregulated proapoptotic (P53, BAX, and caspase-3) mediators respectively in testis. These findings indicated that consumption of aspartame for a long period results in male reproductive toxicity by decrease in serum concentration of pituitary-testis axis hormones and induction of oxidative stress and apoptosis in testis.
Collapse
Affiliation(s)
- Hojat Anbara
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Taghi Sheibani
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mazdak Razi
- Department of Comparative Histology & Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mehdi Kian
- Department of Comparative Biomedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
47
|
Oyagbemi AA, Ajibade TO, Aboua YG, Gbadamosi IT, Adedapo ADA, Aro AO, Adejumobi OA, Thamahane-Katengua E, Omobowale TO, Falayi OO, Oyagbemi TO, Ogunpolu BS, Hassan FO, Ogunmiluyi IO, Ola-Davies OE, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Kayoka-Kabongo PN, Oguntibeju OO, Yakubu MA. Potential health benefits of zinc supplementation for the management of COVID-19 pandemic. J Food Biochem 2021; 45:e13604. [PMID: 33458853 PMCID: PMC7995057 DOI: 10.1111/jfbc.13604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent for the Coronavirus Disease 2019 (COVID-19). The COVID-19 pandemic has created unimaginable and unprecedented global health crisis. Since the outbreak of COVID-19, millions of dollars have been spent, hospitalization overstretched with increasing morbidity and mortality. All these have resulted in unprecedented global economic catastrophe. Several drugs and vaccines are currently being evaluated, tested, and administered in the frantic efforts to stem the dire consequences of COVID-19 with varying degrees of successes. Zinc possesses potential health benefits against COVID-19 pandemic by improving immune response, minimizing infection and inflammation, preventing lung injury, inhibiting viral replication through the interference of the viral genome transcription, protein translation, attachment, and host infectivity. However, this review focuses on the various mechanisms of action of zinc and its supplementation as adjuvant for vaccines an effective therapeutic regimen in the management of the ravaging COVID-19 pandemic. PRACTICAL APPLICATIONS: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent for the Coronavirus Disease 2019 (COVID-19), has brought unprecedented untold hardship to both developing and developed countries. The global race for vaccine development against COVID-19 continues with success in sight with attendant increasing hospitalization, morbidity, and mortality. Available drugs with anti-inflammatory actions have become alternative to stem the tide of COVID-19 with attendant global financial crises. However, Zinc is known to modulate several physiological functions including intracellular signaling, enzyme function, gustation, and olfaction, as well as reproductive, skeletal, neuronal, and cardiovascular systems. Hence, achieving a significant therapeutic approach against COVID-19 could imply the use of zinc as a supplement together with available drugs and vaccines waiting for emergency authorization to win the battle of COVID-19. Together, it becomes innovative and creative to supplement zinc with currently available drugs and vaccines.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Yapo Guillaume Aboua
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | | | | | - Abimbola Obemisola Aro
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Olumuyiwa Abiola Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Emma Thamahane-Katengua
- Department of Health Information Management, Faculty of Health and Education, Botho University, Gaborone, Botswana
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Taiwo Olaide Oyagbemi
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Fasilat Oluwakemi Hassan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Iyanuoluwa Omolola Ogunmiluyi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sanah Malomile Nkadimeng
- Phytomedicine Programme, Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Prudence Ngalula Kayoka-Kabongo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Oxidative Stress Research Centre, Cape Peninsula University of Technology, Bellville, South Africa
| | - Momoh Audu Yakubu
- Vascular Biology Unit, Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Center for Cardiovascular Diseases, Texas Southern University, Houston, TX, USA
| |
Collapse
|
48
|
Yu L, Liu Y, Jin Y, Liu T, Wang W, Lu X, Zhang C. Zinc Supplementation Prevented Type 2 Diabetes-Induced Liver Injury Mediated by the Nrf2-MT Antioxidative Pathway. J Diabetes Res 2021; 2021:6662418. [PMID: 34307690 PMCID: PMC8279848 DOI: 10.1155/2021/6662418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 12/03/2022] Open
Abstract
Zinc is an essential trace element that is often reduced under the type 1 diabetic condition. Previous studies demonstrated that zinc deficiency enhanced type 1 diabetes-induced liver injury and that zinc supplementation significantly helped to prevent this. Due to the differences in pathogenesis between type 1 and type 2 diabetes, it is unknown whether zinc supplementation can induce a beneficial effect on type 2 diabetes-induced liver injury. This possible protective mechanism was investigated in the present study. A high-fat diet, along with a one-time dose of streptozotocin, was applied to metallothionein (MT) knockout mice, nuclear factor-erythroid 2-related factor (Nrf) 2 knockout mice, and age-matched wild-type (WT) control mice, in order to induce type 2 diabetes. This was followed by zinc treatment at 5 mg/kg body weight given every other day for 3 months. Global metabolic disorders of both glucose and lipids were unaffected by zinc supplementation. This induced preventive effects on conditions caused by type 2 diabetes like oxidative stress, apoptosis, the subsequent hepatic inflammatory response, fibrosis, hypertrophy, and hepatic dysfunction. Additionally, we also observed that type 2 diabetes reduced hepatic MT expression, while zinc supplementation induced hepatic MT expression. This is a crucial antioxidant. A mechanistic study showed that MT deficiency blocked zinc supplementation-induced hepatic protection under the condition of type 2 diabetes. This suggested that endogenous MT is involved in the hepatic protection of zinc supplementation in type 2 diabetic mice. Furthermore, zinc supplementation-induced hepatic MT increase was unobserved once Nrf2 was deficient, indicating that Nrf2 mediated the upregulation of hepatic MT in response to zinc supplementation. Results of this study indicated that zinc supplementation prevented type 2 diabetes-induced liver injury through the activation of the Nrf2-MT-mediated antioxidative pathway.
Collapse
Affiliation(s)
- Lechu Yu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yichun Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Tinghao Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Wenhan Wang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuemian Lu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chi Zhang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
49
|
Wankeu-Nya M, Florea A, Bâlici Ş, Matei H, Watcho P, Kamanyi A. Cytoarchitectural improvement in Leydig cells of diabetic rats after treatment with aqueous and ethanol extracts of Dracaena arborea (Dracaenaceae). J Tradit Complement Med 2021; 11:1-8. [PMID: 33511056 PMCID: PMC7817706 DOI: 10.1016/j.jtcme.2019.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND AIM Recent studies have demonstrated the androgenic effects of Dracaena arborea in castrated and diabetic rats, but the cytoarchitectural mechanism at the level of Leydig cells (LCs) justifying this improvement in androgens production in diabetic rats has never been examined. We investigated the effects of aqueous and ethanol extracts of D. arborea on diabetes-induced cytoarchitectural impairments of LCs in rats. EXPERIMENTAL PROCEDURE Besides a normal group, 4 groups of diabetic rats were treated orally with Millipore water (10 ml/kg, diabetic), sildenafil citrate (1.44 mg/kg), aqueous (500 mg/kg) and ethanol (100 mg/kg) extracts of D. arborea for 21 days. On day 22, rats were sacrificed and the testes were removed and prepared for electron microscopic analyses of LCs ultrastructure. RESULTS AND CONCLUSION The ultrastructure of LCs in control rats was normal, while that in diabetic rats exhibited large heterochromatization in the nuclei, reduced amount of smooth endoplasmic reticulum with no lipid droplets in the cytoplasm, many autophagosomes and degenerated mitochondria containing lots of electron dense granules in the matrix. Interestingly, treatment with D. arborea especially its aqueous extract (500 mg/kg) alleviated these impairments, characterized by a rarification of heterochromatization in the nuclei coupled to an increase and the presence in the cytoplasm of prominent smooth endoplasmic reticulum and a reduction of electron dense granules in the matrix of mitochondria. These alleviating properties of D. arborea on LCs ultrastructure of diabetic rats could explain its androgenic potential. These results are useful for the management of patients suffering from diabetes-induced hypogonadism.
Collapse
Affiliation(s)
- Modeste Wankeu-Nya
- Animal Organisms Biology and Physiology Laboratory, Faculty of Science, University of Douala, P.O. BOX, 24157, Douala, Cameroon
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 L. Pasteur St, Cluj-Napoca, 400359, Romania
| | - Ştefana Bâlici
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 L. Pasteur St, Cluj-Napoca, 400359, Romania
| | - Horea Matei
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 L. Pasteur St, Cluj-Napoca, 400359, Romania
| | - Pierre Watcho
- Animal Physiology and Phytopharmacology Laboratory, University of Dschang, P.O. BOX 67, Dschang, Cameroon
| | - Albert Kamanyi
- Animal Physiology and Phytopharmacology Laboratory, University of Dschang, P.O. BOX 67, Dschang, Cameroon
| |
Collapse
|
50
|
Gaderpour S, Ghiasi R, Hamidian G, Heydari H, Keyhanmanesh R. Voluntary exercise improves spermatogenesis and testicular apoptosis in type 2 diabetic rats through alteration in oxidative stress and mir-34a/SIRT1/p53 pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:58-65. [PMID: 33643571 PMCID: PMC7894640 DOI: 10.22038/ijbms.2020.49498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/07/2020] [Indexed: 11/02/2022]
Abstract
OBJECTIVES This research was designed to demonstrate the impact of voluntary exercise on sperm parameters including sperm count, morphology, motility, viability, testicular apoptosis, oxidative stress, and the mir-34a/SIRT1/p53 pathway in type 2 diabetic rats. MATERIALS AND METHODS 32 Wistar male rats were separated into four groups: control (C), voluntary exercise (VE), diabetic (D), and diabetic rats that performed voluntary exercise (VED). To induce diabetes, animals were injected with streptozotocin (35 mg/kg) after receiving a high-fat diet. The testicular protein levels of SIRT1 and P53, miR-34a expression, MDA, GPx, SOD, catalase, and sperm parameters were evaluated. RESULTS Diabetes caused increased testicular MDA content, miR-34a expression, acetylated p53 protein expression, and the percent of immotile sperm (P<0.01 to P<0.001) as well as reduced testicular GPx, SOD and catalase activities, SIRT1 protein expression, and sperm parameters (P<0.05 to P<0.001). Voluntary exercise reduced testicular MDA content, miR-34a, and acetylated p53 protein expression compared with the D group (P<0.001), however, GPx, SOD, catalase activities, and sperm parameters in voluntarily exercised rats were elevated compared with diabetic rats (P<0.05 to P<0.001). CONCLUSION It seems that voluntary exercise has significant positive impacts that can be employed to reduce the complications of type 2 diabetes in the testis of male rats.
Collapse
Affiliation(s)
- Saber Gaderpour
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafighe Ghiasi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Golamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hamed Heydari
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|