1
|
Phelps DW, Connors AM, Ferrero G, DeWitt JC, Yoder JA. Per- and polyfluoroalkyl substances alter innate immune function: evidence and data gaps. J Immunotoxicol 2024; 21:2343362. [PMID: 38712868 PMCID: PMC11249028 DOI: 10.1080/1547691x.2024.2343362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a large class of compounds used in a variety of processes and consumer products. Their unique chemical properties make them ubiquitous and persistent environmental contaminants while also making them economically viable and socially convenient. To date, several reviews have been published to synthesize information regarding the immunotoxic effects of PFASs on the adaptive immune system. However, these reviews often do not include data on the impact of these compounds on innate immunity. Here, current literature is reviewed to identify and incorporate data regarding the effects of PFASs on innate immunity in humans, experimental models, and wildlife. Known mechanisms by which PFASs modulate innate immune function are also reviewed, including disruption of cell signaling, metabolism, and tissue-level effects. For PFASs where innate immune data are available, results are equivocal, raising additional questions about common mechanisms or pathways of toxicity, but highlighting that the innate immune system within several species can be perturbed by exposure to PFASs. Recommendations are provided for future research to inform hazard identification, risk assessment, and risk management practices for PFASs to protect the immune systems of exposed organisms as well as environmental health.
Collapse
Affiliation(s)
- Drake W. Phelps
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Ashley M. Connors
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC
| | - Giuliano Ferrero
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
| | - Jamie C. DeWitt
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| |
Collapse
|
2
|
Zeldin J, Ratley G, Shobnam N, Myles IA. The clinical, mechanistic, and social impacts of air pollution on atopic dermatitis. J Allergy Clin Immunol 2024; 154:861-873. [PMID: 39151477 PMCID: PMC11456380 DOI: 10.1016/j.jaci.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
Atopic dermatitis (AD) is a complex disease characterized by dry, pruritic skin and significant atopic and psychological sequelae. Although AD has always been viewed as multifactorial, early research was dominated by overlapping genetic determinist views of either innate barrier defects leading to inflammation or innate inflammation eroding skin barrier function. Since 1970, however, the incidence of AD in the United States has increased at a pace that far exceeds genetic drift, thus suggesting a modern, environmental etiology. Another implicated factor is Staphylococcus aureus; however, a highly contagious microorganism is unlikely to be the primary etiology of a noncommunicable disease. Recently, the roles of the skin and gut microbiomes have received greater attention as potentially targetable drivers of AD. Here too, however, dysbiosis on a population scale would require induction by an environmental factor. In this review, we describe the evidence supporting the environmental hypothesis of AD etiology and detail the molecular mechanisms of each of the AD-relevant toxins. We also outline how a pollution-focused paradigm demands earnest engagement with environmental injustice if the field is to meaningfully address racial and geographic disparities. Identifying specific toxins and their mechanisms can also inform in-home and national mitigation strategies.
Collapse
Affiliation(s)
- Jordan Zeldin
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Grace Ratley
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Nadia Shobnam
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Ian A Myles
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
3
|
Yao D, Shao J, Jia D, Sun W. Immunotoxicity of legacy and alternative per- and polyfluoroalkyl substances on zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124511. [PMID: 38977121 DOI: 10.1016/j.envpol.2024.124511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/10/2024]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA) and perfluoroethylcyclohexane sulfonate (PFECHS) are increasingly used as alternatives for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). However, their immunotoxicity and underlying molecular mechanisms remain poorly understood. Here, to assess immunotoxic effects, zebrafish embryos were exposed to environmentally relevant concentrations of PFOA, PFOS, HFPO-DA, and PFECHS for four days. Results revealed that all four per- and polyfluoroalkyl substances (PFAS) resulted in decreased heart rate and spontaneous movement, and induced oxidative stress in zebrafish larvae. Notably, HFPO-DA exhibited more severe oxidative stress than PFOA. Immune dysfunction was observed, characterized by elevated cytokine, complement factor, nitric oxide, and neutrophil content, along with a significant decrease in lysozyme content. Transcriptomic analysis revealed the activation of Toll-like receptor (TLR)/NOD-like receptor (NLR)/RIG-I-like receptor (RLR) and associated downstream genes, indicating their pivotal role in PFAS-induced immunomodulation. Molecular docking simulations demonstrated stable interactions between PFAS and key receptors (TLR2, NOD2 and RIG-I). Overall, HFPO-DA and PFECHS exhibited immunotoxic effects in zebrafish larvae similar to legacy PFAS, providing important information for understanding the toxic mode of action of these emerging alternatives.
Collapse
Affiliation(s)
- Dengdiao Yao
- College of Animal Science, Guizhou University, The Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Jian Shao
- College of Animal Science, Guizhou University, The Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Dantong Jia
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China.
| |
Collapse
|
4
|
Rafiee A, Faridi S, Sly PD, Stone L, Kennedy LP, Mahabee-Gittens EM. Asthma and decreased lung function in children exposed to perfluoroalkyl and polyfluoroalkyl substances (PFAS): An updated meta-analysis unveiling research gaps. ENVIRONMENTAL RESEARCH 2024; 262:119827. [PMID: 39182754 DOI: 10.1016/j.envres.2024.119827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND AND OBJECTIVE Associations between exposure to per- and polyfluoroalkyl substances (PFAS) and pediatric asthma and reduced lung function in children are mixed and inconclusive. The study objective was to examine the extant research on exposure to PFAS and the diagnosis of asthma or decreased lung function in children <17 years of age to highlight what is known and to identify research gaps for future investigations. METHODS The present review was registered on the PROSPER database (CRD42023407172). We systematically searched several bibliographic databases (Scopus, Embase, Web of Science (core Collection), Medline, and CINAHL) along with grey literature sources in January 2023 to find relevant studies before this date. The National Toxicology Program's Office of Health Assessment and Translation (NTP OHAT) tool was applied to assess the risk of bias (RoB) assessment. We used a random-effects meta-analysis to assess the associations. From 12 observational epidemiological studies (out of 513) explored for qualitative analyses, 4 studies were included in quantitative analyses. RESULTS The meta-analysis revealed a significant association between exposures to perfluorooctanoate (PFOA) with the prevalence of children's asthma [Odds Ratios (OR) = 1.162 (95% CI: 1.004-1.321)] whereas the association for perfluorooctane sulfonate (PFOS) was not statistically significant [OR = 1.03 (95%CI: 0.806-1.265]. The narrative synthesis results of the four included studies that examined the effects of PFAS exposure on lung function did not demonstrate significant associations between exposure to PFAS and decreased lung function. The RoB for most included studies was assessed as probably low without serious limitations. However, two studies were at high risk of biases. CONCLUSION Our findings suggest that children who are exposed to PFOA are at a higher risk of developing asthma as well as the association between exposure to PFOS with impaired lung function. Large longitudinal studies with homogeneous PFAS exposures and standardized outcome measures are needed to ascertain these outcomes with improved certainty as well as toxicological studies to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Ata Rafiee
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Lara Stone
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lynsey P Kennedy
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - E Melinda Mahabee-Gittens
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Hu P, Zhang Z, Yu X, Wang Y. 5-Hydroxymethylfurfural Ameliorates Allergic Inflammation in HMC-1 Cells by Inactivating NF-κB and MAPK Signaling Pathways. Biochem Genet 2024; 62:1521-1538. [PMID: 37648883 DOI: 10.1007/s10528-023-10492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/06/2023] [Indexed: 09/01/2023]
Abstract
Allergic inflammation is the foundation of multiple allergic disorders, such as allergic rhinitis and asthma. Mast cells are effector cells that initiate inflammatory response. 5-hydroxymethylfurfural (5-HMF), a furfural compound, is the heat-processed product of various fruit, foods, drinks, as well as some Chinese herbal medicines. 5-HMF was previously reported to inhibit mast cell activation. Our study aimed to explore the functions of 5-HMF in both phorbol 12-mystate 13-acetate (PMA) plus calcium ionophore (A23187)-induced allergic inflammation in human mast cell line HMC-1 and ovalbumin (OVA)-induced asthma mouse models. HMC-1 cells were pretreated with 5-HMF and then stimulated by PMA+A23187. The cytotoxicity of 5-HMF on HMC-1 cells was evaluated by MTT assay. Histamine content in cell supernatants was measured by the o-phthaldialdehyde spectrofluorometric procedure. Intracellular calcium was determined using the fluorescent dye Fura-2AM. The production and expression of pro-inflammatory cytokines were detected by ELISA and RT-qPCR. Caspase-1 colorimetric assay was employed to examine the enzymatic activity of caspase-1. Asthma mouse models were induced by OVA sensitization. The bronchoalveolar lavage fluid (BALF) and blood samples were collected for the detection of total and differential cell count as well as aspartate aminotransferase (AST), alanine aminotransferase (ALT), OVA-immunoglobulin E (OVA-IgE), OVA-immunoglobulin G1 (OVA-IgG1), and pro-inflammatory cytokine levels. The left lung of mouse was dissected for histopathological examination by hematoxylin and eosin (H&E) staining. The protein expression of pro-caspase-1 and the phosphorylation of NF-κB and MAPK pathway-associated molecules were assessed by Western blotting. Our findings revealed that 5-HMF efficiently suppressed the PMA+A23187-induced enhancement in histamine production and intracellular calcium in HMC-1 cells. Pro-inflammatory cytokine production and expression in HMC-1 cells were elevated after PMA plus A23187 stimulation, which, however, were inhibited by pretreatment of 5-HMF. Additionally, 5-HMF suppressed the activity of caspase-1 and the phosphorylation of NF-κB and MAPK-associated molecules including p65 NF-κB, p38 MAPK, ERK, and JNK in HMC-1 cells. In vivo experiments demonstrated that 5-HMF treatment reduced the lung/body weight index and total and differential (macrophages, neutrophils, lymphocytes, and eosinophils) cell counts in BALF of asthmatic mice, but exerted no influence on serum AST and ALT levels. Besides, 5-HMF reduced serum OVA-IgE and OVA-IgG1 levels, mitigated lung inflammation, and inhibited the NF-κB and MAPK signaling pathways in asthma mouse models. 5-HMF mitigates allergic inflammation in asthma by inactivating caspase-1 and NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Pan Hu
- Department of Emergency, Hubei Provincial Hospital of TCM, No. 4, Huayuan Mountain, Wuchang District, Wuhan, 430000, Hubei, China
| | - Zhuo Zhang
- Department of Emergency, Hubei Provincial Hospital of TCM, No. 4, Huayuan Mountain, Wuchang District, Wuhan, 430000, Hubei, China
| | - Xiaolin Yu
- Department of Pediatrics, Hubei Provincial Hospital of TCM, Wuhan, 430000, Hubei, China
| | - Yinglin Wang
- Department of Emergency, Hubei Provincial Hospital of TCM, No. 4, Huayuan Mountain, Wuchang District, Wuhan, 430000, Hubei, China.
| |
Collapse
|
6
|
Duque-Wilckens N, Maradiaga N, Szu-Ying Y, Joseph D, Srinavasan V, Thelen K, Sotomayor F, Durga K, Nestler E, Moeser AJ, Robison AJ. Activity-dependent FosB gene expression negatively regulates mast cell functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592755. [PMID: 38766119 PMCID: PMC11100602 DOI: 10.1101/2024.05.06.592755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Mast cells are innate immune cells that play a crucial role in numerous physiological processes across tissues by releasing pre-stored and newly synthesized mediators in response to stimuli, an activity largely driven by changes in gene expression. Given their widespread influence, dysfunction in mast cells can contribute to a variety of pathologies including allergies, long COVID, and autoimmune and neuroinflammatory disorders. Despite this, the specific transcriptional mechanisms that control mast cell mediator release remain poorly understood, significantly hindering the development of effective therapeutic strategies. We found that the two proteins encoded by the transcription factor FosB, FOSB and the highly stable variant ΔFOSB, are robustly expressed upon stimulation in both murine and human mast cell progenitors. Motivated by these findings, we generated a novel mouse model with targeted ablation of FosB gene expression specifically in mast cells (MC FosB- ) by crossing a mast cell-specific Cre reporter line (Mcpt5-Cre) with a Cre-dependent floxed FosB mouse lines. We found that mast cell progenitors derived from MC FosB- mice, compared to wild types (WT), exhibit baseline increased histamine content and vesicle numbers. Additionally, they show enhanced calcium mobilization, degranulation, and histamine release following allergy-related IgE-mediated stimulation, along with heightened IL-6 release in response to infection-like LPS stimulation. In vivo experiments with IgE- mediated and LPS challenges revealed that MC FosB- mice experience greater drops in body temperature, heightened activation of tissue-resident mast cells, and increased release of pro-inflammatory mediators compared to their WT counterparts. These findings suggest that FosB products play a crucial regulatory role in moderating stimulus-induced mast cell activation in response to both IgE and LPS stimuli. Lastly, by integrating CUT&RUN and RNAseq data, we identified several genes targeted by ΔFOSB that could mediate these observed effects, including Mir155hg, CLCF1, DUSP4, and Trib1. Together, this study provides the first evidence that FOSB/ΔFOSB modulate mast cell functions and provides a new possible target for therapeutic interventions aimed at ameliorating mast cell-related diseases.
Collapse
|
7
|
Atagi T, Hasegawa K, Motoki N, Inaba Y, Toubou H, Shibazaki T, Nakayama SF, Kamijima M, Tsukahara T, Nomiyama T. Associations between prenatal exposure to per- and polyfluoroalkyl substances and wheezing and asthma symptoms in 4-year-old children: The Japan Environment and Children's Study. ENVIRONMENTAL RESEARCH 2024; 240:117499. [PMID: 37914018 DOI: 10.1016/j.envres.2023.117499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
The effects of early-life exposure to per- and polyfluoroalkyl substances (PFAS) on the onset of asthma in children have been unclear. We examined the association between prenatal PFAS exposure and wheezing and asthma symptoms among 4-year-old children in a total of 17,856 mother-child pairs from the Japan Environment and Children's Study. Maternal first-trimester serum concentrations of six PFAS were used for the exposure assessment. We defined "wheeze ever," "current wheeze," "current symptoms of severe asthma," and "asthma ever" at the age of 4 years by the responses to the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire, and "doctor-diagnosed asthma" by the response to a corresponding question. Multivariate logistic regression models were used to examine exposure-outcome associations. Our findings revealed that doubling of the PFOA concentration was associated with a reduced occurrence of "wheeze ever," yielding an adjusted odds ratio of 0.94 (95% CI: 0.90-0.98). Also, doubling in the concentrations of PFOA and PFHxS was associated with a decreased prevalence of "asthma ever," with adjusted odds ratios of 0.94 (95% CI: 0.88-1.00) and 0.95 (95% CI: 0.90-0.99), respectively. However, these associations were not significant after applying the Bonferroni correction. The estimated exposure-response curves were nearly linear with a subtle or flat slope. When stratified by the child's sex or the mother's history of asthma, most of the estimated confidence intervals were overlapped between each pair of strata. Regional stratification analysis indicated low-to-moderate heterogeneity in 12 exposure-outcome pairs and moderate-to-high heterogeneity in 9 out of the 30 examined pairs. This study found no clear associations between prenatal PFAS exposure and the prevalence of wheezing and asthma among children at the age of 4 years.
Collapse
Affiliation(s)
- Takuma Atagi
- Department of Preventive Medicine and Public Health, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Kohei Hasegawa
- Department of Preventive Medicine and Public Health, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| | - Noriko Motoki
- Center for Perinatal, Pediatric, And Environmental Epidemiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Yuji Inaba
- Center for Perinatal, Pediatric, And Environmental Epidemiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Department of Neurology, Nagano Children's Hospital, 3100 Toyoshina, Azumino, Nagano 399-8288, Japan; Life Science Research Center, Nagano Children's Hospital, 3100 Toyoshina, Azumino, Nagano 399-8288, Japan
| | - Hirokazu Toubou
- Department of Preventive Medicine and Public Health, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Takumi Shibazaki
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Teruomi Tsukahara
- Department of Preventive Medicine and Public Health, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Center for Perinatal, Pediatric, And Environmental Epidemiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Department of Occupational Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Tetsuo Nomiyama
- Department of Preventive Medicine and Public Health, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Center for Perinatal, Pediatric, And Environmental Epidemiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Department of Occupational Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| |
Collapse
|
8
|
Zell-Baran LM, Venter C, Dabelea D, Norris JM, Glueck DH, Adgate JL, Brown JM, Calafat AM, Pickett-Nairne K, Starling AP. Prenatal exposure to poly- and perfluoroalkyl substances and the incidence of asthma in early childhood. ENVIRONMENTAL RESEARCH 2023; 239:117311. [PMID: 37805178 PMCID: PMC10843093 DOI: 10.1016/j.envres.2023.117311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
EXPOSURE TO POLY: and perfluoroalkyl substances (PFAS) in early life may increase the risk of childhood asthma, but evidence has been inconsistent. We estimated associations between maternal serum concentrations of PFAS during pregnancy and clinician-diagnosed asthma incidence in offspring through age eight. We included 597 mother-child pairs with PFAS quantified in mid-pregnancy serum and childhood medical records reviewed for asthma diagnoses. We used separate Cox proportional hazards models to assess the relationship between log-transformed concentrations of five PFAS and the incidence of asthma. We estimated associations between the PFAS mixture and clinician-diagnosed asthma incidence using quantile-based g-computation. PFAS concentrations were similar to those among females in the US general population. Seventeen percent of children (N = 104) were diagnosed with asthma during follow-up. Median (interquartile range) duration of follow-up was 4.7 (4.0, 6.2) years, and median age at asthma diagnosis was 1.7 (0.9, 2.8) years. All adjusted hazard ratios (HRs) were elevated, but all 95% confidence intervals (CI) included the null. The HR (95% CI) of asthma for a one-quartile increase in the PFAS mixture was 1.17 (0.86, 1.61). In this cohort of children followed to eight years of age, prenatal PFAS concentrations were not significantly associated with incidence of clinician-diagnosed asthma.
Collapse
Affiliation(s)
- Lauren M Zell-Baran
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Environmental and Occupational Health Sciences, National Jewish Health, Denver, CO, USA.
| | - Carina Venter
- Section of Allergy and Immunology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah H Glueck
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kaci Pickett-Nairne
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Manera M, Castaldelli G, Giari L. Perfluorooctanoic Acid Promotes Recruitment and Exocytosis of Rodlet Cells in the Renal Hematopoietic Tissue of Common Carp. TOXICS 2023; 11:831. [PMID: 37888682 PMCID: PMC10611324 DOI: 10.3390/toxics11100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants, with perfluorooctanoic acid (PFOA) being a prominent member. PFOA poses a risk to aquatic ecosystems and human health due to its presence in water, environmental persistence, and bioaccumulation. Since rodlet cells (RCs) have emerged as potential biomarkers for chemical stressors, this study aimed to investigate the effects of sub-chronic PFOA exposure on RCs in the renal hematopoietic tissue of common carp. Three groups of fish were used: an unexposed control group and two groups exposed to environmentally relevant (200 ng L-1) and elevated (2 mg L-1) PFOA concentrations. Light and transmission electron microscopy were employed to assess RCs' distribution patterns and exocytosis, while biometry quantified RCs in the hematopoietic tissue. The results showed that, even at environmentally relevant concentrations, PFOA significantly influenced RCs' distribution patterns, leading to increased occurrence and cluster formation, as well as heightened exocytosis activity. This research highlights PFOA's immunotoxicity in fish and suggests the potential of RCs as sentinel cells in the immunological response to environmental contaminants. These findings enhance our understanding of PFAS toxicity and emphasise the importance of monitoring their impact on fish as representative vertebrates and reliable animal models.
Collapse
Affiliation(s)
- Maurizio Manera
- Department of Biosciences, Food and Environmental Technologies, University of Teramo, St. R. Balzarini 1, 64100 Teramo, Italy
| | - Giuseppe Castaldelli
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy; (G.C.); (L.G.)
| | - Luisa Giari
- Department of Environmental and Prevention Sciences, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy; (G.C.); (L.G.)
| |
Collapse
|
10
|
Tan Y, Taibl KR, Dunlop AL, Barr DB, Panuwet P, Yakimavets V, Kannan K, Corwin EJ, Ryan PB, Eatman JA, Liang D, Eick SM. Association between a Mixture of Per- and Polyfluoroalkyl Substances (PFAS) and Inflammatory Biomarkers in the Atlanta African American Maternal-Child Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13419-13428. [PMID: 37649345 PMCID: PMC10900195 DOI: 10.1021/acs.est.3c04688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been identified as environmental contributors to adverse birth outcomes. One potential mechanistic pathway could be through PFAS-related inflammation and cytokine production. Here, we examined associations between a PFAS mixture and inflammatory biomarkers during early and late pregnancy from participants enrolled in the Atlanta African American Maternal-Child Cohort (N = 425). Serum concentrations of multiple PFAS were detected in >90% samples at 8-14 weeks gestation. Serum concentrations of interferon-γ (IFN-γ), interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP) were measured at up to two time points (8-14 weeks and 24-30 weeks gestation). The effect of the PFAS mixture on each inflammatory biomarker was examined using quantile g-computation, Bayesian kernel machine regression (BKMR), Bayesian Weighted Sums (BWS), and weighted quantile sum (WQS) regression. Across all models, the PFAS mixture was associated with increased IFN-γ, IL-10, and TNF-α at both time points, with the strongest effects being observed at 24-30 weeks. Using quantile g-computation, increasing concentrations of a PFAS mixture were associated with a 29% (95% confidence interval = 18.0%, 40.7%) increase in TNF-α at 24-30 weeks. Similarly, using BWS, the PFAS mixture was associated with increased TNF-α at 24-30 weeks (summed effect = 0.29, 95% highest posterior density = 0.17, 0.41). The PFAS mixture was also positively associated with TNF-α at 24-30 weeks using BKMR [75th vs 50th percentile: 17.1% (95% credible interval = 7.7%, 27.4%)]. Meanwhile, PFOS was consistently the main drivers of overall mixture effect across four methods. Our findings indicated an increase in prenatal PFAS exposure is associated with an increase in multiple pro-inflammatory cytokines, potentially contributing to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Kaitlin R. Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Anne L. Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, 30329, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY, 10016, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, 10016, NY, USA
| | | | - P. Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Jasmin A. Eatman
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Stephanie M. Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| |
Collapse
|
11
|
Pérez Gómez AA, Wang M, Kochan K, Amstalden K, Young CR, Welsh CJ, Phillips TD, Brinkmeyer-Langford CL. C57BL/6J mice exposed to perfluorooctanoic acid demonstrate altered immune responses and increased seizures after Theiler's murine encephalomyelitis virus infection. Front Immunol 2023; 14:1228509. [PMID: 37600798 PMCID: PMC10434537 DOI: 10.3389/fimmu.2023.1228509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Neurological diseases can stem from environmental influences such as antecedent viral infections or exposure to potential toxicants, some of which can trigger immune responses leading to neurological symptoms. Theiler's murine encephalomyelitis virus (TMEV) is used to model human neurological conditions associated with prior viral infections, with outcomes partly attributable to improper induction and regulation of the immune response. Perfluorooctanoic acid (PFOA) can alter pathologies known to influence neurological disease such as inflammatory responses, cytokine expression, and glial activation. Co-exposure to TMEV and PFOA was used to test the hypothesis that early life exposure to the potential immunotoxicant PFOA would affect immune responses so as to render TMEV-resistant C57BL/6J (B6) mice susceptible to viral-induced neurological disease. Methods Neonate B6 mice were exposed to different treatments: non-injected, sham-infected with PBS, and TMEV-infected, with the drinking water of each group including either 70 ppt PFOA or filtered water. The effects of PFOA were evaluated by comparing neurological symptoms and changes in immune-related cytokine and chemokine production induced by viral infection. Immune responses of 23 cytokines and chemokines were measured before and after infection to determine the effects of PFOA exposure on immune response. Results Prior to infection, an imbalance between Th1, Th2, and Treg cytokines was observed in PFOA-exposed mice, suppressing IL-4 and IL-13 production. However, the balance was restored and characterized by an increase in pro-inflammatory cytokines in the non-infected group, and a decrease in IL-10 in the PFOA + TMEV group. Furthermore, the PFOA + TMEV group experienced an increase in seizure frequency and severity. Discussion Overall, these findings provide insight into the complex roles of immune responses in the pathogenesis of virus-associated neurological diseases influenced by co-exposures to viruses and immunotoxic compounds.
Collapse
Affiliation(s)
- Aracely A. Pérez Gómez
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Meichen Wang
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Kelli Kochan
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, United States
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Timothy D. Phillips
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Candice L. Brinkmeyer-Langford
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Coperchini F, De Marco G, Croce L, Denegri M, Greco A, Magri F, Tonacchera M, Imbriani M, Rotondi M, Chiovato L. PFOA, PFHxA and C6O4 differently modulate the expression of CXCL8 in normal thyroid cells and in thyroid cancer cell lines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63522-63534. [PMID: 37052835 DOI: 10.1007/s11356-023-26797-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 03/30/2023] [Indexed: 05/11/2023]
Abstract
Industrial chemical PFAS are persistent pollutants. Long chain PFAS were taken out of production due to their risk for human health, however, new congeners PFAS have been introduced. The in vitro effects of the long-chain PFOA, the short-chain PFHxA and the new-generation C6O4 were evaluated in normal and in thyroid cancer cell lines in terms of cell viability and proliferation, and secretion of a pro-tumorigenic chemokine (CXCL8), both at the mRNA and at the protein level. The Nthy-ory 3-1 normal-thyroid cell line, the TPC-1 and the 8505C (RET/PTC rearranged and BRAFV600e mutated, respectively) thyroid-cancer cell lines were exposed to increasing concentrations of each PFAS in a time-course. We evaluated viability using WST-1 (confirmed by AnnexinV/PI) and proliferation using the cristal-violet test. To evaluate CXCL8 mRNA we used RT-PCR and measured CXCL8 in the supernatants by ELISA. The exposure to none PFAS did not affect thyroid cells viability (except for a reduction of 8505C cells viability after 144 h) or proliferation. Individual PFAS differently modulated CXCL8 mRNA and protein level. PFOA increased CXCL8 both at mRNA and protein level in the three cell lines; PFHxA increased CXCL8 mRNA in the three cell lines, but increased the protein only in TPC-1 cells; C6O4 increased the CXCL8 mRNA only in thyroid cancer cell lines, but never increased the CXCL8 protein. The results of the present study indicate that the in vitro exposure to different PFAS may modulate both at the mRNA and secreted protein levels of CXCL8 in normal and cancer thyroid cells. Strikingly different effects emerged according to the specific cell type and to the targeted analyte (CXCL8 mRNA or protein).
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia (PV), 27100, Italy
| | - Giuseppina De Marco
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Pisa (PI), via Paradisa 2, 56124, Pisa, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia (PV), 27100, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia (PV), 27100, Italy
- NBFC, National Biodiversity Future Center, Palermo (PA), 90133, Italy
| | - Marco Denegri
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Molecular Cardiology, 27100, Pavia (PV), Italy
| | - Alessia Greco
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia (PV), 27100, Italy
| | - Flavia Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia (PV), 27100, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia (PV), 27100, Italy
| | - Massimo Tonacchera
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Pisa (PI), via Paradisa 2, 56124, Pisa, Italy
| | - Marcello Imbriani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100, Pavia (PV), Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia (PV), 27100, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia (PV), 27100, Italy
- NBFC, National Biodiversity Future Center, Palermo (PA), 90133, Italy
| | - Luca Chiovato
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia (PV), 27100, Italy.
| |
Collapse
|
13
|
Zhang L, Louie A, Rigutto G, Guo H, Zhao Y, Ahn S, Dahlberg S, Sholinbeck M, Smith MT. A systematic evidence map of chronic inflammation and immunosuppression related to per- and polyfluoroalkyl substance (PFAS) exposure. ENVIRONMENTAL RESEARCH 2023; 220:115188. [PMID: 36592815 PMCID: PMC10044447 DOI: 10.1016/j.envres.2022.115188] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND The ability to induce chronic inflammation and immunosuppression are two key characteristics of carcinogens and important forms of immunotoxicity. The National Toxicology Program (NTP) evaluated the immunotoxicity of two per- and polyfluoroalkyl substances (PFASs), PFOA (perfluorooctanoic acid) and PFOS (perfluorooctane sulfonate), in 2016. However, the potential pro-inflammatory and immunosuppressive effects of other PFASs remain largely uncharacterized. METHODS We developed an expanded set of search terms pertaining to the chronic inflammatory and immunosuppressive effects of PFASs based on those of the International Agency for Research on Cancer (IARC) and NTP. To confirm searching effectiveness and scope, we compared our search term results with those of IARC and NTP for both PFASs and two other known carcinogens, chromium (VI) and benzene. Systematic evidence maps (SEMs) were also produced using Tableau to visualize the distribution of study numbers and types reporting immunotoxic effects and specific biomarkers elicited by PFAS exposures. RESULTS In total, 1155 PFAS studies were retrieved, of which 321 qualified for inclusion in our dataset. Using our search terms, we identified a greater number of relevant studies than those obtained using IARC and NTP's search terms. From the SEM findings, increased cytokine production strengthened an association between PFAS exposure and chronic inflammation, and decreased B-cell activation and altered levels of T-cell subtypes and immunoglobulins confirmed PFAS-induced immunosuppression. CONCLUSION Our SEM findings confirm that several PFASs commonly found in both in the environment, including those that are lesser-known, may induce immunosuppression and chronic inflammation, two key characteristics of carcinogens. This approach, including development of search terms, study screening process, data coding, and evidence mapping visualizations, can be applied to other key characteristics of chemical carcinogens.
Collapse
Affiliation(s)
- Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA.
| | - Allen Louie
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA; Molecular Toxicology Interdepartmental Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
| | - Gabrielle Rigutto
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Helen Guo
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Yun Zhao
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Stacy Ahn
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Sarah Dahlberg
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Michael Sholinbeck
- Bioscience, Natural Resources & Public Health Library, University of California, Berkeley, CA, 94720, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
14
|
Kim YY, Lee S, Kim MJ, Rho MC, Jang YH, Kim SH. Oleanolic Acid Acetate Inhibits Mast Cell Activation in Ovalbumin-Induced Allergic Airway Inflammation. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:214-230. [PMID: 37021507 PMCID: PMC10079514 DOI: 10.4168/aair.2023.15.2.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/24/2022] [Accepted: 10/02/2022] [Indexed: 04/07/2023]
Abstract
PURPOSE Asthma is a complex, heterogeneous chronic inflammatory airway disease with multiple phenotypes. There has been a great progress in managing asthma, but there are still unmet needs for developing uncontrolled asthma treatments. The present study aimed to determine the effectiveness of oleanolic acid acetate (OAA) from Vigna angularis against allergic airway inflammation and the underlying mechanism of action with a focus on mast cells. METHODS To investigate the effect of OAA in allergic airway inflammation, we used the ovalbumin (OVA)-sensitized and challenged mice. To examine allergic airway inflammation associated with immune responses of mast cell activation in vitro, various types of mast cells were used. Systemic and cutaneous anaphylaxis models were used for mast cell-mediated hyper-responsiveness in vivo. RESULTS OAA reduced OVA-induced airway inflammatory responses such as bronchospasm, increase of immune cell infiltration and serum immunoglobulin E and G1 levels. Especially, OAA decreased the mast cell infiltration, and β-hexosaminidase release as a mast cell activation marker in the bronchoalveolar lavage fluid. OAA inhibited mast cell degranulation in mast cell line (RBL-2H3) and primary cells (rat peritoneal mast cell and mouse bone marrow-derived mast cell). Mechanistically, OAA suppressed intracellular signaling pathways including the phosphorylation of phospholipase Cγ and nuclear factor-κB, resulting from the suppression of intracellular calcium influx and pro-inflammatory cytokine expression. Further, oral administration of OAA attenuated mast cell-mediated systemic and cutaneous anaphylaxis. CONCLUSIONS Our study showed that OAA can inhibit mast cell-mediated allergic reaction. Consequently, the application of OAA to mast cells for the allergic airway inflammation facilitate a new direction of treating allergic asthma.
Collapse
Affiliation(s)
- Yeon-Yong Kim
- Cell & Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Korea
| | - Min-Jong Kim
- Cell & Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Mun-Chual Rho
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Korea
| | - Yong Hyun Jang
- Department of Dermatology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea.
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
15
|
Ehrlich V, Bil W, Vandebriel R, Granum B, Luijten M, Lindeman B, Grandjean P, Kaiser AM, Hauzenberger I, Hartmann C, Gundacker C, Uhl M. Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS). Environ Health 2023; 22:19. [PMID: 36814257 PMCID: PMC9944481 DOI: 10.1186/s12940-022-00958-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/30/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature. OBJECTIVE The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system. METHODS A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed. CONCLUSIONS Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life.
Collapse
Affiliation(s)
- Veronika Ehrlich
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Wieneke Bil
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rob Vandebriel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Berit Granum
- Division of Climate and Environment Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Birgitte Lindeman
- Division of Climate and Environment Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Philippe Grandjean
- Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Andreas-Marius Kaiser
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Ingrid Hauzenberger
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Christina Hartmann
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Maria Uhl
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria.
| |
Collapse
|
16
|
Naderi M, Seyedabadi M, Amiri FT, Mohammadi E, Akbari S, Shaki F. Taurine protects against perfluorooctanoic acid-induced hepatotoxicity via inhibition of oxidative stress, inflammatory, and apoptotic pathways. Toxicol Res (Camb) 2023; 12:124-132. [PMID: 36866213 PMCID: PMC9972835 DOI: 10.1093/toxres/tfad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/05/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
We are constantly encountering with low doses of chemicals in everyday life rather than toxic doses at a time. So, ongoing low-dose exposures of environmental chemicals commonly encountered are very likely to cause an adverse health effects. Perfluorooctanoic acid (PFOA) is frequently used for production of an array of consumer products and industrial processes. The present study evaluated the underlying mechanisms of PFOA-induced liver damage and also potential protection by taurine. Male Wistar rats were exposed to PFOA alone and in combination with taurine (25, 50, and 100 mg/kg/day) by gavage for 4 weeks. Liver function tests as well as histopathological examinations were studied. Also, oxidative stress markers, mitochondrial function, and nitric oxide (NO) production in liver tissues were measured. In addition, the expression of apoptosis-related genes (caspase-3, Bax, and Bcl-2), inflammation-associated genes (TNF-α, IL-6, NF-B), and c-Jun-N-terminal kinase (JNK) were evaluated. Taurine significantly reversed serum biochemical and histopathological alterations in the liver tissue following exposure to PFOA (10 mg/kg/day). Similarly, taurine alleviated mitochondrial oxidative damage-induced by PFOA in the liver tissue. An increased Bcl2: Bax ratio with decrees in the expression level of caspase-3, and decreased expression of inflammatory markers (TNF-α and IL-6), NF-B, and JNK were also observed following the administration of taurine. These findings suggest a protective role of taurine against PFOA-induced hepatotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Maloos Naderi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Ebrahim Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 6618634683, Iran
| | - Sholeh Akbari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| |
Collapse
|
17
|
Carwile JL, Seshasayee SM, Ahrens KA, Hauser R, Driban JB, Rosen CJ, Gordon CM, Fleisch AF. Serum PFAS and Urinary Phthalate Biomarker Concentrations and Bone Mineral Density in 12-19 Year Olds: 2011-2016 NHANES. J Clin Endocrinol Metab 2022; 107:e3343-e3352. [PMID: 35511700 PMCID: PMC9282360 DOI: 10.1210/clinem/dgac228] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 01/14/2023]
Abstract
CONTEXT Per- and polyfluoroalkyl substances (PFAS) and phthalates are 2 families of environmental endocrine disruptors that may be associated with areal lower bone mineral density (aBMD). OBJECTIVE To examine associations between serum PFAS and urinary phthalate biomarker concentrations and their mixtures with aBMD Z-scores in adolescents. DESIGN, PATIENTS, AND MEASURES We examined serial cross-sectional data from male (n = 453) and female (n = 395) 12- to 19-year-old participants in the 2011 through 2016 National Health and Nutrition Examination Survey with measures of serum PFAS, urinary phthalate metabolites, and dual-energy X-ray absorptiometry aBMD Z-scores (total body less head). In sex-specific models, we used linear regression to examine associations of individual PFAS and phthalate biomarkers with aBMD Z-scores, and Bayesian kernel machine regression to examine the association of the overall PFAS/phthalate biomarker mixture with aBMD Z-scores. We replicated the analysis, stratifying by race/ethnicity. RESULTS Participants were (mean ± SD) 15 ± 2.1 years of age. In males, each doubling of serum perfluorooctanoate (PFOA), perfluorooctane sulfonate, urinary mono-isobutyl phthalate (MiBP), mono-n-butyl phthalate, and the overall PFAS/phthalate mixture was associated with a lower aBMD Z-score (eg, for PFOA: -0.24; 95% CI, -0.41 to -0.06). Serum PFOA and urinary MiBP were associated with higher aBMD Z-scores in females (eg, for PFOA: 0.09; 95% CI, -0.07 to 0.25). Findings did not differ by race/ethnicity. CONCLUSIONS Certain PFAS and phthalates may be associated with reduced bone mineral density in adolescent males. Bone mineral density tracks across the life course, so if replicated in longitudinal cohorts, this finding may have implications for lifelong skeletal health.
Collapse
Affiliation(s)
- Jenny L Carwile
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME 04101, USA
| | - Shravanthi M Seshasayee
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME 04101, USA
| | - Katherine A Ahrens
- Muskie School of Public Service, University of Southern Maine, Portland, ME 04103, USA
| | - Russ Hauser
- Department of Environmental Health and Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jeffrey B Driban
- Division of Rheumatology, Allergy, and Immunology, Tufts Medical Center, Boston, MA 02111, USA
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Catherine M Gordon
- Department of Pediatrics, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX 77030,USA
| | - Abby F Fleisch
- Correspondence: Abby Fleisch, MD, MPH, Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, 509 Forest Ave, Portland, ME 04101, USA.
| |
Collapse
|
18
|
Kamendulis LM, Hocevar JM, Stephens M, Sandusky GE, Hocevar BA. Exposure to perfluorooctanoic acid leads to promotion of pancreatic cancer. Carcinogenesis 2022; 43:469-478. [PMID: 35022659 PMCID: PMC9167031 DOI: 10.1093/carcin/bgac005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 01/19/2023] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer deaths in the United States. Perfluorooctanoic acid (PFOA), a persistent environmental pollutant, has been shown to induce pancreatic acinar cell tumors in rats. Human epidemiologic studies have linked PFOA exposure to adverse chronic health effects including several types of cancer. Previously, we demonstrated that PFOA induces oxidative stress and focal ductal hyperplasia in the mouse pancreas. Here, we evaluated whether PFOA promotes pancreatic cancer using the LSL-KRasG12D;Pdx-1 Cre (KC) mouse model of pancreatic cancer. KC mice were exposed to 5 ppm PFOA in drinking water starting at 8 weeks of age and analyzed at 6 and 9 months of age. At the 6-month time point, PFOA exposure increased pancreatic intraepithelial neoplasia (PanIN) area by 58%, accompanied by a 2-fold increase in lesion number. Although PanIN area increased at 9 months, relative to 6 months, no treatment effect was observed. Collagen deposition was enhanced by PFOA at both the 6- and 9-month time points. PFOA also induced oxidative stress in the pancreas evidenced by elevated antioxidant activity of superoxide dismutase (Sod), catalase and thioredoxin reductase, and a ~3-fold increase in Sod1 mRNA and protein levels at 6 months. Although antioxidant activity was not enhanced by PFOA exposure at the 9-month time point, increased pancreatic oxidative damage was observed. Collectively, these results show that PFOA elicited temporal increases in PanIN lesion area and desmoplasia concomitant with the induction of oxidative stress, demonstrating that it functions to promote pancreatic cancer progression.
Collapse
Affiliation(s)
- Lisa M Kamendulis
- Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, IN 47405, USA
| | - Jessica M Hocevar
- Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, IN 47405, USA
| | - Mikayla Stephens
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Barbara A Hocevar
- Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, IN 47405, USA
| |
Collapse
|
19
|
Zhang Y, Wu T, Shen S, Xiong Y, Wang X, Yang J, Chen X, Lu Y, Lei X. Association Between Drinking Water Sources and Osteoarthritis Incidence in Chinese Elderly Population: National Population-Based Cohort Study. Front Med (Lausanne) 2022; 8:759514. [PMID: 35186964 PMCID: PMC8851347 DOI: 10.3389/fmed.2021.759514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/24/2021] [Indexed: 01/09/2023] Open
Abstract
Background The elderly is a vulnerable group susceptible to toxic environmental factors; however, the association between unsafe water and osteoarthritis (OA) incident among this population is poorly investigated. This study aimed to examine the effects of drinking water sources on OA risk in the Chinese elderly population. Methods Data were obtained from the China Longitudinal Healthy Longevity Survey to perform a 16-year longitudinal study. All participants aged ≥65 years at baseline were potentially eligible. Information on drinking water sources was recorded via a structured questionnaire. The water source was classified as well, surface, spring, or tap. OA was selected as the health outcome. Cox proportional hazard models, adjusted socio-demographics, lifestyle, and chronic disease were used to estimate the hazard ratio (HR) for OA. Subgroup analyses were performed to assess the potential interactive effect. Results A total of 12,543 participants were included. With restriction to the longest follow-up time, the mean survival time of follow-up was 14.56 years. Among the cohort members, 1,585 members suffered from OA. In the full model, drinking from well water and spring water was associated with a higher risk of OA compared with drinking from tap water (HR: 1.37, 95% CI: 1.22–1.54; HR: 1.34, 95% CI: 1.03–1.74). Except for age, the effects of modifications from socioeconomic status, lifestyles, and health conditions were non-significant (p for interaction <0.05). After multiple imputations for missing data and excluding deaths in the first year of follow-up and participants with a history of the disease and using the Shared-frailty Cox model, sensitivity analysis indicated a robust association between the drinking water source and OA incidence. Conclusion Drinking tap water was associated with a low risk of OA among older adults in China. The use of clean water sources as a marker of decreased OA and arthritis risks must be revisited in low- and middle-income countries.
Collapse
Affiliation(s)
- Yangchang Zhang
- Department of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
- The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Tingting Wu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Shisi Shen
- The First School of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Yang Xiong
- Department of Urology, The West China Hospital, Sichuan University, Chengdu, China
| | - Xu Wang
- Department of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
- The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Jialu Yang
- Department of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
- The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Xirui Chen
- The First School of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Yanjun Lu
- The First School of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Xun Lei
- Department of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
- The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
- Research Center for Public Health Security, Chongqing Medical University, Chongqing, China
- *Correspondence: Xun Lei
| |
Collapse
|
20
|
Wang Z, Shi R, Ding G, Yao Q, Pan C, Gao Y, Tian Y. Association between maternal serum concentration of perfluoroalkyl substances (PFASs) at delivery and acute infectious diseases in infancy. CHEMOSPHERE 2022; 289:133235. [PMID: 34896425 DOI: 10.1016/j.chemosphere.2021.133235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) are persistent and bio-accumulative compounds that have been recognized as important immune hazards by animal studies. However, epidemiological studies regarding the impact on infant infections were inconsistent. OBJECTIVES We investigated the associations between prenatal exposure to PFASs and acute infectious diseases including common cold, bronchitis/pneumonia, and diarrhea in early childhood. METHODS Participating 235 mother-infant pairs were recruited from the Laizhou Wan (Bay) birth cohort (LWBC), a prospective study in Shandong, China between September 2010 and 2013. Ten selected PFASs congeners including PFOA, PFOS, PFNA, PFDA, PFUA, PFDoA, PFHxS, PFBS, PFHpA, and PFOSA were measured from maternal serum by HPLC-MS/MS. Detailed information on parent-reported frequency of acute infectious diseases was collected from questionnaires at 1-year follow-up, which was confirmed by the medical records. Logistic and Poisson regression models were used on binary health outcomes (yes/no) and the number of episodes of outcomes, which were reported as odds ratio (OR) and incidence rate-ratio (IRR), respectively. RESULTS The risk of diarrhea increased by 4.99 (95% CI = 1.86, 13.39) per log-unit increase in PFOA. The frequencies of diarrhea increased by 97%-116% for each 10-fold increase in PFOA, PFNA, and PFDA. Moreover, when stratified by exclusively breastfeeding duration (at least 4 months or not), the adverse effects of PFASs exposures on diarrhea were more pronounced among the breastfed infants. There were no associations between prenatal PFASs exposure and common cold or bronchitis/pneumonia. CONCLUSIONS Exposure to PFASs was associated with increased risks of diarrhea during the first year of life, and these effects were stronger among the breastfed infants. Due to the small sample size, our results should be interpreted with caution and additional studies on larger populations are needed to confirm our findings.
Collapse
Affiliation(s)
- Zixia Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guodong Ding
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, 1400 West Beijing Road, Shanghai, 200040, China
| | - Qian Yao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengyu Pan
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Shen M, Xiao Y, Huang Y, Jing D, Su J, Luo D, Duan Y, Xiao S, Li J, Chen X. Perfluoroalkyl substances are linked to incident chronic spontaneous urticaria: A nested case-control study. CHEMOSPHERE 2022; 287:132358. [PMID: 34583294 DOI: 10.1016/j.chemosphere.2021.132358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/26/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Previous studies suggested immunotoxicity of perfluoroalkyl substances (PFASs), but contradictory findings were reported for the associations of PFASs with allergies. The current study aimed to investigate the association of serum PFASs with incident chronic spontaneous urticaria (CSU) in adults. A nested case-control study within a longitudinal cohort of 7051 government employees in China was conducted. Participants with urticaria at the baseline were excluded. During the first follow-up, 70 incident CSU cases were included, and 70 matched healthy controls were randomly selected. In serum samples collected at the baseline, eight PFASs were determined using the UHPLC-MS/MS approach. The median serum concentrations of perfluorobutanoic acid (PFBA) and perfluoroheptanoic acid (PFHpA) were significantly higher in participants with incident CSU. The area under the receiver operating characteristic curve was 0.714 (95% CI: 0.60-0.83) based on the joint prediction by PFBA and PFHpA. The Bayesian kernel machine regression showed a nonlinear positive overall effect of the mixture of PFASs, and identified significant single effects of PFBA and PFHpA. Serum interleukin-4 was significantly higher in the case group at baseline, and was positively associated with PFHpA (r = 0.24). Causal mediation analysis indicated interleukin-4 as a partial mediator (14.8%) in the association of PFHpA with CSU. In conclusion, serum PFASs are associated with an increased risk of incident CSU, and PFBA and PFHpA might be the effective compounds.
Collapse
Affiliation(s)
- Minxue Shen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital, Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China; Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China.
| | - Yi Xiao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital, Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Yuzhou Huang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital, Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Danrong Jing
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital, Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Juan Su
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital, Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Dan Luo
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yanying Duan
- Department of Environmental and Occupational Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Shuiyuan Xiao
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jie Li
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital, Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China.
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital, Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China.
| |
Collapse
|
22
|
Abudayyak M, Öztaş E, Özhan G. Determination of Perflourooctanoic Acid Toxicity in a Human Hepatocarcinoma Cell Line. J Health Pollut 2021; 11:210909. [PMID: 34434601 PMCID: PMC8383792 DOI: 10.5696/2156-9614-11.31.210909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA) is used in different industrial and commercial products. Research shows the presence of PFOA in home dusts, tap and surface water, and in biological samples. The International Agency for Research on Cancer (IARC) has classified PFOA as a possible carcinogen for humans. The liver is thought to be a target organ of PFOA accumulation and toxicity. OBJECTIVE Some studies have found toxic effects on the liver and related mechanisms; however, more studies are needed to better understand PFOA - induced hepatotoxicity. METHODS In the present study, a human hepatocarcinoma cell line was exposed to PFOA for 24 hours and cell viability, apoptosis, the oxidative system and immune response were evaluated. RESULTS While apoptosis was the main cell death pathway at low concentration (86.5%), the necrotic cell fraction increased with higher concentrations (46.7%). Significant changes in the reactive oxygen species (5.3-folds) glutathione (GSH) (1.7-folds) and catalase (CAT) (1.4-folds) levels were observed, as well as changes to interleukin-6 (≤1.8-fold) and interleukin-8 levels (35-40%). CONCLUSIONS In light of the data, PFOA is potentially hepatotoxic through the investigated pathways. The results represent a background for future in vivo mechanistic studies. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ezgi Öztaş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gül Özhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
23
|
Janis JA, Rifas-Shiman SL, Seshasayee SM, Sagiv S, Calafat AM, Gold DR, Coull BA, Rosen CJ, Oken E, Fleisch AF. Plasma Concentrations of Per- and Polyfluoroalkyl Substances and Body Composition From Mid-Childhood to Early Adolescence. J Clin Endocrinol Metab 2021; 106:e3760-e3770. [PMID: 33740056 PMCID: PMC8372642 DOI: 10.1210/clinem/dgab187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Indexed: 01/12/2023]
Abstract
CONTEXT Per- and polyfluoroalkyl substances (PFAS) may alter body composition by lowering anabolic hormones and increasing inflammation, but data are limited, particularly in adolescence when body composition is rapidly changing. OBJECTIVE To evaluate associations of PFAS plasma concentrations in childhood with change in body composition through early adolescence. METHODS A total of 537 children in the Boston-area Project Viva cohort participated in this study. We used multivariable linear regression and Bayesian kernel machine regression (BKMR) to examine associations of plasma concentrations of 6 PFAS, quantified by mass spectrometry, in mid-childhood (mean age, 7.9 years; 2007-2010) with change in body composition measured by dual-energy x-ray absorptiometry from mid-childhood to early adolescence (mean age, 13.1 years). RESULTS In single-PFAS linear regression models, children with higher concentrations of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorodecanoate (PFDA), and perfluorohexane sulfonate (PFHxS) had less accrual of lean mass (eg, -0.33 [95% CI: -0.52, -0.13] kg/m2 per doubling of PFOA). Children with higher PFOS and PFHxS had less accrual of total and truncal fat mass (eg, -0.32 [95% CI: -0.54, -0.11] kg/m2 total fat mass per doubling of PFOS), particularly subcutaneous fat mass (eg, -17.26 [95% CI -32.25, -2.27] g/m2 per doubling of PFOS). Children with higher PFDA and perfluorononanoate (PFNA) had greater accrual of visceral fat mass (eg, 0.44 [95% CI: 0.13, 0.75] g/m2 per doubling of PFDA). Results from BKMR mixture models were consistent with linear regression analyses. CONCLUSION Early life exposure to some but not all PFAS may be associated with adverse changes in body composition.
Collapse
Affiliation(s)
- Jaclyn A Janis
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Shravanthi M Seshasayee
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, USA
| | - Sharon Sagiv
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | | | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Abby F Fleisch
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, USA
- Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME, USA
- Correspondence: Abby F. Fleisch, MD, MPH, Center for Outcomes Research and Evaluation, 509 Forest Avenue, Suite 200, Portland, ME 04103, USA.
| |
Collapse
|
24
|
Park SJ, Sim KH, Shrestha P, Yang JH, Lee YJ. Perfluorooctane sulfonate and bisphenol A induce a similar level of mast cell activation via a common signaling pathway, Fyn-Lyn-Syk activation. Food Chem Toxicol 2021; 156:112478. [PMID: 34363875 DOI: 10.1016/j.fct.2021.112478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 02/04/2023]
Abstract
Perfluoroalkyl compounds (PFCs) as food contaminants are widely distributed persistent organic pollutants (POPs) and have been suggested to induce immune dysfunction. However, their effects on immune function are not conclusive. Mast cells play a central role in allergic and non-allergic inflammatory responses. Therefore, we have examined the effects of PFCs (PFHxS, PFOA, PFOS) on mast cell-mediated inflammatory responses using in vitro mouse bone marrow-derived mast cells (BMMCs) and human mast cells (HMC-1) and in vivo mice model. The effects of PFCs were compared with those of bisphenol A (BPA), a well-studied environmental pollutant. Among PFCs tested, PFOS had the highest effects. Both PFOS and BPA increased degranulation and production of inflammatory eicosanoids in mast cells at a similar level, which subsequently led to increased skin edema and serum LTC4 and PGD2 in mice. Both PFOS and BPA increased not only downstream signaling (PLCγ1, AKT, ERK), but also upstream signaling (Fyn, Lyn, Syk/LAT) in mast cells. Taken together, PFOS and BPA induce mast cell-mediated inflammatory responses via a common signaling pathways. Our results may help establish the scientific basis for understanding the etiology of mast cell-mediated inflammatory responses and improve the immune dysfunction risk assessment for emerging POPs such as PFCs.
Collapse
Affiliation(s)
- Sung-Joon Park
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Kyeong Hwa Sim
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Prafulla Shrestha
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Jae-Ho Yang
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Youn Ju Lee
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea.
| |
Collapse
|
25
|
Wang LQ, Liu T, Yang S, Sun L, Zhao ZY, Li LY, She YC, Zheng YY, Ye XY, Bao Q, Dong GH, Li CW, Cui J. Perfluoroalkyl substance pollutants activate the innate immune system through the AIM2 inflammasome. Nat Commun 2021; 12:2915. [PMID: 34006824 PMCID: PMC8131593 DOI: 10.1038/s41467-021-23201-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Perfluoroalkyl substances (PFAS) are widely used in various manufacturing processes. Accumulation of these chemicals has adverse effects on human health, including inflammation in multiple organs, yet how PFAS are sensed by host cells, and how tissue inflammation eventually incurs, is still unclear. Here, we show that the double-stranded DNA receptor AIM2 is able to recognize perfluorooctane sulfonate (PFOS), a common form of PFAS, to trigger IL-1β secretion and pyroptosis. Mechanistically, PFOS activates the AIM2 inflammasome in a process involving mitochondrial DNA release through the Ca2+-PKC-NF-κB/JNK-BAX/BAK axis. Accordingly, Aim2-/- mice have reduced PFOS-induced inflammation, as well as tissue damage in the lungs, livers, and kidneys in both their basic condition and in an asthmatic exacerbation model. Our results thus suggest a function of AIM2 in PFOS-mediated tissue inflammation, and identify AIM2 as a major pattern recognition receptor in response to the environmental organic pollutants.
Collapse
Affiliation(s)
- Li-Qiu Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tao Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuai Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lin Sun
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi-Yao Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li-Yue Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuan-Chu She
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan-Yan Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Yan Ye
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qing Bao
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chun-Wei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
26
|
Yang M, Li LY, Qin XD, Ye XY, Yu S, Bao Q, Sun L, Wang ZB, Bloom MS, Jalava P, Hu LW, Yu HY, Zeng XW, Yang BY, Dong GH, Li CW. Perfluorooctanesulfonate and perfluorooctanoate exacerbate airway inflammation in asthmatic mice and in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142365. [PMID: 33601665 DOI: 10.1016/j.scitotenv.2020.142365] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 05/14/2023]
Abstract
Emerging evidence suggests associations between Perfluoroalkyl substances (PFASs) exposure and asthma, but the findings are inconsistent. The current study sought to investigate whether perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) could contribute to asthma exacerbation and to clarify the underlying biological mechanisms. The objectives are a) to determine whether PFOS or PFOA could aggravate the mouse asthma and pulmonary inflammation b) to investigate whether PFOS and PFOA regulate the balance of Th1/Th2 through the JAK-STAT signaling pathway and aggravated asthma. Ovalbumin (OVA) induced asthmatic mice were exposed to PFOS or PFOA by gavage. PFOS and PFOA serum level and toxicity in organs were assessed; and the impacts on respiratory symptoms, lung tissue pathology, T helper cell (Th2) response, and STAT6 pathway activity were also evaluated. In vitro Jurkat cells were used to study the mechanisms of PFOS and PFOA mediated Th1 and Th2 responses. Both PFOS and PFOA exacerbated lung tissue inflammation (greater number of eosinophils and mucus hyperproduction), upregulated Th2 cytokine production (IL-4 and IL-13), and promoted Th2 cells and STAT6 activation. Furthermore, PFOS and PFOA enhanced the Th2 response in Jurkat cells via STAT6 activation; and the effect of PFOS exposure on GATA-3, IL-4 and IFN-γ was blocked after the expression of STAT6 was suppressed in Jurkat cells, however, the effects of PFOA exposure were only partially blocked. PFOS and PFOA aggravated inflammation among OVA-induced asthmatic mice, by promoting the Th2 response in lymphocytes and disturbing the balance of Th1/Th2 through the JAK-STAT signaling pathway.
Collapse
Affiliation(s)
- Mo Yang
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Li-Yue Li
- Guangzhou Key Laboratory of Otorhinolaryngology, Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Di Qin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Yan Ye
- Guangzhou Key Laboratory of Otorhinolaryngology, Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shu Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Bao
- Guangzhou Key Laboratory of Otorhinolaryngology, Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Sun
- Guangzhou Key Laboratory of Otorhinolaryngology, Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Bin Wang
- Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Michael S Bloom
- Departments of Environmental Health Sciences and Epidemiology & Biostatistics, University at Albany School of Public Health, Albany, USA
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hong-Yao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Chun-Wei Li
- Guangzhou Key Laboratory of Otorhinolaryngology, Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
27
|
Bulka CM, Avula V, Fry RC. Associations of exposure to perfluoroalkyl substances individually and in mixtures with persistent infections: Recent findings from NHANES 1999-2016. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116619. [PMID: 33578314 PMCID: PMC7957906 DOI: 10.1016/j.envpol.2021.116619] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/06/2021] [Accepted: 01/27/2021] [Indexed: 05/12/2023]
Abstract
Certain viruses and parasites can cause persistent infections that often co-occur and have been associated with substantial morbidity and mortality. Separate lines of research indicate exposures to per- and polyfluoroalkyl substances (PFAS) suppress the immune system. We hypothesized that PFAS exposures might systematically increase susceptibility to persistent infections resulting in a higher pathogen burden. We used data from 8778 individuals (3189 adolescents, 5589 adults) in the nationally-representative U.S. National Health and Nutrition Examination Survey (NHANES) 1999-2016 to examine cross-sectional associations between serum concentrations of four highly detected PFAS (PFOS, PFOA, PFHxS, PFNA) with the presence of antibodies to cytomegalovirus, Epstein Barr virus, hepatitis C and E, herpes simplex 1 and 2, HIV, T. gondii, and Toxocara spp. Seropositivity was summed to calculate a pathogen burden score reflecting the total number of infections. Separate survey-weighted multivariable regression models were fitted to analyze PFAS individually and quantile g-computation was used to analyze PFAS mixtures. Among adolescents, 38.7% had at least one persistent infection while 14.9% had two or more; among adults, these percentages were 48.0% and 19.7%. Each PFAS was individually associated with significantly higher pathogen burdens and the most pronounced associations were observed in adolescents [e.g., among adolescents, a doubling of PFOS was associated with 30% (95% CI: 25-36%) higher pathogen burden]. Quantile g-computation revealed PFAS mixtures as a whole were also associated with higher pathogen burdens. Taken together, these results suggest PFAS exposure may increase susceptibility to and foster the clustering of persistent infections, particularly among adolescents. Since persistent infections are important contributors to long-term health, prospective data are needed to confirm these findings.
Collapse
Affiliation(s)
- Catherine M Bulka
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Vennela Avula
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
28
|
Luo Y, Deji Z, Huang Z. Exposure to perfluoroalkyl substances and allergic outcomes in children: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2020; 191:110145. [PMID: 32877702 DOI: 10.1016/j.envres.2020.110145] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFASs) are persistent organic pollutants and widespread throughout the environment. Although exposure to PFASs may contribute to the development of allergic diseases in children, evidence about this association remains inconclusive. OBJECTIVE To conduct a systematic review and meta-analysis to assess the association between PFASs exposure and allergic diseases in children based on current evidence. METHODS The databases including PubMed, EMBASE, and Web of Science were searched to identify all observational studies that examined the association between PFASs exposure and the risk of childhood allergic diseases. The Newcastle-Ottawa Scale was used to evaluate the quality of case-crossover studies, and a previously validated quality assessment framework was used for observational studies lacking control groups. Random-effects meta-analysis models were applied to pool odds ratio (OR) with 95% confidence intervals (CIs). RESULTS From an initial 94 articles (after duplicate removal), 13 studies through full-text assessment were included for quantitative assessment and descriptive synthesis. They are ten cohort studies, two cross-sectional studies, and one case-control study. The pooled estimates showed that perfluorononanoic acid (PFNA) was associated with eczema (OR = 0.89, 95% CI = 0.80-0.99), perfluorooctanesulfonic acid (PFOS) with atopic dermatitis (OR = 1.26, 95% CI = 1.01-1.58), and perfluorooctanoic acid (PFOA) with allergic rhinitis (OR = 1.33, 95% CI = 1.13-1.56). However, no such significant associations were found for wheeze and asthma. CONCLUSIONS The meta-analysis results suggest that PFASs exposure could potentially be associated with eczema, atopic dermatitis, and allergic rhinitis during childhood, but not with childhood asthma or wheeze. Future studies are needed to verify these findings.
Collapse
Affiliation(s)
- Yuehua Luo
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Zhuoma Deji
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Zhenzhen Huang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
29
|
Zou YH, Guan PP, Zhang SQ, Guo YS, Wang P. Rofecoxib Attenuates the Pathogenesis of Amyotrophic Lateral Sclerosis by Alleviating Cyclooxygenase-2-Mediated Mechanisms. Front Neurosci 2020; 14:817. [PMID: 32903591 PMCID: PMC7438558 DOI: 10.3389/fnins.2020.00817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is reported to be activated during the course of amyotrophic lateral sclerosis (ALS) development and progression. However, the roles of COX-2 in aggravating ALS and the underlying mechanism have been largely overlooked. To reveal the mechanisms, the canonical SOD1G93A mouse model was used as an experimental model for ALS in the current study. In addition, a specific inhibitor of COX-2 activity, rofecoxib, was orally administered to SOD1G93A mice. With this in vivo approach, we revealed that COX-2 proinflammatory signaling cascades were inhibited by rofecoxib in SOD1G93A mice. Specifically, the protein levels of COX-2, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α were elevated as a result of activation of astrocytes and microglia during the course of ALS development and progression. These proinflammatory reactions may contribute to the death of neurons by triggering the movement of astrocytes and microglia to neurons in the context of ALS. Treatment with rofecoxib alleviated this close association between glial cells and neurons and significantly decreased the density of inflammatory cells, which helped to restore the number of motor neurons in SOD1G93A mice. Mechanistically, rofecoxib treatment decreased the expression of COX-2 and its downstream signaling targets, including IL-1β and TNF-α, by deactivating glial cells, which in turn ameliorated the progression of SOD1G93A mice by postponing disease onset and modestly prolonging survival. Collectively, these results provide novel insights into the mechanisms of ALS and aid in the development of new drugs to improve the clinical treatment of ALS.
Collapse
Affiliation(s)
- Yan-Hui Zou
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shen-Qing Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yan-Su Guo
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
30
|
Hocevar SE, Kamendulis LM, Hocevar BA. Perfluorooctanoic acid activates the unfolded protein response in pancreatic acinar cells. J Biochem Mol Toxicol 2020; 34:e22561. [PMID: 32578922 DOI: 10.1002/jbt.22561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/21/2020] [Accepted: 06/11/2020] [Indexed: 01/09/2023]
Abstract
Perfluoroalkyl substances, such as perfluorooctanoic acid (PFOA), are widely used in consumer and industrial applications. Human epidemiologic and animal studies suggest that PFOA exposure elicits adverse effects on the pancreas; however, little is known about the biological effects of PFOA in this organ. In this study, we show that PFOA treatment of mouse pancreatic acinar cells results in endoplasmic reticulum (ER) stress and activation of the protein kinase-like endoplasmic reticulum kinase (PERK), inositol-requiring kinase/endonuclease 1α (IRE1α), and activating transcription factor 6 arms of the unfolded protein response (UPR) pathway. PFOA-stimulated activation of the UPR was blocked by pretreatment with specific PERK and IRE1α inhibitors and the chemical chaperone 4-phenyl butyrate, but not the antioxidants N-acetyl- l-cysteine and Tiron. PFOA treatment led to increased cytosolic Ca+2 levels and induction of the UPR was blocked by an inhibitor of the inositol 1,4,5-trisphosphate receptor. These findings indicate that PFOA-induced ER stress may be the mechanistic trigger leading to oxidative stress in the pancreas.
Collapse
Affiliation(s)
- Sarah E Hocevar
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, Indiana
| | - Lisa M Kamendulis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, Indiana
| | - Barbara A Hocevar
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, Indiana
| |
Collapse
|
31
|
Chang S, Parker GA, Kleinschmidt SE, Olsen GW, Ley CA, Taiwo OA. A Pathology Review of the Lower Gastrointestinal Tract in Relation to Ulcerative Colitis in Rats and Cynomolgus Macaques Treated With Ammonium Perfluorooctanoate. Toxicol Pathol 2020; 48:593-602. [PMID: 32186254 DOI: 10.1177/0192623320911606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Among many short-term, subchronic, and chronic toxicology studies with ammonium perfluorooctanoate (PFOA), the gastrointestinal tract has not been identified as a target organ for PFOA-related toxicity in laboratory animals where the corresponding serum PFOA concentrations typically approach several orders of magnitude higher than the general human population. These lack of gastrointestinal tract-related findings were in direct contrast to an epidemiological observation where a positive trend was observed for ulcerative colitis, an idiopathic chronic inflammatory condition of the gut, in a Mid-Ohio River community whose drinking water contained higher levels of PFOA. This study was conducted to perform a histological reevaluation of large intestine sections in laboratory animals from 2 long-term toxicological studies: one was with Sprague Dawley rats that received ammonium PFOA in their diet for 2 years and the other one was with cynomolgus macaques that received daily capsules of ammonium PFOA for 6 months. In both studies, there was a lack of histological evidence of treatment-related inflammatory lesions that was suggestive of the occurrence of ulcerative colitis in these laboratory animals even under the most rigorous treatment schedules. These findings do not offer support for the biological plausibility of the epidemiological associations reported.
Collapse
Affiliation(s)
| | - George A Parker
- Charles River Laboratories, Pathology Associates, Durham, NC, USA
| | | | | | | | | |
Collapse
|
32
|
Temkin AM, Hocevar BA, Andrews DQ, Naidenko OV, Kamendulis LM. Application of the Key Characteristics of Carcinogens to Per and Polyfluoroalkyl Substances. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1668. [PMID: 32143379 PMCID: PMC7084585 DOI: 10.3390/ijerph17051668] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitute a large class of environmentally persistent chemicals used in industrial and consumer products. Human exposure to PFAS is extensive, and PFAS contamination has been reported in drinking water and food supplies as well as in the serum of nearly all people. The most well-studied member of the PFAS class, perfluorooctanoic acid (PFOA), induces tumors in animal bioassays and has been associated with elevated risk of cancer in human populations. GenX, one of the PFOA replacement chemicals, induces tumors in animal bioassays as well. Using the Key Characteristics of Carcinogens framework for cancer hazard identification, we considered the existing epidemiological, toxicological and mechanistic data for 26 different PFAS. We found strong evidence that multiple PFAS induce oxidative stress, are immunosuppressive, and modulate receptor-mediated effects. We also found suggestive evidence indicating that some PFAS can induce epigenetic alterations and influence cell proliferation. Experimental data indicate that PFAS are not genotoxic and generally do not undergo metabolic activation. Data are currently insufficient to assess whether any PFAS promote chronic inflammation, cellular immortalization or alter DNA repair. While more research is needed to address data gaps, evidence exists that several PFAS exhibit one or more of the key characteristics of carcinogens.
Collapse
Affiliation(s)
- Alexis M. Temkin
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Barbara A. Hocevar
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (B.A.H.); (L.M.K.)
| | - David Q. Andrews
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Olga V. Naidenko
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Lisa M. Kamendulis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (B.A.H.); (L.M.K.)
| |
Collapse
|
33
|
Xu Y, Jurkovic-Mlakar S, Li Y, Wahlberg K, Scott K, Pineda D, Lindh CH, Jakobsson K, Engström K. Association between serum concentrations of perfluoroalkyl substances (PFAS) and expression of serum microRNAs in a cohort highly exposed to PFAS from drinking water. ENVIRONMENT INTERNATIONAL 2020; 136:105446. [PMID: 31926437 DOI: 10.1016/j.envint.2019.105446] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are widespread synthetic substances with various adverse health effects. Not much is known about the modes of action of PFAS toxicity, but one likely mechanism is alteration of microRNA expression. OBJECTIVES To investigate whether PFAS exposure is associated with altered microRNA expression in serum. METHODS We selected women from the Ronneby cohort, with high exposure to perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS), emanating from drinking water contaminated by firefighting foam, and a control group of women from a neighbouring municipality without drinking water contamination. Serum levels of PFAS were analysed using LC/MS/MS. High coverage microRNA expression was analysed by next generation sequencing (NGS) in 53 individuals to screen for microRNAs associated with PFAS exposure. After verification by qPCR, associations between PFAS exposure and expression of 18 selected microRNAs were validated by qPCR in 232 individuals. In silico functional analyses were performed using Ingenuity pathway analysis (IPA). RESULTS Three microRNAs were consistently associated with PFAS exposure in the different steps of the study: miR-101-3p, miR-144-3p and miR-19a-3p (all downregulated with increasing exposure). In silico functional analyses suggested that these PFAS-associated microRNAs were annotated to e.g. cardiovascular function and disease, Alzheimer's disease, growth of cancer cell lines and cancer. Seven predicted target genes for the downregulated microRNAs were annotated to PFAS in IPA knowledge database: DNA methyltransferase 3 alpha (DNMT3a), epidermal growth factor receptor (EGFR), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), nuclear receptor subfamily 1, group H, member 3 (NR1H3), peroxisome proliferator-activated receptor alpha (PPARα), prostaglandin-endoperoxide synthase 2 (PTGS2), and tumour growth factor alpha (TGFα). DISCUSSION PFAS exposure was associated with downregulation of specific microRNAs. Further, in silico functional analyses suggest potential links between the specific PFAS-associated microRNAs, specific microRNA target genes and possibly also health effects.
Collapse
Affiliation(s)
- Yiyi Xu
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Simona Jurkovic-Mlakar
- CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ying Li
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Wahlberg
- Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristin Scott
- Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniela Pineda
- Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christian H Lindh
- Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristina Jakobsson
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karin Engström
- EPI@LUND, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
34
|
Per- and polyfluoroalkyl substances (PFASs) modify lung surfactant function and pro-inflammatory responses in human bronchial epithelial cells. Toxicol In Vitro 2020; 62:104656. [DOI: 10.1016/j.tiv.2019.104656] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/27/2019] [Accepted: 09/15/2019] [Indexed: 12/25/2022]
|
35
|
Anderko L, Pennea E, Chalupka S. Per- and Polyfluoroalkyl Substances: An Emerging Contaminant of Concern. ANNUAL REVIEW OF NURSING RESEARCH 2019; 38:159-182. [PMID: 32102961 DOI: 10.1891/0739-6686.38.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Concerns about the health impacts from per- and polyfluoroalkyl substances (PFAS) continue to grow as the science continues to emerge associating this chemical family with a wide range of health impacts. PFAS exposure may affect growth, learning, and behavior of infants and older children, and also impact reproductive health, cardiovascular health, and the immune system. PFAS exposure is widespread, with communities surrounding military bases at potentially greater risk of exposure from the use of fire fighting foam that may have entered the drinking water. As trusted health professionals, nurses have been in the frontlines communicating risks regarding PFAS to impacted communities. This chapter describes a large number of PFAS studies in blood and harmful health effects in people. The chapter discusses primary sources of exposure and risk reduction. It explains health advisory levels, minimal risk levels. The chapter provides medical testing and medical management.
Collapse
|
36
|
Kim YY, Lee S, Jang HJ, Hur G, Lee SW, Jung K, Lee SJ, Kim SH, Rho MC. Cynanchum atratum Ameliorates Airway Inflammation via Maintaining Alveolar Barrier and Regulating Mast Cell-Mediated Inflammatory Responses. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1795-1814. [PMID: 31795744 DOI: 10.1142/s0192415x19500915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asthma is a common allergic airway inflammatory disease, characterized by abnormal breathing due to bronchial inflammation. Asthma aggravates the patient's quality of life and needs continuous pharmacological treatment. Therefore, discovery of drugs for the treatment of asthma is an important area of human health. The aim of the present study was to evaluate whether Cynanchum atratum extract (CAE) modulates the asthma-like allergic airway inflammation and to study its possible mechanism of action using ovalbumin (OVA)-induced airway inflammation and lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice, as well as a mast cell-based in vitro model. The histological analysis showed that CAE reduced the airway constriction and immune cell infiltration. CAE also inhibited release of β-hexosaminidase and expression of inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-4, and IL-5 in bronchoalveolar lavage fluid and lung tissues. In addition, CAE reduced the OVA-specific immunoglobulin (Ig) E, total IgE, IgG1, and IgG2a levels in the serum. In the LPS-induced ALI model, CAE suppressed the LPS-induced lung barrier dysfunction and the release of proinflammatory cytokines. Because allergic airway inflammatory responses are associated with the activation of mast cells, RBL-2H3 cells were used to evaluate the underlying mechanism of CAE effects. In RBL-2H3 cells, CAE down-regulated release of β-hexosaminidase and histamine by reducing the intracellular calcium influx. In addition, CAE suppressed the expression of proinflammatory cytokines by inhibiting nuclear translocation of nuclear factor-κB. Taken together, our findings suggest that CAE may help in the prevention or treatment of airway inflammatory diseases.
Collapse
Affiliation(s)
- Yeon-Yong Kim
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jeongeup 56212, Republic of Korea.,CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Soyoung Lee
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Hyun-Jae Jang
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Gayeong Hur
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jeongeup 56212, Republic of Korea.,Department of Biotechnology, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Seung Woong Lee
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Kyungsook Jung
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Seung-Jae Lee
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Sang-Hyun Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Mun-Chual Rho
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jeongeup 56212, Republic of Korea
| |
Collapse
|
37
|
Wen HJ, Wang SL, Chuang YC, Chen PC, Guo YL. Prenatal perfluorooctanoic acid exposure is associated with early onset atopic dermatitis in 5-year-old children. CHEMOSPHERE 2019; 231:25-31. [PMID: 31128349 DOI: 10.1016/j.chemosphere.2019.05.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Atopic dermatitis (AD) is the most common childhood skin disease and the first step of atopic march. Perfluoroalkyl substance (PFAS) exposure is associated with atopic diseases, including AD. However, whether PFAS exposure is related to earlier AD onset remains unclear. We aimed to investigate the association between prenatal PFAS exposure and earlier onset of AD in children in a 5-year follow-up study. From 2001 to 2005, 1264 mother-infant pairs were recruited from eight Taiwanese maternity hospitals. PFAS levels were analyzed from cord blood. Information on children's health status, including AD occurrence, was obtained via phone interviews at multiple time points. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) concentrations were measured by ultra-high performance liquid chromatography/tandem mass spectrometry. Cox proportional hazards models assessed associations between prenatal PFAS exposure and early onset AD. Overall, 863 mother-infant pairs with complete measurements were recruited. The prevalence of physician-diagnosed AD before 5 years of age was 7.1%. PFOA and PFOS concentrations were grouped based on whether they were above the 75th percentile. PFOA exposure was positively associated with earlier onset of AD (Kaplan-Meier estimate, p = 0.014). In the Cox model, after adjusting for sex, family income, parental atopy, breast feeding, and maternal age at childbirth, significance was observed in children above the upper quartile (≥75th) of the PFOA group (hazard ratio: 1.89; 95% confidence interval, 1.10-3.16). Our findings suggested that children with higher prenatal PFOA exposure have a higher risk of earlier AD development. Minimizing early life PFAS exposure may help inhibit AD development.
Collapse
Affiliation(s)
- Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Public Health, National Defense Medical Centre, Taipei, Taiwan; Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan
| | - Yu-Chen Chuang
- Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei, Taiwan.
| | - Pau-Chung Chen
- Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei, Taiwan; Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan; Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Yue Leon Guo
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei, Taiwan; Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan
| |
Collapse
|
38
|
Guo J, Wu P, Cao J, Luo Y, Chen J, Wang G, Guo W, Wang T, He X. The PFOS disturbed immunomodulatory functions via nuclear Factor-κB signaling in liver of zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2019; 91:87-98. [PMID: 31082517 DOI: 10.1016/j.fsi.2019.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 05/18/2023]
Abstract
Excessive perfluorooctane sulfonate (PFOS) in natural water ecosystem has the potential to detrimentally affect immune system, but little is known of such effects or underlying mechanisms in fish. In the present study, we evaluated the effects of PFOS on growth performance, organizational microstructure, activities of immune-related enzymes and expressions of immune-related genes in male zebrafish (Danio rerio) exposed to different concentrations of 0, 0.02, 0.04 and 0.08 mg/L of PFOS for 7, 14, and 21 days or cotreatment with PFOS and PDTC to investigate the effects of PFOS on immune system and the potential toxic mechanisms caused by PFOS. The results indicated that PFOS accumulated in livers after exposure, and remarkably elevations were found in three exposure groups compared with the control group at three stages. The growth of the adult zebrafish in the experiments was significantly inhibited, the microstructures of liver were serious damaged. The ROS levels were remarkably increased. The activities of ACP, AKP, and lysozyme were obviously decreased, while the activities of MPO and NF-κB were significantly increased. The expressions of immune-related mRNA were significantly affected. After co-treatment with PFOS and PDTC, the growth inhibition, the morphological damage, the ROS induction, and the expressions of immune-related mRNA were reversed. Taken together, the results indicated that PFOS can significantly inhibit the growth, disturb the immune system by changing the normal structure of liver, the activities of immune-related enzymes, and a series of gene transcriptions involved in immune regulation in liver of male zebrafish. PFOS-induced pro-inflammatory effect of hepatocytes was observed, and the involvement of NF-κB signaling pathway was participated in its action mechanism. These findings provide further evidence that PFOS interferes with the immune regulation of liver of male zebrafish under in vivo conditions.
Collapse
Affiliation(s)
- Jinshu Guo
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| | - Panhong Wu
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| | - Jinling Cao
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China.
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Acedemy of Fishery Science, Nanning, 530021, Guangxi, China.
| | - Jianjie Chen
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| | - Guodong Wang
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| | - Wenjing Guo
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| | - Tianyu Wang
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| | - Xinjing He
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| |
Collapse
|
39
|
Manzano-Salgado CB, Granum B, Lopez-Espinosa MJ, Ballester F, Iñiguez C, Gascón M, Martínez D, Guxens M, Basterretxea M, Zabaleta C, Schettgen T, Sunyer J, Vrijheid M, Casas M. Prenatal exposure to perfluoroalkyl substances, immune-related outcomes, and lung function in children from a Spanish birth cohort study. Int J Hyg Environ Health 2019; 222:945-954. [PMID: 31262703 DOI: 10.1016/j.ijheh.2019.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/20/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Prenatal exposure to perfluoroalkyl substances (PFASs) has been associated with impaired immune and respiratory health during childhood but the evidence is inconsistent and limited for lung function. We studied the association between prenatal PFASs exposure and immune and respiratory health, including lung function, up to age 7 years in the Spanish INMA birth cohort study. METHODS We assessed four PFASs in maternal plasma samples collected during the 1st trimester of pregnancy (years: 2003-2008): perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and perfluorononanoate (PFNA). Mothers reported the occurrence (yes/no) of lower respiratory tract infections, wheezing, asthma, and eczema in the previous 12 months at 1.5 and 4 years of the child (n = 1188) and at 7 years (n = 1071). At ages 4 (n = 503) and 7 (n = 992) years lung function was assessed using spirometry tests. RESULTS The most abundant PFASs were PFOS and PFOA (geometric means: 5.80 and 2.31 ng/mL, respectively). The relative risk of asthma during childhood per each doubling in PFNA concentration was 0.74 (95 CI%: 0.57, 0.96). The relative risk of eczema during childhood per every doubling in PFOS concentration was 0.86 (95 CI%: 0.75, 0.98). Higher PFOA concentrations were associated with lower forced vital capacity and lower forced expiratory volume in 1 s z-scores at 4 years [β (95 CI %): -0.17 (-0.34, -0.01) and -0.13 (-0.29, 0.03), respectively], but not at 7 years. CONCLUSION This longitudinal study suggests that different PFASs may affect the developing immune and respiratory systems differently. Prenatal exposure to PFNA and PFOS may be associated with reduced risk of respiratory and immune outcomes, particularly asthma and eczema whereas exposure to PFOA may be associated with reduced lung function in young children. These mixed results need to be replicated in follow-up studies at later ages.
Collapse
Affiliation(s)
- Cyntia B Manzano-Salgado
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain.
| | - Berit Granum
- Dept. of Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Department of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | - Ferran Ballester
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Carmen Iñiguez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Mireia Gascón
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - David Martínez
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Mikel Basterretxea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Public Health Department of Gipuzkoa, San Sebastian, Spain; Health Research Institute BIODONOSTIA, San Sebastián, Spain
| | - Carlos Zabaleta
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Public Health Department of Gipuzkoa, San Sebastian, Spain; Health Research Institute BIODONOSTIA, San Sebastián, Spain
| | - Thomas Schettgen
- Institute for Occupational Medicine, RWTH Aachen University, Aachen, Germany
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| |
Collapse
|
40
|
Gaylord A, Berger KI, Naidu M, Attina TM, Gilbert J, Koshy TT, Han X, Marmor M, Shao Y, Giusti R, Goldring RM, Kannan K, Trasande L. Serum perfluoroalkyl substances and lung function in adolescents exposed to the World Trade Center disaster. ENVIRONMENTAL RESEARCH 2019; 172:266-272. [PMID: 30822559 PMCID: PMC8336627 DOI: 10.1016/j.envres.2019.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 05/04/2023]
Abstract
The effects of childhood exposure to perfluoroalkyl substances (PFASs) on lung function remain mostly unknown. Previous research indicates that children living or going to school near the World Trade Center (WTC) disaster were exposed to high levels of PFASs, among other toxic chemicals. To explore the effects of PFAS exposure on lung function, we measured serum PFASs in a cohort of children from the WTC Health Registry and a matched control group. Perfluorooctanesulfonate had the highest median concentrations in both groups (WTCHR = 3.72 ng/mL, Comparison = 2.75 ng/mL), while the lowest median concentrations were seen for perfluoroundecanoic acid (WTCHR = 0.12 ng/mL, Comparison = 0.01 ng/mL). Lung function outcomes were measured by spirometry, plethysmography, and oscillometry. Asthma diagnosis and serum eosinophil count were also recorded. We examined the relationships of each PFAS with lung function parameters and eosinophil count using linear regressions. Odds ratios for asthma were obtained for each PFAS using logistic regression. The effect of total PFASs on these outcomes was also assessed. All regression models were adjusted for sex, race/ethnicity, age, body mass index (BMI) and tobacco smoke exposure. We found that serum PFASs were not statistically associated with the measured lung function parameters, asthma diagnosis, or eosinophil count in this cohort (p < 0.05). These findings highlight the need for more longitudinal studies to explore the long-term effects of childhood PFAS exposure on lung function past adolescence and early adulthood.
Collapse
Affiliation(s)
- Abigail Gaylord
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Kenneth I Berger
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Mrudula Naidu
- Departments of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Teresa M Attina
- Departments of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Joseph Gilbert
- Departments of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Tony T Koshy
- Departments of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Xiaoxia Han
- Public Health Sciences Department, Henry Ford Health System, Detroit, MI, USA
| | - Michael Marmor
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Yongzhao Shao
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Robert Giusti
- Departments of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Roberta M Goldring
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | | | - Leonardo Trasande
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Medicine, New York University School of Medicine, New York, NY, USA; Departments of Pediatrics, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA; NYU Wagner School of Public Service, New York, NY, USA; NYU College of Global Public Health, New York, NY, USA.
| |
Collapse
|
41
|
Averina M, Brox J, Huber S, Furberg AS, Sørensen M. Serum perfluoroalkyl substances (PFAS) and risk of asthma and various allergies in adolescents. The Tromsø study Fit Futures in Northern Norway. ENVIRONMENTAL RESEARCH 2019; 169:114-121. [PMID: 30447498 DOI: 10.1016/j.envres.2018.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Exposure to environmental pollutants may contribute to the development of asthma and other allergies. The aim of this study was to investigate possible associations between asthma and other allergies with exposure to perfluoroalkyl substances (PFASs) in adolescents from the Arctic region of Norway. METHODS The Tromsø study Fit Futures 1 (TFF1) and 3-year follow-up Fit Futures 2 study (TFF2) included 675 adolescents that completed a questionnaire about health conditions and underwent a clinical examination with blood tests and fractional nitric oxide (FeNO) measurement. Serum concentrations of 18 PFASs were measured by UHPLC-MS/MS method. RESULTS Total PFASs (ΣPFAS) serum concentration over 4th quartile was positively associated with asthma in the TFF1 (OR 3.35 (95% CI 1.54-7.29), p = 0.002). Total perfluorooctane sulfonate (ΣPFOS), linear PFOS (linPFOS), linear perfluorohexane sulfonate (linPFHxS) concentrations over 4th quartiles were associated with 2 times higher odds of asthma in the TFF1. The positive associations between ΣPFAS, ΣPFOS, linPFOS and asthma remained statistically significant in the TFF2. ΣPFAS and linPFHxS concentrations over 3rd tertiles were associated with positive marker of eosinophilic airways inflammation FeNO> 25 ppb. Concentrations of ΣPFOS and linPFOS over 3rd quartiles were positively associated with self-reported nickel allergy (OR 2.25 (95% CI 1.17-4.35) p = 0.016 and OR 2.53 (95% CI 1.30-4.90) p = 0.006, respectively). Allergic rhinitis, self-reported pollen allergy, food allergy and atopic eczema were not associated with PFASs concentrations. CONCLUSIONS This study of Norwegian adolescents showed a positive association between several PFASs and asthma, as well as between PFOS and nickel allergy.
Collapse
Affiliation(s)
- Maria Averina
- Department of Laboratory Medicine, University Hospital of North Norway, 9038 Tromsø, Norway; Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Jan Brox
- Department of Laboratory Medicine, University Hospital of North Norway, 9038 Tromsø, Norway; Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Anne-Sofie Furberg
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Martin Sørensen
- Department of Pediatric and Adolescent medicine, University Hospital of North Norway, Tromsø, Norway; Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
42
|
Wen HJ, Wang SL, Chen PC, Guo YL. Prenatal perfluorooctanoic acid exposure and glutathione s-transferase T1/M1 genotypes and their association with atopic dermatitis at 2 years of age. PLoS One 2019; 14:e0210708. [PMID: 30650146 PMCID: PMC6334968 DOI: 10.1371/journal.pone.0210708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 12/31/2018] [Indexed: 01/07/2023] Open
Abstract
Background Perfluoroalkyl substance (PFAS) exposure was found associated with atopic diseases. Atopic dermatitis (AD) is a childhood skin disorder. However, the effect of interaction between PFASs and glutathione S-transferase (GST) T1/M1 genotype on AD remains unclear. Objective To investigate the association between gene-environmental interaction and childhood AD using a birth cohort study. Methods From 2001 to 2005, 1,264 mother–newborn pairs were recruited from eight Taiwanese maternity hospitals. PFAS levels and Genotypes were analysed from cord blood. Information on children’s health status including AD occurrence was obtained via phone interviews at 6 months and 2 years. Cord plasma concentrations of nine PFASs were measured via ultra-high performance liquid chromatography/tandem mass spectrometry. GSTT1/M1 was genotyped (null/present) via polymerase chain reaction. Environment-gene interaction effects on AD were assessed using multiple logistic regression analysis. Results Overall, 839 mother–newborn pairs completed all measurements. The prevalence of ever having physician-diagnosed AD by 2 years of age was 5.4%. Among PFASs, perfluorooctanoic acid (PFOA) was positively associated with AD adjusted for potential confounders. After grouping PFOA levels into three groups: undetected, below and above the median in those with detected, children in above the median group who had the GSTT1-null, or GSTM1-null genotype exhibited a higher odds ratio for AD (OR [95%CI] = 3.45 [1.26–9.99] and 2.92 [1.12–7.91], respectively) as compared to the undetected group. Conclusions Our data demonstrated that in-utero PFOA exposure with GSTT1/M1 null genotype were associated with AD. Minimizing early-life PFAS exposure may help against AD development, especially in genetically susceptible individuals.
Collapse
Affiliation(s)
- Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Department of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Pau-Chung Chen
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei, Taiwan
- Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Yue Leon Guo
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of Medicine and NTU Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
43
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018; 16:e05194. [PMID: 32625773 PMCID: PMC7009575 DOI: 10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
44
|
Han R, Zhang F, Wan C, Liu L, Zhong Q, Ding W. Effect of perfluorooctane sulphonate-induced Kupffer cell activation on hepatocyte proliferation through the NF-κB/TNF-α/IL-6-dependent pathway. CHEMOSPHERE 2018; 200:283-294. [PMID: 29494909 DOI: 10.1016/j.chemosphere.2018.02.137] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 05/18/2023]
Abstract
Perfluorooctane sulfonate (PFOS), one member of polyfluoroalkyl chemicals (PFASs), persist in the environment and are found in relatively high concentrations in animal livers. PFOS has been shown to induce tumour of the liver in rats following chronic dietary administration. However, the molecular mechanisms involved in PFOS-induced hepatocellular hypertrophy are still not well characterized. In this study, male Sprague-Dawley rats were daily gavaged with PFOS (1 or 10 mg/kg body weight) for 28 days. Rat primary cultured Kupffer cells or hepatocytes were exposed to 100 μM PFOS for 0-48 h. Our results showed that PFOS exposure caused serious hepatocellular damage and obvious inflammatory cell infiltration and increased serum tumour necrosis factor-ɑ (TNF-α) and interleukin-6 (IL-6) levels. Particularly, PFOS exposure triggered Kupffer cell activation and significantly upregulated the expression of proliferating cell nuclear antigen (PCNA), c-Jun, c-MYC and Cyclin D1 (CyD1) in liver. In vitro, PFOS significantly induced production of TNF-α and IL-6 in Kupffer cells and increased PCNA, c-Jun, c-MYC and CyD1 expression in the primary hepatocytes co-cultured with Kupffer cells. However, Kupffer cell activation was mostly abolished by anti-TNF-α or anti-IL6 treatment. Furthermore, blockage of TNF-α and IL-6 significantly inhibited hepatocyte proliferation by gadolinium chloride (GdCl3) pre-treatment in PFOS-treated mice and primary cultured Kupffer cells. On the other hand, NF-κB inhibitor (PDTC) and c-Jun amino-terminal kinase (JNK) inhibitor (SP600125) significantly inhibited production of PFOS-induced TNF-α and IL-6. Taken together, these data suggest that PFOS induces Kupffer cell activation, leading to hepatocyte proliferation by through the NF-κB/TNF-ɑ/IL-6-dependent pathway.
Collapse
Affiliation(s)
- Rui Han
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chong Wan
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Limin Liu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Zhong
- Department of Emergency Medicine, Tongji Hospital Affiliated to Tongji Medical College Huazhong, University of Science & Technology, Wuhan, China.
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
45
|
Lee JK, Lee S, Choi YA, Jin M, Kim YY, Kang BC, Kim MJ, Dhakal H, Lee SR, Kim SU, Khang D, Kim SH. Perfluorooctane sulfonate exacerbates mast cell-mediated allergic inflammation by the release of histamine. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0019-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Lee JK, Kim SH. Correlation between mast cell-mediated allergic inflammation and length of perfluorinated compounds. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:302-313. [PMID: 29482476 DOI: 10.1080/15287394.2018.1440188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Perfluorinated compounds (PFC) have widely been used in numerous applications including clothing, food packaging, and nonstick coating. With the widespread use of PFC, concerns regarding potential adverse health effects in humans and wildlife have increased. In spite of the known PFC-mediated immunotoxiciy, correlation with PFC and allergic inflammation still requires elucidation. The aim of this study was to examine the effect of four types of PFC (perfluoroheptanoic acid [PFHpA], perfluorononanoic acid [PFNA], perfluorodecanoic acid [PFDA], and perfluoroundecanoic acid [PFUnA]) on mast cell-mediated allergic inflammation in the presence of high-affinity immunoglobulin (Ig) E receptor (FcεRI) cross-linking. Among PFC family, long-chain PFDA and PFUnA increased release of histamine and β-hexosaminidase by up-regulation of intracellular calcium levels in IgE-stimulated mast cells. In addition, PFDA and PFUnA enhanced gene expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8 by activation of nuclear factor-κB in IgE-stimulated mast cells. In ovalbumin (OVA)-induced model of systemic anaphylaxis in the presence of hypothermia, PFNA, PFDA, and PFUnA exacerbated allergic symptoms accompanied by elevation in serum histamine, TNF-α, IgE, and IgG1. Our data indicate that some PFC aggravated high-affinity IgE receptor (FcεRI)-mediated mast cell degranulation and allergic symptoms. Consequently, the results demonstrated that carbon-chain length of PFC may serve as a factor in allergic inflammation.
Collapse
Affiliation(s)
- Jun-Kyoung Lee
- a Department of Pharmacology, School of Medicine , Kyungpook National University , Daegu Republic of Korea
| | - Sang-Hyun Kim
- a Department of Pharmacology, School of Medicine , Kyungpook National University , Daegu Republic of Korea
| |
Collapse
|
47
|
Zhou Y, Bao WW, Qian ZM, Dee Geiger S, Parrish KL, Yang BY, Lee YL, Dong GH. Perfluoroalkyl substance exposure and urine CC16 levels among asthmatics: A case-control study of children. ENVIRONMENTAL RESEARCH 2017; 159:158-163. [PMID: 28802206 DOI: 10.1016/j.envres.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/08/2017] [Accepted: 08/03/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Studies have reported an association between serum perfluoroalkyl substances (PFASs) and asthma. However, few studies have examined the possible associations between PFASs and the 16-kDa club cell secretory protein (Clara) (CC16) level, a prominent biomarker of asthma, among adolescents. METHODS We recruited a total of 231 asthmatic children and 225 non-asthmatic controls in the Genetic and Biomarkers study for Childhood Asthma (GBCA) in northern Taiwan from 2009 to 2010. Structured questionnaires were administered by face-to-face interview. Urine CC16 was determined by an enzyme-link immunoassay kit. Multiple general linear models were employed to examine the associations between PFASs and urinary CC16 levels. RESULTS Asthmatic participants had significantly higher serum PFAS concentrations overall than the healthy controls. After adjusting for confounding factors, urinary CC16 was significantly, negatively associated with PFASs, especially PFOS, PFOA, PFDA and PFNA, and especially among males, as follows: PFOS (β = -0.003, 95% confidence interval [CI]: -0.004, -0.002), PFOA (β = -0.045, 95% CI: -0.086, -0.004), and PFHxA (β = -0.310, 95% CI: -0.455, -0.165) among asthmatic boys, and PFDA (β = -0.126, 95%CI: -0.241, -0.012) and PFNA (β = -0.329, 95% CI: -0.526, -0.132) among non-asthmatic boys. Among girls, PFDA (β = -0.088, 95% CI: -0.172, -0.004), was the only PFAS significantly associated with CC16. Significant interaction effects (p < 0.15) on CC16 levels were found between asthma and PFOS, PFOA, PFBS and PFHxA in all participants. CONCLUSION Our overall results showed that serum PFASs were significantly, inversely associated with CC16 levels. Associations were stronger among males.
Collapse
Affiliation(s)
- Yang Zhou
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Wen Bao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhengmin Min Qian
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Sarah Dee Geiger
- School of Nursing and Health Studies, Northern Illinois University, DeKalb, IL 60115, USA
| | - Katelyn L Parrish
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yungling Leo Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan.
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
48
|
Choi YA, Choi JK, Jang YH, Lee S, Lee SR, Choi JH, Park JH, Shin TY, Kim SH. Anti‑inflammatory effect of Amomum xanthioides in a mouse atopic dermatitis model. Mol Med Rep 2017; 16:8964-8972. [PMID: 28990098 DOI: 10.3892/mmr.2017.7695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/31/2017] [Indexed: 11/06/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disorder. The present study investigated the effects of Amomum xanthioides extract (AXE) on AD‑like skin inflammation using a Dermatophagoides farinae extract (DFE) and 2,4‑dinitrochlorobenzene (DNCB)‑induced mouse AD model. Hematoxylin and eosin staining results demonstrated that repeated DFE/DNCB exposure markedly increased the thickening of the dermis and epidermis, in addition to the infiltration of eosinophils and mast cells. However, oral administration of AXE reduced these histopathological alterations in a dose‑dependent manner. Elevated serum histamine, total and DFE‑specific immunoglobulin E (IgE), and IgG2a were also decreased by treatment with AXE. In addition, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) results demonstrated that the mRNA expression of tumor necrosis factor (TNF)‑α, interferon (IFN)‑γ, interleukin (IL)‑4, IL‑13, IL‑31 and IL‑17A was reduced in ear skin following AXE administration in AD mice. Fluorescence‑activated cell sorting demonstrated that the population of CD4+/IL‑4+, CD4+/IFN‑γ+ and CD4+/IL‑17A+ cells in draining lymph nodes was also significantly decreased in AXE‑treated mice compared with AD mice without AXE treatment. Furthermore, keratinocytes that were stimulated with TNF‑α and IFN‑γ exhibited increased gene expression of pro‑inflammatory cytokines and chemokines, including TNF‑α, IL‑1β, IL‑6, IL‑8, C‑C motif chemokine ligand (CCL)17 and CCL22, as determined by RT‑qPCR. However, upregulation of these genes was reduced by AXE pretreatment. Based on these results, we hypothesize that AXE may be useful in the treatment of allergic skin inflammation, particularly AD.
Collapse
Affiliation(s)
- Young-Ae Choi
- Department of Pharmacology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jin Kyeong Choi
- Department of Pharmacology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yong Hyun Jang
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Jeollabuk‑do 56212, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Jung Ho Choi
- R&D Center Pharmaceutical Laboratory, Korean Drug Co., Ltd., Seoul 06300, Republic of Korea
| | - Jee Hun Park
- R&D Center Pharmaceutical Laboratory, Korean Drug Co., Ltd., Seoul 06300, Republic of Korea
| | - Tae-Yong Shin
- Department of Pharmacy, College of Pharmacy, Woosuk University, Samrye, Jeollabuk‑do 55338, Republic of Korea
| | - Sang-Hyun Kim
- Department of Pharmacology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
49
|
Qin XD, Qian ZM, Dharmage SC, Perret J, Geiger SD, Rigdon SE, Howard S, Zeng XW, Hu LW, Yang BY, Zhou Y, Li M, Xu SL, Bao WW, Zhang YZ, Yuan P, Wang J, Zhang C, Tian YP, Nian M, Xiao X, Chen W, Lee YL, Dong GH. Association of perfluoroalkyl substances exposure with impaired lung function in children. ENVIRONMENTAL RESEARCH 2017; 155:15-21. [PMID: 28171771 DOI: 10.1016/j.envres.2017.01.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/02/2017] [Accepted: 01/20/2017] [Indexed: 05/21/2023]
Abstract
Previous studies have demonstrated associations between serum levels of perfluoroalkyl substances (PFASs) and asthma or asthma related-biomarkers. However, no studies have reported a possible relationship between PFASs exposure and lung function among children. The objective of the present study is to test the association between PFASs exposure and lung function in children from a high exposure area by using a cross-sectional case-control study, which included 132 asthmatic children and 168 non-asthmatic controls recruited from 2009 to 2010 in the Genetic and Biomarkers study for Childhood Asthma. Structured questionnaires were administered face-to-face. Lung function was measured by spirometry. Linear regression models were used to examine the influence of PFASs on lung function. The results showed that asthmatics in our study had significantly higher serum PFAS concentrations than healthy controls. Logistic regression models showed a positive association between PFASs and asthma, with adjusted odds ratios (ORs) ranging from 0.99 (95% confidence interval [CI]: 0.80-1.21) to 2.76 (95% CI: 1.82-4.17). Linear regression modeling showed serum PFASs levels were significantly negatively associated with three pulmonary function measurements (forced vital capacity: FVC; forced expiratory volume in 1s: FEV1; forced expiratory flow 25-75%: FEF25-75) among children with asthma, the adjusted coefficients between lung function and PFASs exposure ranged from -0.055 (95%CI: -0.100 to -0.010) for FVC and perfluorooctane sulfonate (PFOS) to -0.223 (95%CI: -0.400 to -0.045) for FEF25-75 and perfluorooctanoic acid (PFOA). PFASs were not, however, significantly associated with pulmonary function among children without asthma. In conclusion, this study suggests that serum PFASs are associated with decreased lung function among children with asthma.
Collapse
Affiliation(s)
- Xiao-Di Qin
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhengmin Min Qian
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Vic 3052, Australia
| | - Jennifer Perret
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Vic 3052, Australia
| | - Sarah Dee Geiger
- School of Health Studies, Northern Illinois University, DeKalb, IL 60115, USA
| | - Steven E Rigdon
- Department of Biostatistics, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Steven Howard
- Department of Health Management & Policy, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Xiao-Wen Zeng
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yang Zhou
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng Li
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Wen Bao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ya-Zhi Zhang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ping Yuan
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jia Wang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chuan Zhang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan-Peng Tian
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Min Nian
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Xiao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yungling Leo Lee
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan.
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
50
|
Zhou Y, Hu LW, Qian ZM, Geiger SD, Parrish KL, Dharmage SC, Campbell B, Roponen M, Jalava P, Hirvonen MR, Heinrich J, Zeng XW, Yang BY, Qin XD, Lee YL, Dong GH. Interaction effects of polyfluoroalkyl substances and sex steroid hormones on asthma among children. Sci Rep 2017; 7:899. [PMID: 28420867 PMCID: PMC5429856 DOI: 10.1038/s41598-017-01140-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/22/2017] [Indexed: 11/29/2022] Open
Abstract
To evaluate the interactions between polyfluoroalkyl substances (PFASs) and reproductive hormones and associated asthma, a total of 231 asthmatic and 225 non-asthmatic adolescents were selected from northern Taiwan in the Genetic and Biomarkers study for Childhood Asthma from 2009–2010. The interaction between PFASs and reproductive hormones on asthma was analyzed with a two-level binary logistic regression model. The results showed that, among asthmatics, PFASs were positively associated with estradiol levels and negatively associated with testosterone levels. However, only significant association was identified for PFNA and estradiol in control group. After controlling for hormone levels, associations between PFAS exposure and asthma were consistently stronger among children with higher than lower estradiol, with odds ratios (OR) for asthma ranging from 1.25 for PFOS (95% Confidence Interval [CI]: 0.90, 1.72) to 4.01 for PFDA (95% CI: 1.46, 11.06) among boys and 1.25 for PFOS (95% CI: 0.84, 1.86) to 4.16 for PFNA (95% CI: 1.36, 12.73) among girls. Notably, the interactions between estradiol and PFASs were significant for PFOS (p = 0.026) and PFNA (p = 0.043) among girls. However, testosterone significantly attenuated the association between PFOS and asthma across sex. In conclusions, our findings suggested that reproductive hormones amplify the association between PFASs and asthma among adolescents.
Collapse
Affiliation(s)
- Yang Zhou
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhengmin Min Qian
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis, 63104, USA
| | - Sarah Dee Geiger
- School of Nursing and Health Studies, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Katelyn L Parrish
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis, 63104, USA
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Vic, 3052, Australia
| | - Brittany Campbell
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Vic, 3052, Australia
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, FI, 70211, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, FI, 70211, Finland
| | - Maija-Riitta Hirvonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, FI, 70211, Finland
| | - Joachim Heinrich
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Clinical Center, Ludwig Maximilian University, Comprehensive Pneumology Centre Munich, German Centre for Lung Research, Ziemssenstrasse 1, 80336, Muenchen, Germany
| | - Xiao-Wen Zeng
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Di Qin
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yungling Leo Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, 100, Taiwan.
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|