1
|
Kiyama R, Wada-Kiyama Y. Estrogenic actions of alkaloids: Structural characteristics and molecular mechanisms. Biochem Pharmacol 2024; 232:116645. [PMID: 39577707 DOI: 10.1016/j.bcp.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
This comprehensive review of estrogenic alkaloids reveals that although the number is small, they exhibit a wide range of structures, biosynthesis pathways, mechanisms of action, and applications. Estrogenic alkaloids belong to different classes, different biosynthetic pathways, different estrogenic actions (estrogenic/synergistic, anti-estrogenic/antagonistic, biphasic, and acting as a selective estrogen receptor modulator or SERM), different receptor-initiated signaling pathways, different ways of modulations of estrogen action, and different applications. The future applications of estrogenic alkaloids, such as those for diagnostics, drug development, and therapeutics, are considered with the help of new databases containing comprehensive descriptions of their relationships and more elaborate artificial intelligence-based prediction technologies. Structure-activity studies reveal the significance of the nitrogen atom for their structural and functional diversity, which may help support their broader applications. Based on the summary of previous reports, estrogenic alkaloids have significant potential for future applications.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Dept. of Life Science, Faculty of Life Science, Kyushu Sangyo Univ. 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
2
|
Su M, Zhou S, Li J, Lin N, Chi T, Zhang M, Lv X, Hu Y, Bai T, Chang F. Benzo(a)pyrene regulates chaperone-mediated autophagy via heat shock protein 90. Toxicol Lett 2023:S0378-4274(23)00208-4. [PMID: 37390851 DOI: 10.1016/j.toxlet.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 05/23/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
AIMS Some studies have shown that the Benzo(a)pyrene (BaP) exposure induced oxidative damage, DNA damage and autophagy, but the molecular mechanism is not clear. Heat shock protein 90 (HSP90) is regarded as an important target in cancer therapy and a key factor in autophagy. Therefore, this study aims to clarify the new mechanism of BaP regulating CMA through HSP90. MAIN METHODS C57BL mice were fed with BaP at a dose of 25.3mg/kg. A549 cells were treated with different concerntrations of BaP, and MTT assay was used to observe the effect of BaP on the proliferation of A549 cells. DNA damage was detected by alkaline comet assay. Focus experiment for detection of γ-H2AX by immunofluorescence. The mRNA expression of HSP90, HSC70 and Lamp-2a was detected by qPCR. The protein expressions of HSP90, HSC70 and Lamp-2a were detected by Western blot. Next, we knocked down HSP90 expression by the HSP90 Inhibitor, NVP-AUY 922, exposed or HSP90α shRNA lentivirus transduction in A549 cells. KEY FINDINGS In these studies, we first found that heat shock protein 90 (HSP90), heat shock cognate 70 (HSC70) and lysosomal-associated membrane protein type 2 receptor (Lamp-2a) expressions of C57BL mice lung tissue and A549 cells exposed to BaP were significant increase, as well as BaP induced DNA double-strand breaks (DSBs) and activated DNA damage responses, as evidenced by comet assay and γ-H2AX foci analysis in A549 cells. Our results demonstrated BaP induced CMA and caused DNA damage. Next, we knocked down HSP90 expression by the HSP90 Inhibitor, NVP-AUY 922, exposed or HSP90α shRNA lentivirus transduction in A549 cells. HSC70 and Lamp-2a expressions of these cells exposed to BaP were not significant increase, which showed that BaP inducted CMA was mediated by HSP90. Further, HSP90α shRNA prevented BaP induced of BaP which suggested BaP regulated CMA and caused DNA damage by HSP90. Our results elucidated a new mechanism of BaP regulated CMA through HSP90. SIGNIFICANCE BaP regulated CMA through HSP90. HSP90 is involved in the regulation of gene instability induced by DNA damage by BaP, which promotes CMA. Our study also revealed that BaP regulates CMA through HSP90. This study fills the gap of the effect of BaP on autophagy and its mechanism, which will lead to a more comprehensive understanding of the action mechanism of BaP.
Collapse
Affiliation(s)
- Min Su
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Shuhong Zhou
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, China; School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Jun Li
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, China; GLP Center of Inner Mongolia Medical University, Hohhot, China; Inner Mongolia New Drug Screening Engineering Research Center, Hohhot, China
| | - Nan Lin
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Tao Chi
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Mengdi Zhang
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, China; GLP Center of Inner Mongolia Medical University, Hohhot, China
| | - Xiaoli Lv
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, China; Inner Mongolia New Drug Screening Engineering Research Center, Hohhot, China
| | - Yuxia Hu
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, China; GLP Center of Inner Mongolia Medical University, Hohhot, China; Inner Mongolia New Drug Screening Engineering Research Center, Hohhot, China
| | - Tuya Bai
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, China; Inner Mongolia New Drug Screening Engineering Research Center, Hohhot, China.
| | - Fuhou Chang
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
3
|
Protein expression profiling of rat uteruses with primary dysmenorrhea syndrome. Arch Gynecol Obstet 2021; 305:139-147. [DOI: 10.1007/s00404-021-06233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
|
4
|
Nonneman D, Lents CA, Rempel LA, Rohrer GA. Potential functional variants in AHR signaling pathways are associated with age at puberty in swine. Anim Genet 2021; 52:284-291. [PMID: 33667011 DOI: 10.1111/age.13051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2021] [Indexed: 12/31/2022]
Abstract
Puberty in female pigs is defined as age at first estrus and gilts that have an earlier age at puberty are more likely to have greater lifetime productivity. Because age at puberty is predictive for sow longevity and lifetime productivity, but not routinely measured in commercial herds, it would be beneficial to use genomic or marker-assisted selection to improve these traits. A GWAS at the US Meat Animal Research Center (USMARC) identified several loci associated with age at puberty in pigs. Candidate genes in these regions were scanned for potential functional variants using sequence information from the USMARC swine population founder animals and public databases. In total, 135 variants (SNP and insertion/deletions) in 39 genes were genotyped in 1284 phenotyped animals from a validation population sired by Landrace and Yorkshire industry semen using the Agena MassArray system. Twelve variants in eight genes were associated with age at puberty (P < 0.005) with estimated additive SNP effects ranging from 1.6 to 5.3 days. Nine of these variants were non-synonymous coding changes in AHR, CYP1A2, OR2M4, SDCCAG8, TBC1D1 and ZNF608, two variants were deletions of one and four codons in aryl hydrocarbon receptor, AHR, and the most significant SNP was near an acceptor splice site in the acetyl-CoA carboxylase alpha, ACACA. Several of the loci identified have a physiological and a genetic role in sexual maturation in humans and other animals and are involved in AHR-mediated pathways. Further functional validation of these variants could identify causative mutations that influence age at puberty in gilts and possibly sow lifetime productivity.
Collapse
Affiliation(s)
- Dan Nonneman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Clay A Lents
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Lea A Rempel
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Gary A Rohrer
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| |
Collapse
|
5
|
Vuerich M, Harshe R, Frank LA, Mukherjee S, Gromova B, Csizmadia E, Nasser IAM, Ma Y, Bonder A, Patwardhan V, Robson SC, Longhi MS. Altered aryl-hydrocarbon-receptor signalling affects regulatory and effector cell immunity in autoimmune hepatitis. J Hepatol 2021; 74:48-57. [PMID: 32663496 PMCID: PMC7749856 DOI: 10.1016/j.jhep.2020.06.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS In autoimmune hepatitis (AIH), the imbalance between regulatory T cells (Tregs) and T-helper type 17 (Th17) cells has been linked to low levels of CD39, an ectoenzyme that hydrolyses ATP, ultimately generating immunosuppressive adenosine. Upregulation of CD39 results from activation of aryl hydrocarbon receptor (AHR), which mediates toxin responses to modulate T-cell immunity. In this study, we investigated whether altered AHR signalling underlies defective CD39 expression and function in AIH Tregs and Th17 cells, therefore contributing to regulatory/effector cell imbalance. METHODS Tregs and Th17 cells, obtained from the peripheral blood of 49 patients with AIH and 21 healthy individuals (HI), were tested for response to endogenous and exogenous AHR ligands. RESULTS When compared to those of HI, AIH-derived Tregs and Th17 cells displayed impaired responses to AHR activation, reflected by impaired upregulation of CD39, delayed increase in ectoenzymatic activity, and defective Treg suppressive function. These impairments resulted, at least in part, from heightened levels of AHRR and Erα in Tregs and high HIF-1α in Th17 cells, and were reverted upon molecular blockade. Importantly, in AIH-derived Tregs, the binding affinity of AHR was higher for Erα than ARNT. CONCLUSIONS In AIH, high levels of AHRR and HIF-1α inhibit AHR signalling in Tregs and Th17 cells. AHR non-canonical binding to Erα further amplifies the lack of effective CD39 upregulation. Blockade of these inhibitory and/or non-canonical activation pathways represents a potential therapeutic approach to restore CD39 and immunohomeostasis in AIH. LAY SUMMARY In patients with autoimmune hepatitis, the imbalance between regulatory T cells and T helper type-17 cells is linked to dysfunction of the aryl hydrocarbon receptor pathway, resulting from aberrant inhibition or non-canonical activation. These alterations impair Treg- and Th17 cell-induced upregulation of CD39, an ectoenzyme key to immunoregulation. Blockade of excessive inhibition or non-canonical activation of the aryl hydrocarbon receptor pathway might represent a novel therapeutic strategy to control inflammation while restoring immune balance in autoimmune hepatitis.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Rasika Harshe
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Luiza Abrahão Frank
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Samiran Mukherjee
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Barbora Gromova
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA,Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Eva Csizmadia
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Imad AM Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Yun Ma
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King’s College London, London, United Kingdom
| | - Alan Bonder
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Vilas Patwardhan
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Simon C. Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Akhter MS, Uddin MA, Barabutis N. Unfolded protein response regulates P53 expression in the pulmonary endothelium. J Biochem Mol Toxicol 2019; 33:e22380. [PMID: 31339623 PMCID: PMC6787927 DOI: 10.1002/jbt.22380] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
Abstract
Lung endothelial barrier dysfunction leads to severe pathologies, including the lethal Acute Respiratory Distress Syndrome. P53 has been associated with anti-inflammatory activities. The current study employs a variety of unfolded protein response (UPR) activators and inhibitors to investigate the regulation of P53 by UPR in lung cells. The bovine cells that were exposed to the UPR inductors brefeldin A, dithiothreitol, and thapsigargin; demonstrated elevated expression levels of P53 compared to the vehicle-treated cells. On the contrary, the UPR inhibitors N-acetyl cysteine, kifunensine, and ATP-competitive IRE1α kinase-inhibiting RNase attenuator; produced the opposite effects. The outcomes of the present study reveal a positive regulation between UPR and P53. Since it has been shown that a mild induction of the unfolded protein response opposes inflammation, we suggest that P53 is involved in those protective activities in the lung.
Collapse
Affiliation(s)
- Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| |
Collapse
|
7
|
Pauletto M, Lopparelli RM, Pegolo S, Armani M, Zorzan E, Giantin M, Bertotto D, Gallocchio F, Zancanella V, Capolongo F, Binato G, Mutinelli F, Dacasto M. Significance of the goby Zosterisessor ophiocephalus as a sentinel species for Venice Lagoon contamination: Combining biomarker responses and bioaccumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:959-973. [PMID: 30743980 DOI: 10.1016/j.scitotenv.2019.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
The Venice Lagoon is an interesting example of an ecosystem suffering for a considerable anthropogenic impact, resulting in high concentrations of persistent organic pollutants (POPs) in lagoon sediments and seafood. In this context, biomonitoring is a crucially important task. The present study aimed at evaluating the validity of a multiple biomarker approach in a benthic fish species. A total of 567 Zosterisessor ophiocephalus (Gobiidae) fish were collected in spring and autumn from three areas of Venice Lagoon (Porto Marghera, Val di Brenta, and Cà Roman) showing high, intermediate and low amounts of POPs, respectively. Aryl hydrocarbon receptor (AHR) and cytochrome P450 1A (CYP1A) mRNA levels, CYP1A protein amount and ethoxyresorufin O-deethylase activity (EROD) were measured in pooled liver and gills (mRNA levels only). Such biological data were then compared with polychlorinated biphenyls (PCBs) residues, measured in grass goby muscle by gas chromatography. Aryl hydrocarbon receptor and CYP1A mRNAs, protein and EROD were upregulated in accordance with PCB amounts measured in Z. ophiocephalus muscles. In fact, the highest AHR and CYP1A induction was observed in fish sampled in close proximity of the industrial area of Porto Marghera. Overall, the present study confirm the grass goby as a reliable sentinel species for Venice Lagoon, and AHR/CYP1A/EROD as a sensitive set of biomarkers of exposure for AHR ligands.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, I-35020 Legnaro, Padua, Italy.
| | - Rosa M Lopparelli
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, I-35020 Legnaro, Padua, Italy.
| | - Sara Pegolo
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, I-35020 Legnaro, Padua, Italy.
| | - Mariachiara Armani
- Veterinary and Public Health Institute, viale dell'Università 10, I-35020 Legnaro, Padua, Italy.
| | - Eleonora Zorzan
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, I-35020 Legnaro, Padua, Italy.
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, I-35020 Legnaro, Padua, Italy.
| | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, I-35020 Legnaro, Padua, Italy.
| | - Federica Gallocchio
- Veterinary and Public Health Institute, viale dell'Università 10, I-35020 Legnaro, Padua, Italy.
| | - Vanessa Zancanella
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, I-35020 Legnaro, Padua, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, I-35020 Legnaro, Padua, Italy.
| | - Giovanni Binato
- Veterinary and Public Health Institute, viale dell'Università 10, I-35020 Legnaro, Padua, Italy.
| | - Franco Mutinelli
- Veterinary and Public Health Institute, viale dell'Università 10, I-35020 Legnaro, Padua, Italy.
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, I-35020 Legnaro, Padua, Italy.
| |
Collapse
|
8
|
Blunt BJ, Singh A, Wu L, Gamal El-Din M, Belosevic M, Tierney KB. Reuse water: Exposure duration, seasonality and treatment affect tissue responses in a model fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1117-1125. [PMID: 28724250 DOI: 10.1016/j.scitotenv.2017.07.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Partially remediated gray (reuse) water will likely find increasing use in a variety of applications owing to the increasing scarcity of freshwater. We aimed to determine if a model fish, the goldfish, could sense reuse water using olfaction (smell), and if 30min or 7d (acute) and 60d (sub-chronic) exposures would affect their olfactory responses to natural odorants. We examined olfaction as previous studies have found that numerous chemicals can impair the olfactory sense, which is critical to carrying out numerous life-sustaining behaviors from feeding to mating. We also examined if fish olfactory and liver tissues would mount a response in terms of biotransformation enzyme gene expression, and whether treatment of reuse water with UV/H2O2 ameliorated adverse effects following reuse water exposure. We found that fish olfactory tissue responded to reuse water as it would to a natural odorant and that UV/H2O2 treatment had no influence on this. With acute exposures, olfactory impairment was apparent regardless of water type (e.g. responses of 23-55% of control), but in sub-chronic exposures, only the untreated reuse water caused olfactory impairment. The exposure of fish to reuse water increased the expression of one enzyme (CYP1A; >2.5-6.5 fold change) and reuse water treatment with UV/H2O2 reversed the effect. There was a seasonal effect that was likely due to changes in water quality (60d summer exposure impaired olfaction whereas spring and fall exposures did not). Overall, the data suggest that reuse water may be detected by olfaction, impair olfactory responses in fish receiving unavoidable exposures, and that exposure duration and season are important factors to consider regarding adverse effects.
Collapse
Affiliation(s)
- B J Blunt
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - A Singh
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - L Wu
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - M Gamal El-Din
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - M Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - K B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; School of Public Health, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| |
Collapse
|
9
|
Fusco DN, Pratt H, Kandilas S, Cheon SSY, Lin W, Cronkite DA, Basavappa M, Jeffrey KL, Anselmo A, Sadreyev R, Yapp C, Shi X, O'Sullivan JF, Gerszten RE, Tomaru T, Yoshino S, Satoh T, Chung RT. HELZ2 Is an IFN Effector Mediating Suppression of Dengue Virus. Front Microbiol 2017; 8:240. [PMID: 28265266 PMCID: PMC5316548 DOI: 10.3389/fmicb.2017.00240] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/03/2017] [Indexed: 01/07/2023] Open
Abstract
Flaviviral infections including dengue virus are an increasing clinical problem worldwide. Dengue infection triggers host production of the type 1 IFN, IFN alpha, one of the strongest and broadest acting antivirals known. However, dengue virus subverts host IFN signaling at early steps of IFN signal transduction. This subversion allows unbridled viral replication which subsequently triggers ongoing production of IFN which, again, is subverted. Identification of downstream IFN antiviral effectors will provide targets which could be activated to restore broad acting antiviral activity, stopping the signal to produce endogenous IFN at toxic levels. To this end, we performed a targeted functional genomic screen for IFN antiviral effector genes (IEGs), identifying 56 IEGs required for antiviral effects of IFN against fully infectious dengue virus. Dengue IEGs were enriched for genes encoding nuclear receptor interacting proteins, including HELZ2, MAP2K4, SLC27A2, HSP90AA1, and HSP90AB1. We focused on HELZ2 (Helicase With Zinc Finger 2), an IFN stimulated gene and IEG which encodes a promiscuous nuclear factor coactivator that exists in two isoforms. The two unique HELZ2 isoforms are both IFN responsive, contain ISRE elements, and gene products increase in the nucleus upon IFN stimulation. Chromatin immunoprecipitation-sequencing revealed that the HELZ2 complex interacts with triglyceride-regulator LMF1. Mass spectrometry revealed that HELZ2 knockdown cells are depleted of triglyceride subsets. We thus sought to determine whether HELZ2 interacts with a nuclear receptor known to regulate immune response and lipid metabolism, AHR, and identified HELZ2:AHR interactions via co-immunoprecipitation, found that AHR is a dengue IEG, and that an AHR ligand, FICZ, exhibits anti-dengue activity. Primary bone marrow derived macrophages from HELZ2 knockout mice, compared to wild type controls, exhibit enhanced dengue infectivity. Overall, these findings reveal that IFN antiviral response is mediated by HELZ2 transcriptional upregulation, enrichment of HELZ2 protein levels in the nucleus, and activation of a transcriptional program that appears to modulate intracellular lipid state. IEGs identified in this study may serve as both (1) potential targets for host directed antiviral design, downstream of the common flaviviral subversion point, as well as (2) possible biomarkers, whose variation, natural, or iatrogenic, could affect host response to viral infections.
Collapse
Affiliation(s)
- Dahlene N. Fusco
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
- Division of Infectious Diseases, Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
- Laboratory for Systems Pharmacology, Harvard Medical SchoolBoston, MA, USA
| | - Henry Pratt
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Stephen Kandilas
- Division of Infectious Diseases, Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
- Department of Medicine, Athens University Medical SchoolAthens, Greece
| | | | - Wenyu Lin
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - D. Alex Cronkite
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Megha Basavappa
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Kate L. Jeffrey
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Anthony Anselmo
- Department of Molecular Biology, Massachusetts General HospitalBoston, MA, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General HospitalBoston, MA, USA
| | - Clarence Yapp
- Laboratory for Systems Pharmacology, Harvard Medical SchoolBoston, MA, USA
| | - Xu Shi
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical CenterBoston, MA, USA
| | - John F. O'Sullivan
- Division of Cardiology, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Robert E. Gerszten
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical CenterBoston, MA, USA
- Division of Cardiology, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Takuya Tomaru
- Department of Medicine and Molecular Science, Gunma University Graduate School of MedicineMaebashi, Japan
| | - Satoshi Yoshino
- Department of Medicine and Molecular Science, Gunma University Graduate School of MedicineMaebashi, Japan
| | - Tetsurou Satoh
- Department of Medicine and Molecular Science, Gunma University Graduate School of MedicineMaebashi, Japan
| | - Raymond T. Chung
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| |
Collapse
|
10
|
Sharma RP, Schuhmacher M, Kumar V. Review on crosstalk and common mechanisms of endocrine disruptors: Scaffolding to improve PBPK/PD model of EDC mixture. ENVIRONMENT INTERNATIONAL 2017; 99:1-14. [PMID: 27697394 DOI: 10.1016/j.envint.2016.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Endocrine disruptor compounds (EDCs) are environment chemicals that cause harmful effects through multiple mechanisms, interfering with hormone system resulting in alteration of homeostasis, reproduction and developmental effect. Many of these EDCs have concurrent exposure with crosstalk and common mechanisms which may lead to dynamic interactions. To carry out risk assessment of EDCs' mixture, it is important to know the detailed toxic pathway, crosstalk of receptor and other factors like critical window of exposure. In this review, we summarize the major mechanism of actions of EDCs with the different/same target organs interfering with the same/different class of hormone by altering their synthesis, metabolism, binding and cellular action. To show the impact of EDCs on life stage development, a case study on female fertility affecting germ cell is illustrated. Based on this summarized discussion, major groups of EDCs are classified based on their target organ, mode of action and potential risk. Finally, a conceptual model of pharmacodynamic interaction is proposed to integrate the crosstalk and common mechanisms that modulate estrogen into the predictive mixture dosimetry model with dynamic interaction of mixture. This review will provide new insight for EDCs' risk assessment and can be used to develop next generation PBPK/PD models for EDCs' mixture analysis.
Collapse
Affiliation(s)
- Raju Prasad Sharma
- Center of Environmental Food and Toxicological Technology (TecnATox), Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Marta Schuhmacher
- Center of Environmental Food and Toxicological Technology (TecnATox), Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Vikas Kumar
- Center of Environmental Food and Toxicological Technology (TecnATox), Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain.
| |
Collapse
|
11
|
Xue Z, Li D, Yu W, Zhang Q, Hou X, He Y, Kou X. Mechanisms and therapeutic prospects of polyphenols as modulators of the aryl hydrocarbon receptor. Food Funct 2017; 8:1414-1437. [DOI: 10.1039/c6fo01810f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyphenolic AhR modulators displayed concentration-, XRE-, gene-, species- and cell-specific agonistic/antagonistic activity.
Collapse
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Dan Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Wancong Yu
- Medical Plant Laboratory
- Tianjin Research Center of Agricultural Biotechnology
- Tianjin 3000381
- China
| | - Qian Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaonan Hou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yulong He
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
12
|
Estrogen receptor beta polymorphisms and cognitive performance in women: associations and modifications by genetic and environmental influences. J Neural Transm (Vienna) 2016; 123:1369-1379. [DOI: 10.1007/s00702-016-1620-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/05/2016] [Indexed: 01/18/2023]
|
13
|
Schubert KO, Föcking M, Cotter DR. Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: potential roles in GABAergic interneuron pathology. Schizophr Res 2015; 167:64-72. [PMID: 25728835 DOI: 10.1016/j.schres.2015.02.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 02/01/2015] [Accepted: 02/03/2015] [Indexed: 12/15/2022]
Abstract
Neuropathological changes of the hippocampus have been associated with psychotic disorders such as schizophrenia and bipolar disorder. Recent work has particularly implicated hippocampal GABAergic interneurons in the pathophysiology of these diseases. However, the molecular mechanisms underlying structural and cellular hippocampal pathology remain poorly understood. We used data from comprehensive difference-in-gel electrophoresis (2-D DIGE) investigations of postmortem human hippocampus of people with schizophrenia and bipolar disorder, covering the acidic (isoelectric point (pI) between pH4 and 7) and, separately, the basic (pI between pH6 and 11) sub-proteome, for Ingenuity Pathway Analysis (IPA) of implicated protein networks and pathways. Comparing disease and control cases, we identified 58 unique differentially expressed proteins in schizophrenia, and 70 differentially expressed proteins in bipolar disorder, using mass spectrometry. IPA implicated, most prominently, 14-3-3 and aryl hydrocarbon receptor signaling in schizophrenia, and gluconeogenesis/glycolysis in bipolar disorder. Both disorders were characterized by alterations of proteins involved in the oxidative stress response, mitochondrial function, and protein-endocytosis, -trafficking, -degradation, and -ubiquitination. These findings are interpreted with a focus on GABAergic interneuron pathology in the hippocampus.
Collapse
Affiliation(s)
- Klaus Oliver Schubert
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland; Discipline of Psychiatry, School of Medicine, The University of Adelaide, Adelaide, Australia.
| | - Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
14
|
Kim SS, Chang Z, Park JS. Identification, tissue distribution and characterization of two heat shock factors (HSFs) in goldfish (Carassius auratus). FISH & SHELLFISH IMMUNOLOGY 2015; 43:375-386. [PMID: 25592877 DOI: 10.1016/j.fsi.2015.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/03/2015] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
Heat shock proteins (HSPs) are synthesized rapidly in response to a variety of physiological or environmental stressors, whereas the transcriptional activation of HSPs is regulated by a family of heat shock factors (HSFs). In vertebrates, multiple HSFs (HSF1-4) have been reported to have different roles in response to a range of stresses. This paper reports the cDNA cloning of two goldfish (Carassius auratus) HSF gene families, HSF1 and three isoforms of HSF2. Both HSF1 and HSF2s showed high homology to the known HSFs from other organisms, particularly the zebrafish. Different patterns of HSF1 and HSF2 mRNA expression were detected in several goldfish tissues, highlighting their distinct roles. In cadmium (Cd)-treated tissues, the responses of HSP70 showed less difference. However, the increase in HSF1 and HSF2 in these tissues differs considerable. In particular, HSF2 was induced strongly in the heart and liver. On the other hand, in heart tissue, HSF1 showed the smallest increment. These results suggest the potential role of HSF2 in assisting HSF1 in these tissues. In another in vitro experiment of hepatocyte cultures, Cd exposure caused similar patterns of goldfish HSF1 and HSF2 mRNA expression and induction of the HSP70 protein. On the other hand, an examination of the characterization of recombinant proteins showed that HSF1 undergoes a conformation change induced by heat shock above 30 °C and approaches each other in the trimer, whereas HSF2 could not sense thermal stress directly. Furthermore, immune-blot analysis of HSFs showed that both monomers and trimmers of HSF1 were observed in cadmium-induced tissues, whereas HSF2 were all in monomeric. These results show that HSF1 and HSF2 play different roles in the transcription of heat shock proteins.
Collapse
Affiliation(s)
- So-Sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
| | - Ziwei Chang
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
| | - Jang-Su Park
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
15
|
Gebraël C, Jumarie C. Cadmium interference with ERK1/2 and AhR signaling without evidence for cross-talk. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00284b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The possibility that Cd may activate AhR indirectlyviaERK1/2 phosphorylation was tested as a function of enterocytic differentiation status in the human Caco-2 cells.
Collapse
Affiliation(s)
- C. Gebraël
- Département des Sciences Biologiques
- Centre TOXEN
- Université du Québec à Montréal
- Montréal
- Canada
| | - C. Jumarie
- Département des Sciences Biologiques
- Centre TOXEN
- Université du Québec à Montréal
- Montréal
- Canada
| |
Collapse
|