1
|
Gerber LS, de Leijer DCA, Rujas Arranz A, Lehmann JMML, Verheul ME, Cassee FR, Westerink RHS. Comparison of the neurotoxic potency of different ultrafine particle fractions from diesel engine exhaust following direct and simulated inhalation exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175469. [PMID: 39153615 DOI: 10.1016/j.scitotenv.2024.175469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Exposure to traffic-related air pollution and ultrafine particles (<100 nm; UFP) is linked with neurodegeneration. However, the impact of the aromatic content in fuels and the contribution of different fractions of UFP, i.e., solid UFP vs SVOC UFP, on neuronal function is unknown. We therefore studied effects on neuronal activity and viability in rat primary cortical cells exposed for up to 120 h to copper oxide particles (CuO) or UFP (solid and SVOC) emitted from a heavy-duty diesel engine fueled with petroleum diesel (A20; 20 % aromatics) or Hydrotreated Vegetable Oil-type fuel (A0; 0.1 % aromatics), or solid UFP emitted from a non-road Kubota engine fueled with A20. Moreover, effects of UFP and CuO upon simulated inhalation exposure were studied by exposing an lung model (Calu-3 and THP-1 cells) for 48 h and subsequently exposing the cortical cells to the medium collected from the basal compartment of the lung model. Additionally, cell viability, cytotoxicity, barrier function, inflammation, and oxidative and cell stress were studied in the lung model after 48 h exposure to UFP and CuO. Compared to control, direct exposure to CuO and SVOC UFP decreased neuronal activity, which was partly associated with cytotoxicity. Effects on neuronal activity upon direct exposure to solid UFP were limited. A20-derived UFP (solid and SVOC) were more potent in altering neuronal function and viability than A0 counterparts. Effects on neuronal activity from simulated inhalation exposure were minor compared to direct exposures. In the lung model, CuO and A20-derived UFP increased cytokine release compared to control, whereas CuO and SVOC A20 altered gene expression indicative for oxidative stress. Our data indicate that SVOC UFP exhibit higher (neuro)toxic potency for altering neuronal activity in rat primary cortical cells than the solid fraction. Moreover, our data suggest that reducing the aromatic content in fuel decreases the (neuro)toxic potency of emitted UFP.
Collapse
Affiliation(s)
- Lora-Sophie Gerber
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Dirk C A de Leijer
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Andrea Rujas Arranz
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jonas M M L Lehmann
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Meike E Verheul
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Flemming R Cassee
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Santoro M, Costabile F, Gualtieri M, Rinaldi M, Paglione M, Busetto M, Di Iulio G, Di Liberto L, Gherardi M, Pelliccioni A, Monti P, Barbara B, Grollino MG. Associations between fine particulate matter, gene expression, and promoter methylation in human bronchial epithelial cells exposed within a classroom under air-liquid interface. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124471. [PMID: 38950846 DOI: 10.1016/j.envpol.2024.124471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Associations between indoor air pollution from fine particulate matter (PM with aerodynamic diameter dp < 2.5 μm) and human health are poorly understood. Here, we analyse the concentration-response curves for fine and ultrafine PM, the gene expression, and the methylation patterns in human bronchial epithelial cells (BEAS-2B) exposed at the air-liquid interface (ALI) within a classroom in downtown Rome. Our results document the upregulation of aryl hydrocarbon receptor (AhR) and genes associated with xenobiotic metabolism (CYP1A1 and CYP1B1) in response to single exposure of cells to fresh urban aerosols at low fine PM mass concentrations within the classroom. This is evidenced by concentrations of ultrafine particles (UFPs, dp < 0.1 μm), polycyclic aromatic hydrocarbons (PAH), and ratios of black carbon (BC) to organic aerosol (OA). Additionally, an interleukin 18 (IL-18) down-regulation was found during periods of high human occupancy. Despite the observed gene expression dysregulation, no changes were detected in the methylation levels of the promoter regions of these genes, indicating that the altered gene expression is not linked to changes in DNA methylation and suggesting the involvement of another epigenetic mechanism in the gene regulation. Gene expression changes at low exposure doses have been previously reported. Here, we add the possibility that lung epithelial cells, when singly exposed to real environmental concentrations of fine PM that translate into ultra-low doses of treatment, may undergo epigenetic alteration in the expression of genes related to xenobiotic metabolism. Our findings provide a perspective for future indoor air quality regulations. We underscore the potential role of indoor UFPs as carriers of toxic molecules with low-pressure weather conditions, when rainfall and strong winds may favour low levels of fine PM.
Collapse
Affiliation(s)
- Massimo Santoro
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123, Rome, Italy
| | - Francesca Costabile
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133, Rome, Italy; NBFC - National Biodiversity Future Center, NBFC, 90133, Palermo, Italy.
| | - Maurizio Gualtieri
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Matteo Rinaldi
- NBFC - National Biodiversity Future Center, NBFC, 90133, Palermo, Italy; Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129, Bologna, Italy
| | - Marco Paglione
- NBFC - National Biodiversity Future Center, NBFC, 90133, Palermo, Italy; Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129, Bologna, Italy
| | - Maurizio Busetto
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Gobetti, 40129, Bologna, Italy
| | - Gianluca Di Iulio
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133, Rome, Italy; Department of Public Health and Infectious Disease - University of Rome "La Sapienza", via Eudossiana 18, 00184, Rome, Italy
| | - Luca Di Liberto
- Institute of Atmospheric Sciences and Climate - Italian National Research Council (ISAC - CNR), Via Fosso del Cavaliere, 00133, Rome, Italy
| | - Monica Gherardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Monte Porzio Catone, 00078, Rome, Italy
| | - Armando Pelliccioni
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Monte Porzio Catone, 00078, Rome, Italy
| | - Paolo Monti
- Department of Civil, Building and Environmental Engineering - University of Rome "La Sapienza", via Eudossiana 18, 00184, Rome, Italy
| | - Benassi Barbara
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123, Rome, Italy
| | - Maria Giuseppa Grollino
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), 00123, Rome, Italy
| |
Collapse
|
3
|
Oh TK, Kim S, Kim DH, Song IA. Long-Term Particulate Matter Exposure and Mortality in Hospitalized Patients with COVID-19 in South Korea. Ann Am Thorac Soc 2024; 21:759-766. [PMID: 38330170 PMCID: PMC11109913 DOI: 10.1513/annalsats.202307-607oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024] Open
Abstract
Rationale: Particulate matter (PM) exposure exacerbates health outcomes by causing lung damage. Objectives: To investigate whether prior exposure to particulate matter ⩽10 μm and ⩽2.5 μm in aerodynamic diameter (PM10 and PM2.5) was associated with clinical outcomes among patients with coronavirus disease (COVID-19). Methods: Data from the nationwide registration database of the National Health Insurance and Korea Disease Control and Prevention Agency in South Korea were used. The study included adult patients who were admitted to monitoring centers or hospitals between October 8, 2020 and December 31, 2021, after COVID-19 confirmation. AirKOREA database, which compiles air pollutant data from 642 stations in 162 cities and counties across South Korea, was used to extract data on PM levels. Average values of monthly exposure to PM10 and PM2.5 from the year previous to hospital admission because of COVID-19 to the date of confirmation of COVID-19 were calculated and used to define PM exposures of patients with COVID-19. Results: In total, 322,289 patients with COVID-19 were included, and 4,633 (1.4%) died during hospitalization. After adjusting for covariates, a 1-μg/m3 increase in PM10 and PM2.5 exposure was associated with 4% (odds ratio [OR], 1.04; 95% confidence interval [CI], 1.03-1.05; P < 0.001) and 6% (OR, 1.06; 95% CI, 1.04-1.07; P < 0.001) increase in the risk of in-hospital mortality, respectively. In addition, a 1-μg/m3 increase in PM10 and PM2.5 was associated with 5% (OR, 1.05; 95% CI, 1.04-1.07; P < 0.001) and 8% (OR, 1.08; 95% CI, 1.06-1.10; P < 0.001) increase in the risks of requiring intensive care unit (ICU) admission and mechanical ventilation, respectively. Conclusions: PM10 and PM2.5 exposure was associated with increased in-hospital mortality and the need for ICU admission and mechanical ventilation among patients with COVID-19 in South Korea.
Collapse
Affiliation(s)
- Tak Kyu Oh
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul, South Korea; and
| | - Saeyeon Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dong Hyun Kim
- Department of Occupational and Environmental Medicine, Shihwa Medical Center, Siheumg-si, South Korea
| | - In-Ae Song
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul, South Korea; and
| |
Collapse
|
4
|
McCarrick S, Delaval MN, Dauter UM, Krais AM, Snigireva A, Abera A, Broberg K, Eriksson AC, Isaxon C, Gliga AR. Toxicity of particles derived from combustion of Ethiopian traditional biomass fuels in human bronchial and macrophage-like cells. Arch Toxicol 2024; 98:1515-1532. [PMID: 38427118 PMCID: PMC10965653 DOI: 10.1007/s00204-024-03692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
The combustion of traditional fuels in low-income countries, including those in sub-Saharan Africa, leads to extensive indoor particle exposure. Yet, the related health consequences in this context are understudied. This study aimed to evaluate the in vitro toxicity of combustion-derived particles relevant for Sub-Saharan household environments. Particles (< 2.5 µm) were collected using a high-volume sampler during combustion of traditional Ethiopian biomass fuels: cow dung, eucalyptus wood and eucalyptus charcoal. Diesel exhaust particles (DEP, NIST 2975) served as reference particles. The highest levels of particle-bound polycyclic aromatic hydrocarbons (PAHs) were found in wood (3219 ng/mg), followed by dung (618 ng/mg), charcoal (136 ng/mg) and DEP (118 ng/mg) (GC-MS). BEAS-2B bronchial epithelial cells and THP-1 derived macrophages were exposed to particle suspensions (1-150 µg/mL) for 24 h. All particles induced concentration-dependent genotoxicity (comet assay) but no pro-inflammatory cytokine release in epithelial cells, whereas dung and wood particles also induced concentration-dependent cytotoxicity (Alamar Blue). Only wood particles induced concentration-dependent cytotoxicity and genotoxicity in macrophage-like cells, while dung particles were unique at increasing secretion of pro-inflammatory cytokines (IL-6, IL-8, TNF-α). In summary, particles derived from combustion of less energy dense fuels like dung and wood had a higher PAH content and were more cytotoxic in epithelial cells. In addition, the least energy dense and cheapest fuel, dung, also induced pro-inflammatory effects in macrophage-like cells. These findings highlight the influence of fuel type on the toxic profile of the emitted particles and warrant further research to understand and mitigate health effects of indoor air pollution.
Collapse
Affiliation(s)
- Sarah McCarrick
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Mathilde N Delaval
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Munich, Neuherberg, Germany
| | - Ulrike M Dauter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Asmamaw Abera
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
- Addis Ababa University, Addis Ababa, Ethiopia
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Axel C Eriksson
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Christina Isaxon
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Kahe D, Sabeti Z, Sarbakhsh P, Shakerkhatibi M, Gholampour A, Goudarzi G, Sharbafi J, Dastgiri S, Separham A, Seyedrezazadeh E. Effect of PM 2.5 exposure on adhesion molecules and systemic nitric oxide in healthy adults: The role of metals, PAHs, and oxidative potential. CHEMOSPHERE 2024; 354:141631. [PMID: 38462178 DOI: 10.1016/j.chemosphere.2024.141631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Since there is limited evidence on the impact of PM2.5 content on cardiovascular biomarkers, we conducted a cross-sectional study on 89 healthy adults from October 12 to November 21, 2021. We measured daily PM2.5 in two distinct regions during different time windows: a high-traffic urban area and an industrial suburb. The concentrations of metals, PAHs, and oxidative potential (OP) were determined using ICP-MS, GC-MS, and dithiothreitol (DTT), respectively. Systemic biomarkers, including NO, sICAM-1, sVCAM-1, MDA, and CRP, were quantified in each subject simultaneously. A generalized linear model was used to examine the association between PM2.5 toxicity and each health endpoint. Our findings indicated that daily PM2.5 concentrations exceeded the WHO-recommended level by approximately sevenfold. We found that PM2.5 exposure was associated with adverse cardiovascular outcomes. Moreover, exposure to PM2.5 mass, total PAHs, and certain trace metals (Ni, Fe, V, As, and Pb) resulted in a decline in serum NO levels. At lag 3, exposure to PM2.5 mass resulted in a significant decrease in NO levels [1.32% (95% CI: -2.27, -0.12)] and total PAHs [2.05% (95% CI: -3.93, -0.12)]. In contrast, OP exhibited a mild correlation with NO level increases. Positive associations were observed between PM2.5 and its chemical constituents (PAHs, As, Cu, OP) and adhesion molecules at different lag times. An increase of 0.16 ppb in PAH concentrations at an interquartile range was associated with a 4.74% decline (95% CI, -7.80, -0.55) in the sVCAM-1 level. However, our study did not reveal any significant trend between pollutants and other biomarkers (sICAM-1, MDA, and CRP). Consequently, our findings suggest that different PM2.5 chemical compositions exhibit diverse behavior in biological responses.
Collapse
Affiliation(s)
- Danian Kahe
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Sabeti
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Sarbakhsh
- Department of Statistics and Epidemiology, Faculty of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shakerkhatibi
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Akbar Gholampour
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jabraeil Sharbafi
- East Azerbaijan Province Health Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Dastgiri
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Separham
- Cardiovascular Research Center, Tabriz University of Medical Science, Madani Heart Center, Cardiology Department, Tabriz, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Gerber LS, de Leijer DCA, Rujas Arranz A, Lehmann JMML, Verheul ME, Cassee FR, Westerink RHS. In vitro neurotoxicity of particles from diesel and biodiesel fueled engines following direct and simulated inhalation exposure. ENVIRONMENT INTERNATIONAL 2024; 184:108481. [PMID: 38330748 DOI: 10.1016/j.envint.2024.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Combustion-derived particulate matter (PM) is a major source of air pollution. Efforts to reduce diesel engine emission include the application of biodiesel. However, while urban PM exposure has been linked to adverse brain effects, little is known about the direct effects of PM from regular fossil diesel (PMDEP) and biodiesel (PMBIO) on neuronal function. Furthermore, it is unknown to what extent the PM-induced effects in the lung (e.g., inflammation) affect the brain. This in vitro study investigates direct and indirect toxicity of PMDEP and PMBIO on the lung and brain and compared it with effects of clean carbon particles (CP). PM were generated using a common rail diesel engine. CP was sampled from a spark generator. First, effects of 48 h exposure to PM and CP (1.2-3.9 µg/cm2) were assessed in an in vitro lung model (air-liquid interface co-culture of Calu-3 and THP1 cells) by measuring cell viability, cytotoxicity, barrier function, inflammation, and oxidative and cell stress. None of the exposures caused clear adverse effects and only minor changes in gene expression were observed. Next, the basal medium was collected for subsequent simulated inhalation exposure of rat primary cortical cells. Neuronal activity, recorded using microelectrode arrays (MEA), was increased after acute (0.5 h) simulated inhalation exposure. In contrast, direct exposure to PMDEP and PMBIO (1-100 µg/mL; 1.2-119 µg/cm2) reduced neuronal activity after 24 h with lowest observed effect levels of respectively 10 µg/mL and 30 µg/mL, indicating higher neurotoxic potency of PMDEP, whereas neuronal activity remained unaffected following CP exposure. These findings indicate that combustion-derived PM potently inhibit neuronal function following direct exposure, while the lung serves as a protective barrier. Furthermore, PMDEP exhibit a higher direct neurotoxic potency than PMBIO, and the data suggest that the neurotoxic effects is caused by adsorbed chemicals rather than the pure carbon core.
Collapse
Affiliation(s)
- Lora-Sophie Gerber
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Dirk C A de Leijer
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Andrea Rujas Arranz
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jonas M M L Lehmann
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Meike E Verheul
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Flemming R Cassee
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Engels SM, Kamat P, Pafilis GS, Li Y, Agrawal A, Haller DJ, Phillip JM, Contreras LM. Particulate matter composition drives differential molecular and morphological responses in lung epithelial cells. PNAS NEXUS 2024; 3:pgad415. [PMID: 38156290 PMCID: PMC10754159 DOI: 10.1093/pnasnexus/pgad415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/21/2023] [Indexed: 12/30/2023]
Abstract
Particulate matter (PM) is a ubiquitous component of air pollution that is epidemiologically linked to human pulmonary diseases. PM chemical composition varies widely, and the development of high-throughput experimental techniques enables direct profiling of cellular effects using compositionally unique PM mixtures. Here, we show that in a human bronchial epithelial cell model, exposure to three chemically distinct PM mixtures drive unique cell viability patterns, transcriptional remodeling, and the emergence of distinct morphological subtypes. Specifically, PM mixtures modulate cell viability, DNA damage responses, and induce the remodeling of gene expression associated with cell morphology, extracellular matrix organization, and cellular motility. Profiling cellular responses showed that cell morphologies change in a PM composition-dependent manner. Finally, we observed that PM mixtures with higher cadmium content induced increased DNA damage and drove redistribution among morphological subtypes. Our results demonstrate that quantitative measurement of individual cellular morphologies provides a robust, high-throughput approach to gauge the effects of environmental stressors on biological systems and score cellular susceptibilities to pollution.
Collapse
Affiliation(s)
- Sean M Engels
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Pratik Kamat
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - G Stavros Pafilis
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Yukang Li
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anshika Agrawal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daniel J Haller
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Jude M Phillip
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
8
|
Li T, Yang HL, Xu LT, Zhou YT, Min YJ, Yan SC, Zhang YH, Wang XM. Comprehensive treatment strategy for diesel truck exhaust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54324-54332. [PMID: 36940033 DOI: 10.1007/s11356-023-26506-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
At present, diesel vehicles still play an irreplaceable role in the traditional energy field in China. Diesel vehicle exhaust contains hydrocarbons, carbon monoxide, nitrogen oxides, and particulate matter, which can lead to haze weather, photochemical smog, and the greenhouse effect; endanger human health; and damage the ecological environment. In 2020, the number of motor vehicles in China reached 372 million, and the number of automobiles reached 281 million, of which 20.92 million are diesel vehicles, accounting for only 5.6% of the number of motor vehicles and 7.4% of the number of automobiles. Nevertheless, diesel vehicles emitted 88.8% of nitrogen oxides and 99% of particulate matter in total vehicle emissions. Diesel vehicles, especially diesel trucks, have become the top priority of motor vehicle pollution control. However, there are few reviews on the comprehensive treatment of diesel vehicle exhaust. This review provides an overview of exhaust gas composition, hazards, and treatment techniques. Phytoremediation, three-way catalytic conversion, rare earth catalytic degradation, and nanoscale TiO2 catalytic degradation are briefly described.
Collapse
Affiliation(s)
- Tian Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hai-Li Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Le-Tian Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yu-Ting Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yong-Jun Min
- College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shi-Cheng Yan
- Ecomaterials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yong-Hui Zhang
- College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Xiao-Ming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
9
|
Juárez-Facio AT, Rogez-Florent T, Méausoone C, Castilla C, Mignot M, Devouge-Boyer C, Lavanant H, Afonso C, Morin C, Merlet-Machour N, Chevalier L, Ouf FX, Corbière C, Yon J, Vaugeois JM, Monteil C. Ultrafine Particles Issued from Gasoline-Fuels and Biofuel Surrogates Combustion: A Comparative Study of the Physicochemical and In Vitro Toxicological Effects. TOXICS 2022; 11:21. [PMID: 36668747 PMCID: PMC9861194 DOI: 10.3390/toxics11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Gasoline emissions contain high levels of pollutants, including particulate matter (PM), which are associated with several health outcomes. Moreover, due to the depletion of fossil fuels, biofuels represent an attractive alternative, particularly second-generation biofuels (B2G) derived from lignocellulosic biomass. Unfortunately, compared to the abundant literature on diesel and gasoline emissions, relatively few studies are devoted to alternative fuels and their health effects. This study aimed to compare the adverse effects of gasoline and B2G emissions on human bronchial epithelial cells. We characterized the emissions generated by propane combustion (CAST1), gasoline Surrogate, and B2G consisting of Surrogate blended with anisole (10%) (S+10A) or ethanol (10%) (S+10E). To study the cellular effects, BEAS-2B cells were cultured at air-liquid interface for seven days and exposed to different emissions. Cell viability, oxidative stress, inflammation, and xenobiotic metabolism were measured. mRNA expression analysis was significantly modified by the Surrogate S+10A and S+10E emissions, especially CYP1A1 and CYP1B1. Inflammation markers, IL-6 and IL-8, were mainly downregulated doubtless due to the PAHs content on PM. Overall, these results demonstrated that ultrafine particles generated from biofuels Surrogates had a toxic effect at least similar to that observed with a gasoline substitute (Surrogate), involving probably different toxicity pathways.
Collapse
Affiliation(s)
| | | | | | - Clément Castilla
- Univ Rouen Normandie, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Mélanie Mignot
- Univ Rouen Normandie, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | | | - Hélène Lavanant
- Univ Rouen Normandie, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Carlos Afonso
- Univ Rouen Normandie, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Christophe Morin
- Univ Rouen Normandie, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | | | - Laurence Chevalier
- Univ Rouen Normandie, INSA Rouen, CNRS, GPM-UMR6634, 76000 Rouen, France
| | - François-Xavier Ouf
- Institut de Radioprotection et de Sureté Nucléaire, PSN-RES, SCA, LPMA, 91192 Gif-sur-Yvette, France
| | - Cécile Corbière
- Univ Rouen Normandie, UNICAEN, ABTE UR 4651 F, 76000 Rouen, France
| | - Jérôme Yon
- Univ Rouen Normandie, INSA Rouen, CNRS, CORIA, 76000 Rouen, France
| | | | | |
Collapse
|
10
|
Diesel particulate matter aggravates cyclophosphamide-induced testicular toxicity in mice via elevating oxidative damage. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Dietary Intervention with Blackcurrant Pomace Protects Rats from Testicular Oxidative Stress Induced by Exposition to Biodiesel Exhaust. Antioxidants (Basel) 2022; 11:antiox11081562. [PMID: 36009280 PMCID: PMC9404818 DOI: 10.3390/antiox11081562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
The exposure to diesel exhaust emissions (DEE) contributes to negative health outcomes and premature mortality. At the same time, the health effects of the exposure to biodiesel exhaust emission are still in scientific debate. The aim of presented study was to investigate in an animal study the effects of exposure to DEE from two types of biodiesel fuels, 1st generation B7 biodiesel containing 7% of fatty acid methyl esters (FAME) or 2nd generation biodiesel (SHB20) containing 7% of FAME and 13% of hydrotreated vegetable oil (HVO), on the oxidative stress in testes and possible protective effects of dietary intervention with blackcurrant pomace (BC). Adult Fisher344/DuCrl rats were exposed by inhalation (6 h/day, 5 days/week for 4 weeks) to 2% of DEE from B7 or SHB20 fuel mixed with air. The animals from B7 (n = 14) and SHB20 (n = 14) groups subjected to filtered by a diesel particulate filter (DPF) or unfiltered DEE were maintained on standard feed. The rats from B7+BC (n = 12) or SHB20+BC (n = 12), exposed to DEE in the same way, were fed with feed supplemented containing 2% (m/m) of BC. The exposure to exhaust emissions from 1st and 2nd generation biodiesel resulted in induction of oxidative stress in the testes. Higher concentration of the oxidative stress markers thiobarbituric acid-reactive substances (TBARS), lipid hydroperoxides (LOOHs), 25-dihydroxycholesterols (25(OH)2Ch), and 7-ketocholesterol (7-KCh) level), as well as decreased level of antioxidant defense systems such as reduced glutathione (GSH), GSH/GSSG ratio, and increased level of oxidized glutathione (GSSG)) were found. Dietary intervention reduced the concentration of TBARS, 7-KCh, LOOHs, and the GSSG level, and elevated the GSH level in testes. In conclusion, DEE-induced oxidative stress in the testes was related to the biodiesel feedstock and the application of DPF. The SHB20 DEE without DPF technology exerted the most pronounced toxic effects. Dietary intervention with BC in rats exposed to DEE reduced oxidative stress in testes and improved antioxidative defense parameters, however the redox balance in the testes was not completely restored.
Collapse
|
12
|
de Oliveira Galvão MF, Sadiktsis I, Marques Pedro T, Dreij K. Determination of whole mixture-based potency factors for cancer risk assessment of complex environmental mixtures by in vitro testing of standard reference materials. ENVIRONMENT INTERNATIONAL 2022; 166:107345. [PMID: 35717713 DOI: 10.1016/j.envint.2022.107345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Whole mixture-based testing using in vitro new approach methodologies (NAMs) has been suggested to facilitate the hazard and risk assessment of complex environmental mixtures. Previous studies have shown that phosphorylation of DNA damage signaling proteins checkpoint kinase 1 (pChk1) and histone 2AX (γH2AX) are sensitive markers that can be used for estimating carcinogenicity potencies in vitro. Here, and with the aim to better validate the applicability, in vitro-based Mixture Potency Factors (MPFs) of Standard Reference Materials (SRMs) from environmental polycyclic aromatic hydrocarbon (PAH)-containing mixtures were determined and compared to published mutagenicity and tumorigenicity data. Also, genotoxicity was assessed by a flow cytometry-based micronucleus (MN) assay which showed that only benzo[a]pyrene (B[a]P) and coal tar SRM (SRM1597a) caused dose-dependent increases of MN formation, while extracts of diesel particulate matter (SRM1650b), diesel particulate extract (SRM1975), and urban dust (SRM1649b) did not. However, a dose-dependent activation of DNA damage signaling was observed for all PAHs and SRMs. The results demonstrated that all SRMs were more potent than B[a]P, at B[a]P-equivalent concentrations, to induce pChk1 and γH2AX, and that western blot was more sensitive than the In-Cell Western assay in detecting their activation in response to these complex mixtures. Relative MPFs, based on dose-response modelling of pChk1 and γH2AX, ranged 113 - 5270 for the SRMs, indicating several orders of magnitude higher genotoxic potential than B[a]P. Moreover, these MPFs were in good agreement with potency values based on published data from Salmonella mutagenicity and in vivo carcinogenicity studies. In conclusion, these comparisons further validate the feasibility of applying in vitro NAMs, such as whole-mixture based MPFs, in cancer risk assessment of complex mixtures.
Collapse
Affiliation(s)
| | - Ioannis Sadiktsis
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Tiago Marques Pedro
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
13
|
Martin de Lagarde V, Rogez-Florent T, Cazier F, Dewaele D, Cazier-Dennin F, Ollivier A, Janona M, Achard S, André V, Monteil C, Corbière C. Oxidative potential and in vitro toxicity of particles generated by pyrotechnic smokes in human small airway epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113637. [PMID: 35605322 DOI: 10.1016/j.ecoenv.2022.113637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Pyrotechnic smokes are widely used in civilian and military applications. The major issue arise from the release of particles after smoke combustion but the health risks related to their exposure are poorly documented whereas toxicity of airborne particles on the respiratory target are very well known. Therefore, this study aimed to explore the in vitro toxicity of the particle fraction of different pyrotechnic smokes. Particles from a red signalling smoke (RSS), an hexachloroethane-based obscuring smoke (HC-OS) and an anti-intrusion smoke (AIS) were collected from the cloud. RSS particles displayed the highest organic fraction (quinones and polycyclic aromatic hydrocarbons) of the three samples characterized. AIS particles contained K and cholesterol derivatives. HC-OS particles were mainly metallic with very high concentrations of Al, Fe and Ca. Intrinsic oxidative potential of smoke particles was measured with two assays. Depletions of DTT by RSS particles was greater than depletion obtained with AIS and HC-OS particles but depletion of acid ascorbic (AA) was only observed with HC-OS particles. In vitro toxicity was assessed by exposing human small airway epithelial cells (SAEC) to various concentrations of particles. After 24 h of exposure, cell viability was not affected but significant modifications of mRNA expression of antioxidant (SOD-1 and -2, catalase, HO-1, NQO-1) and inflammatory markers (IL-6, IL-8, TNF-α) were observed and were dependent on smoke type. Particles rich in metal, such as HC-OS, induced a greatest depletion of AA and a greatest inflammatory response, whereas particles rich in organic compounds, such as RSS, induced a greatest DTT depletion and a greatest antioxidant response. In conclusion, the three smoke particles have an intrinsic oxidative potential and triggered a cell adaptive response. Our study improved the knowledge of particle toxicity of pyrotechnic smokes and scientific approach developed here could be used to study other type of particles.
Collapse
Affiliation(s)
| | | | - Fabrice Cazier
- Univ. Littoral Côte d'Opale, CCM - Centre Commun de Mesures, Dunkerque, France
| | - Dorothée Dewaele
- Univ. Littoral Côte d'Opale, CCM - Centre Commun de Mesures, Dunkerque, France
| | - Francine Cazier-Dennin
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 417, Dunkerque, France
| | - Alexane Ollivier
- Normandie Univ UNIROUEN, UNICAEN, ABTE, 14000 Caen, 76000 Rouen, France
| | - Marion Janona
- Normandie Univ UNIROUEN, UNICAEN, ABTE, 14000 Caen, 76000 Rouen, France
| | - Sophie Achard
- Univ. de Paris, Faculté de Pharmacie, Inserm UMR1153 - CRESS, HERA " Health Environmental Risk Assessment ", Paris, France
| | - Véronique André
- Normandie Univ UNIROUEN, UNICAEN, ABTE, 14000 Caen, 76000 Rouen, France
| | | | - Cécile Corbière
- Normandie Univ UNIROUEN, UNICAEN, ABTE, 14000 Caen, 76000 Rouen, France.
| |
Collapse
|
14
|
Zhu J, Sheng M, Shang J, Kuang Y, Shi X, Qiu X. Photocatalytic Role of Atmospheric Soot Particles under Visible-Light Irradiation: Reactive Oxygen Species Generation, Self-Oxidation Process, and Induced Higher Oxidative Potential and Cytotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7668-7678. [PMID: 35537182 DOI: 10.1021/acs.est.2c00420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is known that there are semiconductor oxides involved in mineral dust, which have photocatalytic properties. However, soot particles contained in carbonaceous aerosol and their photoactivity under sunlight are rarely realized. In this study, reactive oxygen species (ROS) such as superoxide anions and hydroxyl radicals were generated upon visible-light irradiation of soot particles, and the production activity was consistent with the carbonaceous core content, indicating that the atmospheric soot particles can serve as a potential photocatalyst. The increase of oxygen-containing functional groups, environmentally persistent free radicals, oxygenated polycyclic aromatic hydrocarbons, and the oxidative potential (OP) of soot after irradiation confirmed the occurrence of visible-light-triggered photocatalytic oxidation of the soot itself. The mechanism analyses suggested that the carbonaceous core caused the production of ROS, which subsequently oxidize the extractable organic species on the soot surface. It is oxidized organic extracts that are responsible for the enhancements of the OP, cell mortality, and intracellular ROS generation. These new findings shed light on both the photocatalytic role of the soot and the importance of ROS during the photochemical self-oxidation of soot triggered by visible light and will promote a more comprehensive understanding of both the atmospheric chemical behavior and health effects of soot particles.
Collapse
Affiliation(s)
- Jiali Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Mengshuang Sheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Yu Kuang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Xiaodi Shi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| | - Xinghua Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 5 Yiheyuan Road, Beijing 100871, P. R. China
| |
Collapse
|
15
|
Almeida-Silva M, Cardoso J, Alemão C, Santos S, Monteiro A, Manteigas V, Marques-Ramos A. Impact of Particles on Pulmonary Endothelial Cells. TOXICS 2022; 10:toxics10060312. [PMID: 35736920 PMCID: PMC9227819 DOI: 10.3390/toxics10060312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023]
Abstract
According to the WHO, air quality affects around 40 million people, contributing to around 21,000 premature deaths per year. Severe respiratory diseases, such as asthma and chronic obstructive pulmonary disorder, can be promoted by air pollution, which has already been documented; this is one of the reasons why air quality is a very relevant factor for human health and well-being. Aerosols are an aggregation of solid or liquid particles dispersed in the air and can be found in the form of dust or fumes. Aerosols can be easily inhaled or absorbed by the skin, which can lead to adverse health effects according to their sizes that range from the nanometre to the millimetre scale. Based on the PRISMA methodology and using the Rayyan QCRI platform, it was possible to assess more than four hundred research articles. This systematic review study aimed to understand the impact of particles on pulmonary endothelial cells, namely particulate matter in different sizes, cigarette smoke, diesel exhaust particles and carbon black. The main conclusions were that particles induce multiple health effects on endothelial cells, namely endothelial dysfunction, which can lead to apoptosis and necrosis, and it may also cause necroptosis in lung structure.
Collapse
Affiliation(s)
- Marina Almeida-Silva
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Jéssica Cardoso
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Catarina Alemão
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Sara Santos
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Ana Monteiro
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao Km 139.7, 2695-066 Bobadela-Loures, Portugal
| | - Vítor Manteigas
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao Km 139.7, 2695-066 Bobadela-Loures, Portugal
| | - Ana Marques-Ramos
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
- Correspondence: ; Tel.: +351-966087971
| |
Collapse
|
16
|
Kong C, Yao S, Wu Z, Li J, Li G, Zhu J. Promotion Mechanism of CaSO 4 and Au in the Plasma-Assisted Catalytic Oxidation of Diesel Particulate Matter. ACS OMEGA 2022; 7:8640-8650. [PMID: 35309445 PMCID: PMC8928516 DOI: 10.1021/acsomega.1c06659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Plasma-assisted catalysis has been demonstrated to be an innovative technology for eliminating diesel particulate matter (DPM) efficiently at low temperature (≤200 °C). Moreover, past studies have demonstrated that CaSO4, which exists in small concentrations (<2%) in DPM and is toxic in thermal catalytic oxidation processes, actually enhances DPM oxidation during plasma-assisted catalytic processes. However, the role CaSO4 plays in this promotion of DPM oxidation still remains unclear. The present study addresses this issue by investigating the underlying mechanisms of DPM oxidation during plasma-assisted catalytic processes using graphitic carbon as a surrogate DPM material in conjunction with CaSO4- and Au-impregnated γ-Al2O3 catalysts. The results of mass spectrometry and in situ diffuse reflectance infrared Fourier transform spectroscopy, which employs an in situ cell with a small dielectric barrier discharge space over the catalyst bed, demonstrate that CaSO4 can save and release O atoms contributing to graphite oxidation via the -S=O units of CaSO4 through a reversible surface reaction (-S=O + O → -S(-O)2). The results are employed to propose a formal mechanism of graphite oxidation catalyzed by CaSO4 and Au. These findings both improve our understanding of the plasma-assisted catalytic oxidation mechanisms of DPM and support the development of efficient plasma-assisted catalysts.
Collapse
Affiliation(s)
- Chengrong Kong
- School
of Environmental and Safety Engineering, Advanced Plasma Catalysis
Engineering Laboratory for China Petrochemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Shuiliang Yao
- School
of Environmental and Safety Engineering, Advanced Plasma Catalysis
Engineering Laboratory for China Petrochemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zuliang Wu
- School
of Environmental and Safety Engineering, Advanced Plasma Catalysis
Engineering Laboratory for China Petrochemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jing Li
- School
of Environmental and Safety Engineering, Advanced Plasma Catalysis
Engineering Laboratory for China Petrochemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China
- Engineering
Research Center of Construction Technology of Precast Concrete of
Zhejiang Province, Hangzhou 310018, China
| | - Guojian Li
- School
of Environmental and Safety Engineering, Advanced Plasma Catalysis
Engineering Laboratory for China Petrochemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China
- Engineering
Research Center of Construction Technology of Precast Concrete of
Zhejiang Province, Hangzhou 310018, China
| | - Jiali Zhu
- School
of Environmental and Safety Engineering, Advanced Plasma Catalysis
Engineering Laboratory for China Petrochemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
17
|
Zerboni A, Rossi T, Bengalli R, Catelani T, Rizzi C, Priola M, Casadei S, Mantecca P. Diesel exhaust particulate emissions and in vitro toxicity from Euro 3 and Euro 6 vehicles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118767. [PMID: 34974087 DOI: 10.1016/j.envpol.2021.118767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Incomplete combustion processes in diesel engines produce particulate matter (PM) that significantly contributes to air pollution. Currently, there remains a knowledge gap in relation to the physical and chemical characteristics and also the biological reactivity of the PM emitted from old- and new-generation diesel vehicles. In this study, the emissions from a Euro 3 diesel vehicle were compared to those from a Euro 6 car during the regeneration of a diesel particulate filter (DPF). Different driving cycles were used to collect two types of diesel exhaust particles (DEPs). The particle size distribution was monitored using an engine exhaust particle sizer spectrometer and an electrical low-pressure impactor. Although the Euro 6 vehicle emitted particulates only during DPF regeneration that primarily occurs for a few minutes at high speeds, such emissions are characterized by a higher number of ultrafine particles (<0.1 μm) compared to those from the Euro 3 diesel vehicle. The emitted particles possess different characteristics. For example, Euro 6 DEPs exhibit a lower PAH content than do Euro 3 samples; however, they are enriched in metals that were poorly detected or undetected in Euro 3 emissions. The biological effects of the two DEPs were investigated in human bronchial BEAS-2B cells exposed to 50 μg/mL of PM (corresponding to 5.2 μg/cm2), and the results revealed that Euro 3 DEPs activated the typical inflammatory and pro-carcinogenic pathways induced by combustion-derived particles, while Euro 6 DEPs were less effective in regard to activating such biological responses. Although further investigations are required, it is evident that the different in vitro effects elicited by Euro 3 and Euro 6 DEPs can be correlated with the variable chemical compositions (metals and PAHs) of the emitted particles that play a pivotal role in the inflammatory and carcinogenic potential of airborne PM.
Collapse
Affiliation(s)
- Alessandra Zerboni
- Polaris Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy.
| | - Tommaso Rossi
- Innovhub-SSI Fuels Department, Via Galileo Galilei, 1, 20097, San Donato Milanese, Milan, Italy
| | - Rossella Bengalli
- Polaris Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy
| | - Tiziano Catelani
- Microscopy Facility, University of Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
| | - Cristiana Rizzi
- Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy
| | - Marco Priola
- Innovhub-SSI Fuels Department, Via Galileo Galilei, 1, 20097, San Donato Milanese, Milan, Italy
| | - Simone Casadei
- Innovhub-SSI Fuels Department, Via Galileo Galilei, 1, 20097, San Donato Milanese, Milan, Italy
| | - Paride Mantecca
- Polaris Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy
| |
Collapse
|
18
|
Bai X, Chen H, Oliver BG. The health effects of traffic-related air pollution: A review focused the health effects of going green. CHEMOSPHERE 2022; 289:133082. [PMID: 34843836 DOI: 10.1016/j.chemosphere.2021.133082] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Traffic-related air pollution (TRAP) is global concern due to both the ecological damage of TRAP and the adverse health effects in Humans. Several strategies to reduce TRAP have been implemented, including the use of sustainable fuels, after-treatment technologies, and new energy vehicles. Such approaches can reduce the exhaust of particulate matter, adsorbed chemicals and a range of gases, but from a health perspective these approaches are not always successful. This review aims to discuss the approaches taken, and to then describe the likely health effects of these changes.
Collapse
Affiliation(s)
- Xu Bai
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia.
| |
Collapse
|
19
|
Juarez Facio AT, Yon J, Corbière C, Rogez-Florent T, Castilla C, Lavanant H, Mignot M, Devouge-Boyer C, Logie C, Chevalier L, Vaugeois JM, Monteil C. Toxicological impact of organic ultrafine particles (UFPs) in human bronchial epithelial BEAS-2B cells at air-liquid interface. Toxicol In Vitro 2021; 78:105258. [PMID: 34653646 DOI: 10.1016/j.tiv.2021.105258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/30/2021] [Accepted: 10/09/2021] [Indexed: 12/26/2022]
Abstract
Air pollution has significant health effects worldwide, and airborne particles play a significant role in these effects. Ultrafine particles (UFPs) have an aerodynamic diameter of 0.1 μm or less, can penetrate deep into the respiratory tree, and are more toxic due to their large specific surface area, which should adsorb organic compounds. The aim of this study is to show the toxicological effects of UFPs with high organic content at low dose on BEAS-2B cells through at air-liquid interface (ALI) exposure using a Vitrocell® technology and a miniCAST (Combustion Aerosol Standard) generator. In conjunction with this approach, chemical analysis of particles and gas phase was performed to evaluate the presence of polycyclic aromatic hydrocarbons (PAHs). Chemical analyses confirmed the presence of PAHs in UFPs. With this experimental setup, exposure of the BEAS-2B cells induced neither cytotoxicity nor mitochondrial dysfunction. However, an increase of oxidative stress was observed, as assessed through Nrf2, NQO1, HO-1, CuZnSOD, MnSOD, and Catalase gene expression, together with significant induction of genes related to xenobiotic metabolism CYP1A1 and CYP1B1. Negative regulation of inflammatory genes expression (IL-6 and IL-8) was present three hours after the exposition to the UFPs. Taken together, this experimental approach, using repeatable conditions, should help to clarify the mechanisms by which organic UFPs induce toxicological effects.
Collapse
Affiliation(s)
| | - J Yon
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, CORIA, 76000 Rouen, France
| | - C Corbière
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France
| | | | - C Castilla
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - H Lavanant
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - M Mignot
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - C Devouge-Boyer
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - C Logie
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France
| | - L Chevalier
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, GPM-UMR6634, 76000 Rouen, France
| | - J-M Vaugeois
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France
| | - C Monteil
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France.
| |
Collapse
|
20
|
Zerboni A, Bengalli R, Fiandra L, Catelani T, Mantecca P. Cellular Mechanisms Involved in the Combined Toxic Effects of Diesel Exhaust and Metal Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1437. [PMID: 34072490 PMCID: PMC8228517 DOI: 10.3390/nano11061437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022]
Abstract
Diesel exhaust particles (DEPs) and non-exhaust particles from abrasion are two main representative sources of air pollution to which humans are exposed daily, together with emerging nanomaterials, whose emission is increasing considerably. In the present work, we aimed to investigate whether DEPs, metal oxide nanoparticles (MeO-NPs), and their mixtures could affect alveolar cells. The research was focused on whether NPs induced different types of death in cells, and on their effects on cell motility and migration. Autophagy and cell cycles were investigated via cytofluorimetric analyses, through the quantification of the autophagic biomarker LC3B and PI staining, respectively. Cellular ultrastructures were then observed via TEM. Changes in cell motility and migration were assessed via transwell migration assay, and by the cytofluorimetric analysis of E-cadherin expression. A colony-forming efficiency (CFE) assay was performed in order to investigate the interactions between cells inside the colonies, and to see how these interactions change after exposure to the single particles or their mixtures. The results obtained suggest that NPs can either reduce the toxicity of DEPs (CuO) or enhance it (ZnO), through a mechanism that may involve autophagy as cells' response to stressors and as a consequence of particles' cellular uptake. Moreover, NPs can induce modification of E-cadherin expression and, consequentially, of colonies' phenotypes.
Collapse
Affiliation(s)
- Alessandra Zerboni
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Rossella Bengalli
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Luisa Fiandra
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy, 56122 Pisa, Italy
| | - Tiziano Catelani
- Microscopy facility, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Paride Mantecca
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
21
|
Magazzino C, Mele M, Sarkodie SA. The nexus between COVID-19 deaths, air pollution and economic growth in New York state: Evidence from Deep Machine Learning. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112241. [PMID: 33667818 PMCID: PMC8506015 DOI: 10.1016/j.jenvman.2021.112241] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 05/09/2023]
Abstract
The aim of this paper is to assess the relationship between COVID-19-related deaths, economic growth, PM10, PM2.5, and NO2 concentrations in New York state using city-level daily data through two Machine Learning experiments. PM2.5 and NO2 are the most significant pollutant agents responsible for facilitating COVID-19 attributed death rates. Besides, we found only six out of many tested causal inferences to be significant and true within the AUPRC analysis. In line with the causal findings, a unidirectional causal effect is found from PM2.5 to Deaths, NO2 to Deaths, and economic growth to both PM2.5 and NO2. Corroborating the first experiment, the causal results confirmed the capability of polluting variables (PM2.5 to Deaths, NO2 to Deaths) to accelerate COVID-19 deaths. In contrast, we found evidence that unsustainable economic growth predicts the dynamics of air pollutants. This shows how unsustainable economic growth could increase environmental pollution by escalating emissions of pollutant agents (PM2.5 and NO2) in New York state.
Collapse
Affiliation(s)
| | - Marco Mele
- Department of Political Sciences, University of Teramo, Italy.
| | | |
Collapse
|
22
|
Engin AB. Combined Toxicity of Metal Nanoparticles: Comparison of Individual and Mixture Particles Effect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:165-193. [PMID: 33539016 DOI: 10.1007/978-3-030-49844-3_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Toxicity of metal nanoparticles (NPs) are closely associated with increasing intracellular reactive oxygen species (ROS) and the levels of pro-inflammatory mediators. However, NP interactions and surface complexation reactions alter the original toxicity of individual NPs. To date, toxicity studies on NPs have mostly been focused on individual NPs instead of the combination of several species. It is expected that the amount of industrial and highway-acquired NPs released into the environment will further increase in the near future. This raises the possibility that various types of NPs could be found in the same medium, thereby, the adverse effects of each NP either could be potentiated, inhibited or remain unaffected by the presence of the other NPs. After uptake of NPs into the human body from various routes, protein kinases pathways mediate their toxicities. In this context, family of mitogen-activated protein kinases (MAPKs) is mostly efficient. Despite each NP activates almost the same metabolic pathways, the toxicity induced by a single type of NP is different than the case of co-exposure to the combined NPs. The scantiness of toxicological data on NPs combinations displays difficulties to determine, if there is any risk associated with exposure to combined nanomaterials. Currently, in addition to mathematical analysis (Response surface methodology; RSM), the quantitative-structure-activity relationship (QSAR) is used to estimate the toxicity of various metal oxide NPs based on their physicochemical properties and levels applied. In this chapter, it is discussed whether the coexistence of multiple metal NPs alter the original toxicity of individual NP. Additionally, in the part of "Toxicity of diesel emission/exhaust particles (DEP)", the known individual toxicity of metal NPs within the DEP is compared with the data regarding toxicity of total DEP mixture.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
23
|
Traina G, Barbalace A, Betti F, Bolzacchini E, Bonini M, Contini D, Felice G, Foti T, Mantecca P. What impact of air pollution in pediatric respiratory allergic diseases. Pediatr Allergy Immunol 2020; 31 Suppl 26:26-28. [PMID: 33236436 DOI: 10.1111/pai.13362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Respiratory allergies are known to affect people all over the world. Environmental factors related to pollution play a significant etiopathogenic role in this regard. Polluting sources are industrial activities and urban traffic, capable of generating various types of pollutants that trigger inflammatory, direct, and indirect damage to tissues, promoting allergic symptoms, even serious ones, and interfering with the pharmacologic response. They are also able to modify pollen, promoting allergic sensitization. Pollution could have played a significant predisposing role in the ongoing morbidity and mortality of SARS-CoV-2.
Collapse
Affiliation(s)
- Giovanni Traina
- Department of Pediatric and Neonatology, Cernusco sul Naviglio and Melzo-ASST Melegnano-Martesana, Milan, Italy
| | | | - Federica Betti
- Department of Pediatric and Neonatology, Cernusco sul Naviglio and Melzo-ASST Melegnano-Martesana, Milan, Italy
| | - Ezio Bolzacchini
- Department of Earth and Enviromental POLARIS, University of Milan Bicocca, Milan, Italy
| | - Maira Bonini
- Agency for health protection of metropolitan area of Milan-Hygiene and public health service, Milan west, Italy
| | - Daniele Contini
- Istituto di Scienze dell'Atmosfera e del Clima, ISAC-CNR, Lecce, Italy
| | - Giuseppe Felice
- Family Pediatrician, Metropolitan area of Milan, Milan, Italy
| | - Tiziana Foti
- Department of Pediatrics, Grande Ospedale Mettopolitano Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - Paride Mantecca
- Department of Earth and Enviromental POLARIS, University of Milan Bicocca, Milan, Italy
| |
Collapse
|
24
|
Wang F, Liu J, Zeng H. Interactions of particulate matter and pulmonary surfactant: Implications for human health. Adv Colloid Interface Sci 2020; 284:102244. [PMID: 32871405 PMCID: PMC7435289 DOI: 10.1016/j.cis.2020.102244] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022]
Abstract
Particulate matter (PM), which is the primary contributor to air pollution, has become a pervasive global health threat. When PM enters into a respiratory tract, the first body tissues to be directly exposed are the cells of respiratory tissues and pulmonary surfactant. Pulmonary surfactant is a pivotal component to modulate surface tension of alveoli during respiration. Many studies have proved that PM would interact with pulmonary surfactant to affect the alveolar activity, and meanwhile, pulmonary surfactant would be adsorbed to the surface of PM to change the toxic effect of PM. This review focuses on recent studies of the interactions between micro/nanoparticles (synthesized and environmental particles) and pulmonary surfactant (natural surfactant and its models), as well as the health effects caused by PM through a few significant aspects, such as surface properties of PM, including size, surface charge, hydrophobicity, shape, chemical nature, etc. Moreover, in vitro and in vivo studies have shown that PM leads to oxidative stress, inflammatory response, fibrosis, and cancerization in living bodies. By providing a comprehensive picture of PM-surfactant interaction, this review will benefit both researchers for further studies and policy-makers for setting up more appropriate regulations to reduce the adverse effects of PM on public health.
Collapse
Affiliation(s)
- Feifei Wang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
25
|
Comunian S, Dongo D, Milani C, Palestini P. Air Pollution and Covid-19: The Role of Particulate Matter in the Spread and Increase of Covid-19's Morbidity and Mortality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4487. [PMID: 32580440 PMCID: PMC7345938 DOI: 10.3390/ijerph17124487] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Sars-cov-2 virus (Covid-19) is a member of the coronavirus family and is responsible for the pandemic recently declared by the World Health Organization. A positive correlation has been observed between the spread of the virus and air pollution, one of the greatest challenges of our millennium. Covid-19 could have an air transmission and atmospheric particulate matter (PM) could create a suitable environment for transporting the virus at greater distances than those considered for close contact. Moreover, PM induces inflammation in lung cells and exposure to PM could increase the susceptibility and severity of the Covid-19 patient symptoms. The new coronavirus has been shown to trigger an inflammatory storm that would be sustained in the case of pre-exposure to polluting agents. In this review, we highlight the potential role of PM in the spread of Covid-19, focusing on Italian cities whose PM daily concentrations were found to be higher than the annual average allowed during the months preceding the epidemic. Furthermore, we analyze the positive correlation between the virus spread, PM, and angiotensin-converting enzyme 2 (ACE2), a receptor involved in the entry of the virus into pulmonary cells and inflammation.
Collapse
Affiliation(s)
- Silvia Comunian
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy;
| | | | - Chiara Milani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
- POLARIS Research Centre, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
26
|
Fifteen Years of Airborne Particulates in Vitro Toxicology in Milano: Lessons and Perspectives Learned. Int J Mol Sci 2020; 21:ijms21072489. [PMID: 32260164 PMCID: PMC7177378 DOI: 10.3390/ijms21072489] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/10/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
Air pollution is one of the world’s leading environmental causes of death. The epidemiological relationship between outdoor air pollution and the onset of health diseases associated with death is now well established. Relevant toxicological proofs are now dissecting the molecular processes that cause inflammation, reactive species generation, and DNA damage. In addition, new data are pointing out the role of airborne particulates in the modulation of genes and microRNAs potentially involved in the onset of human diseases. In the present review we collect the relevant findings on airborne particulates of one of the biggest hot spots of air pollution in Europe (i.e., the Po Valley), in the largest urban area of this region, Milan. The different aerodynamic fractions are discussed separately with a specific focus on fine and ultrafine particles that are now the main focus of several studies. Results are compared with more recent international findings. Possible future perspectives of research are proposed to create a new discussion among scientists working on the toxicological effects of airborne particles.
Collapse
|
27
|
Zerboni A, Bengalli R, Baeri G, Fiandra L, Catelani T, Mantecca P. Mixture Effects of Diesel Exhaust and Metal Oxide Nanoparticles in Human Lung A549 Cells. NANOMATERIALS 2019; 9:nano9091302. [PMID: 31514423 PMCID: PMC6781047 DOI: 10.3390/nano9091302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 01/26/2023]
Abstract
Airborne ultrafine particles (UFP) mainly derive from combustion sources (e.g., diesel exhaust particles—DEP), abrasion sources (non-exhaust particles) or from the unintentional release of engineered nanoparticles (e.g., metal oxide nanoparticles—NPs), determining human exposure to UFP mixtures. The aim of the present study was to analyse the combined in vitro effects of DEP and metal oxide NPs (ZnO, CuO) on human lung A549 cells. The mixtures and the relative single NPs (DEP, ZnO, CuO) were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and inductively coupled plasma-optic emission spectroscopy (ICP-OES). Cells were exposed for different times (3–72 h) to mixtures of standard DEP at a subcytotoxic concentration and ZnO and CuO at increasing concentrations. At the end of the exposure, the cytotoxicity was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) and clonogenic tests, the pro-inflammatory potential was evaluated by interleukin-8 (IL-8) release and the cell morphology was investigated by fluorescence and transmission electron microscopy. The obtained results suggest that the presence of DEP may introduce new physico-chemical interactions able to increase the cytotoxicity of ZnO and to reduce that of CuO NPs.
Collapse
Affiliation(s)
- Alessandra Zerboni
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Rossella Bengalli
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Giulia Baeri
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Luisa Fiandra
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Tiziano Catelani
- Microscopy facility, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy.
| | - Paride Mantecca
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| |
Collapse
|
28
|
Bengalli R, Ortelli S, Blosi M, Costa A, Mantecca P, Fiandra L. In Vitro Toxicity of TiO 2:SiO 2 Nanocomposites with Different Photocatalytic Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1041. [PMID: 31330895 PMCID: PMC6669742 DOI: 10.3390/nano9071041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 01/05/2023]
Abstract
The enormous technological relevance of titanium dioxide (TiO2) nanoparticles (NPs) and the consequent concerns regarding potentially hazardous effects that exposure during production, use, and disposal can generate, encourage material scientists to develop and validate intrinsically safe design solution (safe-by-design). Under this perspective, the encapsulation in a silica dioxide (SiO2) matrix could be an effective strategy to improve TiO2 NPs safety, preserving photocatalytic and antibacterial properties. In this work, A549 cells were used to investigate the toxic effects of silica-encapsulated TiO2 having different ratios of TiO2 and SiO2 (1:1, 1:3, and 3:1). NPs were characterized by electron microscopy and dynamic light scattering, and cell viability, oxidative stress, morphological changes, and cell cycle alteration were evaluated. Resulting data demonstrated that NPs with lower content of SiO2 are able to induce cytotoxic effects, triggered by oxidative stress and resulting in cell necrosis and cell cycle alteration. The physicochemical properties of NPs are responsible for their toxicity. Particles with small size and high stability interact with pulmonary cells more effectively, and the different ratio among silica and titania plays a crucial role in the induced cytotoxicity. These results strengthen the need to take into account a safe(r)-by-design approach in the development of new nanomaterials for research and manufacturing.
Collapse
Affiliation(s)
- Rossella Bengalli
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, MI, Italy.
| | - Simona Ortelli
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Magda Blosi
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Anna Costa
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Paride Mantecca
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, MI, Italy
| | - Luisa Fiandra
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, MI, Italy
| |
Collapse
|