1
|
Robin M, Römermann C, Niinemets Ü, Gershenzon J, Huang J, Nelson BW, Taylor TC, de Souza VF, Pinho D, Falcão L, Lacerda C, Duvoisin Júnior S, Schmidt A, Gomes Alves E. Interactions between leaf phenological type and functional traits drive variation in isoprene emissions in central Amazon forest trees. FRONTIERS IN PLANT SCIENCE 2024; 15:1522606. [PMID: 39777083 PMCID: PMC11703902 DOI: 10.3389/fpls.2024.1522606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
The Amazon forest is the largest source of isoprene emissions, and the seasonal pattern of leaf-out phenology in this forest has been indicated as an important driver of seasonal variation in emissions. Still, it is unclear how emissions vary between different leaf phenological types in this forest. To evaluate the influence of leaf phenological type over isoprene emissions, we measured leaf-level isoprene emission capacity and leaf functional traits for 175 trees from 124 species of angiosperms distributed among brevideciduous and evergreen trees in a central Amazon forest. Evergreen isoprene emitters were less likely to store monoterpenes and had tougher and less photosynthetically active leaves with higher carbon-to-nitrogen ratios compared to non-emitters. Isoprene emission rates in brevideciduous trees were higher with a higher diversity of stored sesquiterpenes and total phenolics content. Our results suggest that the way isoprene emissions relate to growth and defense traits in central Amazon trees might be influenced by leaf phenological type, and that isoprene may participate in co-regulating a chemical-mechanical defense trade-off between brevideciduous and evergreen trees. Such knowledge can be used to improve emission estimates based on leaf phenological type since, as a highly-emitted biogenic volatile organic compound (BVOC), isoprene affects atmospheric processes with implications for the Earth's radiative balance.
Collapse
Affiliation(s)
- Michelle Robin
- Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Christine Römermann
- Institute for Ecology and Evolution, Friedrich-Schiller University, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
- Senckenberg Institute for Plant Form and Function (SIP), Jena, Germany
| | - Ülo Niinemets
- Crop Science and Plant Biology Department, Estonian University of Life Sciences, Tartu, Estonia
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jianbei Huang
- Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Bruce W. Nelson
- Environmental Dynamics Department, National Institute of Amazonian Research, Manaus, Brazil
| | - Tyeen C. Taylor
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States
| | | | - Davieliton Pinho
- Department of Tropical Forest Sciences, National Institute of Amazonian Research, Manaus, Brazil
| | - Lucas Falcão
- Department of Chemistry, University of Amazonas State, Manaus, Brazil
| | - Caroline Lacerda
- Department of Chemistry, University of Amazonas State, Manaus, Brazil
| | | | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Eliane Gomes Alves
- Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
2
|
Yang LT, Wang YY, Chen XY, Fu QX, Ren YM, Lin XW, Ye X, Chen LS. Effects of aluminum (Al) stress on the isoprenoid metabolism of two Citrus species differing in Al-tolerance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116545. [PMID: 38850709 DOI: 10.1016/j.ecoenv.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Isoprenoid metabolism and its derivatives took part in photosynthesis, growth regulation, signal transduction, and plant defense to biotic and abiotic stresses. However, how aluminum (Al) stress affects the isoprenoid metabolism and whether isoprenoid metabolism plays a vital role in the Citrus plants in coping with Al stress remain unclear. In this study, we reported that Al-treatment-induced alternation in the volatilization rate of monoterpenes (α-pinene, β-pinene, limonene, α-terpinene, γ-terpinene and 3-carene) and isoprene were different between Citrus sinensis (Al-tolerant) and C. grandis (Al-sensitive) leaves. The Al-induced decrease of CO2 assimilation, maximum quantum yield of primary PSII photochemistry (Fv/Fm), the lower contents of glucose and starch, and the lowered activities of enzymes involved in the mevalonic acid (MVA) pathway and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway might account for the different volatilization rate of isoprenoids. Furthermore, the altered transcript levels of genes related to isoprenoid precursors and/or derivatives metabolism, such as geranyl diphosphate (GPP) synthase (GPPS) in GPP biosynthesis, geranylgeranyl diphosphate synthase (GGPPS), chlorophyll synthase (CHS) and GGPP reductase (GGPPR) in chlorophyll biosynthesis, limonene synthase (LS) and α-pinene synthase (APS) in limonene and α-pinene synthesis, respectively, might be responsible for the different contents of corresponding products in C. grandis and C. sinensis. Our data suggested that isoprenoid metabolism was involved in Al tolerance response in Citrus, and the alternation of some branches of isoprenoid metabolism could confer different Al-tolerance to Citrus species.
Collapse
Affiliation(s)
- Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan-Yu Wang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Bureau of Agriculture and Rural Affairs of Hui'an County, Quanzhou, China
| | - Xiao-Ying Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiu-Xiang Fu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Min Ren
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xi-Wen Lin
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Ye
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Portillo-Estrada M. Limitations of Plant Stress Tolerance upon Heat and CO 2 Exposure in Black Poplar: Assessment of Photosynthetic Traits and Stress Volatile Emissions. PLANTS (BASEL, SWITZERLAND) 2024; 13:1165. [PMID: 38674574 PMCID: PMC11054441 DOI: 10.3390/plants13081165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Volatile organic compounds (VOCs) emitted by plants may help in understanding the status of a plant's physiology and its coping with mild to severe stress. Future climatic projections reveal that shifts in temperature and CO2 availability will occur, and plants may incur the uncoupling of carbon assimilation and synthesis of key molecules. This study explores the patterns of emissions of key VOCs (isoprene, methanol, acetaldehyde, and acetic acid) emitted by poplar leaves (more than 350) under a combined gradient of temperature (12-42 °C) and air CO2 concentration (400-1500 ppm), along with measurements of photosynthetic rates and stomatal conductance. Isoprene emission exhibited a rise with temperature and CO2 availability, peaking at 39 °C, the temperature at which methanol emission started to peak, illustrating the limit of stress tolerance to severe damage. Isoprene emission was uncoupled from the photosynthesis rate, indicating a shift from the carbon source for isoprene synthesis, while assimilation was decreased. Methanol and acetaldehyde emissions were correlated with stomatal conductance and peaked at 25 °C and 1200 ppm CO2. Acetic acid emissions lacked a clear correlation with stomatal conductance and the emission pattern of its precursor acetaldehyde. This study offers crucial insights into the limitations of photosynthetic carbon and stress tolerance.
Collapse
|
4
|
Chen F, Shi L, Hu J, Wang J, Li Z, Xiu Y, He B, Lin S, Liang D. Revelation of enzyme/transporter-mediated metabolic regulatory model for high-quality terpene accumulation in developing fruits of Lindera glauca. Int J Biol Macromol 2024; 264:130763. [PMID: 38467223 DOI: 10.1016/j.ijbiomac.2024.130763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/12/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Lindera glauca with rich resource and fruit terpene has emerged as potential material for utilization in China, but different germplasms show a variation for essential oil content and volatile profiling. This work aimed to determine key regulators (enzymes or transporters) and unravel mechanism of governing high production of essential oil of L. glauca fruit (EO-LGF). Temporal analysis of fruit growth and EO-LGF accumulation (yield, volatile compounds and contents) during development revealed a notable change in the contents of EO-LGF and its 45 compounds in developing fruits, and the major groups were monoterpene and sesquiterpene, showing good antioxidant and antimicrobial activities. To highlight molecular mechanism that govern such difference in terpene content and compound in developing fruits, Genome-wide assay was used to annotate 104 genes for terpene-synthesis pathway based on recent transcriptome data, and the comparative associations of terpene accumulative amount with gene transcriptional level were conducted on developing fruits to identify some crucial determinants (enzymes and transporters) with metabolic regulation model for high-quality terpene accumulation, involving in carbon allocation (sucrose cleavage, glycolysis and OPP pathway), metabolite transport, isoprene precursor production, C5-unit formation (MEP and MVA pathways), and mono-/sesqui-terpene synthesis. Our findings may present strategy for engineering terpene accumulation for utilization.
Collapse
Affiliation(s)
- Feng Chen
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Lingling Shi
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Jinhe Hu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Jing Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Zhi Li
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Yu Xiu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Boxiang He
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Dongcheng Liang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
| |
Collapse
|
5
|
Ladd SN, Daber LE, Bamberger I, Kübert A, Kreuzwieser J, Purser G, Ingrisch J, Deleeuw J, van Haren J, Meredith LK, Werner C. Leaf-level metabolic changes in response to drought affect daytime CO2 emission and isoprenoid synthesis pathways. TREE PHYSIOLOGY 2023; 43:1917-1932. [PMID: 37552065 PMCID: PMC10643046 DOI: 10.1093/treephys/tpad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
In the near future, climate change will cause enhanced frequency and/or severity of droughts in terrestrial ecosystems, including tropical forests. Drought responses by tropical trees may affect their carbon use, including production of volatile organic compounds (VOCs), with implications for carbon cycling and atmospheric chemistry that are challenging to predict. It remains unclear how metabolic adjustments by mature tropical trees in response to drought will affect their carbon fluxes associated with daytime CO2 production and VOC emission. To address this gap, we used position-specific 13C-pyruvate labeling to investigate leaf CO2 and VOC fluxes from four tropical species before and during a controlled drought in the enclosed rainforest of Biosphere 2 (B2). Overall, plants that were more drought-sensitive had greater reductions in daytime CO2 production. Although daytime CO2 production was always dominated by non-mitochondrial processes, the relative contribution of CO2 from the tricarboxylic acid cycle tended to increase under drought. A notable exception was the legume tree Clitoria fairchildiana R.A. Howard, which had less anabolic CO2 production than the other species even under pre-drought conditions, perhaps due to more efficient refixation of CO2 and anaplerotic use for amino acid synthesis. The C. fairchildiana was also the only species to allocate detectable amounts of 13C label to VOCs and was a major source of VOCs in B2. In C. fairchildiana leaves, our data indicate that intermediates from the mevalonic acid (MVA) pathway are used to produce the volatile monoterpene trans-β-ocimene, but not isoprene. This apparent crosstalk between the MVA and methylerythritol phosphate pathways for monoterpene synthesis declined with drought. Finally, although trans-β-ocimene emissions increased under drought, it was increasingly sourced from stored intermediates and not de novo synthesis. Unique metabolic responses of legumes may play a disproportionate role in the overall changes in daytime CO2 and VOC fluxes in tropical forests experiencing drought.
Collapse
Affiliation(s)
- S Nemiah Ladd
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, Basel 4056, Switzerland
| | - L Erik Daber
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
| | - Ines Bamberger
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
- Atmospheric Chemistry Group, University of Bayreuth (BayCEER), Dr–Hans–Frisch–Straße 1–3, Bayreuth 95448, Germany
| | - Angelika Kübert
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
- Institute for Atmospheric and Earth System Research, University of Helsinki, Pietari Kalmin katu 5, Helsinki 00014, Finland
| | - Jürgen Kreuzwieser
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
| | - Gemma Purser
- School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik EH26 0QB, UK
| | - Johannes Ingrisch
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
- Department of Ecology, University of Innsbruck, Sternwartestrasse 15, Innsbruck 6020, Austria
| | - Jason Deleeuw
- Biosphere 2, University of Arizona, 32540 S. Biosphere Rd, Oracle, AZ 85739, USA
| | - Joost van Haren
- Biosphere 2, University of Arizona, 32540 S. Biosphere Rd, Oracle, AZ 85739, USA
- Honors College, University of Arizona, 1101 E. Mabel Street, Tucson, AZ 85719, USA
| | - Laura K Meredith
- Biosphere 2, University of Arizona, 32540 S. Biosphere Rd, Oracle, AZ 85739, USA
- School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ, 85721, USA
| | - Christiane Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges–Köhler–Allee 053/054, Freiburg 79110, Germany
| |
Collapse
|
6
|
Qu G, Liu Y, Ma Q, Li J, Du G, Liu L, Lv X. Progress and Prospects of Natural Glycoside Sweetener Biosynthesis: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15926-15941. [PMID: 37856872 DOI: 10.1021/acs.jafc.3c05074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
To achieve an adequate sense of sweetness with a healthy low-sugar diet, it is necessary to explore and produce sugar alternatives. Recently, glycoside sweeteners and their biosynthetic approaches have attracted the attention of researchers. In this review, we first outlined the synthetic pathways of glycoside sweeteners, including the key enzymes and rate-limiting steps. Next, we reviewed the progress in engineered microorganisms producing glycoside sweeteners, including de novo synthesis, whole-cell catalysis synthesis, and in vitro synthesis. The applications of metabolic engineering strategies, such as cofactor engineering and enzyme modification, in the optimization of glycoside sweetener biosynthesis were summarized. Finally, the prospects of combining enzyme engineering and machine learning strategies to enhance the production of glycoside sweeteners were discussed. This review provides a perspective on synthesizing glycoside sweeteners in microbial cells, theoretically guiding the bioproduction of glycoside sweeteners.
Collapse
Affiliation(s)
- Guanyi Qu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
- Shandong Jincheng Biological Pharmaceutical Company, Limited, Zibo 255000, P. R. China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
| | - Qinyuan Ma
- Shandong Jincheng Biological Pharmaceutical Company, Limited, Zibo 255000, P. R. China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
- Yixing Institute of Food Biotechnology Company, Limited, Yixing 214200, P. R. China
- Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, P. R. China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
- Yixing Institute of Food Biotechnology Company, Limited, Yixing 214200, P. R. China
| |
Collapse
|
7
|
Iqbal MA, Miyamoto K, Yumoto E, Oogai S, Mutanda I, Inafuku M, Oku H. Relationship between seasonal variation in isoprene emission and plant hormone profiles in the tropical plant Ficus septica. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:981-993. [PMID: 37565537 DOI: 10.1111/plb.13565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
In Ficus septica, the short-term control of isoprene production and, therefore, isoprene emission has been linked to the hormone balance between auxin (IAA) and jasmonic acid (JA). However, the relationship between long-term changes in isoprene emission and that of plant hormones remains unknown. This study tracked isoprene emissions from F. septica leaves, plant hormone concentrations and signalling gene expression, MEP pathway metabolite concentrations, and related enzyme gene expression for 1 year in the field to better understand the role of plant hormones and their long-term control. Seasonality of isoprenes was mainly driven by temperature- and light-dependent variations in substrate availability through the MEP route, as well as transcriptional and post-transcriptional control of isoprene synthase (IspS). Isoprene emissions are seasonally correlated with plant hormone levels. This was especially evident in the cytokinin profiles, which decreased in summer and increased in winter. Only 4-hydroxy-3-methylbut-2-butenyl-4-diphosphate (HMBDP) exhibited a positive connection with cytokinins among the MEP metabolites examined, suggesting that HMBDP and its biosynthetic enzyme, HMBDP synthase (HDS), play a role in channelling of MEP pathway metabolites to cytokinin production. Thus, it is probable that cytokinins have potential feed-forward regulation of isoprene production. Under long-term natural conditions, the hormonal balance of IAA/JA-Ile was not associated with IspS transcripts or isoprene emissions. This study builds on prior work by revealing differences between short- and long-term hormonal modulation of isoprene emissions in the tropical tree F. septica.
Collapse
Affiliation(s)
- M A Iqbal
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - K Miyamoto
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi, Japan
| | - E Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Tochigi, Japan
| | - S Oogai
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - I Mutanda
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - M Inafuku
- Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - H Oku
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
8
|
Song Y, Peng C, Wu Q, Tao S, Mei T, Sun Z, Zuo Z, Pan C, Zhou Y, Zhou G. Age effects of Moso bamboo on leaf isoprene emission characteristics. FRONTIERS IN PLANT SCIENCE 2023; 14:1132717. [PMID: 36959949 PMCID: PMC10028176 DOI: 10.3389/fpls.2023.1132717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Isoprene is a highly reactive volatile organic compound that significantly affects atmospheric oxidant capacity, regional air quality, and climate change. Moso bamboo (Phyllostachys edulis), a species widely distributed in tropical and subtropical regions, particularly in China, is a strong isoprene emitter with great potential for carbon sequestration. Carbon sequestration is negatively correlated with culm age; however, the effect of this correlation on isoprene emissions remains unknown. In this study, we investigated the photosynthetic and isoprene emission characteristics of Moso bamboo at different culm ages. The results showed that the age effect on isoprene emission was different from that on photosynthesis; the net photosynthesis rate (Pn) was the highest in young, followed by mature, and then old bamboo, whereas the isoprene emission rate (Iso) was the highest in young, followed by old, and then mature bamboo. Moreover, the percentage of carbon loss as isoprene emission (C-loss) during photosynthesis of old bamboo was 35% higher than that of mature bamboo under standard conditions (leaf temperature: 30°C; light intensity: 1000 µmol m-2 s-1). Therefore, we strongly recommend considering the culm age when establishing an isoprene emission model of Moso bamboo. Additionally, because the Iso and C-loss of old bamboo were higher than those of mature bamboo, we suggest that attention should be paid to the management of bamboo age structure and timely felling of aged bamboo to reduce environmental risk.
Collapse
Affiliation(s)
- Yandong Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Chunju Peng
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Qinjiao Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Shijie Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Tingting Mei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Zhihong Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Chunyu Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Yufeng Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Guomo Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
9
|
Li X, Lan C, Li X, Hu Z, Jia B. A review on design-build-test-learn cycle to potentiate progress in isoprenoid engineering of photosynthetic microalgae. BIORESOURCE TECHNOLOGY 2022; 363:127981. [PMID: 36130687 DOI: 10.1016/j.biortech.2022.127981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Currently, the generation of isoprenoid factories in microalgae relies on two strategies: 1) enhanced production of endogenous isoprenoids; or 2) production of heterologous terpenes by metabolic engineering. Nevertheless, low titers and productivity are still a feature of isoprenoid biotechnology and need to be addressed. In this context, the mechanisms underlying isoprenoid biosynthesis in microalgae and its relationship with central carbon metabolism are reviewed. Developments in microalgal biotechnology are discussed, and a new approach of integrated "design-build-test-learn" cycle is advocated to the trends, challenges and prospects involved in isoprenoid engineering. The emerging and promising strategies and tools are discussed for microalgal engineering in the future. This review encourages a systematic engineering perspective aimed at potentiating progress in isoprenoid engineering of photosynthetic microalgae.
Collapse
Affiliation(s)
- Xiangyu Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chengxiang Lan
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xinyi Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Bin Jia
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
10
|
Drapal M, Gerrish C, Fraser PD. Changes in carbon allocation and subplastidal amyloplast structures of specialised Ipomoea batatas (sweet potato) storage root phenotypes. PHYTOCHEMISTRY 2022; 203:113409. [PMID: 36049525 DOI: 10.1016/j.phytochem.2022.113409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Vitamin A deficiency (VAD) in Low and Medium Income countries remains a major health concern. Ipomoea batatas, orange sweet potato (OSP), is one of the biofortification solutions being implemented by the World Health Organisation (WHO) to combat VAD. However, high provitamin A (β-carotene) content has been associated with a reduction in dry matter, reducing calorific value and having adverse effects on consumer traits. Both starch and carotenoid formation are located in amyloplasts and could potentially compete for the same precursors. Hence, five different sweet potato storage root phenotypes were characterized through spatial metabolomics and proteomics at the sub-plastidal level. The metabolite data suggested an indirect correlation of starch and carotenoids through the TCA cycle and pentose phosphate pathway. Furthermore, a change in lipid composition was observed to accommodate the storage of carotenoids in the hydrophilic environment of the amyloplast. The data suggests an alteration of cellular ultra-structures and perturbation of metabolism in high β-carotene producing sweet potato roots. This corroborates with previous gene expression analysis through biochemical analysis of sweet potato root tissue.
Collapse
Affiliation(s)
- Margit Drapal
- School of Biological Sciences, Royal Holloway University of London, Egham, TW200EX, United Kingdom
| | - Christopher Gerrish
- School of Biological Sciences, Royal Holloway University of London, Egham, TW200EX, United Kingdom
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway University of London, Egham, TW200EX, United Kingdom.
| |
Collapse
|
11
|
Chandrasekaran U, Byeon S, Kim K, Kim SH, Park CO, Han AR, Lee YS, Kim HS. Short-term severe drought influences root volatile biosynthesis in eastern white pine (Pinus strobus L). FRONTIERS IN PLANT SCIENCE 2022; 13:1030140. [PMID: 36388508 PMCID: PMC9644029 DOI: 10.3389/fpls.2022.1030140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Climate change-related drought stress is expected to shift carbon partitioning toward volatile organic compound (VOC) biosynthesis. The effect of drought stress on VOC synthesis remains unknown in several tree species. Therefore, we exposed eastern white pine (Pinus strobus) plants to severe drought for 32 days and performed physiological analysis (chlorophyll content, leaf water content, and root/shoot index), biochemical analysis (non-structural carbohydrates, proline, lipid peroxidation, and antioxidant assay), and total root VOC analysis. Drought stress decreased the relative water and soil moisture contents. Root proline accumulation and antioxidant activity increased significantly, whereas leaf chlorophyll synthesis and fresh weight decreased significantly in drought-treated plants. A non-significant increase in sugar accumulation (leaves and roots), proline accumulation (leaves), antioxidant activity (leaves), and lipid peroxidation (leaves and roots) was observed in drought-treated plants. Drought stress caused a non-significant decline in root/shoot ratio and starch accumulation (leaves and roots) and caused a significant increase in root abscisic acid content. Drought-treated plants showed an increase in overall monoterpene synthesis (16%) and decline in total sesquiterpene synthesis (3%). Our findings provide an overall assessment of the different responses of VOC synthesis to severe water deficit that may help unravel the molecular mechanisms underlying drought tolerance in P. strobus.
Collapse
Affiliation(s)
- Umashankar Chandrasekaran
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Siyeon Byeon
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kunhyo Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seo Hyun Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chan Oh Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ah reum Han
- Division of Basic Research, National Institute of Ecology, Seocheon-gun, South Korea
| | - Young-Sang Lee
- Division of Basic Research, National Institute of Ecology, Seocheon-gun, South Korea
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- National Center for Agro Meteorology, Seoul, South Korea
| |
Collapse
|
12
|
Liu B, Kaurilind E, Zhang L, Okereke CN, Remmel T, Niinemets Ü. Improved plant heat shock resistance is introduced differently by heat and insect infestation: the role of volatile emission traits. Oecologia 2022; 199:53-68. [PMID: 35471619 DOI: 10.1007/s00442-022-05168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
Abstract
Heat stress is one of the most important abiotic stresses confronted by plants under global climate change. Plant exposure to abiotic or biotic stress can improve its tolerance to subsequent severe episodes of the same or different stress (stress priming), but so far there is limited comparative information about how pre-exposures to different abiotic and biotic elicitors alter plant resistance to severe heat stress. We exposed the perennial herb Melilotus albus Medik., a species rich in secondary metabolites, to moderate heat stress (35 °C) and greenhouse whitefly (Trialeurodes vaporariorum West.) infestation to comparatively determine whether both pre-treatments could enhance plant tolerance to the subsequent heat shock (45 °C) stress. Plant physiological responses to stress were characterized by photosynthetic traits and volatile organic compound emissions through 72 h recovery. Heat shock treatment reduced net assimilation rate (A) and stomatal conductance in all plants, but heat-primed plants had significantly faster rates of recovery of A than other plants. By the end of the recovery period, A in none of the three heat shock-stressed groups recovered to the control level, but in whitefly-infested plants it reached the pre-heat shock level. In heat-primed plants, the heat shock treatment was associated with a fast rise of monoterpene emissions, and in whitefly-infested plants with benzenoid emissions and an increase in total phenolic content.
Collapse
Affiliation(s)
- Bin Liu
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia.
| | - Eve Kaurilind
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Lu Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Chikodinaka N Okereke
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Triinu Remmel
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia.,Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| |
Collapse
|
13
|
Simulation of Isoprene Emission with Satellite Microwave Emissivity Difference Vegetation Index as Water Stress Factor in Southeastern China during 2008. REMOTE SENSING 2022. [DOI: 10.3390/rs14071740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Isoprene is one of the most important biogenic volatile organic compounds (BVOCs) emitted by vegetation. The biogenic isoprene emissions are widely estimated by the Model of Emission of Gases and Aerosols from Nature (MEGAN) considering different environmental stresses. The response of isoprene emission to the water stress is usually parameterized using soil moisture in previous studies. In this study, we designed a new parameterization scheme of water stress in MEGAN as a function of a novel, satellite, passive microwave-based vegetation index, Emissivity Difference Vegetation Index (EDVI), which indicates the vegetation inner water content. The isoprene emission rates in southeastern China were simulated with different water stress indicators including soil moisture, EDVI, Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). Then the simulated isoprene emission rates were compared to associated satellite top-down estimations. The results showed that in southeastern China, the spatiotemporal correlations between those simulations and top-down retrieval are all high with different biases. The simulated isoprene emission rates with EDVI-based water stress factor are most consistent with top-down estimation with higher temporal correlation, lower bias and lower RMSE, while soil moisture alters the emission rates little, and optical vegetation indices (NDVI and EVI) slightly increase the correlation with top-down. The temporal correlation coefficients are increased after applied with EDVI water stress factor in most areas; especially in the Yunnan-Guizhou Plateau and Yangtze River Delta (>0.12). Overall, higher consistency of simulation and top-down estimation is shown when EDVI is applied, which indicates the possibility of estimating the effect of vegetation water stress on biogenic isoprene emission using microwave observations.
Collapse
|
14
|
Kreuzwieser J, Meischner M, Grün M, Yáñez-Serrano AM, Fasbender L, Werner C. Drought affects carbon partitioning into volatile organic compound biosynthesis in Scots pine needles. THE NEW PHYTOLOGIST 2021; 232:1930-1943. [PMID: 34523149 DOI: 10.1111/nph.17736] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The effect of drought on the interplay of processes controlling carbon partitioning into plant primary and secondary metabolisms, such as respiratory CO2 release and volatile organic compound (VOC) biosynthesis, is not fully understood. To elucidate the effect of drought on the fate of cellular C sources into VOCs vs CO2 , we conducted tracer experiments with 13 CO2 and position-specific 13 C-labelled pyruvate, a key metabolite between primary and secondary metabolisms, in Scots pine seedlings. We determined the stable carbon isotope composition of leaf exchanged CO2 and VOC. Drought reduced the emission of the sesquiterpenes α-farnesene and β-farnesene but did not affect 13 C-incorporation from 13 C-pyruvate. The labelling patterns suggest that farnesene biosynthesis partially depends on isopentenyl diphosphate crosstalk between chloroplasts and cytosol, and that drought inhibits this process. Contrary to sesquiterpenes, drought did not affect emission of isoprene, monoterpenes and some oxygenated compounds. During the day, pyruvate was used in the TCA cycle to a minor degree but was mainly consumed in pathways of secondary metabolism. Drought partly inhibited such pathways, while allocation into the TCA cycle increased. Drought caused a re-direction of pyruvate consuming pathways, which contributed to maintenance of isoprene and monoterpene production despite strongly inhibited photosynthesis. This underlines the importance of these volatiles for stress tolerance.
Collapse
Affiliation(s)
- Jürgen Kreuzwieser
- Chair of Ecosystem Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79110, Germany
| | - Mirjam Meischner
- Chair of Ecosystem Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79110, Germany
| | - Michel Grün
- Chair of Ecosystem Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79110, Germany
| | - Ana Maria Yáñez-Serrano
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, 08034, Spain
- Center for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès, 08193, Spain
- Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Spain
| | - Lukas Fasbender
- Chair of Ecosystem Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79110, Germany
| | - Christiane Werner
- Chair of Ecosystem Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79110, Germany
| |
Collapse
|
15
|
Ladd SN, Nelson DB, Bamberger I, Daber LE, Kreuzwieser J, Kahmen A, Werner C. Metabolic exchange between pathways for isoprenoid synthesis and implications for biosynthetic hydrogen isotope fractionation. THE NEW PHYTOLOGIST 2021; 231:1708-1719. [PMID: 34028817 DOI: 10.1111/nph.17510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Hydrogen isotope ratios of plant lipids are used for paleoclimate reconstruction, but are influenced by both source water and biosynthetic processes. Measuring 2 H : 1 H ratios of multiple compounds produced by different pathways could allow these effects to be separated, but hydrogen isotope fractionations during isoprenoid biosynthesis remain poorly constrained. To investigate how hydrogen isotope fractionation during isoprenoid biosynthesis is influenced by molecular exchange between the cytosolic and plastidial production pathways, we paired position-specific 13 C-pyruvate labeling with hydrogen isotope measurements of lipids in Pachira aquatica saplings. We find that acetogenic compounds primarily incorporated carbon from 13 C2-pyruvate, whereas isoprenoids incorporated 13 C1- and 13 C2-pyruvate equally. This indicates that cytosolic pyruvate is primarily introduced into plastidial isoprenoids via glyceraldehyde 3-phosphate and that plastidial isoprenoid intermediates are incorporated into cytosolic isoprenoids. Probably as a result of the large differences in hydrogen isotope fractionation between plastidial and cytosolic isoprenoid pathways, sterols from P. aquatica are at least 50‰ less 2 H-enriched relative to phytol than sterols in other plants. These results provide the first experimental evidence that incorporation of plastidial intermediates reduces 2 H : 1 H ratios of sterols. This suggests that relative offsets between the 2 H : 1 H ratios of sterols and phytol can trace exchange between the two isoprenoid synthesis pathways.
Collapse
Affiliation(s)
- S Nemiah Ladd
- Chair of Ecosystem Physiology, Albert Ludwig University of Freiburg, Georges-Köhler-Allee 053/054, Freiburg, 79110, Germany
| | - Daniel B Nelson
- Plant Physiological Ecology, Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, Basel, 4056, Switzerland
| | - Ines Bamberger
- Chair of Ecosystem Physiology, Albert Ludwig University of Freiburg, Georges-Köhler-Allee 053/054, Freiburg, 79110, Germany
| | - L Erik Daber
- Chair of Ecosystem Physiology, Albert Ludwig University of Freiburg, Georges-Köhler-Allee 053/054, Freiburg, 79110, Germany
| | - Jürgen Kreuzwieser
- Chair of Ecosystem Physiology, Albert Ludwig University of Freiburg, Georges-Köhler-Allee 053/054, Freiburg, 79110, Germany
| | - Ansgar Kahmen
- Plant Physiological Ecology, Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, Basel, 4056, Switzerland
| | - Christiane Werner
- Chair of Ecosystem Physiology, Albert Ludwig University of Freiburg, Georges-Köhler-Allee 053/054, Freiburg, 79110, Germany
| |
Collapse
|
16
|
Niinemets Ü, Rasulov B, Talts E. CO 2 -responsiveness of leaf isoprene emission: Why do species differ? PLANT, CELL & ENVIRONMENT 2021; 44:3049-3063. [PMID: 34155641 DOI: 10.1111/pce.14131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Leaf isoprene emission rate, I, decreases with increasing atmospheric CO2 concentration with major implications for global change. There is a significant interspecific variability in [CO2 ]-responsiveness of I, but the extent of this variation is unknown and its reasons are not understood. We hypothesized that the magnitude of emission reduction reflects the size and changeability of precursor pools responsible for isoprene emission (dimethylallyl diphosphate, DMADP and 2-methyl-erythritol 2,4-cyclodiphosphate, MEcDP). Changes in I and intermediate pool sizes upon increase of [CO2 ] from 400 to 1500 μmol/mol were studied in nine woody species spanning boreal to tropical ecosystems. I varied 10-fold, total substrate pool size 37-fold and the ratio of DMADP/MEcDP pool sizes 57-fold. At higher [CO2 ], I was reduced on average by 65%, but [CO2 ]-responsiveness varied an order of magnitude across species. The increase in [CO2 ] resulted in concomitant reductions in both substrate pools. The variation in [CO2 ]-responsiveness across species scaled with the reduction in pool sizes, the substrate pool size supported and the share of DMADP in total substrate pool. This study highlights a major interspecific variation in [CO2 ]-responsiveness of isoprene emission and conclusively links this variation to interspecific variability in [CO2 ] effects on substrate availability and intermediate pool size.
Collapse
Affiliation(s)
- Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Bahtijor Rasulov
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Eero Talts
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
17
|
Source of 12C in Calvin-Benson cycle intermediates and isoprene emitted from plant leaves fed with 13CO2. Biochem J 2021; 477:3237-3252. [PMID: 32815532 DOI: 10.1042/bcj20200480] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Abstract
Feeding 14CO2 was crucial to uncovering the path of carbon in photosynthesis. Feeding 13CO2 to photosynthesizing leaves emitting isoprene has been used to develop hypotheses about the sources of carbon for the methylerythritol 4-phosphate pathway, which makes the precursors for terpene synthesis in chloroplasts and bacteria. Both photosynthesis and isoprene studies found that products label very quickly (<10 min) up to 80-90% but the last 10-20% of labeling requires hours indicating a source of 12C during photosynthesis and isoprene emission. Furthermore, studies with isoprene showed that the proportion of slow label could vary significantly. This was interpreted as a variable contribution of carbon from sources other than the Calvin-Benson cycle (CBC) feeding the methylerythritol 4-phosphate pathway. Here, we measured the degree of label in isoprene and photosynthetic metabolites 20 min after beginning to feed 13CO2. Isoprene labeling was the same as labeling of photosynthesis intermediates. High temperature reduced the label in isoprene and photosynthesis intermediates by the same amount indicating no role for alternative carbon sources for isoprene. A model assuming glucose, fructose, and/or sucrose reenters the CBC as ribulose 5-phosphate through a cytosolic shunt involving glucose 6-phosphate dehydrogenase was consistent with the observations.
Collapse
|
18
|
Sun Z, Shen Y, Niinemets Ü. Responses of isoprene emission and photochemical efficiency to severe drought combined with prolonged hot weather in hybrid Populus. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7364-7381. [PMID: 32996573 PMCID: PMC7906789 DOI: 10.1093/jxb/eraa415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Isoprene emissions have been considered as a protective response of plants to heat stress, but there is limited information of how prolonged heat spells affect isoprene emission capacity, particularly under the drought conditions that often accompany hot weather. Under combined long-term stresses, presence of isoprene emission could contribute to the maintenance of the precursor pool for rapid synthesis of essential isoprenoids to repair damaged components of leaf photosynthetic apparatus. We studied changes in leaf isoprene emission rate, photosynthetic characteristics, and antioxidant enzyme activities in two hybrid Populus clones, Nanlin 1388 (relatively high drought tolerance) and Nanlin 895 (relatively high thermotolerance) that were subjected to long-term (30 d) soil water stress (25% versus 90% soil field capacity) combined with a natural heat spell (day-time temperatures of 35-40 °C) that affected both control and water-stressed plants. Unexpectedly, isoprene emissions from both the clones were similar and the overall effects of drought on the emission characteristics were initially minor; however, treatment effects and clonal differences increased with time. In particular, the isoprene emission rate only increased slightly in the Nanlin 895 control plants after 15 d of treatment, whereas it decreased by more than 5-fold in all treatment × clone combinations after 30 d. The reduction in isoprene emission rate was associated with a decrease in the pool size of the isoprene precursor dimethylallyl diphosphate in all cases at 30 d after the start of treatment. Net assimilation rate, stomatal conductance, the openness of PSII centers, and the effective quantum yield all decreased, and non-photochemical quenching and catalase activity increased in both control and water-stressed plants. Contrary to the hypothesis of protection of leaf photosynthetic apparatus by isoprene, the data collectively indicated that prolonged stress affected isoprene emissions more strongly than leaf photosynthetic characteristics. This primarily reflected the depletion of isoprene precursor pools under long-term severe stress.
Collapse
Affiliation(s)
- Zhihong Sun
- School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, Hangzhou, Zhejiang, China
| | - Yan Shen
- School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Ülo Niinemets
- School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu, Tallinn, Estonia
| |
Collapse
|
19
|
Peng A, Lin L, Zhao M. Screening of key flavonoids and monoterpenoids for xanthine oxidase inhibitory activity-oriented quality control of Chrysanthemum morifolium Ramat. ‘Boju’ based on spectrum-effect relationship coupled with UPLC-TOF-MS and HS-SPME-GC/MS. Food Res Int 2020; 137:109448. [DOI: 10.1016/j.foodres.2020.109448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/23/2020] [Accepted: 06/14/2020] [Indexed: 12/25/2022]
|
20
|
Rodrigues TB, Baker CR, Walker AP, McDowell N, Rogers A, Higuchi N, Chambers JQ, Jardine KJ. Stimulation of isoprene emissions and electron transport rates as key mechanisms of thermal tolerance in the tropical species Vismia guianensis. GLOBAL CHANGE BIOLOGY 2020; 26:5928-5941. [PMID: 32525272 DOI: 10.1111/gcb.15213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/14/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Tropical forests absorb large amounts of atmospheric CO2 through photosynthesis, but high surface temperatures suppress this absorption while promoting isoprene emissions. While mechanistic isoprene emission models predict a tight coupling to photosynthetic electron transport (ETR) as a function of temperature, direct field observations of this phenomenon are lacking in the tropics and are necessary to assess the impact of a warming climate on global isoprene emissions. Here we demonstrate that in the early successional species Vismia guianensis in the central Amazon, ETR rates increased with temperature in concert with isoprene emissions, even as stomatal conductance (gs ) and net photosynthetic carbon fixation (Pn ) declined. We observed the highest temperatures of continually increasing isoprene emissions yet reported (50°C). While Pn showed an optimum value of 32.6 ± 0.4°C, isoprene emissions, ETR, and the oxidation state of PSII reaction centers (qL ) increased with leaf temperature with strong linear correlations for ETR (ƿ = 0.98) and qL (ƿ = 0.99) with leaf isoprene emissions. In contrast, other photoprotective mechanisms, such as non-photochemical quenching, were not activated at elevated temperatures. Inhibition of isoprenoid biosynthesis repressed Pn at high temperatures through a mechanism that was independent of stomatal closure. While extreme warming will decrease gs and Pn in tropical species, our observations support a thermal tolerance mechanism where the maintenance of high photosynthetic capacity under extreme warming is assisted by the simultaneous stimulation of ETR and metabolic pathways that consume the direct products of ETR including photorespiration and the biosynthesis of thermoprotective isoprenoids. Our results confirm that models which link isoprene emissions to the rate of ETR hold true in tropical species and provide necessary "ground-truthing" for simulations of the large predicted increases in tropical isoprene emissions with climate warming.
Collapse
Affiliation(s)
- Tayana B Rodrigues
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
| | - Christopher R Baker
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Nate McDowell
- Earth System Analysis and Modeling, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Alistair Rogers
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Niro Higuchi
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
| | - Jeffrey Q Chambers
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kolby J Jardine
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
21
|
Werner C, Fasbender L, Romek KM, Yáñez-Serrano AM, Kreuzwieser J. Heat Waves Change Plant Carbon Allocation Among Primary and Secondary Metabolism Altering CO 2 Assimilation, Respiration, and VOC Emissions. FRONTIERS IN PLANT SCIENCE 2020; 11:1242. [PMID: 32922421 PMCID: PMC7456945 DOI: 10.3389/fpls.2020.01242] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 07/29/2020] [Indexed: 05/17/2023]
Abstract
Processes controlling plant carbon allocation among primary and secondary metabolism, i.e., carbon assimilation, respiration, and VOC synthesis are still poorly constrained, particularly regarding their response to stress. To investigate these processes, we simulated a 10-day 38°C heat wave, analysing real-time carbon allocation into primary and secondary metabolism in the Mediterranean shrub Halimium halimifolium L. We traced position-specific 13C-labeled pyruvate into daytime VOC and CO2 emissions and during light-dark transition. Net CO2 assimilation strongly declined under heat, due to three-fold higher respiration rates. Interestingly, day respiration also increased two-fold. Decarboxylation of the C1-atom of pyruvate was the main process driving daytime CO2 release, whereas the C2-moiety was not decarboxylated in the TCA cycle. Heat induced high emissions of methanol, methyl acetate, acetaldehyde as well as mono- and sesquiterpenes, particularly during the first two days. After 10-days of heat a substantial proportion of 13C-labeled pyruvate was allocated into de novo synthesis of VOCs. Thus, during extreme heat waves high respiratory losses and reduced assimilation can shift plants into a negative carbon balance. Still, plants enhanced their investment into de novo VOC synthesis despite associated metabolic CO2 losses. We conclude that heat stress re-directed the proportional flux of key metabolites into pathways of VOC biosynthesis most likely at the expense of reactions of plant primary metabolism, which might highlight their importance for stress protection.
Collapse
Affiliation(s)
- Christiane Werner
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
- *Correspondence: Christiane Werner,
| | - Lukas Fasbender
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
| | | | - Ana Maria Yáñez-Serrano
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
- Center of Ecological Research and Forest Applications (CREAF), Universitat Autònoma de Barcelona, Barcelona, Spain
- Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, Barcelona, Spain
| | | |
Collapse
|
22
|
Yáñez-Serrano AM, Mahlau L, Fasbender L, Byron J, Williams J, Kreuzwieser J, Werner C. Heat stress increases the use of cytosolic pyruvate for isoprene biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5827-5838. [PMID: 31396620 PMCID: PMC6812709 DOI: 10.1093/jxb/erz353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/18/2019] [Indexed: 05/28/2023]
Abstract
The increasing occurrence of heatwaves has intensified temperature stress on terrestrial vegetation. Here, we investigate how two contrasting isoprene-emitting tropical species, Ficus benjamina and Pachira aquatica, cope with heat stress and assess the role of internal plant carbon sources for isoprene biosynthesis in relation to thermotolerance. To our knowledge, this is the first study to report isoprene emissions from P. aquatica. We exposed plants to two levels of heat stress and determined the temperature response curves for isoprene and photosynthesis. To assess the use of internal C sources in isoprene biosynthesis, plants were fed with 13C position-labelled pyruvate. F. benjamina was more heat tolerant with higher constitutive isoprene emissions and stronger acclimation to higher temperatures than P. aquatica, which showed higher induced isoprene emissions at elevated temperatures. Under heat stress, both isoprene emissions and the proportion of cytosolic pyruvate allocated into isoprene synthesis increased. This represents a mechanism that P. aquatica, and to a lesser extent F. benjamina, has adopted as an immediate response to sudden increase in heat stress. However, in the long run under prolonged heat, the species with constitutive emissions (F. benjamina) was better adapted, indicating that plants that invest more carbon into protective emissions of biogenic volatile organic compounds tend to suffer less from heat stress.
Collapse
Affiliation(s)
| | - Lucas Mahlau
- Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany
| | - Lukas Fasbender
- Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany
| | - Joseph Byron
- Atmospheric Chemistry Department, Max-Planck Institute for Chemistry, Mainz, Germany
| | - Jonathan Williams
- Atmospheric Chemistry Department, Max-Planck Institute for Chemistry, Mainz, Germany
| | - Jürgen Kreuzwieser
- Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany
| | - Christiane Werner
- Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Lantz AT, Allman J, Weraduwage SM, Sharkey TD. Isoprene: New insights into the control of emission and mediation of stress tolerance by gene expression. PLANT, CELL & ENVIRONMENT 2019; 42:2808-2826. [PMID: 31350912 PMCID: PMC6788959 DOI: 10.1111/pce.13629] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 05/10/2023]
Abstract
Isoprene is a volatile compound produced in large amounts by some, but not all, plants by the enzyme isoprene synthase. Plants emit vast quantities of isoprene, with a net global output of 600 Tg per year, and typical emission rates from individual plants around 2% of net carbon assimilation. There is significant debate about whether global climate change resulting from increasing CO2 in the atmosphere will increase or decrease global isoprene emission in the future. We show evidence supporting predictions of increased isoprene emission in the future, but the effects could vary depending on the environment under consideration. For many years, isoprene was believed to have immediate, physical effects on plants such as changing membrane properties or quenching reactive oxygen species. Although observations sometimes supported these hypotheses, the effects were not always observed, and the reasons for the variability were not apparent. Although there may be some physical effects, recent studies show that isoprene has significant effects on gene expression, the proteome, and the metabolome of both emitting and nonemitting species. Consistent results are seen across species and specific treatment protocols. This review summarizes recent findings on the role and control of isoprene emission from plants.
Collapse
Affiliation(s)
- Alexandra T. Lantz
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Joshua Allman
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Sarathi M. Weraduwage
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Thomas D. Sharkey
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, Madison, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
24
|
Reassimilation of Leaf Internal CO2 Contributes to Isoprene Emission in the Neotropical Species Inga edulis Mart. FORESTS 2019. [DOI: 10.3390/f10060472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Isoprene (C5H8) is a hydrocarbon gas emitted by many tree species and has been shown to protect photosynthesis under abiotic stress. Under optimal conditions for photosynthesis, ~70%–90% of carbon used for isoprene biosynthesis is produced from recently assimilated atmospheric CO2. While the contribution of alternative carbon sources that increase with leaf temperature and other stresses have been demonstrated, uncertainties remain regarding the biochemical source(s) of isoprene carbon. In this study, we investigated leaf isoprene emissions (Is) from neotropical species Inga edulis Mart. as a function of light and temperature under ambient (450 µmol m−2 s−1) and CO2-free (0 µmol m−2 s−1) atmosphere. Is under CO2-free atmosphere showed light-dependent emission patterns similar to those observed under ambient CO2, but with lower light saturation point. Leaves treated with the photosynthesis inhibitor DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) failed to produce detectable Is in normal light under a CO2-free atmosphere. While strong temperature-dependent Is were observed under CO2-free atmosphere in the light, dark conditions failed to produce detectable Is even at the highest temperatures studied (40 °C). Treatment of leaves with 13C-labeled sodium bicarbonate under CO2-free atmosphere resulted in Is with over 50% containing at least one 13C atom. Is under CO2-free atmosphere and standard conditions of light and leaf temperature represented 19% ± 7% of emissions under ambient CO2. The results show that the reassimilation of leaf internal CO2 contributes to Is in the neotropical species I. edulis. Through the consumption of excess photosynthetic energy, our results support a role of isoprene biosynthesis, together with photorespiration, as a key tolerance mechanism against high temperature and high light in the tropics.
Collapse
|