1
|
Hussain I, Zhao T, Wang Y, Lei N, Liu K, Yu H, Zhang Y, Muhammad U, Ullah H, Yu X. Melatonin and copper oxide nanoparticles synergistically mitigate clubroot disease and enhance growth dynamics in Brassica rapa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109020. [PMID: 39128405 DOI: 10.1016/j.plaphy.2024.109020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/14/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Clubroot, a devastating soil borne disease affecting 30%∼50% of Brassicaceae crops worldwide, lacks effective control measures. In the present study, we explored the potential of melatonin (MT) and copper oxide nanoparticle (CuO-NPs) in mitigating clubroot severity in the Brassica rapa ssp. pekinensis. Following 18 h priming with MT, CuO-NPs, or both seeds were grown in controlled environment using synthetic potting mix. Inoculated with Plasmodiophora brassicae spores on 5th day, followed by a soil drench phyto-nano treatment with a week interval. Plants were assessed for various health and growth indices including disease, biometrics, photosynthesis, reactive oxygen species (ROS), antioxidant enzyme activity, hormones and genes expression at onset of secondary clubroot infection using established protocols. Statistical analysis employed ANOVA with Fisher's LSD for significance assessment (P < 0.05). Our results revealed that seed priming with both MT (50 μMol/L) and CuO-NPs (200 mg/L), followed by soil drenching significantly reduced clubroot incidence (38%) and disease index (57%), compared to control treatments. This synergistic effect was associated with enhanced plant growth (shoots: 48% and roots: 59%). Plants treated with both MT and CuO-NPs showed robust antioxidant defenses, significantly increased superoxide dismutase (SOD (25/29%)), catalase (CAT (83/55%)), and ascorbate peroxidase (APX (83/46%)) activity in both shoots/roots, respectively, compared to infected control. Notably, salicylic acid and jasmonic acid levels doubled in treated plants, while stress hormone abscisic acid (ABA) decreased by 80% in roots and 21% in shoots. Gene expression analysis corroborated these findings, showing that the combined treatment activated antioxidant defense genes (SOD, APX and CAT) by 1.9-7.2-fold and upregulated hormone signaling genes JAZ1 (7.8-fold), MYC2 (3.9-fold) and SABP2 (36-fold). Conversely, ABA biosynthesis genes (ABA1 and NCED1) were downregulated up to 7.2-fold, while plant resistance genes NPR1, PRB1 and PDF1.2 were dramatically increased by up to 6.3-fold compared to infected plants. Overall, our combined treatment approach significantly reduces clubroot severity in B. rapa via enhanced antioxidant defenses, improved ROS scavenging, coordinated hormonal regulation and increased pathogen response genes. This study offers promising strategy for developing effective control measures against clubroot in susceptible cruciferous crops.
Collapse
Affiliation(s)
- Iqbal Hussain
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Tong Zhao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Yuqi Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Na Lei
- Harbin Academy of Agricultural Sciences, Harbin, China
| | - Kaiwen Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Hongrui Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Yi Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Uzair Muhammad
- Department of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Habib Ullah
- Innovation Centre of Yangtze River Delta, Zhejiang University, Hangzhou, China
| | - Xiaolin Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China.
| |
Collapse
|
2
|
Sahu S, Rao AR, Saxena S, Gupta P, Gaikwad K. Systematic profiling and analysis of growth and development responsive DE-lncRNAs in cluster bean (Cyamopsis tetragonoloba). Int J Biol Macromol 2024; 280:135821. [PMID: 39306152 DOI: 10.1016/j.ijbiomac.2024.135821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Long non-coding RNAs (lncRNAs) play crucial role in regulating genes involved in various processes including growth & development, flowering, and stress response in plants. The study aims to identify and characterize tissue-specific, growth & development and floral responsive differentially expressed lncRNAs (DE-lncRNAs) in cluster bean from a high-throughput RNA sequencing data. We have identified 3309 DE-lncRNAs, with an average length of 818 bp. Merely, around 4 % of DE-lncRNAs across the tissues were found to be conserved as rate of evolution of lncRNAs is high. Among the identified DE-lncRNAs, 204 were common in leaf vs. shoot, leaf vs. flower and flower vs. shoot. A total of 60 DE-lncRNAs targeted 10 protein-coding genes involved in flower development and initiation processes. We investigated 179 tissue-specific DE-lncRNAs based on tissue specificity index. Three DE-lncRNAs: Cb_lnc_0820, Cb_lnc_0430, Cb_lnc_0260 and their target genes show their involvement in floral development and stress mechanisms, which were validated by Quantitative real-time PCR (qRT-PCR). The identified DE-lncRNAs were expressed higher in flower bud than in leaf and similar expression pattern was observed in both RNA-seq data and qRT-PCR analyses. Notably, 362 DE-lncRNAs were predicted as eTM-lncRNAs with the participation of 84 miRNAs. Whereas 46 DE-lncRNAs were predicted to possess the internal ribosomal entry sites (IRES) and can encode for small peptides. The regulatory networks established between DE-lncRNAs, mRNAs and miRNAs have provided an insight into their association with plant growth & development, flowering, and stress mechanisms. Comprehensively, the characterization of DE-lncRNAs in various tissues of cluster bean shed a light on interactions among lncRNAs, miRNAs and mRNAs and help understand their involvement in growth & development and floral initiation processes. The information retrieved from the analyses was shared in the public domain in the form of a database: Cb-DElncRNAdb, and made available at http://backlin.cabgrid.res.in/Cb-DElncRNA/index.php, which may be useful for the scientific community engaged cluster bean research.
Collapse
Affiliation(s)
- Sarika Sahu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | | | - Swati Saxena
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Palak Gupta
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Kishor Gaikwad
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India
| |
Collapse
|
3
|
Giménez A, Gallegos-Cedillo VM, Benaissa RR, Egea-Gilabert C, Signore A, Ochoa J, Gruda NS, Arnao MB, Fernández JA. Enhancing the cultivation of Salicornia fruticosa with agroindustrial compost leachates in a cascade cropping system: evaluating the impact of melatonin application. FRONTIERS IN PLANT SCIENCE 2024; 15:1441884. [PMID: 39319005 PMCID: PMC11420923 DOI: 10.3389/fpls.2024.1441884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024]
Abstract
Cascade cropping systems (CCS) utilize leachate from a primary crop to grow secondary crops and enhance the efficient use of water and fertilizers in areas with scarce water resources. A preliminary study investigated the effect of melatonin in a cascade cropping system to potentially improve plant tolerance to abiotic stresses. This study aimed to cultivate Salicornia fruticosa in this cropping system to reduce nutrient discharge and assess the impact of exogenous melatonin on Salicornia growth and quality. The CCS included a primary crop of Salicornia grown in an agro-industrial compost or peat. Leachates from these media were used to cultivate the same plant once again in a floating system under four treatments: compost leachate (T1), peat leachate (T2), 100% nutrient solution (NS) (T3), 50% NS (T4) strength. Four concentrations of exogenous melatonin were applied in foliar spray: 0, 100, 200, and 400 µM. Melatonin application increased yield, with the highest values observed when plants were grown in T1. Water use efficiency was also maximized in T1 and with both 200 and 400 µM melatonin applications. The highest nitrogen use efficiency was achieved in plants grown in peat leachate. The lipid membrane damage was assessed revealing that plants grown in compost leachate exhibited the lowest MDA values regardless of melatonin concentrations. The accumulation of some antinutritional compounds (nitrate, oxalate, and sodium) were the highest in those plants grown in compost leachate. Overall, shoots grown in peat leachate exhibited the best phytochemical profile (total phenol content, total flavonoids, and antioxidant capacity), with peak values in plants treated with 200 µM melatonin. These findings suggest that S. fruticosa can be effectively cultivated using leachate from a previous crop in a floating system and that exogenous melatonin application enhances the yield and nutritional quality of Salicornia shoots.
Collapse
Affiliation(s)
- Almudena Giménez
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| | | | - Rachida Rania Benaissa
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Catalina Egea-Gilabert
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Angelo Signore
- Department of Soil, Plants and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Jesús Ochoa
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Nazim S Gruda
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
- Department of Horticultural Sciences, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Marino B Arnao
- Phytohormones and Plant Development Lab, Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| | - Juan A Fernández
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| |
Collapse
|
4
|
Jiang S, Lan Z, Zhang Y, Kang X, Zhao L, Wu X, Gao H. Mechanisms by Which Exogenous Substances Enhance Plant Salt Tolerance through the Modulation of Ion Membrane Transport and Reactive Oxygen Species Metabolism. Antioxidants (Basel) 2024; 13:1050. [PMID: 39334709 PMCID: PMC11428486 DOI: 10.3390/antiox13091050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Soil salinization is one of the major abiotic stresses affecting plant growth and development. Plant salt tolerance is controlled by complex metabolic pathways. Exploring effective methods and mechanisms to improve crop salt tolerance has been a key aspect of research on the utilization of saline soil. Exogenous substances, such as plant hormones and signal transduction substances, can regulate ion transmembrane transport and eliminate reactive oxygen species (ROS) to reduce salt stress damage by activating various metabolic processes. In this review, we summarize the mechanisms by which exogenous substances regulate ion transmembrane transport and ROS metabolism to improve plant salt tolerance. The molecular and physiological relationships among exogenous substances in maintaining the ion balance and enhancing ROS clearance are examined, and trends and research directions for the application of exogenous substances for improving plant salt tolerance are proposed.
Collapse
Affiliation(s)
- Shiqing Jiang
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Zuwen Lan
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yinkang Zhang
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xinna Kang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050080, China
| | - Liran Zhao
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xiaolei Wu
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Hongbo Gao
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
5
|
Zeng R, Chen T, Li X, Cao J, Li J, Xu X, Zhang L, Chen Y. Integrated physiological, transcriptomic and metabolomic analyses reveal the mechanism of peanut kernel weight reduction under waterlogging stress. PLANT, CELL & ENVIRONMENT 2024; 47:3198-3214. [PMID: 38722055 DOI: 10.1111/pce.14936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 07/12/2024]
Abstract
Waterlogging stress (WS) hinders kernel development and directly reduces peanut yield; however, the mechanism of kernel filling in response to WS remains unknown. The waterlogging-sensitive variety Huayu 39 was subjected to WS for 3 days at 7 days after the gynophores touched the ground (DAG). We found that WS affected kernel filling at 14, 21, and 28 DAG. WS decreased the average filling rate and kernel dry weight, while transcriptome sequencing and widely targeted metabolomic analysis revealed that WS inhibited the gene expression in starch and sucrose metabolism, which reduced sucrose input and transformation ability. Additionally, genes related to ethylene and melatonin synthesis and the accumulation of tryptophan and methionine were upregulated in response to WS. WS upregulated the expression of the gene encoding tryptophan decarboxylase (AhTDC), and overexpression of AhTDC in Arabidopsis significantly reduced the seed length, width, and weight. Therefore, WS reduced the kernel-filling rate, leading to a reduction in the 100-kernel weight. This survey informs the development of measures that alleviate the negative impact of WS on peanut yield and quality and provides a basis for exploring high-yield and high-quality cultivation, molecular-assisted breeding, and waterlogging prevention in peanut farming.
Collapse
Affiliation(s)
- Ruier Zeng
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Tingting Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Xi Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Jing Cao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Xueyu Xu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Yong Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Zhu J, Lou H, Yan C, Zhang W, Li Z. Exogenous Melatonin Enhances Cold Tolerance by Regulating the Expression of Photosynthetic Performance, Antioxidant System, and Related Genes in Cotton. PLANTS (BASEL, SWITZERLAND) 2024; 13:2010. [PMID: 39124128 PMCID: PMC11314530 DOI: 10.3390/plants13152010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
In China, cotton is a significant cash crop, and cold stress negatively impacts the crop's development, production, and quality formation. Recent studies have shown that melatonin (MT) can alleviate the damage to plants under cold stress and promote good growth and development. In this study, the morphological and physiological changes induced by exogenous melatonin pretreatment on 'Xinluzao 33' cotton seedlings under cold stress were examined to investigate its defensive effects. The results showed that 100 μM MT pretreatment improved the cold resistance of cotton most significantly. It also improved the wilting state of cotton under cold stress, greatly increased the photosynthetic rate (Pn), stomatal conductance (Gs), maximum photochemical efficiency (Fv/Fm), and photosynthetic performance index (PIabs) by 116.92%, 47.16%, 32.30%, and 50.22%, respectively, and mitigated the adverse effects of low-temperature. In addition, MT supplementation substantially reduced the accumulation of superoxide anion (O2•-) and hydrogen peroxide (H2O2) by 14.5% and 45.49%, respectively, in cold-stressed cotton leaves by modulating the antioxidant system, thereby mitigating oxidative damage. Furthermore, MT pretreatment increased the endogenous melatonin content (23.80%) and flavonoid content (21.44%) and considerably induced the expression of biosynthesis enzyme-related genes. The above results indicate that exogenous melatonin improves the low-temperature resistance of cotton seedlings by regulating photosynthetic performance, antioxidant enzyme activity, antioxidant content, endogenous melatonin and flavonoid content, and the expression levels of genes related to their synthesis.
Collapse
Affiliation(s)
- Jincheng Zhu
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (J.Z.); (H.L.); (C.Y.)
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Hui Lou
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (J.Z.); (H.L.); (C.Y.)
| | - Chen Yan
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (J.Z.); (H.L.); (C.Y.)
| | - Wei Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (J.Z.); (H.L.); (C.Y.)
| | - Zhibo Li
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China; (J.Z.); (H.L.); (C.Y.)
| |
Collapse
|
7
|
Abdoli M, Amerian MR, Heidari M, Ebrahimi A. Synergistic effects of melatonin and 24-epibrassinolide on chickpea water deficit tolerance. BMC PLANT BIOLOGY 2024; 24:671. [PMID: 39004702 PMCID: PMC11247889 DOI: 10.1186/s12870-024-05380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Water deficiency stress reduces yield in grain legumes, primarily due to a decrease in the pods number. Melatonin (ML) and 24-epibrassinolide (EBL) are recognized for their hormone-like properties that improve plant tolerance to abiotic stresses. This study aimed to assess the impact of different concentrations of ML (0, 100, and 200 µM) and EBL (0, 3, and 6 µM) on the growth, biochemical, and physiological characteristics of chickpea plants under water-stressed conditions. RESULTS The study's findings indicated that under water-stressed conditions, a decrease in seed (30%) and pod numbers (31%), 100-seed weight (17%), total chlorophyll content (46%), stomatal conductance (33%), as well as an increase in H2O2 (62%), malondialdehyde content (40%), and electrolyte leakage index (40%), resulted in a 40% reduction in chickpea plants grain yield. Our findings confirmed that under water-stressed conditions, seed oil, seed oil yield, and seed protein yield dropped by 20%, 55%, and 36%, respectively. The concurrent exogenous application of ML and EBL significantly reduces oxidative stress, plasma membrane damage, and reactive oxygen species (ROS) content. This treatment also leads to increased yield and its components, higher pigment content, enhanced oil and protein yield, and improved enzymatic and non-enzymatic antioxidant activities such as catalase, superoxide dismutase, polyphenol oxidase, ascorbate peroxidase, guaiacol peroxidase, flavonoid, and carotenoid. Furthermore, it promotes the accumulation of osmoprotectants such as proline, total soluble protein, and sugars. CONCLUSIONS Our study found that ML and EBL act synergistically to regulate plant growth, photosynthesis, osmoprotectants accumulation, antioxidant defense systems, and maintain ROS homeostasis, thereby mitigating the adverse effects of water deficit conditions. ML and EBL are key regulatory network components in stressful conditions, with significant potential for future research and practical applications. The regulation metabolic pathways of ML and EBL in water-stressed remains unknown. As a result, future research should aim to elucidate the molecular mechanisms by employing genome editing, RNA sequencing, microarray, transcriptomic, proteomic, and metabolomic analyses to identify the mechanisms involved in plant responses to exogenous ML and EBL under water deficit conditions. Furthermore, the economical applications of synthetic ML and EBL could be an interesting strategy for improving plant tolerance.
Collapse
Affiliation(s)
- Matin Abdoli
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Mohamad Reza Amerian
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| | - Mostafa Heidari
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| |
Collapse
|
8
|
Sati H, Chinchkar AV, Kataria P, Pareek S. The role of phytomelatonin in plant homeostasis, signaling, and crosstalk in abiotic stress mitigation. PHYSIOLOGIA PLANTARUM 2024; 176:e14413. [PMID: 38924553 DOI: 10.1111/ppl.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
In recent years, there has been an increase in the study of phytomelatonin. Having numerous functions in animals, melatonin produced by plants (phytomelatonin) is also a multi-regulatory molecule with great potential in plant physiology and in mitigating abiotic stresses, such as drought, salinity, chilling, heat, chemical contamination, and UV-radiation stress. This review highlights the primary functions of phytomelatonin as an anti-stress molecule against abiotic stress. We discuss the role of phytomelatonin as a master regulator, oxidative stress manager, reactive oxygen species and reactive nitrogen species regulator, and defense compounds inducer. Although there exist a handful of reviews on the crosstalk of phytomelatonin with other signaling molecules like auxin, cytokinin, gibberellin, abscisic acid, ethylene, nitric oxide, jasmonic acid, and salicylic acid, this review looks at studies that have reported a few aspects of phytomelatonin with newly discovered signaling molecules along with classical signaling molecules with relation to abiotic stress tolerance. The research and applications of phytomelatonin with hydrogen sulfide, strigolactones, brassinosteroids, and polyamines are still in their nascent stage but hold a promising scope for the future. Additionally, this review states the recent developments in the signaling of phytomelatonin with nitrogen metabolism and nitrosative stress in plants.
Collapse
Affiliation(s)
- Hansika Sati
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| | - Ajay V Chinchkar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
- Global Brand Resources Pvt. Ltd., Gandhidham (Kutch), Gujarat, India
| | - Priyanka Kataria
- Department of Food Science & Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| |
Collapse
|
9
|
Cui Y, Wang K, Zhang C. Carbon Nanomaterials for Plant Priming through Mechanostimulation: Emphasizing the Role of Shape. ACS NANO 2024; 18:10829-10839. [PMID: 38607639 DOI: 10.1021/acsnano.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The use of nanomaterials to improve plant immunity for sustainable agriculture is gaining increasing attention; yet, the mechanisms involved remain unclear. In contrast to metal-based counterparts, carbon-based nanomaterials do not release components. Determining how these carbon-based nanomaterials strengthen the resistance of plants to diseases is essential as well as whether shape influences this process. Our study compared single-walled carbon nanotubes (SWNTs) and graphene oxide (GO) infiltration against the phytopathogen Pseudomonas syringae pv tomato DC3000. Compared with plants treated with GO, plants primed with SWNTs showed a 29% improvement in the pathogen resistance. Upon nanopriming, the plant displayed wound signaling with transcriptional regulation similar to that observed under brushing-induced mechanostimulation. Compared with GO, SWNTs penetrated more greatly into the leaf and improved transport, resulting in a heightened wound response; this effect resulted from the tubular structure of SWNTs, which differed from the planar form of GO. The shape effect was further demonstrated by wrapping SWNTs with bovine serum albumin, which masked the sharp edges of SWNTs and resulted in a significant decrease in the overall plant wound response. Finally, we clarified how the local wound response led to systemic immunity through increased calcium ion signaling in distant plant areas, which increased the antimicrobial efficacy. In summary, our systematic investigation established connections among carbon nanomaterial priming, mechanostimulation, and wound response, revealing recognition patterns in plant immunity. These findings promise to advance nanotechnology in sustainable agriculture by strengthening plant defenses, enhancing resilience, and reducing reliance on traditional chemicals.
Collapse
Affiliation(s)
- Yueting Cui
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Kean Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Chengdong Zhang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| |
Collapse
|
10
|
Ameen M, Zafar A, Mahmood A, Zia MA, Kamran K, Javaid MM, Yasin M, Khan BA. Melatonin as a master regulatory hormone for genetic responses to biotic and abiotic stresses in model plant Arabidopsis thaliana: a comprehensive review. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23248. [PMID: 38310885 DOI: 10.1071/fp23248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Melatonin is a naturally occurring biologically active amine produced by plants, animals and microbes. This review explores the biosynthesis of melatonin in plants, with a particular focus on its diverse roles in Arabidopsis thaliana , a model species. Melatonin affects abiotic and biotic stress resistance in A. thaliana . Exogenous and endogenous melatonin is addressed in association with various conditions, including cold stress, high light stress, intense heat and infection with Botrytis cinerea or Pseudomonas , as well as in seed germination and lateral root formation. Furthermore, melatonin confers stress resistance in Arabidopsis by initiating the antioxidant system, remedying photosynthesis suppression, regulating transcription factors involved with stress resistance (CBF, DREB, ZAT, CAMTA, WRKY33, MYC2, TGA) and other stress-related hormones (abscisic acid, auxin, ethylene, jasmonic acid and salicylic acid). This article additionally addresses other precursors, metabolic components, expression of genes (COR , CBF , SNAT , ASMT , PIN , PR1 , PDF1.2 and HSFA ) and proteins (JAZ, NPR1) associated with melatonin and reducing both biological and environmental stressors. Furthermore, the future perspective of melatonin rich agri-crops is explored to enhance plant tolerance to abiotic and biotic stresses, maximise crop productivity and enhance nutritional worth, which may help improve food security.
Collapse
Affiliation(s)
- Muaz Ameen
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Asma Zafar
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Anjum Zia
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Kashif Kamran
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Mansoor Javaid
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Yasin
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Bilal Ahmad Khan
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| |
Collapse
|
11
|
Zhao Y, Wang Q, Gu D, Huang F, Liu J, Yu L, Yu X. Melatonin, a phytohormone for enhancing the accumulation of high-value metabolites and stress tolerance in microalgae: Applications, mechanisms, and challenges. BIORESOURCE TECHNOLOGY 2024; 393:130093. [PMID: 38000641 DOI: 10.1016/j.biortech.2023.130093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
High-value metabolites, such as carotenoids, lipids, and proteins, are synthesized by microalgae and find applications in various fields, including food, health supplements, and cosmetics. However, the potential of the microalgal industry to serve these sectors is constrained by low productivity and high energy consumption. Environmental stressors can not only stimulate the accumulation of secondary metabolites in microalgae but also induce oxidative stress, suppressing cell growth and activity, thereby resulting in a decrease in overall productivity. Using melatonin (MT) under stressful conditions is an effective approach to enhance the productivity of microalgal metabolites. This review underscores the role of MT in promoting the accumulation of high-value metabolites and enhancing stress resistance in microalgae under stressful and wastewater conditions. It discusses the underlying mechanisms whereby MT enhances metabolite synthesis and improves stress resistance. The review also offers new perspectives on utilizing MT to improve microalgal productivity and stress resistance in challenging environments.
Collapse
Affiliation(s)
- Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Qingwei Wang
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Dan Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Feiyan Huang
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Jiani Liu
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Lei Yu
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China.
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
12
|
Barhoumi Z. Photosynthesis, ionomics and metabolomics of the host-hemiparasite association Acacia gerrardii- Viscum schimperi. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 38035483 DOI: 10.1071/fp23206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Viscum schimperi is an evergreen hemiparasitic plant that can grow on stems and branches of several tree species. It penetrates the host tissues and forms a vascular bridge (haustorium) to withdraw the nutritive resources. Its relationships with hosts remain unknown. This study aimed to investigate the physiological and biochemical attributes of the host-hemiparasite association Acacia gerrardii -Viscum schimperi . The hemiparasite exhibited 2.4- and 3.0-fold lower photosynthetic activity and water use efficiency, and 1.2- and 4.1-fold higher transpiration rate and stomatal conductance. Equally, it displayed 4.9- and 2.6-fold greater water potential and osmotic potential, and in least 3.0times more accumulated 39 K, 85 Rb and 51 V, compared to the host. Nevertheless, it had no detrimental effect on photosynthetic activity, water status and multi-element accumulations in the host. Based on metabolome profiling, V. schimperi could use xanthurenic acid and propylparaben to acquire potassium from the host, and N -1-naphthylacetamide and N -Boc-hydroxylamine to weaken or kill the distal part of the infected branch and to receive the total xylem contents. In contrast, A. gerrardii could used N -acetylserotonin, arecoline, acetophenone and 6-methoxymellein to defend against V. schimperi infection.
Collapse
Affiliation(s)
- Zouhaier Barhoumi
- Biology Department, King Khalid University, P.O. Box-9004, Abha 61413, Saudi Arabia; and Laboratory of Extremophile Plants, Biotechnology Center of Borj Cedria, University Tunis El Manar, B.P. 901, Hammam-Lif, Tunis, Tunisia
| |
Collapse
|
13
|
Cao H, Yang Q, Wang T, Du T, Song Z, Dong B, Chen T, Wei Y, Xue J, Meng D, Fu Y. Melatonin-mediated CcARP1 alters F-actin dynamics by phosphorylation of CcADF9 to balance root growth and salt tolerance in pigeon pea. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:98-115. [PMID: 37688588 PMCID: PMC10754007 DOI: 10.1111/pbi.14170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
As a multifunctional hormone-like molecule, melatonin exhibits a pleiotropic role in plant salt stress tolerance. While actin cytoskeleton is essential to plant tolerance to salt stress, it is unclear if and how actin cytoskeleton participates in the melatonin-mediated alleviation of plant salt stress. Here, we report that melatonin alleviates salt stress damage in pigeon pea by activating a kinase-like protein, which interacts with an actin-depolymerizing factor. Cajanus cajan Actin-Depolymerizing Factor 9 (CcADF9) has the function of severing actin filaments and is highly expressed under salt stress. The CcADF9 overexpression lines (CcADF9-OE) showed a reduction of transgenic root length and an increased sensitivity to salt stress. By using CcADF9 as a bait to screen an Y2H library, we identified actin depolymerizing factor-related phosphokinase 1 (ARP1), a novel protein kinase that interacts with CcADF9. CcARP1, induced by melatonin, promotes salt resistance of pigeon pea through phosphorylating CcADF9, inhibiting its severing activity. The CcARP1 overexpression lines (CcARP1-OE) displayed an increased transgenic root length and resistance to salt stress, whereas CcARP1 RNA interference lines (CcARP1-RNAi) presented the opposite phenotype. Altogether, our findings reveal that melatonin-induced CcARP1 maintains F-actin dynamics balance by phosphorylating CcADF9, thereby promoting root growth and enhancing salt tolerance.
Collapse
Affiliation(s)
- Hongyan Cao
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Qing Yang
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Tianyi Wang
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Tingting Du
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Zhihua Song
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Biying Dong
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Ting Chen
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Yifan Wei
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Jingyi Xue
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Dong Meng
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| | - Yujie Fu
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Forestry UniversityBeijingChina
- The Key Laboratory for Silviculture and Conservation of Ministry of EducationBeijing Forestry UniversityBeijingChina
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingChina
| |
Collapse
|
14
|
Wang J, Zhang H, Hou J, Yang E, Zhao L, Zhou Y, Ma W, Ma D, Li J. Metabolic Profiling and Molecular Mechanisms Underlying Melatonin-Induced Secondary Metabolism of Postharvest Goji Berry ( Lycium barbarum L.). Foods 2023; 12:4326. [PMID: 38231790 DOI: 10.3390/foods12234326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Postharvest decay of goji berries, mainly caused by Alternaria alternata, results in significant economic losses. To investigate the effects of melatonin (MLT) on resistance to Alternaria rot in goji berries, the fruits were immersed in the MLT solutions with varying concentrations (0, 25, 50, and 75 μmol L-1) and then inoculated with A. alternata. The results showed that the fruits treated with 50 μmol L-1 MLT exhibited the lowest disease incidence and least lesion diameter. Meanwhile, endogenous MLT in the fruits treated with 50 μmol L-1 MLT showed higher levels than in the control fruits during storage at 4 ± 0.5 °C. Further, the enzymatic activities and expressions of genes encoding peroxidase, phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, 4-coumarate-CoA ligase, chalcone synthase, chalcone isomerase, and cinnamyl alcohol dehydrogenase were induced in the treated fruit during storage. UPLC-ESI-MS/MS revealed that secondary metabolites in the fruits on day 0, in order of highest to lowest levels, were rutin, p-coumaric acid, chlorogenic acid, ferulic acid, caffeic acid, naringenin, quercetin, kaempferol, and protocatechuic acid. MLT-treated fruits exhibited higher levels of secondary metabolites than the control. In conclusion, MLT treatment contributed to controlling the postharvest decay of goji fruit during storage by boosting endogenous MLT levels, thus activating the antioxidant system and secondary metabolism.
Collapse
Affiliation(s)
- Junjie Wang
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Huaiyu Zhang
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jie Hou
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - En Yang
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Lunaike Zhao
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Yueli Zhou
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Wenping Ma
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Danmei Ma
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Jiayi Li
- Key Laboratory of Storage and Processing of Plant Agro-Products, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
15
|
Xu L, Xue X, Yan Y, Zhao X, Li L, Sheng K, Zhang Z. Silicon Combined with Melatonin Reduces Cd Absorption and Translocation in Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:3537. [PMID: 37896001 PMCID: PMC10609755 DOI: 10.3390/plants12203537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Cadmium (Cd) is one of the most toxic and widely distributed heavy metal pollutants, posing a huge threat to crop production, food security, and human health. Corn is an important food source and feed crop. Corn growth is subject to Cd stress; thus, reducing cadmium stress, absorption, and transportation is of great significance for achieving high yields, a high efficiency, and sustainable and safe corn production. The use of silicon or melatonin alone can reduce cadmium accumulation and toxicity in plants, but it is unclear whether the combination of silicon and melatonin can further reduce the damage caused by cadmium. Therefore, pot experiments were conducted to study the effects of melatonin and silicon on maize growth and cadmium accumulation. The results showed that cadmium stress significantly inhibited the growth of maize, disrupted its physiological processes, and led to cadmium accumulation in plants. Compared to the single treatment of silicon or melatonin, the combined application of melatonin and silicon significantly alleviated the inhibition of the growth of maize seedlings caused by cadmium stress. This was demonstrated by the increased plant heights, stem diameters, and characteristic root parameters and the bioaccumulation in maize seedlings. Under cadmium stress, the combined application of silicon and melatonin increased the plant height and stem diameter by 17.03% and 59.33%, respectively, and increased the total leaf area by 43.98%. The promotion of corn growth is related to the reduced oxidative damage under cadmium stress, manifested in decreases in the malondialdehyde content and relative conductivity and increases in antioxidant enzyme superoxide dismutase and guaiacol peroxidase activities, as well as in soluble protein and chlorophyll contents. In addition, cadmium accumulation in different parts of maize seedlings and the health risk index of cadmium were significantly reduced, reaching 48.44% (leaves), 19.15% (roots), and 20.86% (health risk index), respectively. Therefore, melatonin and silicon have a significant synergistic effect in inhibiting cadmium absorption and reducing the adverse effects of cadmium toxicity.
Collapse
Affiliation(s)
- Lina Xu
- College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; (L.X.); (X.X.); (Y.Y.); (X.Z.); (L.L.)
| | - Xing Xue
- College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; (L.X.); (X.X.); (Y.Y.); (X.Z.); (L.L.)
| | - Yan Yan
- College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; (L.X.); (X.X.); (Y.Y.); (X.Z.); (L.L.)
| | - Xiaotong Zhao
- College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; (L.X.); (X.X.); (Y.Y.); (X.Z.); (L.L.)
| | - Lijie Li
- College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; (L.X.); (X.X.); (Y.Y.); (X.Z.); (L.L.)
| | - Kun Sheng
- School of Hydraulic Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China;
| | - Zhiyong Zhang
- College of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China; (L.X.); (X.X.); (Y.Y.); (X.Z.); (L.L.)
| |
Collapse
|
16
|
Vranić M, Perochon A, Doohan FM. Transcriptional Profiling Reveals the Wheat Defences against Fusarium Head Blight Disease Regulated by a NAC Transcription Factor. PLANTS (BASEL, SWITZERLAND) 2023; 12:2708. [PMID: 37514322 PMCID: PMC10383764 DOI: 10.3390/plants12142708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
The wheat NAC transcription factor TaNACL-D1 enhances resistance to the economically devastating Fusarium head blight (FHB) disease. The objective of this study was to decipher the alterations in gene expression, pathways and biological processes that led to enhanced resistance as a result of the constitutive expression of TaNACL-D1 in wheat. Transcriptomic analysis was used to determine the genes and processes enhanced in wheat due to TaNACL-D1 overexpression, both in the presence and absence of the causal agent of FHB, Fusarium graminearum (0- and 1-day post-treatment). The overexpression of TaNACL-D1 resulted in more pronounced transcriptional reprogramming as a response to fungal infection, leading to the enhanced expression of genes involved in detoxification, immune responses, secondary metabolism, hormone biosynthesis, and signalling. The regulation and response to JA and ABA were differentially regulated between the OE and the WT. Furthermore, the results suggest that the OE may more efficiently: (i) regulate the oxidative burst; (ii) modulate cell death; and (iii) induce both the phenylpropanoid pathway and lignin synthesis. Thus, this study provides insights into the mode of action and downstream target pathways for this novel NAC transcription factor, further validating its potential as a gene to enhance FHB resistance in wheat.
Collapse
Affiliation(s)
- Monika Vranić
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Alexandre Perochon
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Fiona M Doohan
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
17
|
Khan MSS, Ahmed S, Ikram AU, Hannan F, Yasin MU, Wang J, Zhao B, Islam F, Chen J. Phytomelatonin: A key regulator of redox and phytohormones signaling against biotic/abiotic stresses. Redox Biol 2023; 64:102805. [PMID: 37406579 PMCID: PMC10363481 DOI: 10.1016/j.redox.2023.102805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023] Open
Abstract
Plants being sessile in nature, are exposed to unwarranted threats as a result of constantly changing environmental conditions. These adverse factors can have negative impacts on their growth, development, and yield. Hormones are key signaling molecules enabling cells to respond rapidly to different external and internal stimuli. In plants, melatonin (MT) plays a critical role in the integration of various environmental signals and activation of stress-response networks to develop defense mechanisms and plant resilience. Additionally, melatonin can tackle the stress-induced alteration of cellular redox equilibrium by regulating the expression of redox hemostasis-related genes and proteins. The purpose of this article is to compile and summarize the scientific research pertaining to MT's effects on plants' resilience to biotic and abiotic stresses. Here, we have summarized that MT exerts a synergistic effect with other phytohormones, for instance, ethylene, jasmonic acid, and salicylic acid, and activates plant defense-related genes against phytopathogens. Furthermore, MT interacts with secondary messengers like Ca2+, nitric oxide, and reactive oxygen species to regulate the redox network. This interaction triggers different transcription factors to alleviate stress-related responses in plants. Hence, the critical synergic role of MT with diverse plant hormones and secondary messengers demonstrates phytomelatonin's importance in influencing multiple mechanisms to contribute to plant resilience against harsh environmental factors.
Collapse
Affiliation(s)
| | - Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Fakhir Hannan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jin Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Biying Zhao
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
18
|
Li X, Meng X, Yang X, Duan D. Characterization of Chlorophyll Fluorescence and Antioxidant Defense Parameters of Two Gracilariopsis lemaneiformis Strains under Different Temperatures. PLANTS (BASEL, SWITZERLAND) 2023; 12:1670. [PMID: 37111893 PMCID: PMC10146300 DOI: 10.3390/plants12081670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
In this study, two Gracilariopsis lemaneiformis strains-the wild type and a green-pigmented mutant-were cultured at three temperatures (8, 20, and 30 °C) for 7 days to explore their temperature tolerance using photosynthetic performance and antioxidant defense parameters. When the two strains of G. lemaneiformis were separately cultured at 30 °C, the fast chlorophyll fluorescence intensity of the wild type decreased, whereas the green mutant showed no significant change. The decrease in the performance index on absorption basis value under heat stress was lower in the green mutant than in the wild type. In addition, the green mutant had stronger antioxidant activity at 30 °C. Furthermore, a greater decrease in the values of maximum photochemical quantum yield and performance index on an absorption basis in the green mutant indicated that it had a greater degree of inhibition of photosynthetic performance under low temperatures. However, the green mutant produced less reactive oxygen species under low temperatures, suggesting that the antioxidant potential of the green mutant might be higher. In conclusion, the green mutant exhibited heat tolerance and could recover from low-temperature damage; therefore, it has the potential for large-scale cultivation.
Collapse
Affiliation(s)
- Xiaomei Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqi Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| |
Collapse
|
19
|
Wang XN, Zhang JC, Zhang HY, Wang XF, You CX. Ectopic expression of MmSERT, a mouse serotonin transporter gene, regulates salt tolerance and ABA sensitivity in apple and Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107627. [PMID: 36940523 DOI: 10.1016/j.plaphy.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
5-hydroxytryptamine (5-HT) is ubiquitously present in animals and plants, playing a vital regulatory role. SERT, a conserved serotonin reuptake transporter in animals, regulates intracellular and extracellular concentrations of 5-HT. Few studies have reported 5-HT transporters in plants. Hence, we cloned MmSERT, a serotonin reuptake transporter, from Mus musculus. Ectopic expression of MmSERT into apple calli, apple roots and Arabidopsis. Because 5-HT plays a momentous role in plant stress tolerance, we used MmSERT transgenic materials for stress treatment. We found that MmSERT transgenic materials, including apple calli, apple roots and Arabidopsis, exhibited a stronger salt tolerance phenotype. The reactive oxygen species (ROS) produced were significantly lower in MmSERT transgenic materials compared with controls under salt stress. Meanwhile, MmSERT induced the expression of SOS1, SOS3, NHX1, LEA5 and LTP1 in response to salt stress. 5-HT is the precursor of melatonin, which regulates plant growth under adversity and effectively scavenges ROS. Detection of MmSERT transgenic apple calli and Arabidopsis revealed higher melatonin levels than controls. Besides, MmSERT decreased the sensitivity of apple calli and Arabidopsis to abscisic acid (ABA). In summary, these results demonstrated that MmSERT plays a vital role in plant stress resistances, which perhaps serves as a reference for the application of transgenic technology to improve crops in the future.
Collapse
Affiliation(s)
- Xiao-Na Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jiu-Cheng Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hai-Yuan Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
20
|
Zhao H, Ge Z, Zhou M, Zeng H, Wei Y, Liu G, Yan Y, Reiter RJ, He C, Shi H. Histone deacetylase 9 regulates disease resistance through fine-tuning histone deacetylation of melatonin biosynthetic genes and melatonin accumulation in cassava. J Pineal Res 2023; 74:e12861. [PMID: 36750349 DOI: 10.1111/jpi.12861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/05/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Melatonin participates in plant growth and development and biotic and abiotic stress responses. Histone acetylation regulates many plant biological processes via transcriptional reprogramming. However, the direct relationship between melatonin and histone acetylation in plant disease resistance remains unclear. In this study, we identified cassava bacterial blight (CBB) responsive histone deacetylase 9 (HDA9), which negatively regulated disease resistance to CBB by reducing melatonin content. In addition, exogenous melatonin alleviated disease sensitivity of MeHDA9 overexpressed plants to CBB. Importantly, MeHDA9 inhibited the expression of melatonin biosynthetic genes through decreasing lysine 5 of histone 4 (H4K5) acetylation at the promoter regions of melatonin biosynthetic genes, thereby modulating melatonin accumulation in cassava. Furthermore, protein phosphatase 2C 12 (MePP2C12) interacted with MeHDA9 in vivo and in vitro, and it was involved in MeHDA9-mediated disease resistance via melatonin biosynthetic pathway. In summary, this study highlights the direct interaction between histone deacetylation and melatonin biosynthetic genes in cassava disease resistance via histone deacetylation, providing new insights into the genetic improvement of disease resistance via epigenetic regulation of melatonin level in tropical crops.
Collapse
Affiliation(s)
- Huiping Zhao
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
| | - Zhongyuan Ge
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
| | - Mengmeng Zhou
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
| | - Hongqiu Zeng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Guoyin Liu
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Yu Yan
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, Long School of Medicine, San Antonio, Texas, USA
| | - Chaozu He
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| |
Collapse
|
21
|
Khan D, Cai N, Zhu W, Li L, Guan M, Pu X, Chen Q. The role of phytomelatonin receptor 1-mediated signaling in plant growth and stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1142753. [PMID: 36968396 PMCID: PMC10036441 DOI: 10.3389/fpls.2023.1142753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Phytomelatonin is a pleiotropic signaling molecule that regulates plant growth, development, and stress response. In plant cells, phytomelatonin is synthesized from tryptophan via several consecutive steps that are catalyzed by tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acyltransferase (SNAT), and N-acetylserotonin methyltransferase (ASMT) and/or caffeic acid-3-O-methyltransferase (COMT). Recently, the identification of the phytomelatonin receptor PMTR1 in Arabidopsis has been considered a turning point in plant research, with the function and signal of phytomelatonin emerging as a receptor-based regulatory strategy. In addition, PMTR1 homologs have been identified in several plant species and have been found to regulate seed germination and seedling growth, stomatal closure, leaf senescence, and several stress responses. In this article, we review the recent evidence in our understanding of the PMTR1-mediated regulatory pathways in phytomelatonin signaling under environmental stimuli. Based on structural comparison of the melatonin receptor 1 (MT1) in human and PMTR1 homologs, we propose that the similarity in the three-dimensional structure of the melatonin receptors probably represents a convergent evolution of melatonin recognition in different species.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaojun Pu
- *Correspondence: Xiaojun Pu, ; ; Qi Chen, ;
| | - Qi Chen
- *Correspondence: Xiaojun Pu, ; ; Qi Chen, ;
| |
Collapse
|
22
|
Chen J, Zhang Y, Yin H, Liu W, Hu X, Li D, Lan C, Gao L, He Z, Cui F, Fernie AR, Chen W. The pathway of melatonin biosynthesis in common wheat (Triticum aestivum). J Pineal Res 2023; 74:e12841. [PMID: 36396897 PMCID: PMC10078269 DOI: 10.1111/jpi.12841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/25/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Melatonin (Mel) is a multifunctional biomolecule found in both animals and plants. In plants, the biosynthesis of Mel from tryptophan (Trp) has been delineated to comprise of four consecutive reactions. However, while the genes encoding these enzymes in rice are well characterized no systematic evaluation of the overall pathway has, as yet, been published for wheat. In the current study, the relative contents of six Mel-pathway-intermediates including Trp, tryptamine (Trm), serotonin (Ser), 5-methoxy tryptamine (5M-Trm), N-acetyl serotonin (NAS) and Mel, were determined in 24 independent tissues spanning the lifetime of wheat. These studies indicated that Trp was the most abundant among the six metabolites, followed by Trm and Ser. Next, the candidate genes expressing key enzymes involved in the Mel pathway were explored by means of metabolite-based genome-wide association study (mGWAS), wherein two TDC genes, a T5H gene and one SNAT gene were identified as being important for the accumulation of Mel pathway metabolites. Moreover, a 463-bp insertion within the T5H gene was discovered that may be responsible for variation in Ser content. Finally, a ASMT gene was found via sequence alignment against its rice homolog. Validations of these candidate genes were performed by in vitro enzymatic reactions using proteins purified following recombinant expression in Escherichia coli, transient gene expression in tobacco, and transgenic approaches in wheat. Our results thus provide the first comprehensive investigation into the Mel pathway metabolites, and a swift candidate gene identification via forward-genetics strategies, in common wheat.
Collapse
Affiliation(s)
- Jie Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yueqi Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Huanran Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Wei Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fa Cui
- Wheat Molecular Breeding Innovation Research Group, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
23
|
Khoshru B, Mitra D, Joshi K, Adhikari P, Rion MSI, Fadiji AE, Alizadeh M, Priyadarshini A, Senapati A, Sarikhani MR, Panneerselvam P, Mohapatra PKD, Sushkova S, Minkina T, Keswani C. Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants. Heliyon 2023; 9:e13825. [PMID: 36873502 PMCID: PMC9981932 DOI: 10.1016/j.heliyon.2023.e13825] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Plant diseases are still the main problem for the reduction in crop yield and a threat to global food security. Additionally, excessive usage of chemical inputs such as pesticides and fungicides to control plant diseases have created another serious problem for human and environmental health. In view of this, the application of plant growth-promoting rhizobacteria (PGPR) for controlling plant disease incidences has been identified as an eco-friendly approach for coping with the food security issue. In this review, we have identified different ways by which PGPRs are capable of reducing phytopathogenic infestations and enhancing crop yield. PGPR suppresses plant diseases, both directly and indirectly, mediated by microbial metabolites and signaling components. Microbial synthesized anti-pathogenic metabolites such as siderophores, antibiotics, lytic enzymes, hydrogen cyanide, and several others act directly on phytopathogens. The indirect mechanisms of reducing plant disease infestation are caused by the stimulation of plant immune responses known as initiation of systemic resistance (ISR) which is mediated by triggering plant immune responses elicited through pathogen-associated molecular patterns (PAMPs). The ISR triggered in the infected region of the plant leads to the development of systemic acquired resistance (SAR) throughout the plant making the plant resistant to a wide range of pathogens. A number of PGPRs including Pseudomonas and Bacillus genera have proven their ability to stimulate ISR. However, there are still some challenges in the large-scale application and acceptance of PGPR for pest and disease management. Further, we discuss the newly formulated PGPR inoculants possessing both plant growth-promoting activities and plant disease suppression ability for a holistic approach to sustaining plant health and enhancing crop productivity.
Collapse
Affiliation(s)
- Bahman Khoshru
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj - 733 134, West Bengal, India
| | - Kuldeep Joshi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora-263643, Uttarakhand, India
| | - Priyanka Adhikari
- Centre for Excellence on GMP Extraction Facility (DBT, Govt. of India), National Institute of Pharmaceutical Education and Research. Guwahati-781101, Assam, India
| | | | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| | - Mehrdad Alizadeh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ankita Priyadarshini
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Ansuman Senapati
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Periyasamy Panneerselvam
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| |
Collapse
|
24
|
Wang H, Qian C, Jiang H, Liu S, Yang D, Cui J. Visible-Light-Driven Zinc Oxide Quantum Dots for the Management of Bacterial Fruit Blotch Disease and the Improvement of Melon Seedlings Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2773-2783. [PMID: 36703540 DOI: 10.1021/acs.jafc.2c06204] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bacterial fruit blotch is one of the most destructing diseases of melon producing-regions. Here, zinc oxide quantum dots (ZnO QDs) were synthesized, and their antibacterial activity against Acidovorax citrulli was investigated. The results indicated that the obtained ZnO QDs displayed 5.7-fold higher antibacterial activity than a commercial Zn-based bactericide (zinc thiazole). Interestingly, the antibacterial activity of ZnO QDs irradiated with light was 1.8 times higher than that of the dark-treated group. It was because ZnO QDs could induce the generation of hydroxyl radicals and then up-regulate the expression of oxidative stress-related genes, finally leading to the loss of cell membrane integrity. A pot experiment demonstrated that foliar application of ZnO QDs significantly reduced the bacterial fruit blotch disease incidence (32.0%). Furthermore, the supply of ZnO QDs could improve the growth of infected melon seedlings by activating the antioxidant defense system. This work provides a promising light-activated quantum-bactericide for the management of pathogenic bacterial infections in melon crop protection.
Collapse
Affiliation(s)
- Haodong Wang
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang832003, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| | - Cancan Qian
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang832003, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| | - Hao Jiang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| | - Shengxue Liu
- Analysis and Test Center, Shihezi University, Shihezi, Xinjiang832003, China
| | - Desong Yang
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang832003, China
| | - Jianghu Cui
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| |
Collapse
|
25
|
Advances in the Role and Mechanisms of Essential Oils and Plant Extracts as Natural Preservatives to Extend the Postharvest Shelf Life of Edible Mushrooms. Foods 2023; 12:foods12040801. [PMID: 36832876 PMCID: PMC9956186 DOI: 10.3390/foods12040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
China has a large variety of edible mushrooms and ranks first in the world in terms of production and variety. Nevertheless, due to their high moisture content and rapid respiration rate, they experience constant quality deterioration, browning of color, loss of moisture, changes in texture, increases in microbial populations, and loss of nutrition and flavor during postharvest storage. Therefore, this paper reviews the effects of essential oils and plant extracts on the preservation of edible mushrooms and summarizes their mechanisms of action to better understand their effects during the storage of mushrooms. The quality degradation process of edible mushrooms is complex and influenced by internal and external factors. Essential oils and plant extracts are considered environmentally friendly preservation methods for better postharvest quality. This review aims to provide a reference for the development of new green and safe preservation and provides research directions for the postharvest processing and product development of edible mushrooms.
Collapse
|
26
|
Wang XN, Yang F, Zhang JC, Ren YR, An JP, Chang DY, Wang XF, You CX. Ectopic expression of MmCYP1A1, a mouse cytochrome P450 gene, positively regulates stress tolerance in apple calli and Arabidopsis. PLANT CELL REPORTS 2023; 42:433-448. [PMID: 36693991 DOI: 10.1007/s00299-022-02969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Ectopic expression of MmCYP1A1 gene from Mus musculus in apple calli and Arabidopsis increased the levels of melatonin and 6-hydroxymelatonin, and improved their stress resistance. Melatonin occurs widely in organisms, playing a key regulatory role. CYP1A1 is a cytochrome P450 monooxygenase, involved in the melatonin metabolism, and is responsible for the synthesis of 6-hydroxymelatonin from melatonin. Melatonin and 6-hydroxymelatonin have strong antioxidant activities in animals. Here, we cloned MmCYP1A1 from Mus musculus and found that ectopic expression of MmCYP1A1 improved the levels of melatonin and 6-hydroxymelatonin in transgenic apple calli and Arabidopsis. Subsequently, we observed that MmCYP1A1 increased the tolerance of transgenic apple calli and Arabidopsis to osmotic stress simulated by polyethylene glycol 6000 (PEG 6000), as well as resistance of transgenic Arabidopsis to drought stress. Further, the number of lateral roots of MmCYP1A1 transgenic Arabidopsis were enhanced significantly after PEG 6000 treatment. The expression of MmCYP1A1 remarkably reduced malondialdehyde (MDA) content, electrolyte leakage, accumulation of H2O2 and O2- during stress treatment. Moreover, MmCYP1A1 enhanced stress tolerance in apple calli and Arabidopsis by increasing the expression levels of resistance genes. MmCYP1A1 also promoted stomatal closure in transgenic Arabidopsis to reduce leaf water loss during drought. Our results indicate that MmCYP1A1 plays a key role in plant stress tolerance, which may provide a reference for future plant stress tolerance studies.
Collapse
Affiliation(s)
- Xiao-Na Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China
| | - Fei Yang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China
| | - Jiu-Cheng Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China
| | - Yi-Ran Ren
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China
| | - Jian-Ping An
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China
| | - Da-Yong Chang
- Yantai Goodly Biological Technology Co., Ltd, Yan-Tai, 241003, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China.
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China.
| |
Collapse
|
27
|
Basit F, Ulhassan Z, Mou Q, Nazir MM, Hu J, Hu W, Song W, Sheteiwy MS, Zhou W, Bhat JA, Jeddi K, Hessini K, Guan Y. Seed priming with nitric oxide and/or spermine mitigate the chromium toxicity in rice ( Oryza sativa) seedlings by improving the carbon-assimilation and minimising the oxidative damages. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:121-135. [PMID: 35057906 DOI: 10.1071/fp21268] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/03/2021] [Indexed: 05/13/2023]
Abstract
Chromium (Cr) is a serious environmental contaminant that drastically limited the crop yields. Nitric oxide (NO) and spermine (Spm) portrayal significance in improving the plant tolerance against abiotic stresses. Therefore, we investigate the protective efficacy of seed priming with NO (100μM) and/or Spm (0.01mM) in minimising the Cr-induced toxic effects in rice (Oryza sativa L.) plants. Our outcomes revealed that Cr alone treatments (100μM) notably reduced the seed germination rate, plant growth, photosynthetic apparatus, nutrients uptake and antioxidant defence system, but extra generation of reactive oxygen species (ROS). Interestingly, the combine applications of NO and Spm significantly reversed the Cr-induced toxic effects by reducing the Cr-accumulation, maintaining the nutrient balance, improving the germination indices, levels of photosynthetic pigments (chl a by 24.6%, chl b by 36.3%, chl (a+b ) by 57.2% and carotenoids by 79.4%), PSII, photosynthesis gas exchange parameters and total soluble sugar (74.9%) by improving antioxidative enzyme activities. As a result, NO+Spm lowered the accumulation of oxidative markers (H2 O2 by 93.9/70.4%, O2 ˙- by 86.3/69.9% and MDA by 97.2/73.7% in leaves/roots), electrolyte leakage (71.4% in leaves) and improved the plant growth traits. Based on these findings, it can be concluded that NO triggers Spm to minimise the Cr-accumulation and its adverse effects on rice plants. Additionally, combined treatments (NO+Spm) were more effective in minimising the Cr-induced toxic effects in comparison to NO and Spm alone treatments. Thus, co-exposure of NO and Spm may be utilised to boost rice tolerance under Cr stress conditions.
Collapse
Affiliation(s)
- Farwa Basit
- Hainan Research Institute, Zhejiang University, Sanya 572025, China; and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zaid Ulhassan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qingshan Mou
- Hainan Research Institute, Zhejiang University, Sanya 572025, China; and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Mudassar Nazir
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jin Hu
- Hainan Research Institute, Zhejiang University, Sanya 572025, China; and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Weimin Hu
- Hainan Research Institute, Zhejiang University, Sanya 572025, China; and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wenjian Song
- Hainan Research Institute, Zhejiang University, Sanya 572025, China; and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mohamed Salah Sheteiwy
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Weijun Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; and State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaouthar Jeddi
- Laboratory of Plant Biodiversity and Dynamic of Ecosystems in Arid Area, Faculty of Sciences of Sfax, B.P. 1171, Sfax 3000, Tunisia
| | - Kamel Hessini
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya 572025, China; and Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
28
|
Lee K, Back K. Human Naa50 Shows Serotonin N-Acetyltransferase Activity, and Its Overexpression Enhances Melatonin Biosynthesis, Resulting in Osmotic Stress Tolerance in Rice. Antioxidants (Basel) 2023; 12:antiox12020319. [PMID: 36829878 PMCID: PMC9952165 DOI: 10.3390/antiox12020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
A new clade of serotonin N-acetyltransferase (SNAT), the penultimate enzyme in the melatonin biosynthetic pathway, has been reported in the archaeon Thermoplasma volcanium. The closest homolog of archaea SNAT in human was an N-alpha-acetyltransferase50 (Naa50). To determine whether human Naa50 (hNaa50) shows SNAT enzyme activity, we chemically synthesized and expressed the hNaa50 gene in Escherichia coli, followed by Ni2+ affinity purification. Purified recombinant hNaa50 showed SNAT activity (Km and Vmax values of 986 μM and 1800 pmol/min/mg protein, respectively). To assess its in vivo function, hNaa50 was overexpressed in rice (hNaa50-OE). The transgenic rice plants produced more melatonin than nontransgenic wild-type rice, indicating that hNaa50 is functionally coupled with melatonin biosynthesis. Due to its overproduction of melatonin, hNaa50-OE had a higher tolerance against osmotic stress than the wild type. Enhanced expression of the chaperone genes BIP1 and CNX in hNaa50-OE plants was responsible for the increased tolerance. It is concluded that hNaa50 harbors serotonin N-acetyltransferase enzyme activity in addition to its initial N-alpha-acetyltransferase, suggesting the bifunctionality of the hNaa50 enzyme toward serotonin and protein substrates. Consequently, ectopic overexpression of hNaa50 in rice enhanced melatonin synthesis, indicating that hNaa50 is in fact involved in melatonin biosynthesis.
Collapse
|
29
|
Aghdam MS, Mukherjee S, Flores FB, Arnao MB, Luo Z, Corpas FJ. Functions of Melatonin during Postharvest of Horticultural Crops. PLANT & CELL PHYSIOLOGY 2023; 63:1764-1786. [PMID: 34910215 DOI: 10.1093/pcp/pcab175] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 05/14/2023]
Abstract
Melatonin, a tryptophan-derived molecule, is endogenously generated in animal, plant, fungal and prokaryotic cells. Given its antioxidant properties, it is involved in a myriad of signaling functions associated with various aspects of plant growth and development. In higher plants, melatonin (Mel) interacts with plant regulators such as phytohormones, as well as reactive oxygen and nitrogen species including hydrogen peroxide (H2O2), nitric oxide (NO) and hydrogen sulfide (H2S). It shows great potential as a biotechnological tool to alleviate biotic and abiotic stress, to delay senescence and to conserve the sensory and nutritional quality of postharvest horticultural products which are of considerable economic importance worldwide. This review provides a comprehensive overview of the biochemistry of Mel, whose endogenous induction and exogenous application can play an important biotechnological role in enhancing the marketability and hence earnings from postharvest horticultural crops.
Collapse
Affiliation(s)
- Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal 742213, India
| | - Francisco Borja Flores
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia 30100, Spain
| | - Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda, 1, Granada 18008, Spain
| |
Collapse
|
30
|
Sun P, Huang Y, Yang X, Liao A, Wu J. The role of indole derivative in the growth of plants: A review. FRONTIERS IN PLANT SCIENCE 2023; 13:1120613. [PMID: 36726683 PMCID: PMC9885212 DOI: 10.3389/fpls.2022.1120613] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Indole compounds with their unique properties of mimicking peptide structures and reversible binding to enzymes are of great exploitative value in the regulation of plant growth. They stimulate root and fruit formation and activate the plant's immune system against biotic and abiotic factors harmful to the plant. Analysis of target recognition, receptor recognition, key activation sites and activation mechanisms of indoles in plant to enhance crop growth or disease resistance is a crucial step for further developing compounds as plant growth regulators and immune inducers. Therefore, this review focused on the mechanism of action of indoles in regulating plant growth and enhancing plant resistance to biotic and abiotic stresses.
Collapse
|
31
|
Zhao Y, Zhao L, Hu S, Hou Y, Wang J, Zheng Y, Jin P. Hydrogen sulfide-induced chilling resistance in peach fruit is performed via sustaining the homeostasis of ROS and RNS. Food Chem 2023; 398:133940. [DOI: 10.1016/j.foodchem.2022.133940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/24/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
|
32
|
Ghorbani A, Pishkar L, Saravi KV, Chen M. Melatonin-mediated endogenous nitric oxide coordinately boosts stability through proline and nitrogen metabolism, antioxidant capacity, and Na +/K + transporters in tomato under NaCl stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1135943. [PMID: 36993844 PMCID: PMC10040658 DOI: 10.3389/fpls.2023.1135943] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/17/2023] [Indexed: 05/14/2023]
Abstract
The interactions between nitric oxide (NO) and melatonin in alleviating sodium chloride (NaCl) toxicity in plants are poorly comprehended. Here, the associations between the exogenous application of melatonin and endogenous NO levels in inducing tomato seedlings' defense response during NaCl toxicity were investigated. The results indicated that the application of melatonin (150 μM) increased height (23.7%) and biomass (32.2%), improved chlorophyll (a (137%) and b (92.8%)), and proline metabolisms, and reduced the contents of superoxide anion radicals (49.6%), hydrogen peroxide (31.4%), malondialdehyde (38%), and electrolyte leakage (32.6%) in 40-day-old tomato seedlings grown under NaCl (150 mM) treatment. Melatonin increased the antioxidant defense system in NaCl-stressed seedlings by increasing the activity of the antioxidant enzymes. Melatonin also improved N metabolism and endogenous NO content in NaCl-stressed seedlings by upregulating the activity of enzymes implicated in N assimilation. Furthermore, melatonin improved ionic balance and reduced Na content in NaCl-exposed seedlings by upregulating the expression of genes involved in K/Na ratio homeostasis (NHX1-4) and increasing the accumulation of mineral nutrients (P, N, Ca, and Mg). However, the addition of cPTIO (100 μM; an NO scavenger) reversed the beneficial impacts of melatonin, indicating the effective function of NO in melatonin-induced defense mechanisms in NaCl-stressed tomato seedlings. Therefore, our results revealed that melatonin improves the tolerance of tomato plants during NaCl toxicity by mediating internal NO.
Collapse
Affiliation(s)
- Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Leila Pishkar
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
- *Correspondence: Leila Pishkar, ; Moxian Chen,
| | - Kobra Valed Saravi
- Department of Biology, Damghan branch, Islamic Azad University, Damghan, Iran
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
- *Correspondence: Leila Pishkar, ; Moxian Chen,
| |
Collapse
|
33
|
Raza A, Charagh S, García-Caparrós P, Rahman MA, Ogwugwa VH, Saeed F, Jin W. Melatonin-mediated temperature stress tolerance in plants. GM CROPS & FOOD 2022; 13:196-217. [PMID: 35983948 PMCID: PMC9397135 DOI: 10.1080/21645698.2022.2106111] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Global climate changes cause extreme temperatures and a significant reduction in crop production, leading to food insecurity worldwide. Temperature extremes (including both heat and cold stresses) is one of the most limiting factors in plant growth and development and severely affect plant physiology, biochemical, and molecular processes. Biostimulants like melatonin (MET) have a multifunctional role that acts as a "defense molecule" to safeguard plants against the noxious effects of temperature stress. MET treatment improves plant growth and temperature tolerance by improving several defense mechanisms. Current research also suggests that MET interacts with other molecules, like phytohormones and gaseous molecules, which greatly supports plant adaptation to temperature stress. Genetic engineering via overexpression or CRISPR/Cas system of MET biosynthetic genes uplifts the MET levels in transgenic plants and enhances temperature stress tolerance. This review highlights the critical role of MET in plant production and tolerance against temperature stress. We have documented how MET interacts with other molecules to alleviate temperature stress. MET-mediated molecular breeding would be great potential in helping the adverse effects of temperature stress by creating transgenic plants.
Collapse
Affiliation(s)
- Ali Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, Zhejiang, China
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Almería, Spain
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Korea
| | | | - Faisal Saeed
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Turkey
| | - Wanmei Jin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, Peking, China
| |
Collapse
|
34
|
Repova K, Baka T, Krajcirovicova K, Stanko P, Aziriova S, Reiter RJ, Simko F. Melatonin as a Potential Approach to Anxiety Treatment. Int J Mol Sci 2022; 23:ijms232416187. [PMID: 36555831 PMCID: PMC9788115 DOI: 10.3390/ijms232416187] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Anxiety disorders are the most common mental diseases. Anxiety and the associated physical symptoms may disturb social and occupational life and increase the risk of somatic diseases. The pathophysiology of anxiety development is complex and involves alterations in stress hormone production, neurosignaling pathways or free radical production. The various manifestations of anxiety, its complex pathophysiological background and the side effects of available treatments underlie the quest for constantly seeking therapies for these conditions. Melatonin, an indolamine produced in the pineal gland and released into the blood on a nightly basis, has been demonstrated to exert anxiolytic action in animal experiments and different clinical conditions. This hormone influences a number of physiological actions either via specific melatonin receptors or by receptor-independent pleiotropic effects. The underlying pathomechanism of melatonin's benefit in anxiety may reside in its sympatholytic action, interaction with the renin-angiotensin and glucocorticoid systems, modulation of interneuronal signaling and its extraordinary antioxidant and radical scavenging nature. Of importance, the concentration of this indolamine is significantly higher in cerebrospinal fluid than in the blood. Thus, ensuring sufficient melatonin production by reducing light pollution, which suppresses melatonin levels, may represent an endogenous neuroprotective and anxiolytic treatment. Since melatonin is freely available, economically undemanding and has limited side effects, it may be considered an additional or alternative treatment for various conditions associated with anxiety.
Collapse
Affiliation(s)
- Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Peter Stanko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX 78229, USA
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-(0)2-59357276
| |
Collapse
|
35
|
Yuan X, An J, Zheng T, Liu W. Exogenous melatonin improves salt tolerance mainly by regulating the antioxidant system in cyanobacterium Nostoc flagelliforme. PeerJ 2022; 10:e14479. [PMID: 36518273 PMCID: PMC9744160 DOI: 10.7717/peerj.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Melatonin is a multifunctional nontoxic bio-stimulant or signaling molecule, generally distributing in different animal and plant organs for invigorating numerous physiological processes against abiotic stresses. In this study, we investigated the potential impact of melatonin on the cyanobacterium Nostoc flagelliforme when exposed to salt stress according to some biochemical and physiological parameters, such as relative electrolyte leakage, PSII activity, and photosynthetic pigments including chlorophyll a, phycocyanobilin, and phycoerythrobilin. We found that melatonin could also maintain K+ homeostasis in salt-stressed N. flagelliforme. These above results confirmed melatonin had multiple functions in hyperosmotic stress and ion stress caused by salinity. Notably, we observed melatonin could regulate the reactive oxygen species (ROS) signal and distinctly decrease the content of hydrogen peroxide and superoxide anion in salt-stressed cells, which were largely attributed to the increased antioxidant enzymes activities including catalase, superoxide dismutase, ascorbate peroxidase, and glutathione reductase. Finally, qRT-PCR analysis showed that melatonin stimulated the expression of antioxidant genes (NfCAT, NfSOD, and NfGR). In general, our findings demonstrate melatonin has beneficial effects on N. flagelliforme under salt stress by intensively regulating antioxidant system.
Collapse
Affiliation(s)
- Xiaolong Yuan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Jing An
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Tao Zheng
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Wenjian Liu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an, China
| |
Collapse
|
36
|
Ma C, Pei ZQ, Bai X, Feng JY, Zhang L, Fan JR, Wang J, Zhang TG, Zheng S. Involvement of NO and Ca 2+ in the enhancement of cold tolerance induced by melatonin in winter turnip rape (Brassica rapa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:262-276. [PMID: 36152511 DOI: 10.1016/j.plaphy.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
As a multifunctional phytohormone, melatonin (Mel) plays pivotal roles in plant responses to multiple stresses. However, its mechanism of action remains elusive. In the present study, we evaluated the role of NO and Ca2+ signaling in Mel enhanced cold tolerance in winter turnip rape. The results showed that the NO content and concentration of intracellular free Ca2+ ([Ca2+]cyt) increased by 35.42% and 30.87%, respectively, in the leaves of rape seedlings exposed to cold stress. Compared with those of the seedlings in cold stress alone, the NO content and concentration of [Ca2+]cyt in rape seedlings pretreated with Mel increased further. In addition, the Mel-mediated improvement of cold tolerance was inhibited by L-NAME (a NO synthase inhibitor), tungstate (a nitrate reductase inhibitor), LaCl3 (a Ca2+ channel blocker), and EGTA (a Ca2+ chelator), and this finding was mainly reflected in the increase in ROS content and the decrease in osmoregulatory capacity, photosynthetic efficiency and antioxidant enzyme activities, and expression levels of antioxidant enzyme genes. These findings suggest that NO and Ca2+ are necessary for Mel to improve cold tolerance and function synergistically downstream of Mel. Notably, the co-treatment of Mel with L-NAME, tungstate, LaCl3, or EGTA also inhibited the Mel-induced expression of MAPK3/6 under cold stress. In conclusion, NO and Ca2+ are involved in the enhancement of cold tolerance induced by Mel through activating the MAPK cascades in rape seedlings, and a crosstalk may exist between NO and Ca2+ signaling.
Collapse
Affiliation(s)
- Cheng Ma
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Zi-Qi Pei
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Xue Bai
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Ju-Yan Feng
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Lu Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Jie-Ru Fan
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Juan Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Teng-Guo Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
37
|
Integrated Physiological, Transcriptomic, and Proteomic Analyses Reveal the Regulatory Role of Melatonin in Tomato Plants’ Response to Low Night Temperature. Antioxidants (Basel) 2022; 11:antiox11102060. [PMID: 36290782 PMCID: PMC9598176 DOI: 10.3390/antiox11102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Melatonin is a direct free radical scavenger that has been demonstrated to increase plants’ resistance to a variety of stressors. Here, we sought to examine the effect of melatonin on tomato seedlings subjected to low night temperatures using an integrated physiological, transcriptomic, and proteomic approach. We found that a pretreatment with 100 μM melatonin increased photosynthetic and transpiration rates, stomatal apertures, and peroxidase activity, and reduced chloroplast damage of the tomato plant under a low night temperature. The melatonin pretreatment reduced the photoinhibition of photosystem I by regulating the balance of both donor- and acceptor-side restriction of PSI and by increasing electron transport. Furthermore, the melatonin pretreatment improved the photosynthetic performance of proton gradient regulation 5 (SlPGR5) and SlPGR5-like photosynthetic phenotype 1 (SlPGRL1)-suppressed transformants under a low night temperature stress. Transcriptomic and proteomic analyses found that the melatonin pretreatment resulted in the upregulation of genes and proteins related to transcription factors, signal transduction, environmental adaptation, and chloroplast integrity maintenance in low night temperature-stressed tomato plants. Collectively, our results suggest that melatonin can effectively improve the photosynthetic efficiency of tomato plants under a low night temperature and provide novel insights into the molecular mechanism of melatonin-mediated abiotic stress resistance.
Collapse
|
38
|
Khan TA, Saleem M, Fariduddin Q. Recent advances and mechanistic insights on Melatonin-mediated salt stress signaling in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 188:97-107. [PMID: 35995025 DOI: 10.1016/j.plaphy.2022.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Salinity stress is one of the major abiotic constraints that limit plant growth and yield, which thereby is a serious concern to world food security. It adversely affects crop production by inducing hyperosmotic stress and ionic toxicity as well as secondary stresses such as oxidative stress, all of which disturb optimum physiology and metabolism. Nonetheless, various strategies have been employed to improve salt tolerance in crop plants, among which the application of Melatonin (Mel) could also be used as it has demonstrated promising results. The ongoing experimental evidence revealed that Mel is a pleiotropic signaling molecule, which besides being involved in various growth and developmental processes also mediates environmental stress responses. The current review systematically discusses and summarizes how Mel mediates the response of plants under salt stress and could optimize the balance between plant growth performances and stress responses. Specifically, it covers the latest advances of Mel in fine-tuning the signaling in plants. Furthermore, it highlights plant-built tolerance of salt stress by manifesting the biosynthesis of Mel, its cross talks with nitric oxide (NO), and Mel as a multifaceted antioxidant molecule.
Collapse
Affiliation(s)
- Tanveer Ahmad Khan
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Saleem
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
39
|
Corpas FJ, Rodríguez-Ruiz M, Muñoz-Vargas MA, González-Gordo S, Reiter RJ, Palma JM. Interactions of melatonin, reactive oxygen species, and nitric oxide during fruit ripening: an update and prospective view. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5947-5960. [PMID: 35325926 PMCID: PMC9523826 DOI: 10.1093/jxb/erac128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/23/2022] [Indexed: 05/10/2023]
Abstract
Fruit ripening is a physiological process that involves a complex network of signaling molecules that act as switches to activate or deactivate certain metabolic pathways at different levels, not only by regulating gene and protein expression but also through post-translational modifications of the involved proteins. Ethylene is the distinctive molecule that regulates the ripening of fruits, which can be classified as climacteric or non-climacteric according to whether or not, respectively, they are dependent on this phytohormone. However, in recent years it has been found that other molecules with signaling potential also exert regulatory roles, not only individually but also as a result of interactions among them. These observations imply the existence of mutual and hierarchical regulations that sometimes make it difficult to identify the initial triggering event. Among these 'new' molecules, hydrogen peroxide, nitric oxide, and melatonin have been highlighted as prominent. This review provides a comprehensive outline of the relevance of these molecules in the fruit ripening process and the complex network of the known interactions among them.
Collapse
Affiliation(s)
| | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Profesor Albareda, 1, 18008 Granada, Spain
| | - María A Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Profesor Albareda, 1, 18008 Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Profesor Albareda, 1, 18008 Granada, Spain
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Profesor Albareda, 1, 18008 Granada, Spain
| |
Collapse
|
40
|
Liu G, Hu Q, Zhang X, Jiang J, Zhang Y, Zhang Z. Melatonin biosynthesis and signal transduction in plants in response to environmental conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5818-5827. [PMID: 35522986 DOI: 10.1093/jxb/erac196] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Melatonin, the most widely distributed hormone in nature, plays important roles in plants. Many physiological processes in plants are linked to melatonin, including seed germination, anisotropic cell growth, and senescence. Compared with animals, different plants possess diverse melatonin biosynthetic pathways and regulatory networks. Whereas melatonin biosynthesis in animals is known to be regulated by ambient signals, little is known about how melatonin biosynthesis in plants responds to environmental signals. Plants are affected by numerous environmental factors, such as light, temperature, moisture, carbon dioxide, soil conditions, and nutrient availability at all stages of development and in different tissues. Melatonin content exhibits dynamic changes that affect plant growth and development. Melatonin plays various species-specific roles in plant responses to different environmental conditions. However, much remains to be learned, as not all environmental factors have been studied, and little is known about the mechanisms by which these factors influence melatonin biosynthesis. In this review, we provide a detailed, systematic description of melatonin biosynthesis and signaling and of the roles of melatonin in plant responses to different environmental factors, providing a reference for in-depth research on this important issue.
Collapse
Affiliation(s)
- Gaofeng Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center (NASC), Chengdu, China
| | - Qian Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zixin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Wang K, Xing Q, Ahammed GJ, Zhou J. Functions and prospects of melatonin in plant growth, yield, and quality. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5928-5946. [PMID: 35640564 DOI: 10.1093/jxb/erac233] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 05/27/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indole molecule widely found in animals and plants. It is well known that melatonin improves plant resistance to various biotic and abiotic stresses due to its potent free radical scavenging ability while being able to modulate plant signaling and response pathways through mostly unknown mechanisms. In recent years, an increasing number of studies have shown that melatonin plays a crucial role in improving crop quality and yield by participating in the regulation of various aspects of plant growth and development. Here, we review the effects of melatonin on plant vegetative growth and reproductive development, and systematically summarize its molecular regulatory network. Moreover, the effective concentrations of exogenously applied melatonin in different crops or at different growth stages of the same crop are analysed. In addition, we compare endogenous phytomelatonin concentrations in various crops and different organs, and evaluate a potential function of phytomelatonin in plant circadian rhythms. The prospects of different approaches in regulating crop yield and quality through exogenous application of appropriate concentrations of melatonin, endogenous modification of phytomelatonin metabolism-related genes, and the use of nanomaterials and other technologies to improve melatonin utilization efficiency are also discussed.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Qufan Xing
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, China
| | - Jie Zhou
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
42
|
Zeng H, Bai Y, Wei Y, Reiter RJ, Shi H. Phytomelatonin as a central molecule in plant disease resistance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5874-5885. [PMID: 35298631 DOI: 10.1093/jxb/erac111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Melatonin is an essential phytohormone in the regulation of many plant processes, including during plant development and in response to stress. Pathogen infections cause serious damage to plants and reduce agricultural production. Recent studies indicate that melatonin plays important roles in alleviating bacterial, fungal, and viral diseases in plants and post-harvest fruits. Herein, we summarize information related to the effects of melatonin on plant disease resistance. Melatonin, reactive oxygen species, and reactive nitrogen species form a complex loop in plant-pathogen interaction to regulate plant disease resistance. Moreover, crosstalk of melatonin with other phytohormones including salicylic acid, jasmonic acid, auxin, and abscisic acid further activates plant defense genes. Melatonin plays an important role not only in plant immunity but also in alleviating pathogenicity. We also summarize the known processes by which melatonin mediates pathogenicity via negatively regulating the expression levels of genes related to cell viability as well as virulence-related genes. The multiple mechanisms underlying melatonin influences on both plant immunity and pathogenicity support the recognition of the essential nature of melatonin in plant-pathogen interactions, highlighting phytomelatonin as a critical molecule in plant immune responses.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| |
Collapse
|
43
|
Wang Y, Cheng P, Zhao G, Li L, Shen W. Phytomelatonin and gasotransmitters: a crucial combination for plant physiological functions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5851-5862. [PMID: 35430633 DOI: 10.1093/jxb/erac159] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/13/2022] [Indexed: 05/05/2023]
Abstract
Melatonin, a molecule that was first identified in animal tissues, has been confirmed to be involved as a potential phytohormone in a variety of plant physiological responses. It is considered primarily as an antioxidant with important actions in controlling reactive oxygen and reactive nitrogen species. In addition to its role in regulating plant growth and development, phytomelatonin is involved in protection against abiotic and biotic stresses. The 'gasotransmitter'-that is, a gaseous signaling molecule-is a new concept that has been advanced in the past two decades, with functions in animal and plant physiological regulation. Gasotransmitters including nitric oxide, carbon monoxide, hydrogen sulfide, methane, and, more recently identified, hydrogen gas are critical and indispensable in a wide range of biological processes. This review investigates the interrelationship between phytomelatonin and the above-mentioned gasotransmitters from the perspective of biosynthetic origin and functions. Moreover, the potential future research directions for phytomelatonin and gasotransmitters interactions are discussed.
Collapse
Affiliation(s)
- Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Gan Zhao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
44
|
Mou Z, Wang H, Chen S, Reiter RJ, Zhao D. Molecular mechanisms and evolutionary history of phytomelatonin in flowering. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5840-5850. [PMID: 35443058 DOI: 10.1093/jxb/erac164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Flowering is a critical stage in plant life history, which is coordinated by environmental signals and endogenous cues. Phytomelatonin is a widely distributed indoleamine present in all living organisms and plays pleiotropic roles in plant growth and development. Recent evidence has established that phytomelatonin could modulate flowering in many species, probably in a concentration-dependent manner. Phytomelatonin seems to associate with floral meristem identification and floral organ formation, and the fluctuation of phytomelatonin might be important for flowering. Regarding the underlying mechanisms, phytomelatonin interacts with the central components of floral gene regulatory networks directly or indirectly, including the MADS-box gene family, phytohormones, and reactive oxygen species (ROS). From an evolutionary point of view, the actions of phytomelatonin in flowering probably evolved during the period of the diversification of flowering plants and could be regarded as a functional extension of its primary activities. The presumed evolutionary history of phytomelatonin-modulated flowering is proposed, presented in the chronological order of the appearance of phytomelatonin and core flowering regulators, namely DELLA proteins, ROS, and phytohormones. Further efforts are needed to address some intriguing aspects, such as the exploration of the association between phytomelatonin and photoperiodic flowering, phytomelatonin-related floral MADS-box genes, the crosstalk between phytomelatonin and phytohormones, as well as its potential applications in agriculture.
Collapse
Affiliation(s)
- Zongmin Mou
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Suiyun Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Dake Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
| |
Collapse
|
45
|
Yang S, Zhao Y, Qin X, Ding C, Chen Y, Tang Z, Huang Y, Reiter RJ, Yuan S, Yuan M. New insights into the role of melatonin in photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5918-5927. [PMID: 35665805 DOI: 10.1093/jxb/erac230] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/03/2022] [Indexed: 05/27/2023]
Abstract
There are numerous studies on enhancing plant resistance to stress using melatonin, but few studies about its effect on photosynthesis. Herein, we summarized the role of melatonin in photosynthesis. Melatonin regulates chlorophyll synthesis and degradation through the transcription of related genes and hormone signals. It protects photosynthetic proteins and maintains the photosynthetic process through improving the transcription of photosystem genes, activating the antioxidant system, and promoting the xanthophyll cycle. Melatonin potentially regulates plant stomatal movement through CAND2/PMTR1. Finally, it controls the photosynthetic carbon cycle by regulating the metabolism of sugar, the gluconeogenesis pathway, and the degradation and transport of transient starch.
Collapse
Affiliation(s)
- Sijia Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Yuqing Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Xiaolong Qin
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Yanger Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Yan Huang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
46
|
Sun C, Sun N, Ou Y, Gong B, Jin C, Shi Q, Lin X. Phytomelatonin and plant mineral nutrition. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5903-5917. [PMID: 35767844 DOI: 10.1093/jxb/erac289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/29/2022] [Indexed: 05/27/2023]
Abstract
Plant mineral nutrition is critical for agricultural productivity and for human nutrition; however, the availability of mineral elements is spatially and temporally heterogeneous in many ecosystems and agricultural landscapes. Nutrient imbalances trigger intricate signalling networks that modulate plant acclimation responses. One signalling agent of particular importance in such networks is phytomelatonin, a pleiotropic molecule with multiple functions. Evidence indicates that deficiencies or excesses of nutrients generally increase phytomelatonin levels in certain tissues, and it is increasingly thought to participate in the regulation of plant mineral nutrition. Alterations in endogenous phytomelatonin levels can protect plants from oxidative stress, influence root architecture, and influence nutrient uptake and efficiency of use through transcriptional and post-transcriptional regulation; such changes optimize mineral nutrient acquisition and ion homeostasis inside plant cells and thereby help to promote growth. This review summarizes current knowledge on the regulation of plant mineral nutrition by melatonin and highlights how endogenous phytomelatonin alters plant responses to specific mineral elements. In addition, we comprehensively discuss how melatonin influences uptake and transport under conditions of nutrient shortage.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, PR China
| | - Nan Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, PR China
| | - Yiqun Ou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, PR China
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, PR China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, PR China
| | - Qinghua Shi
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, PR China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
47
|
Niu J, Chen Z, Guo Z, Xu N, Sui X, Roy M, Kareem HA, Hassan MU, Cui J, Wang Q. Exogenous melatonin promotes the growth of alfalfa (Medicago sativa L.) under NaCl stress through multiple pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113938. [PMID: 35926408 DOI: 10.1016/j.ecoenv.2022.113938] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Salinity is one of the most common factors affecting alfalfa (Medicago sativa L.), and NaCl is one of the main factors of salinity stress which can cause heavy losses in agricultural production in the world. The application of exogenous melatonin (MT) plays a major role in numerous plants against various stress environments. The effects of exogenous MT on the NaCl tolerance of alfalfa treated with the control, 100 µmol L-1 MT, 150 mmol L-1 NaCl, or 150 mmol L-1 NaCl+ 100 µmol L-1 MT were investigated. The results showed that MT increased growth parameters, inhibited chlorophyll degradation and promoted photosynthetic gas exchange parameters (photosynthetic rate, conductance to H2O, and transpiration rate) and stomatal opening under NaCl stress. Osmotic regulation substances such as soluble sugar, proline and glycine betaine were the highest in the NaCl treatment and the second in the NaCl+MT treatment. Nitrogen, phosphorus, potassium, calcium and magnesium were reduced and sodium was increased by NaCl, whereas these levels were reversed by the NaCl+MT treatment. MT inhibited cell membrane imperfection, lipid peroxidation and reactive oxygen species (ROS) accumulation caused by NaCl stress. MT up-regulated the gene expression and activity of antioxidant enzymes and increased the content of antioxidant non-enzyme substances to scavenge excessive ROS in NaCl-treated plants. In addition, all indicators interacted with each other to a certain extent and could be grouped according to the relative values. All variables were divided into PC 1 (89.2 %) and PC 2 (4 %). They were clustered into two categories with opposite effects, and most of them were significant variables. Hence, these findings reveal that exogenous MT alleviates the inhibitory effects of NaCl stress on photosynthesis, stomata opening, osmotic adjustment, ion balance and redox homeostasis, enhancing tolerance and growth of alfalfa. Furthermore, it suggests that MT could be implemented to improve the NaCl tolerance of alfalfa.
Collapse
Affiliation(s)
- Junpeng Niu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Zhao Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Zhipeng Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Nan Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Xin Sui
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Momi Roy
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Hafiz Abdul Kareem
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Mahmood Ul Hassan
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jian Cui
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Quanzhen Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
48
|
Hwang OJ, Back K. Functional Characterization of Arylalkylamine N-Acetyltransferase, a Pivotal Gene in Antioxidant Melatonin Biosynthesis from Chlamydomonas reinhardtii. Antioxidants (Basel) 2022; 11:antiox11081531. [PMID: 36009250 PMCID: PMC9405056 DOI: 10.3390/antiox11081531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022] Open
Abstract
Arylalkylamine N-acetyltransferase (AANAT) is a pivotal enzyme in melatonin biosynthesis that catalyzes the conversion of serotonin to N-acetylserotonin. Homologs of animal AANAT genes are present in animals, but not in plants. An AANAT homolog was found in Chlamydomonas reinhardtii, but not other green algae. The characteristics of C. reinhardtii AANAT (CrAANAT) are unclear. Here, full-length CrAANAT was chemically synthesized and expressed in Escherichia coli. Recombinant CrAANAT exhibited AANAT activity with a Km of 247 μM and Vmax of 325 pmol/min/mg protein with serotonin as the substrate. CrAANAT was localized to the cytoplasm in tobacco leaf cells. Transgenic rice plants overexpressing CrAANAT (CrAANAT-OE) exhibited increased melatonin production. CrAANAT-OE plants showed a longer seed length and larger second leaf angle than wild-type plants, indicative of the involvement of brassinosteroids (BRs). As expected, BR biosynthesis- and signaling-related genes such as D2, DWARF4, DWARF11, and BZR1 were upregulated in CrAANAT-OE plants. Therefore, an increased endogenous melatonin level by ectopic overexpression of CrAANAT seems to be closely associated with BR biosynthesis, thereby influencing seed size.
Collapse
|
49
|
Wei Y, Cheng X, Reiter RJ, Shi H. Journal of Pineal Research guidelines for authors: Melatonin studies using plants. J Pineal Res 2022; 73:e12807. [PMID: 35621017 DOI: 10.1111/jpi.12807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Xiao Cheng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, Texas, USA
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| |
Collapse
|
50
|
Wei Y, Zhu B, Ma G, Shao X, Xie H, Cheng X, Zeng H, Shi H. The coordination of melatonin and anti-bacterial activity by EIL5 underlies ethylene-induced disease resistance in cassava. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:683-697. [PMID: 35608142 DOI: 10.1111/tpj.15843] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Ethylene and melatonin are widely involved in plant development and environmental stress responses. However, the role of their direct relationship in the immune response and the underlying molecular mechanisms in plants remain elusive. Here, we found that Xanthomonas axonopodis pv. manihotis (Xam) infection increased endogenous ethylene levels, which positively modulated plant disease resistance through activating melatonin accumulation in cassava. In addition, the ethylene-responsive transcription factor ETHYLENE INSENSITIVE LIKE5 (MeEIL5), a positive regulator of disease resistance, was essential for ethylene-induced melatonin accumulation and disease resistance in cassava. Notably, the identification of heat stress transcription factor 20 (MeHsf20) as an interacting protein of MeEIL5 indicated the association between ethylene and melatonin in plant disease resistance. MeEIL5 physically interacted with MeHsf20 to promote the transcriptional activation of the gene encoding N-acetylserotonin O-methyltransferase 2 (MeASMT2), thereby improving melatonin accumulation. Moreover, MeEIL5 promoted the physical interaction of MeHsf20 and pathogen-related gene 3 (MePR3), resulting in improved anti-bacterial activity of MePR3. This study illustrates the dual roles of MeEIL5 in fine-tuning MeHsf20-mediated coordination of melatonin biosynthesis and anti-bacterial activity, highlighting the ethylene-responsive MeEIL5 as the integrator of ethylene and melatonin signals in the immune response in cassava.
Collapse
Affiliation(s)
- Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| | - Binbin Zhu
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Guowen Ma
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Xiaodie Shao
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Haoqi Xie
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Xiao Cheng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Hongqiu Zeng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| |
Collapse
|